op_teller.cc 106.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16

17
#include <bitset>
18

19
#include "paddle/fluid/framework/block_desc.h"
20
#include "paddle/fluid/framework/data_layout.h"
W
weishengying 已提交
21 22 23 24
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_factory.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
25

W
wanghuancoder 已提交
26 27 28 29 30 31
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

32 33 34 35 36 37
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
38
  SimpleOpTypeSetTeller() {
39
#if IS_TRT_VERSION_GE(7130)
Z
Zhang Jun 已提交
40
    // use TensorRT plugin
41
    teller_set.insert("group_norm");
Z
Zhang Jun 已提交
42 43
    teller_set.insert("multiclass_nms3");
    teller_set.insert("multiclass_nms");
44 45
    int8_teller_set.insert("multiclass_nms3");
    int8_teller_set.insert("multiclass_nms");
46
#endif
W
wenbin 已提交
47 48
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
49
    teller_set.insert("flatten_contiguous_range");
50
    int8_teller_set.insert("flatten_contiguous_range");
Z
zhoutianzi666 已提交
51 52 53 54
    teller_set.insert("rnn");
    int8_teller_set.insert("rnn");
    teller_set.insert("fill_constant_batch_size_like");
    int8_teller_set.insert("fill_constant_batch_size_like");
W
wenbin 已提交
55
#endif
W
wenbin 已提交
56
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
57 58
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
59 60
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
61 62 63 64 65 66
#endif
#if IS_TRT_VERSION_GE(8000)
    teller_set.insert("sparse_fc");
    int8_teller_set.insert("sparse_fc");
    teller_set.insert("sparse_multihead_matmul");
    int8_teller_set.insert("sparse_multihead_matmul");
67
#endif
68 69 70 71 72
#if IS_TRT_VERSION_GE(8522)
    teller_set.insert("flash_multihead_matmul");
    int8_teller_set.insert("flash_multihead_matmul");
    teller_set.insert("cross_multihead_matmul");
    int8_teller_set.insert("cross_multihead_matmul");
73 74
    teller_set.insert("qk_multihead_matmul");
    int8_teller_set.insert("qk_multihead_matmul");
75
#endif
76 77 78
#if IS_TRT_VERSION_GE(8200)
    teller_set.insert("round");
    int8_teller_set.insert("round");
X
xjmxyt 已提交
79
    teller_set.insert("set_value");
X
xjmxyt 已提交
80 81
    teller_set.insert("index_select");
    int8_teller_set.insert("index_select");
82 83
    int8_teller_set.insert("einsum");
    teller_set.insert("einsum");
84 85
#endif
  }
86

W
weishengying 已提交
87 88 89 90
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
91 92 93 94 95 96 97 98 99 100 101 102

    std::unordered_set<std::string> control_set = {"conditional_block",
                                                   "while"};
    std::unordered_set<std::string> feed_fetch_set = {"feed", "fetch"};
    if (control_set.find(op_type) != control_set.end()) {
      return false;
    }

    if (feed_fetch_set.find(op_type) != feed_fetch_set.end()) {
      return false;
    }

W
weishengying 已提交
103 104 105 106 107 108
    // do not support the op which is labeled the `skip_quant`
    if ((desc.HasAttr("namescope") &&
         PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
             "/skip_quant_2/") ||
        desc.HasAttr("skip_quant"))
      return false;
109
    std::unordered_set<std::string> act_op_list = {
110 111 112 113 114 115 116 117 118 119 120
        "relu",       "relu6",       "sigmoid",
        "elu",        "selu",        "softsign",
        "softplus",   "stanh",       "thresholded_relu",
        "exp",        "log",         "sqrt",
        "abs",        "sin",         "cos",
        "tan",        "tanh",        "sinh",
        "cosh",       "asin",        "acos",
        "atan",       "asinh",       "acosh",
        "atanh",      "ceil",        "celu",
        "erf",        "floor",       "round",
        "sign",       "silu",        "logical_not",
121
        "reciprocal", "tanh_shrink", "logsigmoid",
122 123
        "rsqrt",      "swish",       "hard_sigmoid",
        "hard_swish", "leaky_relu"};
124
    std::unordered_set<std::string> unary_list = {
125 126 127 128 129 130
        "exp",   "log",         "sqrt",       "abs",         "sin",
        "cos",   "tan",         "tanh",       "sinh",        "cosh",
        "asin",  "acos",        "atan",       "asinh",       "acosh",
        "atanh", "ceil",        "celu",       "floor",       "round",
        "sign",  "logical_not", "reciprocal", "tanh_shrink", "logsigmoid",
        "erf",   "bitwise_not", "equal",      "not_equal",   "rsqrt"};
131 132 133 134 135 136 137 138 139 140 141 142

