nn.py 358.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29
from .tensor import concat, assign
30
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60
    'batch_norm',
H
heqiaozhi 已提交
61
    'data_norm',
X
Xin Pan 已提交
62 63 64 65 66 67
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
68
    'sequence_unpad',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
77
    'sequence_slice',
X
Xin Pan 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
95
    'group_norm',
X
Xin Pan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
109
    'roi_align',
X
Xin Pan 已提交
110 111 112 113
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
114
    'resize_nearest',
X
Xin Pan 已提交
115 116 117 118 119 120
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
121
    'selu',
X
Xin Pan 已提交
122 123 124
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
125
    'margin_rank_loss',
X
Xin Pan 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
169
    'space_to_depth',
W
whs 已提交
170
    'affine_grid',
S
sneaxiy 已提交
171
    'sequence_reverse',
172
    'affine_channel',
B
barrierye 已提交
173
    'similarity_focus',
M
minqiyang 已提交
174
    'hash',
D
dengkaipeng 已提交
175
    'grid_sampler',
G
gmcather 已提交
176 177
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
178
    'bilinear_tensor_product',
C
chengduo 已提交
179 180
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
181
    'lstm',
S
sneaxiy 已提交
182
    'py_func',
183
    'psroi_pool',
H
heqiaozhi 已提交
184
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
185
    'huber_loss',
Z
zhaozhehao 已提交
186
    'tree_conv',
Y
Yu Yang 已提交
187 188
]

J
jerrywgz 已提交
189 190
kIgnoreIndex = -100

Y
Yu Yang 已提交
191 192 193 194 195 196 197

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
198
       is_test=False,
199
       name=None):
Y
Yu Yang 已提交
200
    """
201
    **Fully Connected Layer**
Y
Yu Yang 已提交
202

203 204 205 206 207 208 209 210
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
211
    to the output as well.
C
caoying03 已提交
212

C
caoying03 已提交
213
    This process can be formulated as follows:
214 215 216

    .. math::

217
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
218 219 220

    In the above equation:

C
caoying03 已提交
221 222 223 224
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
225
    * :math:`Act`: The activation function.
C
caoying03 已提交
226
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
227 228

    Args:
R
ranqiu 已提交
229 230 231 232 233 234 235 236 237 238
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
239
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
240 241 242 243
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
244 245
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
246
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
247
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
248
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
249

250
    Returns:
F
fengjiayi 已提交
251
        Variable: The transformation result.
252 253

    Raises:
C
caoying03 已提交
254
        ValueError: If rank of the input tensor is less than 2.
255 256 257 258

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
259
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
260
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
261
    """
C
caoying03 已提交
262

C
caoying03 已提交
263
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
264 265 266 267

    dtype = helper.input_dtype()

    mul_results = []
268 269
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
270 271 272
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
273

Y
Yu Yang 已提交
274
        w = helper.create_parameter(
275
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
276
        tmp = helper.create_variable_for_type_inference(dtype)
277
        helper.append_op(
278 279 280
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
281
            outputs={"Out": tmp},
M
mozga-intel 已提交
282 283
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
284 285 286 287
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
288
    else:
X
Xin Pan 已提交
289
        pre_bias = helper.create_variable_for_type_inference(dtype)
290
        helper.append_op(
291 292 293
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
294
            attrs={"use_mkldnn": False})
295 296 297 298
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
299 300


301 302 303
def embedding(input,
              size,
              is_sparse=False,
304
              is_distributed=False,
305 306 307
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
308
    """
309 310
    **Embedding Layer**

311
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
312 313
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
314 315 316

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
317 318

    Args:
319 320 321 322 323
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
324
        is_distributed(bool): Whether to run lookup table from remote parameter server.
325 326
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
327
            with zeros whenever lookup encounters it in :attr:`input`. If
328
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
329 330
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
331
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
332

333 334 335
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
336

337 338
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
339

C
chengduoZH 已提交
340
          dict_size = len(dataset.ids)
341
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
342
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
343 344 345
    """

    helper = LayerHelper('embedding', **locals())
346
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
347 348
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
349 350
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
351
    tmp = helper.create_variable_for_type_inference(dtype)
352 353
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
354 355 356 357 358
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
359 360 361
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
362
            'remote_prefetch': remote_prefetch,
363 364
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
365 366 367
    return tmp


W
wopeizl 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
384

W
wopeizl 已提交
385 386 387 388 389 390 391 392 393 394 395
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
396

W
wopeizl 已提交
397 398 399 400
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
401

W
wopeizl 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
488 489


P
phlrain 已提交
490 491 492 493 494 495
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
496
         dropout_prob=0.0,
P
phlrain 已提交
497 498 499 500 501
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
502
    """
P
phlrain 已提交
503
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
504 505

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
506
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
507 508
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
509
    .. math::
M
minqiyang 已提交
510 511 512 513 514 515 516

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
517
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
518 519 520 521

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
522 523

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
524 525 526 527 528 529
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
530 531 532
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
533
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
534

M
minqiyang 已提交
535
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
536 537 538 539 540
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
541
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
542 543 544 545 546
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
547
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
548 549
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
550 551
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
552 553 554 555 556 557
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
558
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
559

L
liuhongyu 已提交
560 561

    Returns:
M
minqiyang 已提交
562 563
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
564
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
565

H
haowang101779990 已提交
566 567 568 569
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
570
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
571 572
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
573
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
589
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
590 591 592 593 594 595
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
596 597 598
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
658 659 660 661 662 663 664 665 666 667 668
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
669 670
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
671 672 673
    """
    **Dynamic LSTMP Layer**

674 675 676 677 678 679
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
680 681 682 683 684

    The formula is as follows:

    .. math::

685
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
686

687
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
688

689
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
690

691
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
692

693
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
694

695
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
696

697
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
698

Y
Yibing Liu 已提交
699 700 701 702 703 704
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
705
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
706
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
707
          bias vector).
Y
Yibing Liu 已提交
708 709 710
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
711
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
712
    * :math:`h`: The hidden state.
713
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
714 715
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
716
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
717
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
718
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
719 720
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
721 722 723 724

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
725

Y
Yibing Liu 已提交
726 727 728 729 730 731 732 733 734 735 736 737
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
738
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
739 740
                               hidden-hidden weight and projection weight.

741 742
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
743 744
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
745 746
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
747
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
748 749 750 751 752

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
753
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
754 755 756 757 758 759
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
760
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
761 762 763
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
764
                                - The shape is (1 x 7D).
C
chengduo 已提交
765 766 767 768 769

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
770 771 772 773 774 775 776 777 778
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
779
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
780 781
                              default "tanh".
        proj_activation(str): The activation for projection output.
782
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
783 784
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
785 786
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
787 788

    Returns:
789 790 791 792
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
793 794

    Examples:
795

Y
Yibing Liu 已提交
796 797
        .. code-block:: python

798 799 800 801
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
802
            hidden_dim, proj_dim = 512, 256
803
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
804
                                     act=None, bias_attr=None)
805 806 807
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
808 809 810 811
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
812
    """
813

C
chengduo 已提交
814
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
815
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
816
    size = size // 4
Y
Yibing Liu 已提交
817 818 819 820 821 822 823 824 825 826
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
827 828 829 830 831 832
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
861 862 863 864 865 866 867
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
868 869
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
870
    """
871
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
872

873 874 875
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
876

G
guosheng 已提交
877 878 879 880 881 882 883 884 885
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
886

G
guosheng 已提交
887
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
888

Q
Qiao Longfei 已提交
889 890 891

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
892 893 894 895 896 897 898 899 900 901 902 903
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
904
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
905 906
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
907 908 909 910
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
911
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
912 913

    Args:
914 915
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
916
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
917
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
918 919
            is the hidden size.
        size(int): The dimension of the gru cell.
920
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
921 922
            hidden-hidden weight matrix. Note:

923
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
924
              :math:`D` is the hidden size.
925
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
926
              The first part are weights of the update gate and reset gate with
927
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
928
              candidate hidden state with shape :math:`(D \\times D)`.
929 930 931 932 933

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
934
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
935
            the bias in the update gate, reset gate and candidate calculations.
936 937 938
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
939 940
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
941
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
942 943 944
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
945
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
946
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
947 948 949 950
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
951 952

    Returns:
G
guosheng 已提交
953
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
954
            and sequence length is the same with the input.
955

G
guosheng 已提交
956
    Examples:
957

G
guosheng 已提交
958 959
        .. code-block:: python

960 961 962 963
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
964
            hidden_dim = 512
965
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
966
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
967 968 969 970 971 972 973 974 975
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
976
    batch_size = input.shape[0]
G
guosheng 已提交
977
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
978
    if h_0:
G
guosheng 已提交
979
        assert h_0.shape == (
Y
Yancey 已提交
980 981 982
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
983

X
Xin Pan 已提交
984 985 986 987
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1001 1002
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1003 1004 1005 1006
        })
    return hidden


Y
Yu Yang 已提交
1007 1008 1009
def gru_unit(input,
             hidden,
             size,
1010 1011
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1012
             activation='tanh',
Q
Qiao Longfei 已提交
1013 1014
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1015
    """
1016 1017 1018
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1019
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1020
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1021

1022 1023
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1024

1025
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1026

1027
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1044 1045

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1046 1047 1048
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1049 1050
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1051 1052
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1053 1054 1055
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1056 1057 1058

    Args:
        input (Variable): The fc transformed input value of current step.
1059
        hidden (Variable): The hidden value of gru unit from previous step.
1060
        size (integer): The input dimension value.
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1075
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1076
            the bias in the update gate, reset gate and candidate calculations.
1077 1078 1079
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1080 1081
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1082 1083 1084 1085
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1086

1087 1088 1089 1090 1091 1092
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1093

1094
             # assuming we have x_t_data and prev_hidden of size=10
1095
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1096 1097
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1110
    size = size // 3
Y
Yu Yang 已提交
1111 1112

    # create weight
1113 1114
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1115

X
Xin Pan 已提交
1116 1117 1118
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1119
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1120
    # create bias
1121
    if helper.bias_attr:
Y
Yu Yang 已提交
1122 1123 1124
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1125
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1126 1127 1128

    helper.append_op(
        type='gru_unit',
1129
        inputs=inputs,
Y
Yu Yang 已提交
1130 1131 1132 1133 1134 1135
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1136 1137
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1138 1139 1140 1141 1142
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1143
@templatedoc()
1144
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1145 1146 1147 1148 1149 1150 1151
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1152
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1153 1154 1155 1156
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1157 1158 1159
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1160 1161

    """
Y
Yu Yang 已提交
1162 1163 1164 1165 1166 1167
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1168 1169 1170 1171 1172 1173 1174 1175
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1191 1192 1193 1194
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1195

W
wopeizl 已提交
1196 1197
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1198

W
wopeizl 已提交
1199
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1200

W
wopeizl 已提交
1201
        label(${label_type}): ${label_comment}
1202

W
wopeizl 已提交
1203 1204
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1205

W
wopeizl 已提交
1206 1207
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1208

W
wopeizl 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1219
                "Transition": transition,
W
wopeizl 已提交
1220 1221
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1222

W
wopeizl 已提交
1223
    return viterbi_path
Y
Yu Yang 已提交
1224 1225


Y
yi.wu 已提交
1226
@templatedoc()
F
fengjiayi 已提交
1227
def cos_sim(X, Y):
Y
Yu Yang 已提交
1228
    """
Y
yi.wu 已提交
1229 1230 1231
    ${comment}

    Args:
1232 1233
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1234

Y
yi.wu 已提交
1235
    Returns:
1236
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1237
    """
F
fengjiayi 已提交
1238
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1239 1240 1241
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1252 1253 1254 1255 1256
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1257
            dropout_implementation="downgrade_in_infer"):
1258 1259 1260 1261 1262
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1263
    training. The dropout operator randomly sets (according to the given dropout
1264 1265 1266
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1267 1268
    dropout op can be removed from the program to make the program more efficient.

