pybind.cc 148.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
34
#include "paddle/fluid/framework/executor.h"
35
#include "paddle/fluid/framework/executor_cache.h"
36
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
38
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
39
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
40
#include "paddle/fluid/framework/io/fs.h"
41
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
42
#include "paddle/fluid/framework/ir/cost_model.h"
43
#include "paddle/fluid/framework/ir/generate_pass.h"
44
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
45 46
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
47
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
48
#include "paddle/fluid/framework/op_info.h"
49
#include "paddle/fluid/framework/op_registry.h"
50
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
51
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
52
#include "paddle/fluid/framework/prune.h"
53
#include "paddle/fluid/framework/pten_utils.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
55
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
56
#include "paddle/fluid/framework/scope_pool.h"
57
#include "paddle/fluid/framework/selected_rows_utils.h"
58
#include "paddle/fluid/framework/tensor_util.h"
59
#include "paddle/fluid/framework/trainer.h"
60
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
61
#include "paddle/fluid/framework/version.h"
H
hong 已提交
62
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
63
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
64
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
65
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
67
#include "paddle/fluid/operators/py_func_op.h"
68
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
69
#include "paddle/fluid/platform/cpu_info.h"
70
#include "paddle/fluid/platform/device_context.h"
71
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
72
#include "paddle/fluid/platform/enforce.h"
73
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
74
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
77
#include "paddle/fluid/pybind/cuda_streams_py.h"
78
#include "paddle/pten/core/lod_utils.h"
W
wanghuancoder 已提交
79
#ifndef PADDLE_ON_INFERENCE
80
#include "paddle/fluid/pybind/eager.h"
W
wanghuancoder 已提交
81
#endif
82
#include "paddle/fluid/pybind/io.h"
83
#include "paddle/utils/none.h"
84 85 86
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
Huihuang Zheng 已提交
87
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
88
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
89
#include "paddle/fluid/pybind/box_helper_py.h"
90
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
91
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
92
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
93
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
94
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
95
#include "paddle/fluid/pybind/generator_py.h"
96
#include "paddle/fluid/pybind/global_value_getter_setter.h"
97
#include "paddle/fluid/pybind/gloo_context_py.h"
98
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
99
#include "paddle/fluid/pybind/heter_wrapper_py.h"
100
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
101
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
102
#include "paddle/fluid/pybind/ir.h"
103
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
104
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
105
#include "paddle/fluid/pybind/pybind_boost_headers.h"
106

107
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
108
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
109
#endif
110
#include "paddle/fluid/framework/data_type.h"
111 112
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
113
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
114
#include "paddle/fluid/pybind/tensor_py.h"
115
#include "paddle/fluid/string/to_string.h"
116 117
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
118
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
119
#endif
120
#ifndef PADDLE_WITH_HIP
121
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
122
#endif
123
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
124 125
#endif

126
#ifdef PADDLE_WITH_ASCEND_CL
127
#include "paddle/fluid/platform/collective_helper.h"
128 129
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
130 131
#endif

132
#ifdef PADDLE_WITH_XPU
133
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
134
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
135 136
#endif

137
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
138

J
jianghaicheng 已提交
139
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
140 141
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
142
#endif
143

144 145 146 147
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
148 149 150 151
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
152
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
153 154 155
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
156 157
#include "pybind11/stl.h"

158
DECLARE_bool(use_mkldnn);
159

Q
Qiao Longfei 已提交
160 161
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
162 163 164
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
165

166
namespace paddle {
167
namespace pybind {
168 169 170 171 172 173 174

PyTypeObject *g_place_pytype = nullptr;
PyTypeObject *g_cudaplace_pytype = nullptr;
PyTypeObject *g_cpuplace_pytype = nullptr;
PyTypeObject *g_xpuplace_pytype = nullptr;
PyTypeObject *g_npuplace_pytype = nullptr;
PyTypeObject *g_cudapinnedplace_pytype = nullptr;
175
PyTypeObject *g_mluplace_pytype = nullptr;
176
PyTypeObject *g_framework_tensor_pytype = nullptr;
177
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
178

179
bool IsCompiledWithCUDA() {
180 181 182 183 184 185 186 187 188
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
189 190 191 192 193 194
  return false;
#else
  return true;
#endif
}

195 196 197 198 199 200 201 202
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

203 204 205 206 207 208 209 210
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

211 212 213 214 215 216 217 218
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
219 220 221 222 223 224 225 226
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

227 228 229 230 231 232 233 234
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

235 236 237 238 239 240 241 242
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

243 244 245 246 247 248 249 250
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

251 252 253 254 255 256 257 258
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

259 260 261 262 263 264 265 266 267 268 269
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

270 271 272 273 274 275 276 277 278 279 280
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
316 317 318
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
      {"XPU", &platform::is_xpu_place}, {"NPU", &platform::is_npu_place},
      {"MLU", &platform::is_mlu_place},
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

358
bool IsCompiledWithBrpc() {
359
#ifndef PADDLE_WITH_DISTRIBUTE
360 361
  return false;
#endif
362
  return true;
363 364
}

Y
update  
Yancey1989 已提交
365
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
366
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
367 368 369 370 371 372
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
373 374 375 376 377 378 379
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
380
  return static_cast<int>(paddle::platform::Place(p).GetType());
S
sneaxiy 已提交
381 382
}

H
hong 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
405 406 407
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
421 422
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
423 424
    }
    vec_res.emplace_back(
425
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
426 427 428 429 430 431 432 433 434 435 436 437
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
438 439
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
440 441 442 443 444 445 446 447 448 449 450 451
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
452 453 454
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
455 456 457 458
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
459 460
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
461 462 463 464
  }
  return vec_res;
}

465 466 467 468 469 470 471 472
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
473 474
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
475 476 477 478 479 480 481 482 483 484 485 486 487
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
488 489 490
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
491 492 493 494 495
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
496 497 498 499 500
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
501 502
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
503 504 505
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
506 507 508 509 510 511 512 513 514
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
515 516
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
517 518 519 520 521
  }

  return;
}

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
546 547 548 549
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
550
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
551 552 553 554 555 556 557 558
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

Z
Zeng Jinle 已提交
559 560 561 562 563 564 565 566 567 568 569
template <typename PlaceType>
static void TensorCopyFrom(framework::Tensor *dst, const framework::Tensor &src,
                           const PlaceType &place, int64_t batch_size) {
  if (batch_size < 0) {
    framework::TensorCopy(src, place, dst);
  } else {
    auto sliced = src.Slice(0, batch_size);
    framework::TensorCopy(sliced, place, dst);
  }
}

570 571 572 573 574 575
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

W
wanghuancoder 已提交
576
#ifndef PADDLE_ON_INFERENCE
577
  BindEager(&m);
W
wanghuancoder 已提交
578
#endif
579 580
  BindCudaStream(&m);

Y
Yu Yang 已提交
581 582 583
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
584
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
585

586 587
  AssertStaticGraphAndDygraphGradMakerNoDiff();

588
  m.doc() = "C++ core of PaddlePaddle";
589

590 591 592 593
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

594
  BindException(&m);
Y
Yu Yang 已提交
595

596 597
  m.def("set_num_threads", &platform::SetNumThreads);

598 599
  m.def("disable_signal_handler", &DisableSignalHandler);

600 601 602 603 604 605 606 607
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

608
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
609
  m.def("cudnn_version", &platform::DnnVersion);
610 611 612 613 614 615
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
616
#endif
617

Z
Zeng Jinle 已提交
618 619 620 621
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

622 623 624 625 626 627 628 629 630 631
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
      .def("replay", &platform::CUDAGraph::Replay)
632 633
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
634 635
#endif

Z
Zeng Jinle 已提交
636 637 638 639
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
640 641 642
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
643 644 645 646 647 648