    // Static shape does not support 0 or 1 dim's input.
    if (!with_dynamic_shape) {
      auto inputs = desc.Inputs();
      for (auto iter : inputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            // Can't get feed op's TensorDesc
            if (op_type != "feed" && var_desc && !var_desc->Persistable()) {
              const auto shape = var_desc->GetShape();
143
              if (shape.size() == 1 || shape.empty()) return false;
144 145 146 147 148 149
            }
          }
        }
      }
    }

150
    if (act_op_list.find(op_type) != act_op_list.end()) {
J
JingZhuangzhuang 已提交
151
      auto* block = desc.Block();
152 153 154 155 156 157
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
158 159 160 161 162
#if !IS_TRT_VERSION_GE(7000)
      if (op_type == "erf") {
        VLOG(3) << op_type << " op does not support tensorrt.";
        return false;
      }
163 164
#endif
#if !IS_TRT_VERSION_GE(8600)
165 166 167
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
168
      if (x_shape.empty() && unary_list.find(op_type) != unary_list.end()) {
169 170 171 172
        VLOG(3) << op_type
                << " op does not support 0 dim input when TensorRT < 8.6.";
        return false;
      }
173
#endif
J
JingZhuangzhuang 已提交
174
    }
175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    if (op_type == "dropout") {
      /*
       * Some OpDescs Attribute support both constant value and dynamic
       * runtime value (which is a Variable(s) type). But TensorRT maybe
       * only support constant value Attribute, so we shall distinguish
       * this case in time and return False in OpTeller.Tell().
       * If Attribute is Variable(s), HasAttr() will return False
       */
      if (!desc.HasAttr("dropout_prob", /*with_attr_var=*/false)) {
        VLOG(3)
            << "Skip to convert into TRT while found Attribute('dropout_prob') "
               "is Variable type in dropout.";
        return false;
      }
    }

192
    if (op_type == "pool2d") {
193 194 195 196 197 198 199
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("ksize", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('ksize') is "
                   "Variable type in pool2d.";
        return false;
      }

200
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
201
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
202 203
      if (paddings.size() > 2) {
        return false;
204
      }
205 206 207 208 209 210 211 212 213 214
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
215 216
      if (desc.HasAttr("data_format")) {
        std::string data_format =
R
Ruibiao Chen 已提交
217
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
W
wenbin 已提交
218 219 220 221
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
222 223 224 225
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
R
Ruibiao Chen 已提交
226
            PADDLE_GET_CONST(std::string, desc.GetAttr("pooling_type"));
227 228 229 230 231
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
232 233
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
R
Ruibiao Chen 已提交
234
            if (!PADDLE_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
235
              if (desc.HasAttr("exclusive")) {
R
Ruibiao Chen 已提交
236
                if (PADDLE_GET_CONST(bool, desc.GetAttr("exclusive"))) {
237
                  std::vector<int> ksize =
R
Ruibiao Chen 已提交
238
                      PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
239 240 241 242 243 244 245 246 247 248 249 250 251
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
252 253 254 255
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
256 257
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

281 282
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
283 284 285 286
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
287
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
288 289 290 291 292 293 294 295 296 297 298 299 300 301
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
302

W
wenbin 已提交
303
// strides > 1 and 'SAME' is only supported by trt7.0 above
304
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
305 306 307 308
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
R
Ruibiao Chen 已提交
309
              PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
310 311
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
R
Ruibiao Chen 已提交
312
                PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wenbin 已提交
313 314 315 316 317 318
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
319 320 321 322
          }
        }
      }
#endif
323 324 325 326
      auto* block = desc.Block();
      if (block) {
        auto* filter_var_desc = block->FindVar(desc.Input("Filter")[0]);
        if (!filter_var_desc->Persistable()) {
327 328 329 330 331
#if IS_TRT_VERSION_GE(8600)
#else
          LOG(INFO)
              << "Trt below 8.6 not support conv2d's filter is a intermedoate "
                 "tensor in conv2d op, please upgarde your TenroRT.";
332
          return false;
333
#endif
334 335
        }
      }
336 337
    }

W
wangxinxin08 已提交
338
    if (op_type == "deformable_conv") {
339 340 341
      if (!desc.HasAttr("groups") || !desc.HasAttr("strides") ||
          !desc.HasAttr("paddings"))
        return false;
W
wangxinxin08 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

R
Ruibiao Chen 已提交
357
      int groups = PADDLE_GET_CONST(int, desc.GetAttr("groups"));
W
wangxinxin08 已提交
358 359 360 361 362 363 364 365
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
R
Ruibiao Chen 已提交
366
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wangxinxin08 已提交
367 368 369 370 371 372 373
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
R
Ruibiao Chen 已提交
374
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wangxinxin08 已提交
375 376 377 378 379 380 381
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