1269
    Args:
1270 1271
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1272 1273 1274 1275 1276 1277 1278
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1279 1280
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1281
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1282 1283 1284 1285 1286 1287

                                           - train: out = input * mask
                                           - inference: out = input * dropout_prob

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1288
                                        2. upscale_in_train, upscale the outcome at training time
1289

H
haowang101779990 已提交
1290 1291
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1292

H
haowang101779990 已提交
1293 1294
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1295

M
minqiyang 已提交
1296

1297
    Returns:
1298
        Variable: A tensor variable is the shape with `x`.
1299 1300

    Examples:
1301

1302 1303
        .. code-block:: python

1304 1305
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1306 1307
    """

F
fengjiayi 已提交
1308
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1309 1310 1311
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1312 1313 1314 1315

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1316 1317 1318 1319 1320
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1321 1322 1323 1324
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1325 1326
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1327
        })
1328 1329 1330
    return out


J
jerrywgz 已提交
1331
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1332
    """
Y
Yibing Liu 已提交
1333 1334
    **Cross Entropy Layer**

1335 1336 1337
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1338 1339

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1340
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1341

Y
Yibing Liu 已提交
1342
        .. math::
Y
yangyaming 已提交
1343

Y
Yibing Liu 已提交
1344 1345 1346
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1347 1348
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1349 1350 1351 1352 1353

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1354
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1355 1356 1357
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1358 1359
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1360
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1361

Y
Yibing Liu 已提交
1362
    Args:
Y
yangyaming 已提交
1363
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1364 1365 1366 1367
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1368
        label (Variable|list): the ground truth which is a 2-D tensor. When
1369 1370 1371 1372
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1373
        soft_label (bool): a flag indicating whether to
1374
                                           interpretate the given labels as soft
1375
                                           labels. Default: `False`.
M
minqiyang 已提交
1376 1377
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1378
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1379 1380 1381 1382 1383

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1384 1385 1386
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1387

H
haowang101779990 已提交
1388 1389
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1390

H
haowang101779990 已提交
1391 1392
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1393 1394 1395 1396 1397 1398

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1399
    """
F
fengjiayi 已提交
1400
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1401
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1402 1403 1404 1405 1406
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1407 1408
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1409 1410 1411
    return out


F
frankwhzhang 已提交
1412
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1413 1414 1415
    """
    Bayesian Personalized Ranking Loss Operator.

1416
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1417 1418 1419 1420 1421 1422
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1423 1424 1425 1426 1427 1428
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1429 1430
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1431 1432 1433
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1434 1435 1436
    Examples:
        .. code-block:: python

1437
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1438
    """
1439 1440 1441 1442 1443 1444

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1445
                'Label': [label]},
1446 1447 1448 1449
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1450
def square_error_cost(input, label):
Y
Yu Yang 已提交
1451
    """
1452 1453
    **Square error cost layer**

1454 1455
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1456

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1470 1471
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1472 1473

    Returns:
G
guosheng 已提交
1474
        Variable: The tensor variable storing the element-wise squared error \
1475
                  difference of input and label.
1476 1477 1478 1479 1480 1481 1482 1483

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1484
    """
F
fengjiayi 已提交
1485
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1486
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1487 1488 1489 1490 1491 1492
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1493
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1494
    helper.append_op(
F
fengjiayi 已提交
1495 1496
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1497 1498 1499
    return square_out


Y
yi.wu 已提交
1500
@templatedoc()
Y
Yu Yang 已提交
1501 1502 1503 1504
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1505
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1506
    """
Y
yi.wu 已提交
1507
    **Chunk Evaluator**
Y
yi.wu 已提交
1508

Y
yangyaming 已提交
1509
    This function computes and outputs the precision, recall and
1510
    F1-score of chunk detection.
Y
yi.wu 已提交
1511

M
minqiyang 已提交
1512
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1513
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1514 1515 1516 1517 1518 1519

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1520

Y
yi.wu 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1546

Y
yi.wu 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1571
    Args:
1572 1573 1574 1575 1576
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1577

Y
yi.wu 已提交
1578
    Returns:
Y
update  
yi.wu 已提交
1579 1580 1581
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1582

Y
yi.wu 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1595
    """
F
fengjiayi 已提交
1596
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1597 1598

    # prepare output
X
Xin Pan 已提交
1599 1600 1601 1602 1603 1604 1605
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1606 1607 1608 1609 1610 1611 1612 1613

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1614 1615 1616 1617
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1618 1619 1620
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1621 1622
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1623
        })
1624 1625
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1626 1627


1628
@templatedoc()
Y
Yu Yang 已提交
1629 1630 1631 1632 1633 1634 1635
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1636 1637
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1638 1639 1640 1641
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1642 1643 1644 1645 1646 1647 1648

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1662

1663 1664
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1665 1666 1667 1668 1669 1670 1671
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1672
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1683
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1684 1685 1686 1687 1688 1689
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1690
def sequence_softmax(input, use_cudnn=False, name=None):
1691 1692 1693
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1694
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1711 1712 1713
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1726 1727
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1728
    softmax_out = helper.create_variable_for_type_inference(dtype)
1729 1730 1731 1732 1733 1734 1735 1736
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1737
def softmax(input, use_cudnn=False, name=None):
Q
qiaolongfei 已提交
1738
    """
1739
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1740
    has the same shape as the input.
Q
qiaolongfei 已提交
1741

1742 1743 1744 1745 1746 1747
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1748
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1749 1750 1751 1752 1753 1754 1755

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1756
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1757 1758 1759 1760 1761 1762 1763 1764

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1765 1766
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1767 1768
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1781 1782
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1783
    softmax_out = helper.create_variable_for_type_inference(dtype)
1784 1785 1786 1787 1788 1789 1790 1791
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1792 1793 1794
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1795 1796
           stride=1,
           padding=0,
1797
           dilation=1,
Y
Yu Yang 已提交
1798 1799 1800
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1801
           use_cudnn=True,
1802 1803
           act=None,
           name=None):
Y
Yu Yang 已提交
1804
    """
C
chengduoZH 已提交
1805
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1806 1807
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1808
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1809 1810 1811 1812 1813 1814 1815
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1816 1817 1818
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1819

1820
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1821

C
chengduoZH 已提交
1822 1823
    .. math::

C
refine  
chengduoZH 已提交
1824
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1825

T
tensor-tang 已提交
1826
    Where:
C
chengduoZH 已提交
1827

1828 1829 1830 1831 1832
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1833
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1834 1835 1836

    Example:

1837 1838
        - Input:

W
weixing02 已提交
1839
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1840

W
weixing02 已提交
1841
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1842

1843
        - Output:
T
tensor-tang 已提交
1844

W
weixing02 已提交
1845
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1846

C
chengduoZH 已提交
1847
        Where
1848 1849

        .. math::
C
chengduoZH 已提交
1850

W
weixing02 已提交
1851 1852
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1853 1854

    Args:
1855
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1856
        num_filters(int): The number of filter. It is as same as the output
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1874 1875 1876 1877 1878
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1879
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1880 1881 1882 1883 1884
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1885 1886
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1887 1888
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1889
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1890
            will be named automatically. Default: None
C
chengduoZH 已提交
1891 1892

    Returns:
G
guosheng 已提交
1893
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1894 1895
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1896
    Raises:
1897 1898
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1899

C
chengduoZH 已提交
1900 1901 1902
    Examples:
        .. code-block:: python

1903 1904
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1905 1906 1907
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1908
    assert param_attr is not False, "param_attr should not be False here."
1909
    l_type = 'conv2d'
X
xzl 已提交
1910 1911
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1912
        l_type = 'depthwise_conv2d'
1913 1914 1915 1916

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1917 1918 1919 1920 1921
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1922
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1923

C
chengduoZH 已提交
1924 1925 1926
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1927
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1928

C
chengduoZH 已提交
1929 1930
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1931 1932

    input_shape = input.shape
M
minqiyang 已提交
1933
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1934 1935

    def _get_default_param_initializer():
C
chengduo 已提交
1936 1937
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1938 1939 1940 1941 1942 1943 1944 1945
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1946
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1962
    helper.append_op(
1963
        type=l_type,
Y
Yu Yang 已提交
1964 1965 1966 1967 1968
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1969 1970 1971
        attrs={
            'strides': stride,
            'paddings': padding,
1972
            'dilations': dilation,
C
chengduoZH 已提交
1973
            'groups': groups,
1974
            'use_cudnn': use_cudnn,
1975
            'use_mkldnn': False,
1976
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
1977
        })
Y
Yu Yang 已提交
1978 1979 1980 1981 1982 1983

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2001 2002 2003 2004 2005 2006
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2016 2017
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2018 2019 2020
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2021
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2047
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2048 2049
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2050
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2051 2052
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2053
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2054 2055
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2056
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2057 2058 2059 2060 2061 2062
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2073 2074
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2075 2076
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2077
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2078
            will be named automatically. Default: None.
C
chengduoZH 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2091 2092
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2093 2094 2095
    """

    l_type = 'conv3d'
C
chengduo 已提交
2096
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2107
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2121 2122 2123
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2124 2125 2126 2127 2128 2129 2130 2131
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2132
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2147
            'use_mkldnn': False
C
chengduoZH 已提交
2148 2149
        })

2150
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2151 2152 2153 2154

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2155
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2156
    """
Y
yangyaming 已提交
2157 2158 2159
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2171
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2172 2173 2174 2175 2176
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2177
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2178 2179 2180 2181 2182 2183 2184

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2185 2186
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2187

L
Luo Tao 已提交
2188 2189
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2190
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2191
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2192
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2193 2194 2195 2196 2197 2198 2199

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2200

Y
yangyaming 已提交
2201
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2202 2203 2204 2205 2206
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2207 2208
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2209
    """
F
fengjiayi 已提交
2210
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2211
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2212 2213
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2214 2215 2216 2217 2218 2219

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2220 2221
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2222

Y
yangyaming 已提交
2223 2224 2225 2226 2227
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2228 2229 2230
    return pool_out


C
add doc  
chengduoZH 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2250
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2251 2252 2253 2254 2255
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2256
def sequence_first_step(input):
L
Luo Tao 已提交
2257
    """
L
Luo Tao 已提交
2258
    This function gets the first step of sequence.
L
Luo Tao 已提交
2259 2260 2261 2262

    .. code-block:: text

       x is a 1-level LoDTensor:
2263
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2264 2265 2266 2267 2268
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2269
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2270
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2271

L
Luo Tao 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2281

Y
yangyaming 已提交
2282
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2283 2284 2285
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2286 2287 2288
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2289
def sequence_last_step(input):
L
Luo Tao 已提交
2290
    """
L
Luo Tao 已提交
2291
    This function gets the last step of sequence.
L
Luo Tao 已提交
2292 2293 2294 2295

    .. code-block:: text

       x is a 1-level LoDTensor:
2296
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2297 2298 2299 2300 2301
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2302
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2303
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2304

L
Luo Tao 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2314

Y
yangyaming 已提交
2315
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2316 2317 2318
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2319 2320 2321
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2322 2323 2324 2325
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2326
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2327 2328 2329 2330 2331
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2332

H
haowang101779990 已提交
2333
              - Case:
Y
Yibing Liu 已提交
2334

2335
            Given the input Variable **input**:
2336

2337 2338 2339
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2340

2341
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2342

2343
            the output Variable will be
2344

2345 2346 2347
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2348

M
minqiyang 已提交
2349
    Note:
H
haowang101779990 已提交
2350
          The first dimension size of **input**, **offset** and **length**
2351
          should be equal. The **offset** should start from 0.
2352

Y
Yibing Liu 已提交
2353
    Args:
2354
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2355
                         sequences.
Y
Yibing Liu 已提交
2356 2357 2358 2359 2360 2361
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2362
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2373
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2374 2375 2376 2377
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2378
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2393
@templatedoc()
Y
Yu Yang 已提交
2394
def pool2d(input,
C
chengduoZH 已提交
2395 2396
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2397 2398
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2399
           global_pooling=False,
C
chengduoZH 已提交
2400
           use_cudnn=True,
2401
           ceil_mode=False,
2402 2403
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2404
    """
F
fengjiayi 已提交
2405
    ${comment}
2406 2407

    Args:
2408 2409 2410
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2411
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2412
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2413 2414
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2415
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2416 2417 2418 2419 2420 2421
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2422 2423 2424
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2425
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2426
                        layer will be named automatically.
2427
        exclusive (bool): Whether to exclude padding points in average pooling
2428
                          mode, default is true
F
fengjiayi 已提交
2429