    PADDLE_ENFORCE_NOT_NULL(
        dmt, platform::errors::InvalidArgument(
                 "from_dlpack received an invalid capsule. "
                 "Note that a DLPack tensor can be consumed only once."));

6
633WHU 已提交
649 650
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
651
    framework::Tensor tensor;
6
633WHU 已提交
652

S
Siming Dai 已提交
653
    if (dl.device.device_type == kDLCPU) {
6
633WHU 已提交
654 655
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
656
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
657
    if (dl.device.device_type == kDLGPU) {
6
633WHU 已提交
658 659 660 661 662
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
H
hong 已提交
663

664 665 666 667 668 669
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

670 671 672 673 674 675
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
676 677
  });

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
703 704 705 706 707 708
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
709
  m.def(
S
sneaxiy 已提交
710
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
711 712 713 714
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
715 716 717
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
734 735 736
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
737
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
738

739
  m.def("_set_fuse_parameter_group_size",
740
        &paddle::framework::ir::SetFuseParameterGroupsSize);
741
  m.def("_set_fuse_parameter_memory_size",
742
        &paddle::framework::ir::SetFuseParameterMemorySize);
743

S
sneaxiy 已提交
744 745 746
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

747 748
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

749 750 751
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

752
  BindImperative(&m);
753

754 755 756 757 758
  py::class_<framework::Tensor> framework_tensor(m, "Tensor",
                                                 py::buffer_protocol());
  g_framework_tensor_pytype =
      reinterpret_cast<PyTypeObject *>(framework_tensor.ptr());
  framework_tensor
759 760
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
761
      .def("_is_initialized",
762
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
763
      .def("_get_dims",
764
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
765
      .def("_set_dims",
766
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
767
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
768
           })
Y
yuyang18 已提交
769
      .def("_set_layout",
770
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
771 772
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
773
      .def("_alloc_float",
774
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
775
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
776
           })
777
      .def("_alloc_float",
778
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
779 780
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
781
      .def("_alloc_float",
782
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
783
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
784
           })
785 786 787 788
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
789 790 791 792
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<float>(place);
           })
793
      .def("_alloc_double",
794
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
795 796
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
797
      .def("_alloc_int",
798
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
799
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
800
           })
801
      .def("_alloc_int",
802
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
803 804
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
805
      .def("_alloc_int",
806
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
807
             self.mutable_data<int>(place);
Q
qijun 已提交
808
           })
809 810 811 812
      .def("_alloc_int",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
813
      .def("_alloc_int",
814 815
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
816 817
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
818
      .def("_alloc_float",
819 820
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
821 822
             self.mutable_data<float>(place);
           })
823
      .def("_mutable_data",
824
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
825 826 827
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
828
      .def("_mutable_data",
829
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
830 831 832
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
833
      .def("_mutable_data",
834
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
835 836 837 838
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
839
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
840 841 842
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
843 844 845 846 847
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::MLUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
848
      .def("_clear", &framework::Tensor::clear)
849 850 851 852 853
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
854 855 856 857 858 859 860 861 862 863
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::XPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::NPUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
      .def("_copy_from", &TensorCopyFrom<paddle::platform::CUDAPinnedPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
864 865
      .def("_copy_from", &TensorCopyFrom<paddle::platform::MLUPlace>,
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
Z
Zeng Jinle 已提交
866
      .def("_copy_from", &TensorCopyFrom<paddle::platform::Place>,
867
           py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1)
868
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
869
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
870 871
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
872
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
873
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
874 875
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
J
jianghaicheng 已提交
876 877
      .def("set", SetTensorFromPyArray<paddle::platform::IPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
878 879
      .def("set", SetTensorFromPyArray<paddle::platform::MLUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
880
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
881 882
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
883
        Set the data of Tensor on place with given numpy array.
L
Leo Chen 已提交
884 885 886
        
        Args:
          lod (numpy.ndarray): The data to set.
887
          place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace|NPUPlace|MLUPlace): The place where the
888
          Tensor is to be set.
889 890
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
891 892 893 894 895 896 897 898 899 900

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

901
                t = fluid.Tensor()
L
Leo Chen 已提交
902 903
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
904

905 906 907
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
908
           Return the shape of Tensor.
L
Leo Chen 已提交
909 910

           Returns:
911
               list[int]: The shape of Tensor.
L
Leo Chen 已提交
912 913 914 915 916 917 918 919


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

920
                  t = fluid.Tensor()
L
Leo Chen 已提交
921 922 923
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
924
      .def("_to_dlpack",
925
           [](framework::Tensor &self) {
6
633WHU 已提交
926
             DLPackTensor dlpack_tensor(self, 1);
S
Siming Dai 已提交
927
             DLManagedTensor *dmt = dlpack_tensor.ToDLManagedTensor();
6
633WHU 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
945 946 947 948
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
949 950
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
951
      .def("_layout",
952 953 954 955
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
956
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
      .def("__str__",
           [](const framework::Tensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           }) /* ------ End of original Tensor ------ */
      .def(
          "__init__",
          [](framework::Tensor &instance, const std::vector<std::vector<size_t>>
                                              &recursive_sequence_lengths) {
            LoD new_lod;
            new_lod.reserve(recursive_sequence_lengths.size());
            std::copy(recursive_sequence_lengths.begin(),
                      recursive_sequence_lengths.end(),
                      std::back_inserter(new_lod));
            LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
            PADDLE_ENFORCE_EQ(
                CheckLoD(new_offset_lod, -1), true,
                platform::errors::InvalidArgument(
                    "The provided recursive_sequence_lengths info is invalid, "
                    "the LoD converted by recursive_sequence_lengths is %s",
                    new_lod));
            new (&instance) framework::Tensor(new_offset_lod);
          })
981
      .def("__init__",
982 983
           [](framework::Tensor &instance) {
             new (&instance) framework::Tensor();
984
           })
G
gongweibao 已提交
985
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
986 987
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
988 989 990
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
991
      .def("set_lod",
992 993
           [](framework::Tensor &self,
              const std::vector<std::vector<size_t>> &lod) {
994
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
995
             LoD new_lod;
996 997
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
998 999
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
1000 1001
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
1002
             self.set_lod(new_lod);
S
sneaxiy 已提交
1003 1004
           },
           py::arg("lod"), R"DOC(
1005
           Set LoD of the Tensor.
S
sneaxiy 已提交
1006 1007

           Args:
L
Leo Chen 已提交
1008 1009 1010 1011
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
1012 1013 1014 1015 1016 1017 1018

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1019
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1020 1021
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
1022
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1023
           )DOC")
1024
      .def("set_recursive_sequence_lengths",
1025 1026
           [](framework::Tensor &self, const std::vector<std::vector<size_t>>
                                           &recursive_sequence_lengths) {
1027 1028 1029 1030 1031 1032 1033 1034
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1035 1036
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1037 1038 1039 1040 1041
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1042
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1043 1044
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
1045
           Set LoD of the Tensor according to recursive sequence lengths.
S
sneaxiy 已提交
1046

L
Leo Chen 已提交
1047
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1048
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1049
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1050 1051

           Args:
L
Leo Chen 已提交
1052 1053 1054 1055
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1056 1057 1058 1059 1060 1061 1062

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1063
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1064 1065
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
1066
                 print(t.recursive_sequence_lengths())  # [[2, 3]]
L
Leo Chen 已提交
1067
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1068
           )DOC")
1069
      .def("lod",
1070
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1071 1072 1073 1074 1075 1076
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1077 1078
           },
           R"DOC(
1079
           Return the LoD of the Tensor.
S
sneaxiy 已提交
1080 1081

           Returns:
1082
               list[list[int]]: The lod of the Tensor.
L
Leo Chen 已提交
1083
           