382 383 384 385 386 387
    if (op_type == "bmm") {
      if (!with_dynamic_shape) {
        return false;
      }
    }

388 389 390 391
    if (op_type == "range") {
      if (!with_dynamic_shape) {
        return false;
      }
392 393 394 395 396
#if IS_TRT_VERSION_LT(8400)
      auto* block = desc.Block();
      auto start_var_name = desc.Input("Start")[0];
      auto* start_var_desc = block->FindVar(start_var_name);
      auto start_dtype = start_var_desc->GetDataType();
M
ming1753 已提交
397 398
      if (start_dtype == framework::proto::VarType::FP32 ||
          start_dtype == framework::proto::VarType::FP64) {
399 400 401
        return false;
      }
#endif
402 403
    }

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
    if (op_type == "sign") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "sign op is only supported by trt8.2 above ";
      return false;
#endif
    }

    if (op_type == "logical_not") {
#if IS_TRT_VERSION_GE(8400)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "logical_not op is only supported by trt8.4 above because of "
                 "cast op";
      return false;
#endif
    }
426

W
Wilber 已提交
427 428 429 430 431 432 433 434 435 436 437
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
438

439
      if (with_dynamic_shape && (x_shape.size() == 1 || x_shape.empty())) {
440 441 442 443 444 445 446
        int axis = desc.HasAttr("axis")
                       ? PADDLE_GET_CONST(int, desc.GetAttr("axis"))
                       : -1;
        if (axis > 0) {
          return false;
        }
      }
W
Wilber 已提交
447
    }
448

449
    if (op_type == "group_norm") {
450 451 452 453
      if (!desc.HasAttr("epsilon") || !desc.HasAttr("groups") ||
          !desc.HasAttr("data_layout"))
        return false;

454 455
      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
456 457 458 459 460 461 462
      std::string layout_str =
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
      if (layout_str != "NCHW") {
        VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
                << layout_str;
        return false;
      }
463 464 465 466
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
467
      }
R
Ruibiao Chen 已提交
468
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
469 470
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
471 472 473
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
474
        if (!desc.Input("AxisTensor").empty()) {
W
Wilber 已提交
475
          return false;
476
        }
477 478
      }
    }
479 480 481
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
482 483
      }
      std::vector<int> axis =
R
Ruibiao Chen 已提交
484
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
485 486 487 488
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
489 490 491 492 493 494
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
495 496 497
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
498
      if (axis.size() != x_shape.size()) return false;
499
      int dims = x_shape.size();
W
wenbin 已提交
500

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
519
        return false;
520 521
      }
    }
522
    if (op_type == "flatten2" || op_type == "flatten") {
523 524 525
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
526 527
#if IS_TRT_VERSION_GE(7130)
#else
528
        if (with_dynamic_shape) return false;
529
#endif
R
Ruibiao Chen 已提交
530
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
531 532 533
        if (axis != 1) return false;
      }
    }
534 535
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
536 537 538
        if (!desc.HasAttr("start_axis") || !desc.HasAttr("stop_axis")) {
          return false;
        }
R
Ruibiao Chen 已提交
539 540
        int start_axis = PADDLE_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = PADDLE_GET_CONST(int, desc.GetAttr("stop_axis"));
541 542 543 544 545 546 547 548 549 550 551
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
552 553 554 555 556 557
        if (dims == 0) {
          VLOG(3) << op_type
                  << " op does not support input's dim is 0 in tensorrt "
                     "static shape mode.";
          return false;
        }
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
574

575
    if (op_type == "gather") {
576 577
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
578
        if (!desc.Input("Axis").empty()) {
579 580 581 582 583 584
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
585
        auto* block = desc.Block();
586 587 588 589 590 591
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
592
#if !IS_TRT_VERSION_GE(7000)
593 594 595 596 597 598
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
599
#endif
600
      }
601
    }
Z
zlsh80826 已提交
602

603
    if (op_type == "gather_nd") {
604 605
      if (!with_dynamic_shape) return false;

606
      auto* block = desc.Block();
607 608 609 610 611 612
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
613
#if IS_TRT_VERSION_LT(8200)
614 615
      auto index_var_name = desc.Input("Index")[0];
      auto* index_var_desc = block->FindVar(index_var_name);
616 617
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
618 619
      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
620 621 622 623 624 625
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

626 627 628 629 630
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
631
#endif
632
    }
X
xjmxyt 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
    if (op_type == "index_select") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
      auto gather_inputs = desc.Inputs();
      if (!with_dynamic_shape) {
        return false;
      } else {
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }

        auto index_var_name = desc.Input("Index")[0];
        auto* index_var_desc = block->FindVar(index_var_name);
651