2430
    Returns:
F
fengjiayi 已提交
2431
        Variable: The pooling result.
F
fengjiayi 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2445 2446 2447 2448
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2449
                            global_pooling=False)
Y
Yu Yang 已提交
2450 2451 2452 2453 2454
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2455

C
chengduoZH 已提交
2456 2457 2458 2459 2460
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2461 2462 2463 2464
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2465 2466
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2467

C
Add doc  
chengduoZH 已提交
2468
    l_type = 'pool2d'
2469 2470

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2471
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2472
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2473 2474

    helper.append_op(
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2486 2487
            "use_mkldnn": False,
            "exclusive": exclusive,
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2501 2502
           name=None,
           exclusive=True):
2503 2504
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2505
    pooling configurations mentioned in input parameters.
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2518
        exclusive (bool): Whether to exclude padding points in average pooling
2519
                          mode, default is true
2520

2521
    Returns:
2522
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2523 2524 2525 2526 2527
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2528

C
chengduoZH 已提交
2529 2530 2531 2532 2533
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2534 2535 2536
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2537

C
chengduoZH 已提交
2538 2539
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2540

2541 2542
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2543
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2544
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2545 2546

    helper.append_op(
2547
        type=l_type,
Y
Yu Yang 已提交
2548 2549 2550 2551 2552 2553 2554
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2555
            "paddings": pool_padding,
2556
            "use_cudnn": use_cudnn,
2557
            "ceil_mode": ceil_mode,
2558 2559
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2560 2561 2562 2563 2564
        })

    return pool_out


2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2598
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2599
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2600
          # of input data into m * n grids averagely and performs poolings in each
2601 2602
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2603
          #
2604 2605 2606 2607 2608 2609 2610 2611
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2612 2613
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2614
          pool_out = fluid.layers.adaptive_pool2d(
2615 2616
                            input=data,
                            pool_size=[3, 3],
2617
                            pool_type='avg')
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2628
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2654
    return (pool_out, mask) if require_index else pool_out
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2690 2691
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2692
          # of input data into l * m * n grids averagely and performs poolings in each
2693 2694
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2695
          #
2696 2697 2698 2699 2700 2701 2702 2703 2704
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2705
          #                 output[:, :, i, j, k] =
2706 2707
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2708 2709
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2710
          pool_out, mask = fluid.layers.adaptive_pool3d(
2711 2712
                            input=data,
                            pool_size=[3, 3],
2713
                            pool_type='avg')
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2724
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2750
    return (pool_out, mask) if require_index else pool_out
2751 2752


Y
Yu Yang 已提交
2753 2754 2755 2756 2757 2758 2759
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2760
               data_layout='NCHW',
Y
Yang Yang 已提交
2761
               in_place=False,
2762 2763
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2764
               moving_variance_name=None,
2765
               do_model_average_for_mean_and_var=False,
2766 2767
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2768
    """
Q
qiaolongfei 已提交
2769 2770 2771 2772
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2773

Q
qiaolongfei 已提交
2774
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2775

Q
qiaolongfei 已提交
2776 2777
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2778 2779 2780
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2793

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2807
    Args:
Q
qiaolongfei 已提交
2808
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2809 2810 2811 2812
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2813 2814 2815 2816 2817 2818 2819 2820
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2821
        data_layout(string, default NCHW): NCHW|NHWC
2822
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2823 2824 2825 2826
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2827
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2828
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2829 2830 2831 2832 2833
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2834 2835

    Returns:
Q
qiaolongfei 已提交
2836
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2837 2838 2839 2840 2841 2842 2843

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2844
    """
C
chengduo 已提交
2845
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2846 2847 2848
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2849 2850 2851 2852
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2870 2871 2872
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2873 2874

    bias = helper.create_parameter(
2875
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2876 2877
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
M
minqiyang 已提交
2878
        bias.stop_gradient = True
Y
Yu Yang 已提交
2879

2880 2881
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2882 2883 2884
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2885
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2886
        shape=param_shape,
W
Wu Yi 已提交
2887
        dtype=dtype)
2888 2889 2890 2891 2892 2893
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2894
            trainable=False,
W
wanghaoshuang 已提交
2895
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2896
        shape=param_shape,
W
Wu Yi 已提交
2897
        dtype=dtype)
2898
    variance.stop_gradient = True
Y
Yu Yang 已提交
2899 2900 2901 2902 2903 2904

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2905 2906 2907 2908
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2909

X
Xin Pan 已提交
2910 2911
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2929 2930 2931 2932
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2933
            "use_mkldnn": False,
2934 2935
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2936
        })
Y
Yu Yang 已提交
2937 2938 2939 2940

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              use_mkldnn=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
        attrs={"epsilon": epsilon,
               "use_mkldnn": use_mkldnn})

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3068
@templatedoc()
G
guosheng 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3079
    ${comment}
G
guosheng 已提交
3080 3081 3082

    The formula is as follows:

Y
yuyang18 已提交
3083
    ..  math::
G
guosheng 已提交
3084 3085 3086 3087 3088 3089 3090

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3091 3092 3093 3094 3095 3096 3097 3098
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3099

G
guosheng 已提交
3100 3101
    Args:
        input(Variable): The input tensor variable.
3102
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3103
            normalization. Default True.
3104
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3105 3106
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3107
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3108
            Default 1.
3109
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3110
            division by zero. Default 1e-05.
G
guosheng 已提交
3111
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3112 3113
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3114 3115
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3116
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3117 3118
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3119
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3120
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3121
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3122 3123 3124
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3125 3126

    Returns:
Y
yuyang18 已提交
3127
        ${y_comment}
G
guosheng 已提交
3128 3129 3130

    Examples:

Y
yuyang18 已提交
3131 3132 3133
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3149
    if shift:
G
guosheng 已提交
3150 3151 3152 3153 3154 3155
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3156 3157 3158 3159 3160
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3188
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3236 3237 3238
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_variable(dtype)
D
Dun 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3254 3255 3256 3257
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3258 3259 3260
                     padding=0,
                     stride=1,
                     dilation=1,
3261
                     groups=None,
C
caoying03 已提交
3262
                     param_attr=None,
3263
                     bias_attr=None,
C
chengduoZH 已提交
3264
                     use_cudnn=True,
3265
                     act=None,
C
caoying03 已提交
3266
                     name=None):
Y
Yu Yang 已提交
3267
    """
3268 3269 3270 3271 3272 3273 3274 3275
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3276 3277
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3278 3279 3280
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3281 3282 3283 3284 3285

    For each input :math:`X`, the equation is:

    .. math::

3286
        Out = \sigma (W \\ast X + b)
3287

3288
    Where:
3289 3290 3291

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3292 3293 3294 3295
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3296

3297 3298 3299 3300
    Example:

        - Input:

3301
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3302

3303
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3304 3305 3306

        - Output:

3307
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3308 3309

        Where
Y
Yu Yang 已提交
3310

3311 3312
        .. math::

3313 3314
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3315 3316
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3317 3318

    Args:
3319 3320 3321 3322
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3323 3324 3325 3326
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3355
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3356 3357 3358
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3359
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3360
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3361 3362

    Returns:
3363
        Variable: The tensor variable storing the convolution transpose result.
3364 3365

    Raises:
3366 3367
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3368 3369 3370 3371

    Examples:
       .. code-block:: python

3372 3373
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3374
    """
C
chengduo 已提交
3375
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3376 3377 3378 3379 3380 3381 3382 3383
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3384 3385 3386
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3387 3388 3389
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3390

C
chengduoZH 已提交
3391 3392
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3393

Y
Yu Yang 已提交
3394 3395 3396 3397 3398
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3399

Y
Yu Yang 已提交
3400 3401
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3402

C
chengduoZH 已提交
3403
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3404
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3405
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3406
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3407
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3408 3409 3410
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3411

3412 3413 3414 3415 3416 3417 3418
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3419
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3420
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3421

Y
Yu Yang 已提交
3422 3423 3424
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3425
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3426
    helper.append_op(
3427
        type=op_type,
Y
Yu Yang 已提交
3428 3429
        inputs={'Input': [input],
                'Filter': [img_filter]},
3430
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3431
        attrs={
3432
            'output_size': output_size,
3433 3434 3435 3436 3437
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3438 3439
        })

3440 3441 3442
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3443 3444


3445
def conv3d_transpose(input,
Y
Yu Yang 已提交
3446 3447 3448
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3449 3450 3451
                     padding=0,
                     stride=1,
                     dilation=1,
3452
                     groups=None,
C
caoying03 已提交
3453
                     param_attr=None,
3454
                     bias_attr=None,
C
chengduoZH 已提交
3455
                     use_cudnn=True,
3456
                     act=None,
C
caoying03 已提交
3457
                     name=None):
Y
Yu Yang 已提交
3458
    """
3459
    **Convlution3D transpose layer**
3460

3461
    The convolution3D transpose layer calculates the output based on the input,
3462
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3463 3464 3465 3466 3467 3468
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3469 3470 3471
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3472 3473 3474 3475 3476

    For each input :math:`X`, the equation is:

    .. math::

3477
        Out = \sigma (W \\ast X + b)
3478 3479 3480

    In the above equation:

3481 3482
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3483 3484 3485 3486
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3487

3488 3489 3490 3491
    Example:

        - Input:

3492
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3493

3494
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3495 3496 3497

        - Output:

3498
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3499 3500

        Where
Y
Yu Yang 已提交
3501

3502 3503
        .. math::

3504 3505 3506
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3507 3508

    Args:
3509
        input(Variable): The input image with [N, C, D, H, W] format.
3510 3511 3512
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3513
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3514 3515
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3516
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3517 3518 3519
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3520 3521
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3522
        stride(int|tuple): The stride size. If stride is a tuple, it must
3523 3524
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3525
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3526 3527 3528
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3529 3530 3531 3532 3533
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3543 3544
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3545 3546
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3547 3548
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3549 3550

    Returns:
3551
        Variable: The tensor variable storing the convolution transpose result.
3552 3553

    Raises:
3554 3555
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3556 3557 3558 3559

    Examples:
       .. code-block:: python

3560 3561
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3562
    """
C
chengduo 已提交
3563
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3564 3565
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3566
    if not isinstance(input, Variable):
3567
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3568 3569
    input_channel = input.shape[1]

3570 3571 3572
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3573

C
chengduoZH 已提交
3574 3575 3576
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3577 3578 3579 3580 3581 3582
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3583 3584 3585
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3586

3587
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3588
                         padding[0] - 1) // dilation[0] + 1
3589
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3590
                         padding[1] - 1) // dilation[1] + 1
3591
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3592
                         padding[2] - 1) // dilation[2] + 1
3593
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3594
    else:
3595 3596
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3597

3598
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3599
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3600 3601 3602
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3603
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3604
    helper.append_op(
3605
        type=l_type,
Y
Yu Yang 已提交
3606 3607
        inputs={'Input': [input],
                'Filter': [img_filter]},
3608
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3609 3610 3611 3612
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3613
            'groups': groups,
C
chengduoZH 已提交
3614 3615
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3616

3617 3618
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3619
    return out
Y
yangyaming 已提交
3620 3621


Y
yangyaming 已提交
3622
def sequence_expand(x, y, ref_level=-1, name=None):
3623
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3624 3625 3626 3627
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3628 3629 3630 3631 3632

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3633
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3634
                x.data = [[a], [b], [c], [d]]
3635 3636 3637
                x.dims = [4, 1]

            y is a LoDTensor:
3638 3639
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3640

Y
yangyaming 已提交
3641
            ref_level: 0
3642

Y
yangyaming 已提交
3643
            then output is a 1-level LoDTensor:
3644
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3645
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3646 3647 3648 3649
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3650
                x.data = [[a], [b], [c]]
3651 3652 3653
                x.dims = [3, 1]

            y is a LoDTensor:
3654
                y.lod = [[2, 0, 3]]
3655

Y
yangyaming 已提交
3656
            ref_level: -1
3657

Y
yangyaming 已提交
3658 3659 3660
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3661 3662 3663
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3664 3665
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3666
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3667
                        will be named automatically.
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3678
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3679
    """
Y
yangyaming 已提交
3680
    helper = LayerHelper('sequence_expand', input=x, **locals())
3681
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3682
    tmp = helper.create_variable_for_type_inference(dtype)
3683
    helper.append_op(
Y
yangyaming 已提交
3684 3685 3686 3687 3688
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3689
    return tmp
3690 3691