Z
Zeng Jinle 已提交
1084 1085 1086 1087 1088 1089
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1090
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1091 1092 1093
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1094
           )DOC")
G
gongweibao 已提交
1095
      // Set above comments of set_lod.
1096
      .def("recursive_sequence_lengths",
1097
           [](framework::Tensor &self) -> std::vector<std::vector<size_t>> {
1098
             // output the length-based lod info
1099
             LoD lod = pten::ConvertToLengthBasedLoD(self.lod());
1100 1101 1102 1103
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1104 1105
           },
           R"DOC(
L
Leo Chen 已提交
1106
           Return the recursive sequence lengths corresponding to of the LodD 
1107
           of the Tensor.
S
sneaxiy 已提交
1108 1109

           Returns:
L
Leo Chen 已提交
1110
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1111 1112 1113 1114 1115 1116 1117

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1118
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1119 1120 1121
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1122 1123
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
1124
           [](framework::Tensor &self) -> bool {
S
sneaxiy 已提交
1125
             // Check that the lod info is valid and match the outermost
1126
             // dimension of the Tensor data
S
sneaxiy 已提交
1127 1128 1129
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
1130
           Check whether the LoD of the Tensor is valid.
S
sneaxiy 已提交
1131 1132

           Returns:
L
Leo Chen 已提交
1133
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1134 1135 1136 1137 1138 1139 1140

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

1141
                 t = fluid.Tensor()
Z
Zeng Jinle 已提交
1142 1143 1144
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1145
           )DOC")
L
Leo Chen 已提交
1146
      .def("_as_type",
1147
           [](const framework::Tensor &self,
L
Leo Chen 已提交
1148
              paddle::framework::proto::VarType::Type type) {
1149
             framework::Tensor dst;
L
Leo Chen 已提交
1150 1151 1152 1153 1154
             if (self.IsInitialized() && self.numel() > 0) {
               TransDataType(self, type, &dst);
             }
             return dst;
           })
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
      .def("_copy",
           [](const framework::Tensor &self, const platform::Place &place) {
             // follow fetch_op's inplementation
             framework::Tensor dst;
             if (self.IsInitialized() && self.numel() > 0) {
               TensorCopySync(self, place, &dst);
             } else {
               // Not copy, if the src tensor is empty.
               dst.clear();
               dst.Resize({0});
             }
             dst.set_lod(self.lod());
             return dst;
1168
#ifdef _WIN32
1169
           });
1170 1171 1172
#else
           })
      .def(py::pickle(
1173
          [](const framework::Tensor &t) {  // __getstate__
1174
            auto holder = t.Holder();
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
            PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true,
                              platform::errors::PreconditionNotMet(
                                  "Tensor is not on CPU."
                                  "Now only Tensor on CPU can be serialized."));
            auto *mmap_writer_allocation =
                dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                    holder.get());
            PADDLE_ENFORCE_NOT_NULL(
                mmap_writer_allocation,
                platform::errors::PreconditionNotMet(
                    "Tensor is not in shared memory."
                    "Now only Tensor on shared memory can be serialized."));
1187 1188 1189
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
1190 1191
                                  mmap_writer_allocation->size(), type_idx,
                                  vectorize(t.dims()), t.lod());
1192 1193 1194
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
1195
              throw std::runtime_error("Invalid Tensor state!");
1196 1197

            // 1. Create a new C++ instance
1198
            framework::Tensor tensor;
1199 1200 1201 1202 1203

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
1204 1205
                memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name,
                                                                     size);
1206 1207

            // 3. Maintain global fd set
1208
            VLOG(3) << "Tensor ipc name: " << ipc_name;
1209 1210
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

1211 1212 1213 1214
            // 4. Rebuild Tensor
            tensor.ResetHolderWithType(
                shared_reader_holder,
                static_cast<proto::VarType::Type>(t[2].cast<int>()));
1215 1216 1217 1218 1219 1220
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1221

1222
  py::class_<pten::SelectedRows>(m, "SelectedRows")
Q
qijun 已提交
1223
      .def("__init__",
1224 1225 1226
           [](pten::SelectedRows &instance) {
             new (&instance) pten::SelectedRows();
           })
Q
qijun 已提交
1227
      .def("__init__",
1228
           [](pten::SelectedRows &instance, const std::vector<int64_t> rows,
Q
qijun 已提交
1229
              const int64_t &height) {
1230
             new (&instance) pten::SelectedRows(rows, height);
Q
qijun 已提交
1231 1232
           })
      .def("get_tensor",
1233
           [](pten::SelectedRows &self) { return self.mutable_value(); },
Q
qijun 已提交
1234
           py::return_value_policy::reference)
1235
      .def("numel",
1236 1237 1238 1239 1240
           [](pten::SelectedRows &self) -> int64_t {
             return self.value().numel();
           })
      .def("set_height", &pten::SelectedRows::set_height)
      .def("height", &pten::SelectedRows::height)
Q
qijun 已提交
1241
      .def("set_rows",
1242
           [](pten::SelectedRows &self, std::vector<int64_t> rows) {
1243
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1244 1245 1246 1247 1248 1249
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1250 1251 1252
      .def("sync_index",
           [](pten::SelectedRows &instance) { instance.SyncIndex(); })
      .def("rows", [](pten::SelectedRows &self) {
1253 1254 1255 1256 1257
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1258
      });
Q
qijun 已提交
1259

1260
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1261 1262 1263

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1264
      .def(py::init<>())
1265
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1266
      .def("set_int",
1267 1268
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1269 1270 1271 1272 1273 1274 1275
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1276
      .def("get_tensor",
1277 1278
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1279 1280
           },
           py::return_value_policy::reference)
1281 1282 1283 1284
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
      .def("set_vocab", [](Variable &self,
                           Vocab vocab) { *self.GetMutable<Vocab>() = vocab; })
      .def("get_string_tensor",
           [](Variable &self) { return self.GetMutable<Strings>(); },
           py::return_value_policy::reference)
      .def("get_map_tensor",
           [](Variable &self) { return self.GetMutable<Vocab>(); },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1297 1298 1299
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1300
      .def("get_selected_rows",
1301 1302
           [](Variable &self) -> pten::SelectedRows * {
             return self.GetMutable<pten::SelectedRows>();
Q
qijun 已提交
1303 1304
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1305 1306 1307
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1308 1309 1310
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1311
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1312 1313 1314 1315 1316
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1317
#endif
Y
Refine  
Yu Yang 已提交
1318 1319
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1320 1321 1322 1323
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1324 1325
             return self.GetMutable<framework::ReaderHolder>();
           },
1326
           py::return_value_policy::reference)
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
      .def("get_scope",
           [](Variable &self) -> Scope * {
             auto scope_vec =
                 self.GetMutable<std::vector<framework::Scope *>>();
             PADDLE_ENFORCE_GT(
                 scope_vec->size(), 0,
                 platform::errors::InvalidArgument(
                     "The size of scope_vec should be greater than 0"));
             return scope_vec->front();
           },
           py::return_value_policy::reference)
1338 1339 1340 1341
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1342

S
sneaxiy 已提交
1343
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1344

S
sneaxiy 已提交
1345
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1359
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1360 1361 1362 1363 1364 1365
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1366 1367
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1368
      .def("var",
1369
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1370
             return self.Var(name);
Y
Yu Yang 已提交
1371
           },
S
sneaxiy 已提交
1372 1373
           py::arg("name"),
           R"DOC(
1374
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1375

1376
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1377
           current scope, the variable would be created. Otherwise,
1378
           return the existing variable.
S
sneaxiy 已提交
1379 1380

           Args:
1381 1382
               name (str): the variable name.