X
xjmxyt 已提交
652 653 654 655 656 657 658 659 660 661 662
        // The index input must be int32 or int64 datatype.
        if (index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT32 &&
            index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT64) {
          VLOG(3)
              << "Index select op Index input data type must be int32 or int64";
          return false;
        }
      }
    }
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    if (op_type == "take_along_axis") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) return false;
      auto* block = desc.Block();
      auto input_var_name = desc.Input("Input")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* input_var_desc = block->FindVar(input_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      const auto input_shape = input_var_desc->GetShape();
      const auto index_shape = index_var_desc->GetShape();
      if (input_shape.size() != index_shape.size()) {
        VLOG(3) << "take_along_axis op Index input dims size ["
                << index_shape.size() << " ] not equal to input dims size ["
                << input_shape.size() << "]";
        return false;
      }
#else
      VLOG(3) << "take_along_axis op is only supported by trt8.2 above ";
      return false;
#endif
    }

686 687 688 689
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
690 691 692 693 694 695
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
696
      if (!has_attrs) return false;
Z
zlsh80826 已提交
697 698
    }

699 700 701 702 703 704
    if (op_type == "yolo_box_head") {
      if (with_dynamic_shape) return false;
      bool has_attrs = desc.HasAttr("class_num") && desc.HasAttr("anchors");
      if (!has_attrs) return false;
    }

705
    if (op_type == "arg_max" || op_type == "arg_min") {
706 707 708 709 710 711
      if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
                   "Variable type in arg_max.";
        return false;
      }

712 713 714 715 716 717 718 719 720 721 722 723
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto x_dtype = x_var_desc->GetDataType();

      if (!(x_dtype == framework::proto::VarType::FP32 ||
M
ming1753 已提交
724 725
            x_dtype == framework::proto::VarType::FP16 ||
            x_dtype == framework::proto::VarType::FP64)) {
726 727 728
        return false;
      }

729
      int axis = desc.HasAttr("axis")
R
Ruibiao Chen 已提交
730
                     ? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
731
                     : -1;
X
xiaoxiaohehe001 已提交
732 733 734 735 736 737
      bool flatten = desc.HasAttr("flatten")
                         ? PADDLE_GET_CONST(bool, desc.GetAttr("flatten"))
                         : false;
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 3;
738
      if (axis == 0 || flatten || (dtype != 2 && dtype != 3)) return false;
739 740
    }

741 742
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
743
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
744
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
745
      if (data_layout != phi::DataLayout::kNCHW) return false;
746 747

      auto* block = desc.Block();
748 749 750 751 752 753
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
754 755 756 757 758 759
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
760 761
    }

762
    if (op_type == "multiclass_nms" || op_type == "multiclass_nms3") {
Z
zlsh80826 已提交
763
      auto* block = desc.Block();
764 765 766 767 768 769
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
770 771 772
      auto multiclass_nms_inputs = desc.Inputs();
      if (multiclass_nms_inputs.find("RoisNum") !=
          multiclass_nms_inputs.end()) {
773
        if (!desc.Input("RoisNum").empty()) {
774 775 776 777
          return false;
        }
      }
      for (auto& param_name : multiclass_nms_inputs) {
Z
zlsh80826 已提交
778 779 780 781
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
782
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
783 784 785 786 787 788 789 790 791 792 793 794
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

795 796 797
      // TODO(wangxinxin08): tricky solution because the outputs of batchedNMS
      // plugin are not constient with those of multiclass_nms3
      if (desc.HasAttr("nms_eta") == false) return false;
R
Ruibiao Chen 已提交
798
      auto nms_eta = PADDLE_GET_CONST(float, desc.GetAttr("nms_eta"));
799 800
      if (nms_eta <= 1.0) return false;

R
Ruibiao Chen 已提交
801
      auto nms_top_k = PADDLE_GET_CONST(int, desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
802 803
      if (nms_top_k < 0) return false;

R
Ruibiao Chen 已提交
804
      auto keep_top_k = PADDLE_GET_CONST(int, desc.GetAttr("keep_top_k"));
Z
zlsh80826 已提交
805 806 807 808 809 810
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

811
    if (op_type == "nearest_interp") {
C
ccrrong 已提交
812 813
      std::vector<std::string> attrs{
          "interp_method", "align_corners", "scale", "out_h", "out_w"};
814
      for (auto const& attr : attrs) {
815 816
        if (!desc.HasAttr(attr)) return false;
      }
817
      if (desc.HasAttr("data_layout")) {
818
        auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
819
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
820 821
        if (data_layout != phi::DataLayout::kNCHW &&
            data_layout != phi::DataLayout::kNHWC)
822 823
          return false;
      }
824
      auto interp_method =
R
Ruibiao Chen 已提交
825
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
826
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
827 828 829 830 831
      auto scale = PADDLE_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
832 833 834 835
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
836
        }
837 838
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
839 840
          return false;
        }
841
      }
842 843 844 845 846 847 848 849 850
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
851
    }
852