C
chengduo 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3748
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3749 3750 3751 3752 3753 3754 3755 3756
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3757
@templatedoc()
3758
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3759 3760 3761 3762 3763
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3764 3765 3766
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3767
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3768 3769 3770 3771
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3772 3773 3774
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3775

F
fengjiayi 已提交
3776
    Returns:
M
minqiyang 已提交
3777
        Variable: The padded sequence batch and the original lengths before
3778
                  padding. All sequences has the same length.
M
minqiyang 已提交
3779

F
fengjiayi 已提交
3780 3781 3782 3783 3784 3785 3786
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3787
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3788
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3789 3790 3791 3792 3793
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3794 3795
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3796 3797 3798 3799

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3800 3801 3802 3803 3804 3805
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3806 3807
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3808
        attrs={'padded_length': maxlen})
3809
    return out, length
F
fengjiayi 已提交
3810 3811


3812
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3813
    """
3814
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3815

3816 3817
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3827 3828 3829
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3830
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3831 3832 3833 3834 3835 3836

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3837
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3838 3839 3840 3841 3842 3843

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3844 3845
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3860
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3872 3873 3874 3875 3876 3877 3878
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
3879
                is_accumulated=True,
3880 3881
                name=None):
    """
3882 3883
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3884 3885 3886

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3887 3888

    This layer does the search in beams for one time step. Specifically, it
3889 3890 3891
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
3903 3904 3905 3906

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3907

3908
    Args:
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
3932 3933
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
3934 3935
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3936

3937
    Returns:
3938 3939
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3940 3941 3942 3943

    Examples:
        .. code-block:: python

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3961
    helper = LayerHelper('beam_search', **locals())
3962 3963 3964 3965 3966 3967
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
3968

X
Xin Pan 已提交
3969 3970 3971
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3972 3973 3974

    helper.append_op(
        type='beam_search',
3975
        inputs=inputs,
Q
Qiao Longfei 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
3985
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
3986 3987 3988 3989 3990
        })

    return selected_ids, selected_scores


3991 3992 3993 3994 3995 3996 3997
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3998

3999 4000 4001 4002 4003 4004 4005 4006 4007
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4008

4009 4010 4011 4012 4013 4014
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4015

4016 4017
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4018

4019 4020 4021 4022 4023 4024
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4025 4026
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4042 4043 4044 4045
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4046
              param_attr=None,
C
caoying03 已提交
4047 4048
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4049 4050 4051 4052
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4053
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4054

4055
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4056

4057
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4058

4059
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4060 4061 4062

            h_t & = o_t tanh(c_t)

4063 4064 4065 4066 4067 4068
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4069 4070 4071

        .. math::

4072
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4073 4074 4075 4076 4077 4078 4079 4080

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4081
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4082 4083

    Args:
Y
yangyaming 已提交
4084 4085 4086 4087 4088 4089
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4090
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4103 4104
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4105 4106

    Returns:
Y
yangyaming 已提交
4107
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4108 4109

    Raises:
4110 4111 4112 4113
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4114 4115 4116 4117 4118 4119

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4120
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4121
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4122
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4139
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4140 4141 4142 4143
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4144 4145
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4146 4147 4148
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4149
    size = cell_t_prev.shape[1]
4150
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4151 4152
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4153
                param_attr=param_attr,
4154
                bias_attr=bias_attr)
Y
yangyaming 已提交
4155
    dtype = x_t.dtype
X
Xin Pan 已提交
4156 4157
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4158 4159 4160 4161 4162 4163 4164 4165 4166

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4167
    return h, c
G
guosheng 已提交
4168 4169


C
caoying03 已提交
4170
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4171
    """
Y
yangyaming 已提交
4172
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4173 4174 4175

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4176
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4177 4178
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4179 4180
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4181
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4182
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4183
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4184 4185
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4186 4187 4188

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4189

G
guosheng 已提交
4190 4191 4192 4193 4194 4195
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4196
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4197 4198 4199 4200
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4201 4202 4203 4204

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4205
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4206 4207 4208
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4209 4210
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4211
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4212 4213
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4214 4215 4216 4217 4218
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4219
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4220 4221 4222 4223
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4224 4225


C
caoying03 已提交
4226
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4227
    """
Y
Yibing Liu 已提交
4228
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4229 4230 4231

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4232 4233 4234
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4235
            must be in the range :math:`[-rank(input), rank(input))`. If
4236
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4237
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4238 4239
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4240
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4241
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4242
                       will be named automatically.
G
guosheng 已提交
4243 4244

    Returns:
Y
Yibing Liu 已提交
4245
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4246

G
guosheng 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4257 4258
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4259 4260 4261 4262 4263 4264 4265

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4266 4267
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4268
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4269 4270
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4271 4272 4273 4274 4275
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4276
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4277 4278 4279 4280
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4281 4282


C
caoying03 已提交
4283
def reduce_max(input, dim=None, keep_dim=False, name=None):
4284
    """
Y
yangyaming 已提交
4285
    Computes the maximum of tensor elements over the given dimension.
4286 4287 4288

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4289
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4290 4291 4292
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4293
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4294 4295
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4296
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4297 4298
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4299 4300 4301

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4302

4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4314 4315 4316 4317 4318 4319 4320

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4321 4322
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4323
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4324 4325
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4326 4327 4328 4329 4330
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4331
            'dim': dim if dim != None else [0],
4332 4333 4334 4335 4336 4337
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4338
def reduce_min(input, dim=None, keep_dim=False, name=None):
4339
    """
Y
yangyaming 已提交
4340
    Computes the minimum of tensor elements over the given dimension.
4341 4342 4343

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4344
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4345 4346 4347
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4348
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4349 4350
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4351
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4352 4353
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4354 4355 4356

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4357

4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4369 4370 4371 4372 4373 4374 4375

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4376 4377
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4378
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4379 4380
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4381 4382 4383 4384 4385
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4386
            'dim': dim if dim != None else [0],
4387 4388 4389 4390
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4391 4392


4393 4394 4395 4396 4397 4398
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4399
        dim (list|int|None): The dimensions along which the product is performed. If
4400 4401
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4402 4403
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4404 4405 4406
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4407
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4408
            layer will be named automatically.
4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4423
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4424
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4425 4426 4427 4428 4429 4430 4431

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4432 4433
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4434
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4435 4436
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4437 4438 4439 4440 4441
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4442
            'dim': dim if dim != None else [0],
4443 4444 4445 4446 4447 4448
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4449
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4450
    """
C
caoying03 已提交
4451
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4452 4453 4454

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4455 4456 4457 4458 4459
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4460
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4461
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4462
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4463 4464
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4465 4466

    Returns:
D
dzhwinter 已提交
4467
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4468 4469 4470 4471 4472 4473 4474 4475 4476

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4477 4478
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4494
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4517
    .. math::
4518 4519

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4520 4521 4522 4523 4524

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4525
        x(Variable|list): The input tensor to l2_normalize layer.
4526
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4527 4528
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4529
        epsilon(float): The epsilon value is used to avoid division by zero, \
4530
            the defalut value is 1e-10.
4531
        name(str|None): A name for this layer(optional). If set None, the layer \
4532
            will be named automatically.
C
caoying03 已提交
4533 4534

    Returns:
4535
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4536 4537

    Examples:
4538

C
caoying03 已提交
4539 4540
        .. code-block:: python

4541 4542 4543 4544
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4545 4546
    """

F
fengjiayi 已提交
4547 4548
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4549 4550
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4551 4552
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4553
    helper.append_op(
4554 4555 4556 4557
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4558
        attrs={
4559 4560
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4561 4562
        })
    return out
4563 4564


S
sneaxiy 已提交
4565
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4566
    """
Y
ying 已提交
4567 4568 4569 4570
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4571

C
chengduoZH 已提交
4572
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4573
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4574

4575 4576 4577 4578 4579
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4580
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4581

C
chengduoZH 已提交
4582
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4583
      performs in the following way.
G
guosheng 已提交
4584

4585
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4586
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4587
        last two dimensions and a batched matrix multiply supporting broadcast
4588
        applies on the two tensors.
G
guosheng 已提交
4589

Y
ying 已提交
4590 4591
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4592
    removed after matrix multiplication.
G
guosheng 已提交
4593 4594 4595

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4596 4597 4598
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4599
        alpha (float): The scale of output. Default 1.0.
4600
        name(str|None): A name for this layer(optional). If set None, the layer
4601
            will be named automatically.
G
guosheng 已提交
4602 4603

    Returns:
4604
        Variable: The product Tensor variable.
G
guosheng 已提交
4605

G
guosheng 已提交
4606 4607 4608
    Examples:
        .. code-block:: python

4609
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4610 4611
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4612

4613 4614
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4615

4616 4617
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4618

4619 4620
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4621 4622 4623 4624

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4625 4626
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4627

Y
ying 已提交
4628
            # x: [M], y: [N]
4629
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4630
    """
Y
ying 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4643
            y_shape = y_shape + [1]
Y
ying 已提交
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4660
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4661
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4662
    helper.append_op(
4663 4664 4665 4666
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4667 4668 4669
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4670
            'alpha': float(alpha),
S
sneaxiy 已提交
4671
        })
4672
    return out
4673 4674


4675
def topk(input, k, name=None):
Q
qingqing01 已提交
4676 4677 4678 4679
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4680
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4681 4682 4683 4684 4685 4686
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4708 4709 4710
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4711
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4712
                 of input.
4713
        name(str|None): A name for this layer(optional). If set None, the layer
4714
                       will be named automatically.
F
fengjiayi 已提交
4715
                       Default: None
Q
qingqing01 已提交
4716 4717

    Returns:
4718 4719 4720
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4721
        within the last dimension of input.
Q
qingqing01 已提交
4722

F
fengjiayi 已提交
4723 4724
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4725 4726 4727 4728 4729 4730 4731

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4732 4733
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4734 4735 4736 4737 4738 4739
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4740 4741
    helper.append_op(
        type="top_k",
W
whs 已提交
4742
        inputs=inputs,
Q
qingqing01 已提交
4743 4744
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4745
        attrs=attrs)
Q
qingqing01 已提交
4746 4747 4748 4749 4750
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4751
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4752
    """
Y
ying 已提交
4753 4754 4755 4756 4757 4758 4759 4760 4761
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4762

Y
ying 已提交
4763
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4764

4765
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4766 4767
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4768
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4769

4770
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4771 4772
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4773

4774 4775 4776
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4777
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4778
                          the length of reference string.
4779
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4780
                                     calculating edit distance.
4781
        name (str): The name of this layer. It is optional.
4782

W
wanghaoshuang 已提交
4783
    Returns:
W
wanghaoshuang 已提交
4784
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4785 4786 4787 4788

    Examples:
        .. code-block:: python

T
tink2123 已提交
4789 4790
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4791
            cost = fluid.layers.edit_distance(input=x,label=y)
4792
    """
4793
    helper = LayerHelper("edit_distance", **locals())
4794

4795
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4796
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4797 4798
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4799 4800 4801 4802 4803

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4804
            attrs={"tokens": ignored_tokens})
4805 4806 4807 4808 4809
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4810
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4811
            attrs={"tokens": ignored_tokens})
4812 4813
        label = erased_label

4814
    # edit distance op
X
Xin Pan 已提交
4815 4816
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4817 4818 4819 4820
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4821 4822
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4823 4824
        attrs={"normalized": normalized})

4825
    return edit_distance_out, sequence_num
4826 4827 4828 4829 4830


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4831

Y
ying 已提交
4832 4833 4834 4835
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4853
        input.lod = [[4, 4]]
M
minqiyang 已提交
4854

W
whs 已提交
4855
        Computation:
4856

W
whs 已提交
4857 4858 4859 4860 4861 4862
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4863 4864 4865 4866 4867

        output.data = [[2],
                       [1],
                       [3]]

4868
        output.lod = [[2, 1]]
4869

W
whs 已提交
4870

4871 4872
    Args:

Y
ying 已提交
4873 4874 4875 4876 4877 4878 4879 4880 4881
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4882
        name (str): The name of this layer. It is optional.
4883 4884

    Returns:
H
haowang101779990 已提交
4885 4886 4887
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
4888
                  LoD [[]] and dims [1, 1].
4889 4890 4891 4892 4893

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4894

4895
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4896
    """
4897
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4898
    _, topk_indices = topk(input, k=1)
4899 4900

    # ctc align op
X
Xin Pan 已提交
4901
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4902 4903 4904
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4905
        outputs={"Output": [ctc_out]},
4906 4907
        attrs={"merge_repeated": True,
               "blank": blank})
4908
    return ctc_out
4909 4910


W
Wu Yi 已提交
4911
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4912
    """
4913 4914
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4915
    to compute Connectionist Temporal Classification (CTC) loss.
4916 4917
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4918 4919 4920
    input tensor.