S
sneaxiy 已提交
1383
           Returns:
1384
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1385 1386 1387 1388
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1389
           Find variable named :code:`name` in the current scope or
1390
           its parent scope. Return None if not found. 
1391

S
sneaxiy 已提交
1392 1393
           Args:
               name (str): the variable name.
1394

S
sneaxiy 已提交
1395
           Returns:
1396
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1397
           )DOC",
1398
           py::return_value_policy::reference)
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
      .def("erase", &Scope::EraseVars, py::arg("names"),
           R"DOC(
           Find variable named :code:`name` in the current scope or
           its parent scope. Return None if not found. 

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1411
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1412 1413 1414 1415 1416 1417
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1418
           py::return_value_policy::reference)
S
sneaxiy 已提交
1419 1420 1421
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1422 1423
           )DOC")
      .def("_kids", &Scope::kids);
1424

S
sneaxiy 已提交
1425 1426 1427 1428 1429 1430
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1431 1432
        R"DOC(
        Create a new scope.
1433

S
sneaxiy 已提交
1434 1435 1436
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1437 1438
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1439 1440
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1441 1442
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1443 1444 1445 1446
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1447 1448
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1449 1450
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1451 1452 1453
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1454 1455
    return ret_values;
  });
1456 1457 1458 1459 1460 1461 1462 1463
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1464
              res = op_checker->GetDefaultAttrsMap();
1465 1466 1467 1468
            }
          }
          return res;
        });
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1485 1486 1487
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1488 1489 1490 1491 1492
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1493 1494 1495
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1510
  m.def("prune", [](const ProgramDesc &origin,
1511
                    const std::set<std::string> &feeded_var_names,
1512
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1513
    ProgramDesc prog_with_targets(origin);
1514

1515
    for (const auto &t : targets) {
1516
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1517
    }
1518
    proto::ProgramDesc pruned_desc;
1519 1520 1521 1522
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1523
  });
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1541 1542 1543 1544
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1545 1546 1547
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1548 1549
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1550

Q
qijun 已提交
1551
  // clang-format off
Y
Yu Yang 已提交
1552
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1553 1554
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1555
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1556 1557
                    return new paddle::platform::CPUDeviceContext();
                  })
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
#endif
                  })
        .def_static("create",
                  [](paddle::platform::MLUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_MLU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use MLUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with MLU support."));
#else
                    return new paddle::platform::MLUDeviceContext(place);
1580 1581
#endif
                  })
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1594
      .def_static("create",
D
dzhwinter 已提交
1595
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1596
                      -> paddle::platform::DeviceContext* {
1597
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1598 1599 1600 1601
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1602
#else
Q
qijun 已提交
1603
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1604
#endif
C
chengduoZH 已提交
1605 1606 1607 1608
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1609
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1610 1611 1612 1613
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1614 1615 1616 1617
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1618
// clang-format on
1619
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1620 1621
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1622
  py::class_<platform::CUDAPlace> cudaplace(m, "CUDAPlace", R"DOC(
1623 1624 1625 1626 1627

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1628
    The memory of CUDAPlace with different dev_id is not accessible.
1629 1630 1631 1632 1633 1634 1635 1636
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1637 1638 1639 1640

    Examples:
        .. code-block:: python

1641 1642 1643
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1644

1645 1646 1647
        )DOC");
  g_cudaplace_pytype = reinterpret_cast<PyTypeObject *>(cudaplace.ptr());
  cudaplace
S
sneaxiy 已提交
1648 1649
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1650
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1651 1652 1653 1654 1655 1656 1657 1658
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

1659 1660
             if (UNLIKELY(dev_id >= platform::GetGPUDeviceCount())) {
               if (platform::GetGPUDeviceCount() == 0) {
1661 1662 1663 1664 1665 1666 1667 1668
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
1669 1670
                     dev_id, platform::GetGPUDeviceCount(),
                     platform::GetGPUDeviceCount());
1671 1672 1673 1674
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1675 1676
             new (&self) platform::CUDAPlace(dev_id);
#else
1677 1678 1679 1680 1681 1682 1683 1684 1685
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1686 1687
#endif
           })
1688
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1689 1690
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1691 1692 1693 1694
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1695
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1696
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
1697
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::MLUPlace>)
S
sneaxiy 已提交
1698 1699
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1700 1701 1702
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1703
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1704
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1705

1706
  py::class_<platform::XPUPlace> xpuplace(m, "XPUPlace", R"DOC(
1707 1708 1709 1710 1711
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
1712 1713 1714
        )DOC");
  g_xpuplace_pytype = reinterpret_cast<PyTypeObject *>(xpuplace.ptr());
  xpuplace
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1753
#ifdef PADDLE_WITH_XPU
1754 1755 1756 1757 1758 1759 1760
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1761 1762 1763
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1764
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1765
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1766
#ifdef PADDLE_WITH_XPU
W
Wilber 已提交
1767 1768 1769
  py::enum_<pten::backends::xpu::XPUVersion>(m, "XPUVersion", py::arithmetic())
      .value("XPU1", pten::backends::xpu::XPUVersion::XPU1)
      .value("XPU2", pten::backends::xpu::XPUVersion::XPU2)
T
TTerror 已提交
1770
      .export_values();
1771
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
T
TTerror 已提交
1772 1773
  m.def("get_xpu_device_version",
        [](int device_id) { return platform::get_xpu_version(device_id); });
W
Wilber 已提交
1774 1775 1776 1777 1778 1779
  m.def(
      "get_xpu_device_op_support_types",
      [](const std::string &op_name, pten::backends::xpu::XPUVersion version) {
        return platform::get_xpu_op_support_type(op_name, version);
      });
  m.def("get_xpu_device_op_list", [](pten::backends::xpu::XPUVersion version) {
T
TTerror 已提交
1780 1781
    return platform::get_xpu_op_list(version);
  });
T
taixiurong 已提交
1782 1783
  m.def("is_float16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1784 1785
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1786 1787 1788
  });
  m.def("is_bfloat16_supported", [](const platform::XPUPlace &place) -> bool {
    // XPUs with Compute Capability > xpu2 support float16 and bfloat16
W
Wilber 已提交
1789 1790
    return platform::get_xpu_version(place.device) >
           pten::backends::xpu::XPUVersion::XPU1;
T
taixiurong 已提交
1791
  });
1792
#endif
1793

1794
  py::class_<paddle::platform::CPUPlace> cpuplace(m, "CPUPlace", R"DOC(
1795
    CPUPlace is a descriptor of a device.
1796
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1797 1798 1799 1800

    Examples:
        .. code-block:: python

1801 1802
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1803

1804 1805 1806
        )DOC");
  g_cpuplace_pytype = reinterpret_cast<PyTypeObject *>(cpuplace.ptr());
  cpuplace.def(py::init<>())
S
sneaxiy 已提交
1807 1808
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1809
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1810
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1811 1812 1813 1814
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1815
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1816
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1817

1818 1819
  py::class_<paddle::platform::CUDAPinnedPlace> cudapinnedplace(
      m, "CUDAPinnedPlace", R"DOC(
1820 1821 1822 1823 1824 1825
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1826 1827 1828 1829

    Examples:
        .. code-block:: python

1830 1831
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1832

1833 1834 1835 1836
        )DOC");
  g_cudapinnedplace_pytype =
      reinterpret_cast<PyTypeObject *>(cudapinnedplace.ptr());
  cudapinnedplace
S
sneaxiy 已提交
1837
      .def("__init__",
S
sneaxiy 已提交
1838
           [](platform::CUDAPinnedPlace &self) {
1839
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1840 1841 1842
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1843
#endif
S
sneaxiy 已提交
1844
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1845
           })
S
sneaxiy 已提交
1846 1847 1848 1849
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1850 1851
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1852 1853
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1854 1855 1856 1857
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1858
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1859 1860
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1861
  // NPUPlace
1862
  py::class_<platform::NPUPlace> npuplace(m, "NPUPlace", R"DOC(
1863 1864 1865 1866 1867 1868 1869 1870
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