853
    if (op_type == "nearest_interp_v2") {
C
ccrrong 已提交
854 855 856 857 858 859
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
860
      for (auto const& attr : attrs) {
861 862
        if (!desc.HasAttr(attr)) return false;
      }
863
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
864
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
865 866
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC)
867 868
        return false;
      auto interp_method =
R
Ruibiao Chen 已提交
869
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
870
      if (interp_method != "nearest") return false;
871

872
#if IS_TRT_VERSION_GE(8200)
873 874 875 876 877 878
      auto resize_inputs = desc.Inputs();
      if (with_dynamic_shape &&
          resize_inputs.find("SizeTensor") != resize_inputs.end() &&
          desc.Input("SizeTensor").size() == 2) {
        return true;
      }
879
#endif
880

R
Ruibiao Chen 已提交
881 882 883
      auto scale = PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
884
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
885
        if (scale.size() < 2) return false;
886 887 888 889 890 891 892 893
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

894
    if (op_type == "bilinear_interp_v2") {
895 896 897 898
      // trt 7011 result in test_solov2_trt_fp32.py TRT fp32 diff
#if IS_TRT_VERSION_LT(7100)
      return false;
#endif
C
ccrrong 已提交
899 900 901 902 903 904
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
905
      for (auto const& attr : attrs) {
906 907 908 909 910 911 912 913 914
        if (!desc.HasAttr(attr)) {
          VLOG(3) << "The op_type " << op_type << " doesn't have the attr "
                  << attr << " and return false";
          return false;
        }
      }

      auto resize_inputs = desc.Inputs();
      if (resize_inputs.find("SizeTensor") != resize_inputs.end()) {
915
        if (!desc.Input("SizeTensor").empty()) {
916 917 918 919 920 921 922 923
          VLOG(3)
              << "The Paddle-TRT doesn't support the SizeTensor for op_type "
              << op_type;
          return false;
        }
      }

      if (resize_inputs.find("OutSize") != resize_inputs.end()) {
924 925
        if (!with_dynamic_shape) {
          VLOG(3) << "Static shape don't support the OutSize for op_type "
926 927 928 929 930
                  << op_type;
          return false;
        }
      }

931
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
932
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
933 934
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC) {
935 936 937 938 939
        VLOG(3) << "The op_type " << op_type
                << " is not NCHW or NHWC return false";
        return false;
      }
      auto interp_method =
R
Ruibiao Chen 已提交
940
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
941 942 943 944 945 946
      if (interp_method != "bilinear") {
        VLOG(3) << "The interp_method of op_type " << op_type
                << " is not bilinear";
        return false;
      }

R
Ruibiao Chen 已提交
947 948
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
949 950 951 952 953 954 955 956 957 958 959
      if (align_corners != false) {
        VLOG(3)
            << "The bilinear_interp_v2 only supports align_corners with false.";
        return false;
      }

      bool has_scale_input_size =
          (resize_inputs.find("Scale") != resize_inputs.end());

      if (has_scale_input_size && desc.Input("Scale").size() != 1) {
        const std::vector<float> scale =
R
Ruibiao Chen 已提交
960
            PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
961 962 963 964 965 966 967
        if (scale.size() <= 1) {
          if (!desc.HasAttr("out_h") || !desc.HasAttr("out_w")) {
            VLOG(3) << "The op_type " << op_type
                    << " doesn't have Scale and the scale size <=1 and without "
                       "out_h / out_w, it will return false";
            return false;
          }
R
Ruibiao Chen 已提交
968 969
          auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
          auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
          if (!(out_h <= 0 && out_w <= 0)) {
            if (out_h <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_h must be greater than 0 if scale is not set.";
              return false;
            }
            if (out_w <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_w must be greater than 0 if scale is not set.";
              return false;
            }
          }
        } else {
          for (size_t i = 0; i < scale.size(); i++) {
            if (scale[i] <= 0 && with_dynamic_shape) {
              VLOG(3) << "dynamic shape not support Attr(scale[" << i << "]) "
                      << scale[i]
                      << " less than 1 and Input(Scale) vector not set.";
              return false;
            }
          }
        }
      }
    }

995
    if (op_type == "squeeze2") {
996 997 998 999 1000 1001 1002
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("axes", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axes') is "
                   "Variable type in squeeze2.";
        return false;
      }