    Args:
4921
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4922 4923 4924 4925
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4926
       label (Variable): The ground truth of variable-length sequence,
4927 4928 4929
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4930 4931
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4932 4933 4934
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4935
         follewed by a mean_op.
W
Wu Yi 已提交
4936
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4937 4938

    Returns:
4939 4940
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4941 4942

    Examples:
4943

W
wanghaoshuang 已提交
4944
        .. code-block:: python
4945

4946 4947 4948
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4949 4950

    """
F
fengjiayi 已提交
4951
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4952 4953
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4954 4955 4956 4957 4958 4959
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4960 4961 4962 4963 4964
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4965
    return loss_out
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4981 4982 4983
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4984 4985 4986 4987 4988
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4989

4990
            out.lod  = [[0, 1, 3]]
4991 4992 4993 4994

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4995 4996 4997 4998 4999 5000 5001
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5002 5003 5004

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5005 5006

    Returns:
5007

5008 5009 5010 5011 5012
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5013
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5014
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5015 5016
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5017
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5018 5019 5020 5021 5022 5023
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5024 5025


5026 5027 5028 5029
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5030 5031 5032 5033 5034 5035
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5036
        num_neg_samples=None,
5037 5038 5039
        name=None,
        sampler="uniform",
        custom_dist=None,
5040 5041
        seed=0,
        is_sparse=False):
5042 5043 5044 5045 5046 5047 5048
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5049 5050
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5051
            sample is 1.0.
C
chengduo 已提交
5052 5053 5054 5055 5056 5057 5058 5059 5060
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5061
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5062 5063
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5064 5065 5066
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5067
        custom_dist (float[]): A float[] with size=num_total_classes.
5068 5069 5070 5071
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5072
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5073

5074
    Returns:
Y
Yibing Liu 已提交
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5102 5103 5104 5105 5106 5107 5108 5109 5110

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5111

5112
    """
Y
Yang Yu 已提交
5113 5114 5115
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5116 5117

    dim = input.shape[1]
Y
Yang Yu 已提交
5118 5119 5120 5121 5122 5123
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5124
    inputs = {}
C
chengduo 已提交
5125 5126 5127 5128 5129 5130 5131
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5132 5133 5134
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5135

5136 5137 5138 5139
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5140 5141 5142 5143 5144 5145 5146

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5147 5148 5149 5150 5151 5152 5153 5154 5155
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5156
            if normal_prob - 1.0 > 0:
5157
                bigs.append((i, normal_prob))
5158
            elif 1.0 - normal_prob > 0:
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5174
            if big_left - 1.0 > 0:
5175
                bigs.append((big_idx, big_left))
5176
            elif 1.0 - big_left > 0:
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5206 5207 5208 5209
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5210 5211 5212 5213 5214
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5215 5216 5217 5218
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5219

Y
Yang Yu 已提交
5220 5221
    attrs = {
        'num_total_classes': int(num_total_classes),
5222 5223
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5224
        'sampler': sampler,
5225 5226
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5227
    }
Y
Yang Yu 已提交
5228 5229 5230

    helper.append_op(
        type='nce',
C
chengduo 已提交
5231
        inputs=inputs,
Y
Yang Yu 已提交
5232 5233 5234 5235 5236 5237
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5238
    return cost / (num_neg_samples + 1)
5239 5240


C
chengduo 已提交
5241 5242
def hsigmoid(input,
             label,
5243
             num_classes,
C
chengduo 已提交
5244 5245
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5246
             name=None,
5247 5248 5249
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5250
             is_sparse=False):
W
weixing02 已提交
5251 5252
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5253
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5254
    complete binary tree, or you can use is_custom to pass your own tree to
5255
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5256 5257 5258 5259 5260 5261
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5262
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5263
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5264

5265 5266
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5267 5268 5269 5270
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5271
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5272
       related to the same batch of inputs.
5273

W
weixing02 已提交
5274
    Args:
M
minqiyang 已提交
5275
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5276 5277 5278 5279
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5280 5281
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5282
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5294
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5295
            it should be in leaf -> root order
M
minqiyang 已提交
5296 5297 5298
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5299
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5300
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5301
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5302
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5303
             of W and input will be sparse.
W
weixing02 已提交
5304 5305

    Returns:
J
JiabinYang 已提交
5306
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5307 5308 5309 5310 5311

    Examples:

        .. code-block:: python

G
guosheng 已提交
5312 5313 5314
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5315 5316 5317 5318
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5319 5320
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5321
    dim = input.shape[1]
5322
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5323 5324 5325
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5326 5327 5328 5329
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5330 5331
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5332 5333 5334
    else:
        pass

J
JiabinYang 已提交
5335
    weights = None
5336 5337 5338 5339
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5340
    if not is_custom:
J
JiabinYang 已提交
5341 5342 5343 5344 5345 5346 5347 5348
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5349
            shape=[num_classes, dim],
J
JiabinYang 已提交
5350 5351
            is_bias=False,
            dtype=input.dtype)
5352 5353 5354
    inputs = {
        "X": input,
        "W": weights,
5355
        "PathTable": path_table,
5356
        "PathCode": path_code,
5357 5358
        "Label": label
    }
W
weixing02 已提交
5359
    if helper.bias_attr:
5360
        if not is_custom:
J
JiabinYang 已提交
5361 5362
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5363
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5364 5365 5366 5367 5368 5369
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5370
                shape=[num_classes, 1],
J
JiabinYang 已提交
5371 5372 5373
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5374 5375
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5376
        inputs=inputs,
W
weixing02 已提交
5377
        outputs={"Out": out,
5378 5379 5380 5381 5382 5383 5384
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5385 5386 5387
    return out


Y
fix ci.  
ying 已提交
5388
def transpose(x, perm, name=None):
Y
ying 已提交
5389 5390 5391 5392 5393 5394 5395
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5396 5397 5398
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5399 5400 5401 5402 5403 5404 5405

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5406
            # use append_batch_size=False to avoid prepending extra
5407
            # batch size in shape
5408
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5409
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5410
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5411 5412
    """

Y
fix ci.  
ying 已提交
5413
    if len(perm) != len(x.shape):
Y
ying 已提交
5414 5415 5416
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5417 5418 5419 5420 5421 5422
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5423 5424

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5425 5426
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5427
    helper.append_op(
5428
        type='transpose2',
Y
fix ci.  
ying 已提交
5429
        inputs={'X': [x]},
5430 5431
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5432 5433
        attrs={'axis': perm})
    return out
5434 5435


5436 5437 5438 5439 5440 5441 5442
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5443
    """
5444 5445 5446 5447 5448 5449 5450
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5479 5480 5481 5482 5483 5484 5485 5486 5487
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5488 5489 5490
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5491 5492 5493 5494 5495
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5523 5524 5525
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5538
            output.dims = {8, 8}
5539

5540
            output.lod = [[4, 4]]
5541

T
Tink_Y 已提交
5542
    Examples:
5543 5544 5545

        .. code-block:: python

5546 5547
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5548 5549

    """
W
wanghaoshuang 已提交
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5560 5561 5562 5563 5564 5565 5566
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5567
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5568
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5569
    helper.append_op(
5570
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5571
    return out
5572 5573


Y
yuyang18 已提交
5574
@templatedoc()
5575
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5576 5577
    """
    ${comment}
5578 5579

    Args:
Y
yuyang18 已提交
5580
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5581 5582
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5583 5584 5585 5586 5587
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5588
        ${out_comment}.
5589 5590

    Examples:
Y
yuyang18 已提交
5591 5592 5593 5594
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5595 5596 5597 5598 5599 5600
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5601
    out = helper.create_variable_for_type_inference(dtype)
5602 5603 5604 5605 5606
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5607
    return helper.append_activation(out)
5608 5609


Y
yuyang18 已提交
5610
@templatedoc()
5611 5612
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5613 5614 5615 5616 5617 5618 5619
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5620 5621

    Args:
Y
yuyang18 已提交
5622 5623
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5624 5625

    Returns:
Y
yuyang18 已提交
5626
        ${out_comment}.
5627 5628
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5629 5630 5631 5632 5633

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5634
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5635 5636 5637 5638 5639 5640
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5641 5642


5643 5644 5645
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5646
                               ignore_index=kIgnoreIndex,
5647
                               numeric_stable_mode=True,
5648
                               return_softmax=False):
5649 5650
    """
    **Softmax With Cross Entropy Operator.**
5651

5652 5653 5654 5655
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5656

5657 5658 5659
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5660

5661 5662 5663
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5664

5665
    The equation is as follows:
5666

5667
    1) Hard label (one-hot label, so every sample has exactly one class)
5668

5669 5670 5671 5672
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5673

5674 5675 5676
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5677

5678 5679 5680 5681
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5682 5683 5684
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5685

H
haowang101779990 已提交
5686
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
5687

H
haowang101779990 已提交
5688
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
5689

H
haowang101779990 已提交
5690
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
5691 5692 5693

    and then cross entropy loss is calculated by softmax and label.

5694 5695 5696 5697 5698 5699 5700 5701
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5702 5703
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5704
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5705 5706 5707
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5708 5709 5710
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
5711
                                    stable algorithm. Default: True
5712
        return_softmax (bool): A flag indicating whether to return the softmax
5713
                               along with the cross entropy loss. Default: False
5714

5715
    Returns:
H
haowang101779990 已提交
5716 5717 5718 5719 5720
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
5721 5722 5723 5724 5725 5726 5727

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5728 5729
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5730 5731
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5732 5733
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5734 5735 5736 5737 5738 5739
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5740 5741 5742 5743 5744
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5745 5746 5747 5748

    if return_softmax:
        return loss, softmax

5749 5750 5751 5752 5753
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5754 5755
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5756
    For each instance, it computes the smooth L1 loss element by element first
5757
    and then sums all the losses. So the shape of ouput Variable is
5758
    [batch_size, 1].
5759

5760 5761
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5762
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5763
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5764
            L1 loss op with same shape as :attr:`x`.
5765
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5766 5767
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5768
            by this tensor element by element.
5769
        outside_weight (Variable|None): A tensor with rank at least 2. This
5770 5771
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5772
            element by element.
5773
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5774 5775
           scalar with default value 1.0.

5776
    Returns:
5777
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5778 5779 5780 5781 5782

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5783 5784
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5785
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5786
            out = fluid.layers.smooth_l1(x=fc, y=label)
5787
    """
5788

5789
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5790 5791
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5804 5805 5806 5807


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5808
    This layer creates the one-hot representations for input indices.
5809 5810

    Args:
Y
Yibing Liu 已提交
5811 5812
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5813 5814

    Returns:
Y
Yibing Liu 已提交
5815
        Variable: The one-hot representations of input.
5816 5817

    Examples:
C
caoying03 已提交
5818
        .. code-block:: python
5819

Y
Yibing Liu 已提交
5820 5821
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5822 5823
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5824
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5825 5826 5827 5828 5829 5830
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5831 5832


Y
Yu Yang 已提交
5833
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5834
    """
Y
yi.wu 已提交
5835 5836 5837
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5838 5839 5840 5841 5842 5843

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5844 5845
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5846 5847 5848 5849 5850 5851

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5852 5853
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5854 5855
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5856 5857 5858 5859 5860
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5861
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5862
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5863 5864
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5865
            outputs={'Out': [counter]},
M
minqiyang 已提交
5866 5867
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
5868 5869 5870
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5871 5872


5873
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5874
    """
C
caoying03 已提交
5875 5876
    Gives a new shape to the input Tensor without changing its data.