1871 1872 1873
        )DOC");
  g_npuplace_pytype = reinterpret_cast<PyTypeObject *>(npuplace.ptr());
  npuplace
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1905
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
H
houj04 已提交
1920 1921
      .def("get_device_id",
           [](const platform::NPUPlace &self) { return self.GetDeviceId(); })
1922 1923
      .def("__str__", string::to_string<const platform::NPUPlace &>);

J
jianghaicheng 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
  // IPUPlace
  py::class_<platform::IPUPlace>(m, "IPUPlace", R"DOC(
    IPUPlace is a descriptor of a device.
    It represents a IPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle

          # required: ipu

          ipu_place = paddle.IPUPlace()

        )DOC")
      .def("__init__",
           [](platform::IPUPlace &self) {
#ifdef PADDLE_WITH_IPU
             if (platform::GetIPUDeviceCount() == 0) {
               LOG(ERROR) << "Cannot use IPU because there is no IPU "
                             "detected on your "
                             "machine.";
               std::exit(-1);
             }
             // use ipu(0) to comile, while run with the number user configure
             // in sharding and pipline.
             new (&self) platform::IPUPlace(0);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use IPU because you didn't install IPU version "
                 "PaddlePaddle.\n"
                 "If you want to use IPU, please try to install IPU version "
                 "PaddlePaddle by: pip install paddlepaddle*\n"
                 "If you only have CPU, please change IPUPlace to be "
                 "CPUPlace().\n");
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::IPUPlace, platform::IPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::IPUPlace, platform::CUDAPinnedPlace>)
#ifdef PADDLE_WITH_IPU
      .def("get_device_id",
           [](const platform::IPUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::IPUPlace &>);

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
  // MLUPlace
  py::class_<platform::MLUPlace> mluplace(m, "MLUPlace", R"DOC(
    MLUPlace is a descriptor of a device.
    It represents a MLU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          # required: mlu
          mlu_place = paddle.MLUPlace(0)

        )DOC");
  g_mluplace_pytype = reinterpret_cast<PyTypeObject *>(mluplace.ptr());
  mluplace
      .def("__init__",
           [](platform::MLUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_MLU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid MLUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetMLUDeviceCount())) {
               if (platform::GetMLUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use MLU because there is no MLU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid MLUPlace(%d), must inside [0, %d), because MLU "
                     "number on your machine is %d",
                     dev_id, platform::GetMLUDeviceCount(),
                     platform::GetMLUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::MLUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use MLU because you have installed CPU/GPU/... "
                 "version "
                 "PaddlePaddle.\n"
                 "If you want to use MLU, please try to install MLU version "
                 "PaddlePaddle by: pip install paddlepaddle-mlu\n"
                 "If you only have CPU, please change MLUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::MLUPlace>)
#ifdef PADDLE_WITH_MLU
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::IPUPlace>)
      .def("_equals", &IsSamePlace<platform::MLUPlace, platform::MLUPlace>)
      .def("_equals",
           &IsSamePlace<platform::MLUPlace, platform::CUDAPinnedPlace>)
      .def("get_device_id",
           [](const platform::MLUPlace &self) { return self.GetDeviceId(); })
#endif
      .def("__str__", string::to_string<const platform::MLUPlace &>);

2045 2046 2047
  py::class_<platform::Place> platformplace(m, "Place");
  g_place_pytype = reinterpret_cast<PyTypeObject *>(platformplace.ptr());
  platformplace.def(py::init<>())
S
sneaxiy 已提交
2048 2049 2050 2051
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
2052
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
2053
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
J
jianghaicheng 已提交
2054
      .def("_equals", &IsSamePlace<platform::Place, platform::IPUPlace>)
S
sneaxiy 已提交
2055
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
2056
      .def("_equals", &IsSamePlace<platform::Place, platform::MLUPlace>)
X
xuezhong 已提交
2057 2058
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
2059 2060
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
2061 2062
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
2063 2064
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
J
jianghaicheng 已提交
2065 2066
      .def("is_ipu_place",
           [](platform::Place &self) { return platform::is_ipu_place(self); })
S
sneaxiy 已提交
2067 2068 2069 2070
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
2071 2072
      .def("is_mlu_place",
           [](platform::Place &self) { return platform::is_mlu_place(self); })
2073 2074 2075 2076 2077
      .def("gpu_device_id", [](platform::Place &self) { return self.device; })
      .def("xpu_device_id", [](platform::Place &self) { return self.device; })
      .def("npu_device_id", [](platform::Place &self) { return self.device; })
      .def("ipu_device_id", [](platform::Place &self) { return self.device; })
      .def("mlu_device_id", [](platform::Place &self) { return self.device; })
S
sneaxiy 已提交
2078 2079
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
2080 2081 2082 2083
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
2084 2085 2086 2087
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
2088
      .def("set_place",
D
dzhwinter 已提交
2089
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
2090
             self = gpu_place;
C
chengduoZH 已提交
2091
           })
2092 2093 2094 2095 2096
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
2097 2098 2099 2100
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
J
jianghaicheng 已提交
2101 2102 2103 2104
      .def("set_place",
           [](platform::Place &self, const platform::IPUPlace &ipu_place) {
             self = ipu_place;
           })
2105 2106 2107 2108
      .def("set_place",
           [](platform::Place &self, const platform::MLUPlace &mlu_place) {
             self = mlu_place;
           })
2109 2110
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
2111

Y
Yu Yang 已提交
2112
  py::class_<OperatorBase>(m, "Operator")
S
Steffy-zxf 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
            return OpRegistry::CreateOp(desc);
          })
2127
      .def("run",
2128
           [](OperatorBase &self, const Scope &scope,
2129 2130 2131 2132
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2133 2134
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2135 2136 2137 2138
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
2139 2140
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2141 2142 2143 2144
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
2145 2146
      .def("run",
           [](OperatorBase &self, const Scope &scope,
2147 2148 2149 2150
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
2151 2152 2153
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
2154
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
2155 2156
             self.Run(scope, place);
           })
2157 2158 2159 2160 2161 2162
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
2163 2164 2165 2166 2167 2168 2169
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
2170 2171
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
2172
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
2173
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
2174 2175 2176 2177
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
2178

2179 2180 2181
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

2182 2183 2184 2185 2186 2187 2188
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
2189 2190
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
2191

2192 2193
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
2194
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
2195
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
2196
      .def("close", &Executor::Close)
2197 2198
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
2199 2200
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
2201 2202 2203 2204
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
2205
             pybind11::gil_scoped_release release;
2206 2207 2208 2209 2210 2211 2212
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
2213 2214 2215
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
2216
              std::map<std::string, FetchType *> *fetch_targets,
2217 2218 2219 2220 2221 2222 2223 2224
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
2225
      .def("run_prepared_ctx",
G
guru4elephant 已提交
2226 2227 2228 2229 2230 2231 2232
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
2243
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
2244 2245
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
2246
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
2247 2248
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
2249
      });
S
sneaxiy 已提交
2250

2251
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
2252
      .def(py::init<>())
2253 2254 2255 2256 2257
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
2258

2259
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
H
hong 已提交
2260 2261 2262
      .def(py::init<const platform::Place &, const ProgramDesc &,
                    const ProgramDesc &, Scope *>())
      .def("run",
2263
           [](StandaloneExecutor &self,
H
hong 已提交
2264
              const std::unordered_map<std::string, py::array> &input_dict,
2265
              std::vector<std::string> fetch_names) {
2266
             std::vector<framework::LoDTensor> feed_tensors;
2267
             std::vector<std::string> feed_names;
H
hong 已提交
2268 2269 2270 2271 2272

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
2273 2274
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
H
hong 已提交
2275 2276
             }