1003 1004
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1005
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1006
      }
1007
      if (axes.empty()) {
W
wenbin 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        auto* block = desc.Block();
        if (block) {
          auto input_var_name = desc.Input("X")[0];
          auto* input_var_desc = block->FindVar(input_var_name);
          const auto input_shape = input_var_desc->GetShape();
          for (int s : input_shape) {
            if (s == -1) {
              VLOG(3) << "The necessary attributes of the squeeze2 operator "
                         "axes is "
                         "missing. ss ==== -1";
              return false;
            } else if (s == 1) {
              axes.push_back(s);
            }
          }
        }
1024
        if (axes.empty()) {
W
wenbin 已提交
1025 1026 1027 1028 1029
          VLOG(3)
              << "The necessary attributes of the squeeze2 operator axes is "
                 "missing.";
          return false;
        }
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

    if (op_type == "unsqueeze2") {
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1043
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1044
      }
1045
      if (axes.empty()) {
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

1059
    if (op_type == "batch_norm") {
C
ccrrong 已提交
1060 1061
      const std::vector<std::string> bn_inputs = {
          "X", "Bias", "Mean", "Scale", "Variance"};
1062 1063 1064 1065 1066 1067 1068 1069 1070
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
1071 1072
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
1073
        if (!desc.Input("MomentumTensor").empty()) {
1074 1075 1076
          return false;
        }
      }
1077 1078 1079 1080 1081 1082
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1093 1094 1095 1096 1097 1098 1099 1100 1101
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
1102 1103
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
1104
        if (!desc.Input("AxisTensor").empty()) {
1105 1106 1107 1108
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
1109
        if (!desc.Input("SectionsTensorList").empty()) {
1110 1111 1112
          if (!with_dynamic_shape) {
            return false;
          }
1113 1114
        }
      }
1115 1116
      if (!desc.HasAttr("axis")) {
        return false;
1117
      }
R
Ruibiao Chen 已提交
1118
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
1119

1120
      if (!with_dynamic_shape && axis == 0) {
1121
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
1122
                   "TensorRT with static shape";
1123 1124 1125
        return false;
      }
      auto* block = desc.Block();
1126 1127 1128 1129 1130 1131
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1132 1133 1134 1135 1136 1137 1138
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
R
Ruibiao Chen 已提交
1139
        num = PADDLE_GET_CONST(int, desc.GetAttr("num"));
1140 1141 1142
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
R
Ruibiao Chen 已提交
1143
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
1144
      }
1145
      if (output_lengths.empty() && num == 0) {
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
1163
      if (output_lengths.empty()) {
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
1176 1177
        }
      }
1178 1179 1180 1181
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
1182
    }
1183

1184 1185 1186
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
1187
        if (!desc.Input("ScaleTensor").empty()) {
1188 1189 1190 1191
          return false;
        }
      }
      auto* block = desc.Block();
1192 1193 1194 1195 1196 1197
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1198 1199 1200
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1201
      auto dtype = x_var_desc->GetDataType();
W
wenbin 已提交
1202
      if (!with_dynamic_shape) {
M
ming1753 已提交
1203
        // At present, only support float32 or float16 or float64 into trt.
W
wenbin 已提交
1204
        if (!(dtype == framework::proto::VarType::FP32 ||
M
ming1753 已提交
1205
              dtype == framework::proto::VarType::FP64 ||
W
wenbin 已提交
1206 1207 1208 1209
              dtype == framework::proto::VarType::FP16)) {
          return false;
        }
      } else {
M
ming1753 已提交
1210 1211
        // At present, only support float32 or float16 or float64 or int32 or
        // int64 into trt.
W
wenbin 已提交
1212 1213
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16 ||
M
ming1753 已提交
1214
              dtype == framework::proto::VarType::FP64 ||
1215 1216
              dtype == framework::proto::VarType::INT32 ||
              dtype == framework::proto::VarType::INT64)) {
W
wenbin 已提交
1217 1218
          return false;
        }
1219
      }
1220
    }
1221

F
feng_shuai 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3) << "roll converter does not support trt versions below 7.0";
      return false;
#endif
      if (!with_dynamic_shape) {
        return false;
      }
    }

    if (op_type == "strided_slice") {
1233 1234 1235 1236 1237
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3)
          << "strided_slice converter does not support trt versions below 7.0";
      return false;
#endif
F
feng_shuai 已提交
1238 1239 1240 1241 1242 1243 1244 1245
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends") || !desc.HasAttr("strides")) {
        VLOG(3)
            << "The necessary attributes of the strided_slice operator miss ";
        return false;
      }
    }

Z
zhoutianzi666 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    if (op_type == "rnn") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "LSTM") return false;
      }
      if (desc.HasAttr("dropout_prob")) {
        float dropout_prob =
            PADDLE_GET_CONST(float, desc.GetAttr("dropout_prob"));
        if (dropout_prob > 1e-5) return false;
      }
      // not support following four inputs for rnn in paddle-trt
      auto rnn_inputs = desc.Inputs();
      if (rnn_inputs.find("SequenceLength") != rnn_inputs.end()) {
1262
        if (!desc.Input("SequenceLength").empty()) {
Z
zhoutianzi666 已提交
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
          return false;
        }
      }
    }

    if (op_type == "fill_constant_batch_size_like") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("input_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("output_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("Input")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 into trt.
      if (dtype != 5) {
        return false;
      }
    }