5877 5878 5879 5880 5881
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5882

5883
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5884

5885 5886 5887 5888
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5889
    2. 0 means the actual dimension value is going to be copied from the
5890 5891 5892 5893
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5894 5895

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5896
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5897
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5898

5899
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5900 5901
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5902 5903
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5904
    dimensions.
C
caoying03 已提交
5905

5906
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5907 5908 5909 5910
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5911 5912

    Args:
5913
        x(variable): The input tensor.
C
caoying03 已提交
5914 5915
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5916 5917 5918 5919 5920
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5921 5922
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5923 5924 5925 5926 5927 5928 5929
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5930
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5931

5932
    Returns:
G
guosheng 已提交
5933 5934 5935 5936
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5937

X
Xin Pan 已提交
5938 5939 5940
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5941 5942
    Examples:
        .. code-block:: python
G
guosheng 已提交
5943

5944
            data = fluid.layers.data(
5945
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5946
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5947
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5948 5949 5950
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5951
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5952 5953 5954 5955 5956
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5957

5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5973
    helper = LayerHelper("reshape2", **locals())
5974 5975
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5976
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5977
    helper.append_op(
5978
        type="reshape2",
X
Xin Pan 已提交
5979
        inputs=inputs,
D
dzhwinter 已提交
5980
        attrs={"shape": shape},
5981 5982
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5983

D
dzhwinter 已提交
5984
    return helper.append_activation(out)
5985

5986

5987
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5988
    """
M
minqiyang 已提交
5989 5990 5991
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5992
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5993

H
haowang101779990 已提交
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6015

Y
Yibing Liu 已提交
6016
    Args:
6017
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6018
        axes (list): List of integers, indicating the dimensions to be squeezed.
6019
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6020 6021 6022 6023 6024 6025 6026 6027

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6028
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6029 6030
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6031 6032
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6033
    helper.append_op(
6034
        type="squeeze2",
6035
        inputs={"X": input},
Y
Yibing Liu 已提交
6036
        attrs={"axes": axes},
6037 6038
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6039

6040 6041 6042
    return out


6043
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6044
    """
M
minqiyang 已提交
6045 6046 6047
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6048

M
minqiyang 已提交
6049
    For example:
H
haowang101779990 已提交
6050 6051 6052

    .. code-block:: text

M
minqiyang 已提交
6053
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6054
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6055

Y
Yibing Liu 已提交
6056
    Args:
6057
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6058
        axes (list): List of integers, indicating the dimensions to be inserted.
6059
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6060 6061 6062 6063 6064 6065 6066 6067

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6068
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6069 6070
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6071 6072
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6073
    helper.append_op(
6074
        type="unsqueeze2",
6075
        inputs={"X": input},
Y
Yibing Liu 已提交
6076
        attrs={"axes": axes},
6077 6078
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6079

6080 6081
    return out

6082

Y
yangyaming 已提交
6083
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6084
    """
Y
Yibing Liu 已提交
6085
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6086 6087 6088 6089
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6090
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6091 6092 6093 6094 6095 6096

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6097
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6098 6099 6100
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6101
            target_lod: [4, 2]
Y
yangyaming 已提交
6102 6103

            then we get a 1-level LoDTensor:
6104
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6105 6106 6107 6108 6109 6110
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6111
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6112 6113 6114 6115
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6116
                y.data = [[2, 4]]
Y
yangyaming 已提交
6117 6118 6119
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6120
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6121 6122 6123 6124 6125 6126
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6127
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6128 6129 6130 6131
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6132
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6133 6134 6135 6136
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6137
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6138 6139 6140 6141 6142
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6143
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6144
                           from :attr:`y`.
Y
yangyaming 已提交
6145
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6146
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6147 6148

    Returns:
Y
Yibing Liu 已提交
6149
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6150 6151

    Raises:
Y
Yibing Liu 已提交
6152
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6153 6154 6155 6156 6157 6158 6159 6160 6161

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6162
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6188
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6217 6218
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6231 6232 6233
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6247 6248 6249 6250


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6251
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6252
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6253

G
guosheng 已提交
6254 6255 6256 6257
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6280
                         The length of :attr:paddings must be
G
guosheng 已提交
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6291

G
guosheng 已提交
6292 6293 6294 6295 6296 6297
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6298
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6299 6300 6301 6302 6303 6304 6305
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6306 6307


C
chengduo 已提交
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6339 6340
		And
            pad_value = -1,
C
chengduo 已提交
6341

T
Tink_Y 已提交
6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6377
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6378 6379 6380 6381 6382 6383 6384 6385 6386
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6387 6388 6389 6390 6391 6392 6393
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6394 6395
    called label-smoothing regularization (LSR).

6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6419
                              be :math:`(1, class\_num)`.
6420 6421
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6422
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6442
    smooth_label = helper.create_variable_for_type_inference(dtype)
6443 6444 6445 6446 6447 6448 6449
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6450 6451


W
wopeizl 已提交
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6488 6489


J
jerrywgz 已提交
6490 6491 6492 6493 6494 6495
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6496 6497
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6514 6515 6516
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6517 6518 6519 6520 6521 6522
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6523
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6564 6565
        .. code-block:: python

W
whs 已提交
6566 6567 6568 6569
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6570
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6571 6572 6573 6574 6575 6576
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6577 6578


6579 6580 6581 6582
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6583 6584
                 resample='BILINEAR',
                 actual_shape=None):
6585
    """
Q
qiaolongfei 已提交
6586
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6587

6588
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6589 6590 6591
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6592

6593
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6594

6595
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6596

6597
    Args:
6598
        input (Variable): The input tensor of image resize layer,
6599 6600
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6601
        out_shape(list|tuple|Variable|None): Output shape of image resize
6602 6603
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6604
        scale(float|None): The multiplier for the input height or width.
6605 6606 6607
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6608 6609
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6610
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6611
                       currently.
6612
                       Default: 'BILINEAR'
6613 6614 6615
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6616
                                :attr:`out_shape` and :attr:`scale` specifying
6617 6618 6619 6620 6621 6622 6623
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6624 6625
                                constructing stage.
                                Default: None
6626 6627

    Returns:
Q
update  
qiaolongfei 已提交
6628 6629
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6630

6631 6632 6633
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6634
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6635 6636 6637 6638
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6639 6640 6641
    Examples:
        .. code-block:: python

6642
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6643
    """
6644 6645 6646 6647
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6648 6649
    if resample not in resample_methods:
        raise ValueError(
6650
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6651
        )
6652
    resample_type = resample_methods[resample]
6653
    if out_shape is None and scale is None:
6654
        raise ValueError("One of out_shape and scale must not be None.")
6655
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6656
    dtype = helper.input_dtype()
6657 6658 6659 6660

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6661 6662 6663
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6664
    if out_shape is not None:
6665 6666 6667 6668
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6669
            inputs['OutSize'] = out_shape
6670 6671 6672 6673 6674 6675 6676 6677
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6678 6679 6680 6681
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6682 6683 6684 6685 6686
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6687
    out = helper.create_variable_for_type_inference(dtype)
6688
    helper.append_op(
6689
        type='{}_interp'.format(resample_type),
6690
        inputs=inputs,
6691
        outputs={"Out": out},
6692 6693 6694
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6695
    return out
F
stash  
fengjiayi 已提交
6696 6697


6698
@templatedoc(op_type="bilinear_interp")
6699 6700 6701 6702 6703
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6704
    """
6705 6706
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6707 6708
    in priority order.

6709 6710 6711 6712
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6713 6714
    again in the other direction.

6715
    For details of bilinear interpolation, please refer to Wikipedia:
6716
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6717 6718 6719 6720 6721

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6722

Y
yuyang18 已提交
6723 6724 6725 6726 6727
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6728 6729 6730
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6731
                                :attr:`out_shape` and :attr:`scale` specifying
6732 6733 6734 6735 6736 6737 6738
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6739 6740
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6741 6742 6743

    Returns:
        ${out_comment}.
6744 6745 6746 6747 6748

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6749 6750
    """

6751
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6752 6753


6754
@templatedoc(op_type="nearest_interp")
6755 6756 6757 6758 6759
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6760
    """
6761
    Resize input by performing nearest neighbor interpolation in both the
6762 6763
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6764 6765
    out_shape and scale in priority order.

6766
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6767
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6768 6769 6770 6771 6772

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6773

Y
yuyang18 已提交
6774 6775 6776 6777 6778
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6779 6780 6781
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6782
                                :attr:`out_shape` and :attr:`scale` specifying
6783 6784 6785 6786 6787 6788 6789
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6790 6791
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6792 6793 6794

    Returns:
        ${out_comment}.
6795 6796 6797 6798 6799

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6800 6801
    """

6802
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6803 6804 6805 6806


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6807 6808 6809
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6810 6811 6812 6813 6814 6815 6816
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6817
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6818

6819
    Returns:
Q
update  
qiaolongfei 已提交
6820
        Variable: The output is a 4-D tensor of the shape
6821
        (num_batches, channls, out_h, out_w).
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6832 6833 6834
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6835 6836 6837
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6838 6839
def gather(input, index):
    """
Q
qiaolongfei 已提交
6840 6841
    **Gather Layer**

6842
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6843 6844 6845 6846
    of X indexed by `index` and concatenate them together.

    .. math::

6847
        Out = X[Index]
W
whs 已提交
6848 6849 6850 6851 6852 6853 6854


    .. code-block:: text


                Given:

6855 6856
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6867
        input (Variable): The source input with rank>=1.
W
whs 已提交
6868 6869 6870 6871 6872 6873
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6874

W
whs 已提交
6875 6876 6877 6878 6879 6880
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6881
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6882 6883 6884 6885 6886 6887 6888 6889
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6921
    out = helper.create_variable_for_type_inference(dtype)
6922 6923 6924 6925 6926 6927 6928 6929 6930
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6931 6932 6933 6934 6935 6936 6937 6938 6939
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
6940

Q
Qingsheng Li 已提交
6941
    Given the following input:
H
haowang101779990 已提交
6942

Q
Qingsheng Li 已提交
6943
    .. code-block:: text
H
haowang101779990 已提交
6944

Q
Qingsheng Li 已提交
6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
6957

Q
Qingsheng Li 已提交
6958
    .. code-block:: text
H
haowang101779990 已提交
6959

Q
Qingsheng Li 已提交
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
6975
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
6976 6977 6978 6979 6980 6981 6982 6983 6984 6985

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6986
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6987 6988 6989 6990 6991 6992 6993 6994 6995
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7009

7010 7011 7012
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7013
    """
F
stash  
fengjiayi 已提交
7014
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7015
    dtype = x.dtype
X
Xin Pan 已提交
7016
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7017
    if seed is None:
7018
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7019
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7020
    if isinstance(seed, int):
F
fengjiayi 已提交
7021 7022 7023 7024 7025
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7026 7027 7028 7029
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7030
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7031 7032
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7033 7034
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7035
    return out
W
whs 已提交
7036 7037


7038
def log(x, name=None):
W
wanghaoshuang 已提交
7039 7040 7041 7042 7043
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7044
        Out = \\ln(x)
W
wanghaoshuang 已提交
7045 7046

    Args:
7047
        x (Variable): Input tensor.
7048 7049
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7050 7051 7052 7053 7054 7055 7056 7057

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7058
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7059 7060
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7061
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7062
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7063
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7064 7065 7066
    return out


7067
def relu(x, name=None):
W
wanghaoshuang 已提交
7068 7069
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7070
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7071 7072 7073 7074
    the tensor elementwise.