2277 2278 2279 2280 2281 2282 2283 2284 2285
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
             }
             return py::cast(std::move(ret));
           })
      .def("run",
           [](StandaloneExecutor &self,
2286
              const std::unordered_map<std::string, framework::LoDTensor>
2287 2288
                  &input_dict,
              std::vector<std::string> fetch_names) {
2289
             std::vector<framework::LoDTensor> feed_tensors;
2290 2291 2292 2293 2294 2295 2296
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               feed_names.push_back(item.first);
               feed_tensors.push_back(item.second);
             }

W
wanghuancoder 已提交
2297 2298 2299 2300
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, feed_tensors, fetch_names);
H
hong 已提交
2301
             }
W
wanghuancoder 已提交
2302
             return py::cast(std::move(ret));
2303
           })
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
      .def("run",
           [](StandaloneExecutor &self, std::vector<std::string> feed_names,
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(feed_names, fetch_names);
             }
             return py::cast(std::move(ret));
           })
2314 2315 2316
      .def("dry_run",
           [](StandaloneExecutor &self,
              const std::unordered_map<std::string, py::array> &input_dict) {
2317
             std::vector<framework::LoDTensor> feed_tensors;
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
               framework::LoDTensor t;
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

2328
             framework::interpreter::CostInfo cost_info;
2329 2330 2331 2332 2333
             {
               pybind11::gil_scoped_release release;
               cost_info = self.DryRun(feed_names, feed_tensors);
             }
             return cost_info;
H
hong 已提交
2334 2335
           });

D
dzhwinter 已提交
2336
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2337
  m.def("init_glog", framework::InitGLOG);
2338 2339
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
2340
  m.def("init_devices", []() { framework::InitDevices(); });
2341

2342
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2343
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2344
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2345
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
2346
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2347
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2348
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2349
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2350
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2351
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2352
  m.def("supports_bfloat16", SupportsBfloat16);
2353
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2354 2355
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
2356
  m.def("op_supported_infos", OpSupportedInfos);
2357
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2358
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2359 2360 2361
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2381 2382 2383 2384 2385 2386 2387
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2397
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2398 2399
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2400
    return platform::GetGPUComputeCapability(place.device) >= 53;
2401 2402
  });
#endif
2403

S
Steffy-zxf 已提交
2404 2405 2406 2407 2408 2409
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const LoDTensor &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
  m.def("set_feed_variable",
        static_cast<void (*)(Scope *, const Strings &, const std::string &,
                             size_t)>(&framework::SetFeedVariable));
2410 2411 2412 2413 2414
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2415
            return py::cast(BOOST_GET(LoDTensor, var));
2416
          } else {
2417
            return py::cast(BOOST_GET(LoDTensorArray, var));
2418 2419
          }
        });
2420
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2421

X
Xin Pan 已提交
2422 2423
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2424 2425 2426 2427
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2428
  BindCostModel(&m);
2429
  BindConstValue(&m);
2430
  BindGlobalValueGetterSetter(&m);
2431
  BindProcessMeshDesc(&m);
L
LiYuRio 已提交
2432
  BindFleetExecutor(&m);
Y
Yu Yang 已提交
2433

Y
Yu Yang 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2443
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2444
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2445 2446 2447

    Examples:
        .. code-block:: python
2448

Z
Zeng Jinle 已提交
2449 2450 2451
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2452 2453 2454 2455
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2456 2457
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2458 2459 2460 2461 2462 2463
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2464 2465 2466 2467
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2468 2469 2470
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2471 2472 2473 2474 2475 2476
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2477 2478
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2479 2480 2481 2482 2483 2484
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2507

2508 2509 2510 2511 2512 2513 2514 2515
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2516
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2517 2518
                 res[i] = py::cast(std::move(data));
               } else {
2519
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2535
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2536 2537 2538 2539 2540 2541 2542 2543
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2544
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2545 2546 2547 2548 2549 2550 2551 2552 2553
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2554 2555
        )DOC")
      .def("_move_to_list",
2556
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2557 2558 2559 2560
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2561
                 if (data_is_lod_tensor(self[i][j])) {
2562
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2563 2564
                   tmp[j] = py::cast(std::move(var));
                 } else {
2565
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2566 2567 2568 2569 2570 2571
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2581
  m.def("op_support_gpu", OpSupportGPU);
2582
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2583
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2584 2585 2586 2587 2588 2589 2590 2591
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2592 2593 2594 2595 2596 2597 2598
  m.def("get_device_properties",
        [](int id) -> const gpuDeviceProp & {
          return platform::GetDeviceProperties(id);
        },
        py::return_value_policy::copy);

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2624
      });
D
dangqingqing 已提交
2625

2626
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2627 2628 2629
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2630 2631 2632 2633
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2634
#endif
P
peizhilin 已提交
2635
#endif
Y
Yu Yang 已提交
2636

2637 2638
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2639
  m.def("npu_finalize", []() {
2640 2641
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2642 2643 2644
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2645
      platform::NPUDeviceGuard guard(devices[i]);
2646 2647 2648 2649
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2670 2671 2672 2673
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2674 2675 2676 2677
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2678 2679 2680 2681 2682 2683
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2684 2685 2686 2687
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2688
      .value("kAll", platform::ProfilerState::kAll)
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2700
  m.def("set_tracer_option", platform::SetTracerOption);
2701 2702
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2703
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2704
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2705
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2706 2707 2708 2709 2710
    PADDLE_ENFORCE_EQ(
        framework::ir::PassRegistry::Instance().Has(pass_type), false,
        platform::errors::AlreadyExists(
            "Pass '%s' is registered more than once. Please use another name.",
            pass_type));
W
wuhuanzhou 已提交
2711
    callable.inc_ref();
2712 2713 2714 2715 2716 2717 2718 2719
    framework::ir::PassRegistry::Instance().Insert(pass_type, [pass_type,
                                                               callable]() {
      py::gil_scoped_acquire guard;
      std::unique_ptr<framework::ir::Pass> pass(
          new framework::ir::GeneratePass(py::cast<std::string>(callable())));
      return pass;
    });
  });
2720
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2721 2722 2723
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2724

2725 2726
  m.def("size_of_dtype", framework::SizeOfType);

2727
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2728 2729
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2730 2731
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2732
#endif  // PADDLE_WITH_CUDA
2733 2734
  m.def("clear_executor_cache",
        []() { framework::ExecutorInfoCache::Instance().Finalize(); });
2735

2736 2737 2738
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2739 2740
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2741
      .def("has", &ir::Pass::Has)
2742 2743 2744
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2745
           })
2746
      .def(
2747
          "set",
2748 2749 2750
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2751 2752
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2753 2754
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
J
jianghaicheng 已提交
2755 2756 2757 2758 2759
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::vector<std::string> set) {
             self.Set(name, new std::vector<std::string>(set));
           })
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2774 2775
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2776
        self.Apply(graph.get());
F
flame 已提交
2777
      });
2778

X
fix  
Xin Pan 已提交
2779 2780
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2795
  // -- python binds for parallel executor.
Y
yuyang18 已提交
2796
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2797 2798 2799 2800
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2801 2802 2803
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2804 2805 2806
    Examples:
        .. code-block:: python

2807 2808 2809 2810 2811 2812 2813 2814 2815
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2816

2817 2818
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2819

2820
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2821 2822
          sgd_optimizer.minimize(avg_loss)

2823
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2824 2825
          exec_strategy.num_threads = 4

2826 2827 2828
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2829 2830
        )DOC");

2831 2832 2833 2834
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2835

Y
yuyang18 已提交
2836
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2837 2838 2839 2840 2841
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2842
          },
2843 2844
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2845 2846 2847 2848 2849 2850 2851
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2865
      .def_property(
2866 2867
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2868
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2869 2870 2871
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2872 2873 2874 2875 2876
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2877 2878 2879
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2880 2881
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2882 2883 2884 2885 2886 2887 2888
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2889 2890 2891 2892
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2893
                because the temp variable's shape maybe the same between two iterations.
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2904