1297 1298 1299 1300 1301
    if (op_type == "fill_any_like") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the fill_any_like does not support static shape yet";
        return false;
      }
1302 1303 1304
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : -1;
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto input_type = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(8400)
      if (dtype == 0 ||
          (dtype == -1 && input_type == framework::proto::VarType::BOOL)) {
        VLOG(3) << "the fill_any_like supports input of BOOL by trt8.4 above";
        return true;
      }
#endif
M
ming1753 已提交
1315 1316 1317 1318
      if (dtype != -1 && dtype != 2 && dtype != 3 && dtype != 5 && dtype != 6) {
        VLOG(3)
            << "the fill_any_like only supports int32/int64/float32/float64 by"
               "trt8.4 below";
1319 1320 1321 1322
        return false;
      }
      if (dtype == -1) {
        if (input_type != framework::proto::VarType::INT32 &&
M
ming1753 已提交
1323 1324 1325 1326 1327
            input_type != framework::proto::VarType::INT64 &&
            input_type != framework::proto::VarType::FP32 &&
            input_type != framework::proto::VarType::FP64) {
          VLOG(3) << "the fill_any_like only supports "
                     "int32/int64/float32/float64 by"
1328
                     "trt8.4 below";
1329 1330 1331 1332 1333
          return false;
        }
      }
    }

1334
    if (op_type == "slice") {
1335 1336
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
R
Ruibiao Chen 已提交
1337
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
1338 1339 1340
        if (!with_dynamic_shape) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), 0)) {
1341 1342
            return false;
          }
1343 1344
        }
      }
1345 1346
      std::vector<int> axes;
      if (!desc.HasAttr("axes")) {
1347
        VLOG(3) << "The necessary attributes of the slice operator axes "
1348
                   " are missing.";
1349 1350
        return false;
      } else {
1351
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
1362 1363
      // not support following four inputs for slice in paddle-trt
      auto slice_inputs = desc.Inputs();  // its size == 5
1364
      if (slice_inputs.find("StartsTensor") != slice_inputs.end() &&
1365
          !desc.Input("StartsTensor").empty()) {
1366 1367 1368 1369 1370 1371
        VLOG(3) << "The Slice has StartsTensor input.";
      } else {
        if (!desc.HasAttr("starts")) {
          VLOG(3) << "The necessary attributes of the slice operator starts or "
                     "StartsTensor"
                     " are missing.";
1372
          return false;
1373 1374 1375 1376 1377 1378 1379 1380
        } else {
          std::vector<int> starts =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
          if (axes.size() != starts.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and starts are not equal.";
            return false;
          }
1381 1382
        }
      }
1383
      if (slice_inputs.find("EndsTensor") != slice_inputs.end() &&
1384
          !desc.Input("EndsTensor").empty()) {
1385 1386 1387 1388 1389 1390
        VLOG(3) << "The Slice has EndsTensor input.";
      } else {
        if (!desc.HasAttr("ends")) {
          VLOG(3) << "The necessary attributes of the slice operator ends or "
                     "EndsTensor"
                     " are missing.";
1391
          return false;
1392 1393 1394 1395 1396 1397 1398 1399
        } else {
          std::vector<int> ends =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
          if (axes.size() != ends.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and ends are not equal.";
            return false;
          }
1400 1401 1402
        }
      }
      if (slice_inputs.find("StartsTensorList") != slice_inputs.end()) {
周周周 已提交
1403
        VLOG(3) << "The Slice has StartsTensorList input.";
1404 1405
      }
      if (slice_inputs.find("EndsTensorList") != slice_inputs.end()) {
周周周 已提交
1406
        VLOG(3) << "The Slice has EndsTensorList input.";
1407
      }
1408 1409
    }