    .. math::

7075
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7076 7077

    Args:
7078
        x (Variable): The input tensor.
7079 7080
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7081 7082 7083 7084 7085 7086 7087 7088

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7089
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7090 7091
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7092
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7093
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7094 7095
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7096
    return out
7097 7098


C
chengduo 已提交
7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7140 7141 7142
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7143 7144 7145 7146
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7147
    .. math::
7148

H
haowang101779990 已提交
7149
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7150

7151
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7152 7153 7154 7155 7156
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7157
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7158
                           Its shape should be the same as input.
7159
        num_classes (int): The possible number of labels.
W
whs 已提交
7160 7161

    Returns:
M
minqiyang 已提交
7162 7163
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7164
                     Three variables:
M
minqiyang 已提交
7165

H
haowang101779990 已提交
7166 7167 7168
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7169 7170 7171 7172

    Examples:

        .. code-block:: python
7173

W
whs 已提交
7174 7175 7176 7177
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7178 7179 7180
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7181 7182
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7183 7184
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7185
        outputs={
W
whs 已提交
7186 7187 7188
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7189 7190 7191
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7260
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7261 7262 7263 7264 7265

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7266
            isinstance(shape, Variable)):
7267 7268 7269 7270 7271
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7272
    out = helper.create_variable_for_type_inference(x.dtype)
7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7290 7291


W
whs 已提交
7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7309

W
whs 已提交
7310
              out_shape = [2, 3, 5, 5]
7311

W
whs 已提交
7312
          Step 1:
7313

W
whs 已提交
7314 7315 7316
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7317

W
whs 已提交
7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7363
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7364
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
7377

W
whs 已提交
7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7389
            isinstance(out_shape, Variable)):
W
whs 已提交
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7411 7412
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
7413

7414 7415
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
7416
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
7417 7418 7419
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7420

7421 7422
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7423

H
haowang101779990 已提交
7424 7425
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
7426 7427
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7428

H
haowang101779990 已提交
7429 7430 7431 7432 7433 7434 7435 7436
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
7437 7438 7439

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7474
    out = helper.create_variable_for_type_inference("float32")
7475 7476 7477 7478 7479 7480 7481 7482

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7483 7484


M
minqiyang 已提交
7485 7486
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7487
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7488
    which compares left score and right score passed in.
M
minqiyang 已提交
7489
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7490 7491 7492

    .. math::

H
haowang101779990 已提交
7493
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
7494 7495

    Args:
M
minqiyang 已提交
7496
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7497 7498
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7499
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7500 7501
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
7502

M
minqiyang 已提交
7503
    Returns:
M
minqiyang 已提交
7504
       Variable: The ranking loss.
H
haowang101779990 已提交
7505

M
minqiyang 已提交
7506
    Raises:
M
minqiyang 已提交
7507
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
7508

M
minqiyang 已提交
7509
    Examples:
H
haowang101779990 已提交
7510

M
minqiyang 已提交
7511
        .. code-block:: python
H
haowang101779990 已提交
7512

M
minqiyang 已提交
7513 7514 7515 7516 7517
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7518
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7519 7520 7521 7522 7523 7524
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7525 7526
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7550
        .. code-block:: text
W
whs 已提交
7551

T
Tink_Y 已提交
7552
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7553

T
Tink_Y 已提交
7554 7555
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7556

T
Tink_Y 已提交
7557
	      Case 0:
M
minqiyang 已提交
7558

T
Tink_Y 已提交
7559 7560 7561
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7562

T
Tink_Y 已提交
7563 7564 7565
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7566

T
Tink_Y 已提交
7567
	      Case 1:
M
minqiyang 已提交
7568

T
Tink_Y 已提交
7569 7570
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7571

T
Tink_Y 已提交
7572 7573 7574
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7575

T
Tink_Y 已提交
7576
	      Case 2:
M
minqiyang 已提交
7577

T
Tink_Y 已提交
7578 7579
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7580

T
Tink_Y 已提交
7581 7582 7583
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7584 7585


W
whs 已提交
7586 7587
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7588
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7612
    out = helper.create_variable_for_type_inference(dtype)
7613 7614 7615 7616 7617 7618 7619 7620 7621
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7622
    helper.append_op(
7623
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7624 7625 7626 7627

    return out


7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7640 7641 7642 7643 7644

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7645 7646
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7647 7648
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7649
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7670 7671 7672 7673 7674

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7675 7676
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7677 7678
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7679
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7700 7701 7702 7703 7704

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7705 7706
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7707 7708
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7709
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7731 7732 7733 7734 7735

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7736
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7737
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7738 7739
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7740
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7763 7764 7765 7766 7767

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7768 7769
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7770 7771
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7772
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7794 7795 7796 7797 7798

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7799 7800
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7801 7802
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7803
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7804 7805 7806 7807 7808 7809 7810 7811
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7812 7813 7814 7815
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
7816 7817
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
7818 7819 7820

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7821
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7822
          weight (alpha).
J
jerrywgz 已提交
7823
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7824 7825 7826
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7827
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7828
          will be named automatically.
J
jerrywgz 已提交
7829 7830 7831 7832 7833 7834 7835 7836

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7837
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7851
        attr=helper.param_attr,
J
jerrywgz 已提交
7852 7853 7854 7855
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7856
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7857 7858 7859 7860 7861 7862 7863 7864 7865
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7866 7867 7868 7869 7870 7871 7872 7873 7874 7875
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7876
    Returns:
7877
        output(${out_type}): ${out_comment}
7878 7879 7880

    Examples:

7881
    .. code-block:: python
7882

H
haowang101779990 已提交
7883 7884
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7885 7886
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7887
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7906
    Returns:
7907
        output(${out_type}): ${out_comment}
7908 7909 7910 7911 7912

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7913 7914
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
7915 7916
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7917
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7935
    Returns:
7936
        output(${out_type}): ${out_comment}
7937 7938 7939 7940 7941

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
7942 7943
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
7944 7945
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7946
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7947 7948 7949 7950 7951 7952 7953 7954
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7955 7956 7957 7958
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
7959

H
haowang101779990 已提交
7960
    For Example:
M
minqiyang 已提交
7961

H
haowang101779990 已提交
7962
    .. code-block:: text
7963

H
haowang101779990 已提交
7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
7985 7986 7987

    Args:
        x (Variable): A tensor of rank >= axis.
7988 7989
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7990 7991 7992 7993 7994 7995 7996 7997
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
7998 7999 8000
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8001 8002 8003 8004
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8005
        ValueError: If axis is not in range [0, rank(x)].
8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8022 8023
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8024
    helper.append_op(
8025
        type='flatten2',
8026
        inputs={"X": x},
8027 8028
        outputs={'Out': out,
                 'XShape': x_shape},
8029 8030
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8031 8032


C
chenweihang 已提交
8033
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8034
    """
C
chenweihang 已提交
8035
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8036
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8037 8038
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8039

H
haowang101779990 已提交
8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8057 8058

    Args:
C
chenweihang 已提交
8059 8060 8061
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8073 8074
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8075 8076 8077 8078 8079 8080
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8081
    return out
8082

8083

S
sneaxiy 已提交
8084 8085 8086 8087 8088 8089 8090 8091 8092
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8093

S
sneaxiy 已提交
8094
    .. math::
8095

S
sneaxiy 已提交
8096 8097 8098
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8099
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8100 8101 8102 8103
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8104 8105 8106
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8107 8108
    Returns:
        Variable: The output sequence mask.
8109

S
sneaxiy 已提交
8110 8111
    """

Q
qingqing01 已提交
8112
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8113
    if name is None:
X
Xin Pan 已提交
8114
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8115
    else:
X
Xin Pan 已提交
8116
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8117

Q
qingqing01 已提交
8118 8119 8120
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8121 8122
        outputs={'Y': out},
        attrs={
8123
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8124 8125 8126
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8127 8128


X
Xin Pan 已提交
8129
def stack(x, axis=0):
S
sneaxiy 已提交
8130 8131 8132 8133
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8134 8135 8136 8137 8138 8139 8140

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8141
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8142
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8143 8144

    Args:
8145
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8146
        axis (int|None): The axis along which all inputs are stacked.
8147

S
sneaxiy 已提交
8148 8149
    Returns:
        Variable: The stacked variable.
8150

S
sneaxiy 已提交
8151 8152
    """

X
Xin Pan 已提交
8153 8154 8155 8156 8157 8158
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8159
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8160
    helper.append_op(
S
sneaxiy 已提交
8161 8162
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8163

X
Xin Pan 已提交
8164
    return out
D
dzhwinter 已提交
8165 8166 8167 8168 8169 8170 8171


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8172

D
dzhwinter 已提交
8173 8174 8175
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8176
    raised.
D
dzhwinter 已提交
8177 8178

    Args:
M
minqiyang 已提交
8179
        x (Variable): Input variable.
D
dzhwinter 已提交
8180 8181
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8182

D
dzhwinter 已提交
8183 8184
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8185

D
dzhwinter 已提交
8186 8187 8188 8189 8190 8191 8192 8193 8194 8195
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8196
    for _ in range(num):
X
Xin Pan 已提交
8197
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8198 8199 8200 8201 8202 8203 8204 8205

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8218

W
whs 已提交
8219 8220 8221 8222
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8223

W
whs 已提交
8224
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8225

W
whs 已提交
8226
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8227

W
whs 已提交
8228 8229 8230 8231
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8232

W
whs 已提交
8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8249
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8250 8251 8252 8253 8254 8255
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8256 8257


G
fix  
gongweibao 已提交
8258 8259 8260
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8261
@templatedoc()
G
fix  
gongweibao 已提交
8262 8263 8264 8265 8266 8267 8268 8269 8270
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8271
    ${comment}
G
fix  
gongweibao 已提交
8272 8273

    Args:
G
gongweibao 已提交
8274 8275 8276
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8277
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8278 8279 8280
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8281 8282
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8283
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8284

8285 8286 8287 8288 8289
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8290 8291 8292
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8293
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8310 8311


G
gongweibao 已提交
8312
@templatedoc()
X
Xin Pan 已提交
8313
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8314
    """
G
gongweibao 已提交
8315
    ${comment}
G
fix  
gongweibao 已提交
8316 8317

    Args:
G
gongweibao 已提交
8318 8319 8320 8321
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8322 8323 8324
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8325
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8326

8327 8328 8329 8330
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8331 8332 8333
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8334
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8335 8336 8337 8338 8339 8340 8341 8342 8343 8344
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8345
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8346 8347 8348 8349 8350
        })

    return out


G
gongweibao 已提交
8351
@templatedoc()
G
fix  
gongweibao 已提交
8352
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8353
    """
G
gongweibao 已提交
8354
    ${comment}
G
fix  
gongweibao 已提交
8355 8356

    Args:
G
gongweibao 已提交
8357 8358 8359 8360
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8361
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8362 8363

    Returns:
G
gongweibao 已提交
8364
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8365

8366 8367 8368 8369 8370 8371 8372 8373 8374 8375
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8376 8377 8378
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8379
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8391
@templatedoc()
G
fix  
gongweibao 已提交
8392 8393 8394 8395 8396 8397 8398 8399 8400
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8401
    ${comment}
G
fix  
gongweibao 已提交
8402 8403

    Args:
G
gongweibao 已提交
8404 8405
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8406
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8407 8408 8409 8410
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8411
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8412 8413

    Returns:
G
gongweibao 已提交
8414
        out (Variable): ${out_comment}
8415 8416 8417 8418 8419 8420 8421 8422

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8423 8424 8425
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8426
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8445
@templatedoc()
X
Xin Pan 已提交
8446
def sum(x):
G
fix  
gongweibao 已提交
8447
    """
G
gongweibao 已提交
8448
    ${comment}
G
fix  
gongweibao 已提交
8449 8450

    Args:
G
gongweibao 已提交
8451
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8452 8453

    Returns:
G
gongweibao 已提交
8454
        out (Variable): ${out_comment}
8455 8456 8457 8458 8459 8460

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8461 8462 8463
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8464 8465
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8466 8467 8468 8469
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8470
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8471 8472 8473 8474

    return out


G
gongweibao 已提交
8475
@templatedoc()
G
fix  
gongweibao 已提交
8476 8477
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8478
    ${comment}
G
fix  
gongweibao 已提交
8479 8480

    Args:
G
gongweibao 已提交
8481 8482 8483 8484
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8485 8486

    Returns:
G
gongweibao 已提交
8487
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8488

8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8500 8501 8502
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8503 8504
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8516
@templatedoc()
G
fix  
gongweibao 已提交
8517 8518
def shape(input):
    """
G
gongweibao 已提交
8519
    ${comment}
G
fix  
gongweibao 已提交
8520 8521