2905 2906 2907 2908 2909 2910 2911
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2912
              )DOC")
Q
Qiao Longfei 已提交
2913 2914 2915 2916 2917 2918 2919 2920 2921
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2934
              )DOC")
2935 2936 2937 2938 2939 2940 2941 2942
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2943 2944 2945 2946 2947
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2948

Y
yuyang18 已提交
2949
  exec_strategy.def_property(
Y
yuyang18 已提交
2950 2951 2952 2953 2954 2955 2956
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2957 2958
      });

C
chengduo 已提交
2959 2960 2961 2962
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2963 2964 2965
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2966 2967 2968
    Examples:
        .. code-block:: python

2969
            import os
2970 2971 2972 2973
            import paddle
            import paddle.static as static

            paddle.enable_static()
2974

2975 2976
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2977

2978 2979 2980 2981
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2982

2983
            build_strategy = static.BuildStrategy()
2984 2985
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2986 2987
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2988
            program = program.with_data_parallel(loss_name=loss.name,
2989 2990
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2991
)DOC");
Y
yuyang18 已提交
2992 2993 2994

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
2995 2996
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce)
      .value("_NoReduce", BuildStrategy::ReduceStrategy::kNoReduce);
Y
yuyang18 已提交
2997 2998 2999 3000 3001 3002 3003 3004
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
3005
      .def("_clear_finalized", &BuildStrategy::ClearFinalized)
Y
yuyang18 已提交
3006 3007 3008 3009
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
3010 3011 3012 3013
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3014
            self.reduce_ = strategy;
C
chengduo 已提交
3015
          },
3016
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
3017 3018
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
3019
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
3020 3021
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
3022
                Default is 'AllReduce'.
F
flame 已提交
3023 3024 3025 3026

                Examples:
                    .. code-block:: python

3027 3028 3029 3030 3031 3032 3033
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
3034
                  )DOC")
Y
yuyang18 已提交
3035 3036 3037 3038 3039
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
3040 3041 3042 3043
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3044
            self.gradient_scale_ = strategy;
C
chengduo 已提交
3045
          },
3046
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
3047
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
3048 3049
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
3050
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
3051 3052 3053 3054

                Examples:
                    .. code-block:: python

C
chengduo 已提交
3055 3056
                        import numpy
                        import os
3057 3058 3059 3060
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3061 3062

                        use_cuda = True
3063 3064
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
3065 3066

                        # NOTE: If you use CPU to run the program, you need
3067
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
3068 3069 3070 3071 3072 3073
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
3074
                            places = static.cpu_places()
C
chengduo 已提交
3075
                        else:
3076
                            places = static.cuda_places()
C
chengduo 已提交
3077

3078 3079 3080 3081
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
3082

3083
                        exe.run(static.default_startup_program())
C
chengduo 已提交
3084

3085
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
3086
                        build_strategy.gradient_scale_strategy = \
3087 3088 3089
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
3090
                                          loss_name=loss.name, build_strategy=build_strategy,
3091
                                          places=places)
C
chengduo 已提交
3092 3093 3094 3095 3096 3097

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
3098 3099
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
3100
                   )DOC")
Y
yuyang18 已提交
3101 3102 3103 3104
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
3105 3106 3107 3108
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
3109
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
3110
          },
3111
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
3112
                writing the SSA Graph to file in the form of graphviz.
3113
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
3114 3115 3116 3117

                Examples:
                    .. code-block:: python

3118 3119 3120 3121
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
3122

3123 3124
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
3125
                    )DOC")
S
sneaxiy 已提交
3126 3127 3128 3129 3130 3131
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
3132 3133 3134 3135
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3136 3137
            self.enable_sequential_execution_ = b;
          },
3138 3139
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
3140 3141 3142 3143

                Examples:
                    .. code-block:: python

3144 3145 3146 3147 3148 3149
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3150 3151
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
3152 3153 3154 3155 3156 3157
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
3158 3159 3160 3161
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
3162 3163
            self.remove_unnecessary_lock_ = b;
          },
3164 3165
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
3166 3167 3168 3169

                Examples:
                    .. code-block:: python

3170 3171 3172 3173 3174 3175
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3176 3177
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
3178 3179 3180 3181
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
3182
#ifdef WIN32
3183
            PADDLE_THROW(platform::errors::Unavailable(
3184
                "Distribution mode is not supported on Windows platform."));
3185
#endif
3186 3187
            self.num_trainers_ = num_trainers;
          })
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
3200 3201 3202 3203 3204 3205
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
3206 3207 3208 3209 3210 3211
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
3212
      .def_property("use_hierarchical_allreduce",
3213 3214 3215 3216 3217 3218
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
3219
      .def_property("hierarchical_allreduce_inter_nranks",
3220 3221 3222 3223 3224 3225 3226
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
3227 3228 3229 3230 3231 3232
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
3233 3234 3235 3236
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
3237 3238
            self.fuse_elewise_add_act_ops_ = b;
          },
3239
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
3240
                to fuse elementwise_add_op and activation_op,
3241
                it may make the execution faster. Default is False.
F
flame 已提交
3242 3243 3244 3245

                Examples:
                    .. code-block:: python

3246 3247 3248 3249 3250 3251
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3252 3253
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
3254 3255 3256 3257
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
3258
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
3259
                              platform::errors::PreconditionNotMet(
3260 3261
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
3262 3263 3264 3265 3266 3267 3268 3269 3270
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

3271 3272 3273 3274 3275 3276
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
3277 3278
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
3304 3305 3306 3307
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
3308
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
3309
                              platform::errors::PreconditionNotMet(
3310 3311
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

3322 3323 3324 3325 3326 3327
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
3328 3329
                        build_strategy.enable_auto_fusion = True
                    )DOC")
3330 3331 3332 3333 3334 3335
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
3336 3337 3338 3339
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
3340 3341
            self.fuse_relu_depthwise_conv_ = b;
          },
3342
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
3343 3344 3345
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
3346
                Default is False.
F
flame 已提交
3347 3348 3349 3350

                Examples:
                    .. code-block:: python

3351 3352 3353 3354 3355 3356
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3357 3358
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
3359 3360 3361
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
3362
                             self.fuse_broadcast_ops_ == paddle::none;
C
chengduo 已提交
3363 3364
                    },
                    [](BuildStrategy &self, bool b) {
3365 3366 3367 3368
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3369 3370
                      self.fuse_broadcast_ops_ = b;
                    },
3371
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
3372 3373 3374 3375
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
3376 3377 3378 3379 3380
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

3381 3382 3383 3384 3385 3386
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
3387 3388
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
3389 3390
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
3391
                      return self.fuse_all_optimizer_ops_ == true ||
3392
                             self.fuse_all_optimizer_ops_ == paddle::none;
C
chengduo 已提交
3393 3394
                    },
                    [](BuildStrategy &self, bool b) {
3395 3396 3397 3398
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
3399 3400
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
3401 3402 3403 3404
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
3405 3406 3407 3408
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
3409 3410
            self.sync_batch_norm_ = b;
          },
3411
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
3412 3413 3414
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
3415 3416
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
3417 3418 3419 3420

                Examples:
                    .. code-block:: python

3421 3422 3423 3424 3425 3426
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
3427 3428
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
3429 3430
      .def_property(
          "memory_optimize",
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
3441
              self.memory_optimize_ = paddle::none;
3442 3443 3444
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
3445
              PADDLE_THROW(platform::errors::InvalidArgument(
Z
Zeng Jinle 已提交
3446 3447
                  "BuildStrategy.memory_optimize must be set to None, False "
                  "or True"));
3448 3449
            }
          },
3450
          R"DOC((bool, optional): memory opitimize aims to save total memory
3451
                consumption, set to True to enable it.
3452