    Args:
G
gongweibao 已提交
8522
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8523 8524

    Returns:
G
gongweibao 已提交
8525
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8526

8527 8528 8529 8530 8531 8532
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8533 8534 8535
    """

    helper = LayerHelper('shape', **locals())
8536
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
8537
    helper.append_op(
G
fix  
gongweibao 已提交
8538
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8539 8540

    return out
G
merge  
gongweibao 已提交
8541 8542


S
sneaxiy 已提交
8543 8544 8545 8546 8547 8548 8549 8550
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8551 8552
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8553
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8554 8555 8556
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8557

S
sneaxiy 已提交
8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8569
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8570 8571 8572 8573 8574 8575 8576 8577
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8578
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8579
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8580 8581 8582 8583 8584 8585

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8586
    if name is None:
X
Xin Pan 已提交
8587
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8588 8589 8590
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8591 8592 8593 8594 8595 8596 8597 8598 8599 8600

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8601
    return helper.append_activation(out)
S
sneaxiy 已提交
8602 8603


X
Xin Pan 已提交
8604
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8605 8606 8607
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8608
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8609 8610 8611
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8612
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8613 8614 8615
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8616
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8617 8618 8619
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8620
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8621 8622 8623
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8624
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8625 8626 8627
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8628
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8640 8641
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8642
        ])
M
minqiyang 已提交
8643 8644


8645
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8646 8647
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8648 8649
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8650 8651 8652

    if out is None:
        if name is None:
X
Xin Pan 已提交
8653
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8669
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8681 8682 8683 8684 8685 8686 8687 8688 8689

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8690 8691 8692 8693 8694 8695 8696
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8697
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8709 8710 8711 8712 8713 8714 8715 8716 8717

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8718 8719 8720 8721 8722 8723 8724
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8725
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8737 8738 8739 8740 8741 8742 8743 8744 8745

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8746 8747 8748 8749 8750 8751 8752
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8753
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8754 8755 8756 8757 8758 8759 8760 8761 8762 8763
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8764 8765 8766 8767 8768 8769 8770

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8771 8772 8773 8774
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8790 8791 8792 8793 8794 8795 8796

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8797 8798 8799 8800 8801
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8802 8803 8804 8805
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8829 8830 8831 8832 8833 8834 8835

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8836 8837 8838 8839 8840
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8841 8842 8843 8844
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8845 8846 8847 8848 8849 8850 8851 8852

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8871
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8872 8873 8874 8875 8876 8877 8878 8879 8880 8881
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8924
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8925 8926 8927 8928 8929 8930 8931 8932 8933
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8934 8935
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8936 8937 8938 8939 8940 8941
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8942 8943 8944
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
8945 8946
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
8947 8948 8949 8950 8951 8952
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8953
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8954
        name(basestring|None): Name of the output.
8955 8956
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
8957 8958 8959

    Returns:
        out(${out_type}): ${out_comment}
8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
8974 8975 8976 8977 8978
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8979
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8980 8981 8982 8983 8984 8985 8986 8987
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8988 8989
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9010
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9011 9012 9013 9014 9015 9016 9017 9018 9019 9020
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9021 9022


J
JiabinYang 已提交
9023
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9024
    """
J
JiabinYang 已提交
9025
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9026 9027 9028

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9029
    The attr blocksize indicates the input block size.
9030 9031

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9032
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9033 9034

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9035
    (but keeping all data)
J
JiabinYang 已提交
9036

J
JiabinYang 已提交
9037
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9038
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9039 9040 9041 9042 9043
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9044
    Args:
J
JiabinYang 已提交
9045
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9046
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9047 9048

    Returns:
J
JiabinYang 已提交
9049
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9050 9051

    Raises:
J
JiabinYang 已提交
9052
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9053 9054 9055 9056 9057 9058

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9059
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9060
                x=data, blocksize=2)
J
JiabinYang 已提交
9061 9062
    """

J
JiabinYang 已提交
9063
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9064

J
JiabinYang 已提交
9065 9066
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9067 9068

    if name is None:
J
JiabinYang 已提交
9069 9070
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9071 9072 9073 9074 9075
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9076
        type="space_to_depth",
J
JiabinYang 已提交
9077
        inputs={"X": x},
J
JiabinYang 已提交
9078
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9079
        outputs={"Out": out})
J
JiabinYang 已提交
9080 9081
    return out

J
JiabinYang 已提交
9082

S
sneaxiy 已提交
9083 9084
@templatedoc()
def sequence_reverse(x, name=None):
9085
    """
S
sneaxiy 已提交
9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9097
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9098 9099 9100 9101 9102 9103 9104 9105 9106 9107
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9108 9109


9110 9111 9112 9113 9114 9115
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9116

9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9136
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
9149 9150


B
barrierye 已提交
9151
def similarity_focus(input, axis, indexes, name=None):
9152
    """
B
barrierye 已提交
9153
    SimilarityFocus Operator
B
barrierye 已提交
9154 9155

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9156

9157 9158 9159
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9160
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9161 9162 9163 9164 9165 9166 9167
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9168
       each index.
B
barrierye 已提交
9169 9170 9171 9172
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9222
    Args:
9223
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9224
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9225
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9226
            1, 2 or 3.
B
barrierye 已提交
9227
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9228 9229

    Returns:
H
haowang101779990 已提交
9230 9231
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9232

B
barrierye 已提交
9233 9234
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9235

B
barrierye 已提交
9236
            data = fluid.layers.data(
B
barrierye 已提交
9237 9238
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9239

B
barrierye 已提交
9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9252 9253 9254 9255 9256
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9257 9258 9259 9260 9261 9262 9263
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9264 9265


M
minqiyang 已提交
9266 9267
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9268 9269
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9270 9271
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9310
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9311
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9312 9313 9314 9315 9316 9317

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
9318

M
minqiyang 已提交
9319 9320 9321
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9322 9323
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9324 9325
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9326 9327 9328 9329 9330 9331 9332
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9333 9334


D
dengkaipeng 已提交
9335
@templatedoc()
9336 9337
def grid_sampler(x, grid, name=None):
    """
9338
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
9339
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
9340 9341 9342 9343
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9344
    interpolation value of 4 nearest corner points.
9345

H
haowang101779990 已提交
9346
    .. code-block:: text
9347

H
haowang101779990 已提交
9348 9349
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
9350

H
haowang101779990 已提交
9351 9352
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
9353

H
haowang101779990 已提交
9354 9355 9356
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
9357

H
haowang101779990 已提交
9358 9359 9360 9361 9362 9363 9364 9365 9366
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
9367

H
haowang101779990 已提交
9368 9369 9370 9371
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
9372

H
haowang101779990 已提交
9373 9374 9375 9376
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
9377

H
haowang101779990 已提交
9378 9379 9380 9381
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
9382

H
haowang101779990 已提交
9383 9384
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9385 9386

    Args:
9387 9388 9389
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9390 9391

    Returns:
H
haowang101779990 已提交
9392
        Variable: Output of shape [N, C, H, W] data samples input X
9393 9394
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
9395 9396 9397 9398 9399 9400 9401 9402
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
9403

D
dengkaipeng 已提交
9404 9405 9406 9407 9408 9409 9410 9411 9412
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9413
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9414 9415
    ipts = {'X': x, 'Grid': grid}

9416
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9417 9418 9419
    return out


G
gmcather 已提交
9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
9486
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
9508 9509 9510 9511
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
9512
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
9513 9514
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
9515
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
9516 9517

    .. math::
H
haowang101779990 已提交
9518 9519 9520
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
9521 9522

    Where:
H
haowang101779990 已提交
9523 9524
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
9539

G
gmcather 已提交
9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9556 9557 9558 9559 9560 9561 9562 9563 9564 9565


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9566
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9567

Q
Qiao Longfei 已提交
9568
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9569 9570 9571
    For example:

    .. math::
H
haowang101779990 已提交
9572
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9573

Q
Qiao Longfei 已提交
9574
    In this formula:
9575 9576
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9577
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
9578
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9579 9580 9581
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9582 9583
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9584 9585 9586
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9587
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9588
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9589
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9590 9591 9592 9593
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9594
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9595 9596 9597 9598

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9599
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9600 9601
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9602
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9603 9604 9605 9606

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9607
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9648 9649


S
sneaxiy 已提交
9650
class PyFuncRegistry(object):
S
sneaxiy 已提交
9651 9652 9653
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9654
        if func is None or not callable(func):
S
sneaxiy 已提交
9655 9656 9657
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9658
        # find named args using reflection
S
sneaxiy 已提交
9659 9660 9661 9662 9663 9664 9665
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9666 9667 9668
        '''
        Why record self here?

M
minqiyang 已提交
9669 9670
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
9671
           to find the registered function corresponding
M
minqiyang 已提交
9672
           to :code:`idx`.
S
sneaxiy 已提交
9673

M
minqiyang 已提交
9674 9675
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
9676
           whose reference count is 1 would cause
M
minqiyang 已提交
9677
           segmentation fault error in C++ side.
S
sneaxiy 已提交
9678 9679
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9680
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9695 9696 9697 9698 9699 9700 9701 9702 9703
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9704

S
sneaxiy 已提交
9705 9706
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9707 9708

        ret = []
S
sneaxiy 已提交
9709 9710 9711
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9712 9713
                continue

S
sneaxiy 已提交
9714 9715
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9716

S
sneaxiy 已提交
9717 9718 9719
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9720

S
sneaxiy 已提交
9721
        return tuple(ret)
S
sneaxiy 已提交
9722 9723


S
sneaxiy 已提交
9724 9725 9726 9727
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
9728

S
sneaxiy 已提交
9729 9730 9731 9732 9733 9734 9735 9736
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9737
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9738

S
sneaxiy 已提交
9739 9740
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9741 9742 9743 9744
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9745
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
9746
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
9747 9748
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9749 9750 9751 9752 9753
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
9754
            should create :code:`out` beforehand.
S
sneaxiy 已提交
9755
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
9756
                                       None means no backward. Default None.
S
sneaxiy 已提交
9757
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
9758
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
9759 9760
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
9761
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
9762 9763 9764

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9765 9766

    Examples:
M
minqiyang 已提交
9767

S
sneaxiy 已提交
9768 9769 9770 9771 9772
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
9773
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
9774 9775
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
9776
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
9777 9778 9779
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
9780
        >>>
S
sneaxiy 已提交
9781 9782 9783 9784 9785
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
9786
        >>>     print(x)
S
sneaxiy 已提交
9787 9788 9789 9790 9791 9792
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
9793
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
9794 9795
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
9796 9797
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
9798 9799 9800 9801 9802 9803 9804 9805
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9806
    """
S
sneaxiy 已提交
9807
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9808 9809 9810
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9811
        x = [x]
S
sneaxiy 已提交
9812 9813
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9814

S
sneaxiy 已提交
9815 9816 9817
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9818
        out_list = [out]
S
sneaxiy 已提交
9819
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9820
        out_list = out
S
sneaxiy 已提交
9821 9822 9823
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9824

S
sneaxiy 已提交
9825 9826
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9827
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9828 9829

    for each_out in out_list:
S
sneaxiy 已提交
9830 9831
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9832 9833
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9834

S
sneaxiy 已提交
9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9850 9851 9852 9853

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9854 9855
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9856 9857 9858
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9859
        })
S
sneaxiy 已提交
9860
    return out
S
sneaxiy 已提交
9861 9862 9863


# For debug usage
S
sneaxiy 已提交
9864 9865 9866 9867
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9920

M
minqiyang 已提交
9921

M
minqiyang 已提交
9922
def huber_loss(input, label, delta):
9923
    """
M
minqiyang 已提交
9924 9925 9926
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9927 9928 9929 9930

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9931
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9932 9933 9934 9935

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9936
        huber\_loss = 0.5 * (label - input) * (label - input)
9937 9938 9939 9940 9941 9942 9943


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9944
        delta (float): The parameter of huber loss, which controls
9945 9946 9947
                       the range of outliers

    Returns:
M
minqiyang 已提交
9948
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9949 9950 9951 9952 9953

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9954
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9955
    """
M
minqiyang 已提交
9956
    helper = LayerHelper('huber_loss', **locals())
9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)