3453 3454 3455
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3470 3471 3472
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3473 3474 3475
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3476
              PADDLE_THROW(platform::errors::Unavailable(
3477
                  "Distribution mode is not supported on Windows platform."));
3478 3479 3480 3481 3482
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3483 3484 3485
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3486
      .def_property(
D
dzhwinter 已提交
3487 3488 3489
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3490 3491 3492 3493
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3494 3495
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3496 3497
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
3498
                   self.fuse_all_reduce_ops_ == paddle::none;
C
chengduo 已提交
3499
          },
C
chengduo 已提交
3500
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3501 3502 3503 3504 3505 3506 3507
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3508 3509 3510 3511
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3512 3513 3514 3515 3516 3517 3518 3519 3520
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
Z
Zeng Jinle 已提交
3521 3522 3523 3524 3525 3526
      .def_property(
          "fix_op_run_order",
          [](const BuildStrategy &self) { return self.fix_op_run_order_; },
          [](BuildStrategy &self, bool fix_op_run_order) {
            self.fix_op_run_order_ = fix_op_run_order;
          })
3527 3528 3529 3530 3531 3532 3533
      .def_property("allow_cuda_graph_capture",
                    [](const BuildStrategy &self) {
                      return self.allow_cuda_graph_capture_;
                    },
                    [](BuildStrategy &self, bool allow_cuda_graph_capture) {
                      self.allow_cuda_graph_capture_ = allow_cuda_graph_capture;
                    })
3534 3535 3536 3537 3538 3539
      .def("_copy",
           [](const BuildStrategy &self) {
             auto new_bs = self;
             new_bs.ClearFinalized();
             return new_bs;
           })
3540
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3541
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3542 3543 3544 3545 3546
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3547

3548 3549 3550 3551 3552 3553
  m.def("_set_cached_executor_build_strategy",
        [](int64_t program_id, const BuildStrategy &build_strategy) {
          auto &cached_exe_info = framework::ExecutorInfoCache::Instance();
          cached_exe_info.SetBuildStrategy(program_id, build_strategy);
        });

Y
yuyang18 已提交
3554
  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3555
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3556
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3557
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3558 3559 3560 3561
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3562 3563 3564 3565 3566
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3567 3568 3569
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3570 3571 3572 3573
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3574 3575
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3576 3577 3578 3579 3580 3581 3582 3583
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3584
               return py::cast(
3585
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3586 3587
             } else {
               return py::cast(std::move(
3588
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3589
             }
3590 3591
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3592

J
jianghaicheng 已提交
3593 3594 3595 3596 3597 3598 3599 3600
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
             std::shared_ptr<platform::ipu::IpuBackend>>(m, "IpuBackend")
      .def(py::init(&platform::ipu::IpuBackend::GetNewInstance))
      .def("clear", &platform::ipu::IpuBackend::Clear)
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy);

J
jianghaicheng 已提交
3601 3602
  py::class_<platform::ipu::IpuStrategy> ipu_strategy(m, "IpuStrategy");
  ipu_strategy.def(py::init())
J
jianghaicheng 已提交
3603 3604 3605 3606 3607
      .def_property(
          "num_ipus",
          [](const platform::ipu::IpuStrategy &self) { return self.num_ipus; },
          [](platform::ipu::IpuStrategy &self, int num_ipus) {
            self.num_ipus = num_ipus;
J
jianghaicheng 已提交
3608
          })
J
jianghaicheng 已提交
3609 3610 3611 3612 3613 3614 3615
      .def_property(
          "accumulationFactor",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.accumulationFactor;
          },
          [](platform::ipu::IpuStrategy &self, int accumulationFactor) {
            self.popart_options_.accumulationFactor = accumulationFactor;
J
jianghaicheng 已提交
3616
          })
J
jianghaicheng 已提交
3617 3618 3619 3620 3621 3622
      .def_property("batches_per_step",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batches_per_step;
                    },
                    [](platform::ipu::IpuStrategy &self, int batches_per_step) {
                      self.batches_per_step = batches_per_step;
J
jianghaicheng 已提交
3623
                    })
J
jianghaicheng 已提交
3624 3625 3626 3627 3628 3629
      .def_property("is_training",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.is_training;
                    },
                    [](platform::ipu::IpuStrategy &self, bool is_training) {
                      self.is_training = is_training;
J
jianghaicheng 已提交
3630
                    })
J
jianghaicheng 已提交
3631 3632 3633 3634 3635 3636 3637
      .def_property(
          "enable_pipelining",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.enablePipelining;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_pipelining) {
            self.popart_options_.enablePipelining = enable_pipelining;
J
jianghaicheng 已提交
3638
          })
J
jianghaicheng 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
      .def_property(
          "enable_manual_shard",
          [](const platform::ipu::IpuStrategy &self) {
            return self.popart_options_.virtualGraphMode ==
                   platform::ipu::VirtualGraphMode::Manual;
          },
          [](platform::ipu::IpuStrategy &self, bool enable_ipu_shard) {
            if (enable_ipu_shard) {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Manual;
            } else {
              self.popart_options_.virtualGraphMode =
                  platform::ipu::VirtualGraphMode::Off;
            }
J
jianghaicheng 已提交
3653
          })
J
jianghaicheng 已提交
3654 3655 3656 3657 3658 3659
      .def_property("need_avg_shard",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.need_avg_shard;
                    },
                    [](platform::ipu::IpuStrategy &self, bool need_avg_shard) {
                      self.need_avg_shard = need_avg_shard;
J
jianghaicheng 已提交
3660
                    })
J
jianghaicheng 已提交
3661 3662 3663 3664 3665 3666
      .def_property("batch_size",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.batch_size;
                    },
                    [](platform::ipu::IpuStrategy &self, int batch_size) {
                      self.batch_size = batch_size;
J
jianghaicheng 已提交
3667
                    })
J
jianghaicheng 已提交
3668 3669 3670 3671 3672 3673
      .def_property("enable_fp16",
                    [](const platform::ipu::IpuStrategy &self) {
                      return self.enable_fp16;
                    },
                    [](platform::ipu::IpuStrategy &self, bool enable_fp16) {
                      self.enable_fp16 = enable_fp16;
J
jianghaicheng 已提交
3674
                    });
J
jianghaicheng 已提交
3675 3676
#endif

D
dongdaxiang 已提交
3677
  BindFleetWrapper(&m);
3678
  BindIO(&m);
T
Thunderbrook 已提交
3679

T
Thunderbrook 已提交
3680
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
3681
  BindHeterWrapper(&m);
3682
  BindMetrics(&m);
T
Thunderbrook 已提交
3683
#endif
T
Thunderbrook 已提交
3684
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3685
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3686
#endif
3687
  BindGlooWrapper(&m);
H
hutuxian 已提交
3688
  BindBoxHelper(&m);
H
hutuxian 已提交
3689 3690 3691
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3692
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3693
  BindNCCLWrapper(&m);
3694 3695 3696
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3697
#endif
F
flame 已提交
3698 3699
  BindGraph(&m);
  BindNode(&m);
3700
  BindPass(&m);
F
flame 已提交
3701
  BindInferenceApi(&m);
3702
  BindCompatible(&m);
3703
  BindDataset(&m);
Y
yaoxuefeng 已提交
3704
  BindGenerator(&m);
3705 3706 3707
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3708
  BindAscendDevice(&m);
3709
#endif
Y
Yanghello 已提交
3710 3711 3712
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3713

T
tangwei12 已提交
3714
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3715 3716
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3717
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3718 3719
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3720 3721 3722 3723 3724
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3725 3726 3727 3728
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3729
  BindSparseShardingTools(&m);
3730
#endif
L
Luo Tao 已提交
3731
}
3732
}  // namespace pybind
3733
}  // namespace paddle