1410 1411
    if (op_type == "less_than" || op_type == "greater_than" ||
        op_type == "logical_or" || op_type == "logical_xor" ||
1412 1413
        op_type == "logical_and" || op_type == "less_equal" ||
        op_type == "greater_equal") {
1414
#if IS_TRT_VERSION_GE(8400)
1415
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
1416
      if (!with_dynamic_shape) {
1417
        VLOG(3) << "Ops(" << op_type << ") do not support static shape yet.";
1418 1419
        return false;
      }
1420 1421 1422 1423 1424
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      auto x_dtype = x_var_desc->GetDataType();
      auto y_dtype = y_var_desc->GetDataType();
1425 1426 1427 1428
      if (op_type == "logical_or" || op_type == "logical_xor" ||
          op_type == "logical_and") {
        if (x_dtype != framework::proto::VarType::BOOL ||
            y_dtype != framework::proto::VarType::BOOL) {
1429 1430 1431 1432 1433
          VLOG(3) << "the op (" << op_type << ") only support input of BOOL.";
          return false;
        }
      }
      if (op_type == "less_than" || op_type == "greater_than" ||
1434
          op_type == "less_equal" || op_type == "greater_equal") {
1435 1436 1437 1438 1439
        if (x_dtype == framework::proto::VarType::BOOL ||
            y_dtype == framework::proto::VarType::BOOL) {
          VLOG(3)
              << "ElementWiseOperation::kLESS/ElementWiseOperation::kGREATER "
                 "do not support boolean datatype.";
1440 1441 1442 1443 1444 1445 1446 1447
          return false;
        }
      }
#else
      VLOG(3) << "these are not supported when TensorRT < 8.4";
      return false;
#endif
    }
1448
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
S
shentanyue 已提交
1449
        op_type == "elementwise_sub" || op_type == "elementwise_div" ||
1450
        op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1451 1452
        op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
        op_type == "elementwise_mod") {
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
1471
      auto* block = desc.Block();
1472 1473 1474 1475 1476 1477
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1478 1479 1480 1481
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
1482

1483 1484 1485 1486
      // These operations do not support boolean datatype.
      if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
          op_type == "elementwise_sub" || op_type == "elementwise_div" ||
          op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1487 1488
          op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
          op_type == "elementwise_mod") {
1489 1490
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_BOOL) {
1491 1492 1493 1494
          VLOG(3)
              << "These operations "
                 "(elementwise_add/mul/sub/div/pow/min/max/floordiv/mod) do "
                 "not support boolean datatype.";
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
          return false;
        }
      }
      // These operations input do not support int32 datatype.
      if (op_type == "elementwise_pow") {
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "These operations (elementwise_pow) do not support int32 "
                     "datatype.";
          return false;
        }
      }

1508 1509 1510 1511 1512 1513
      // The case when x_shape.size() == 1 is dealt with in common case
      if (!with_dynamic_shape && (!y_var_desc->Persistable()) &&
          y_shape.size() == 1) {
        VLOG(3) << "Static shape in trt not support y is  a 1D intermediate "
                   "tensor in "
                   "elementwise op.";
1514 1515
        return false;
      }
1516

1517 1518 1519 1520
      if (x_var_desc->Persistable() && !with_dynamic_shape) {
        VLOG(3)
            << "Input X is a parameter which is not supported for "
               "elementwise in tensorrt's static shape, swap x and y will work";
S
shentanyue 已提交
1521
        return false;
1522
      }
1523 1524
    }

W
Wilber 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533
    if (op_type == "pow") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
1534

W
Wilber 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543
      // the same as `elementwise_pow`.
      if (x_var_desc->GetDataType() ==
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "These operations (pow) do not support int32 "
                   "datatype.";
        return false;
      }
    }

1544 1545 1546 1547 1548 1549 1550 1551 1552
    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      int rank = x_shape.size();
      int axis = desc.HasAttr("axis")
                     ? PADDLE_GET_CONST(int, desc.GetAttr("axis"))
                     : -1;
      if (axis > rank || axis < -(rank + 1)) {
        return false;
      }
1571
    }
1572

1573 1574 1575
    if (op_type == "shape" && !with_dynamic_shape) {
      return false;
    }
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        return false;
      }
    }
W
Wang Bojun 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    if (op_type == "fused_bias_dropout_residual_layer_norm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_bias_dropout_residual_layer_norm should run on "
                   "dynamic shape mode.";
        return false;
      }
      float dropout_rate =
          PADDLE_GET_CONST(float, desc.GetAttr("dropout_rate"));
      if (dropout_rate != 0.0f) {
        VLOG(4) << "preln_residual_bias trt layer can not work with "
                   "fused_bias_dropout_residual_layer_norm op in which the "
                   "dropout_rate != 0, stop convert";
        return false;
      }
    }
1602 1603
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
1604 1605 1606
        VLOG(3) << "fused_preln_embedding_eltwise_layernorm should run on "
                   "dynamic "
                   "shape mode.";
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1631

1632
#if IS_TRT_VERSION_LT(7000)
1633
      if (desc.HasAttr("approximate")) {
1634
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
R
Ruibiao Chen 已提交
1635
        if (PADDLE_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
1636
      }
1637
#endif
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1663 1664 1665 1666
    if (op_type == "fill_constant") {
      auto fill_constant_inputs = desc.Inputs();
      if (fill_constant_inputs.find("ValueTensor") !=
          fill_constant_inputs.end()) {
1667
        if (!desc.Input("ValueTensor").empty()) return false;
1668 1669 1670
      }
      if (fill_constant_inputs.find("ShapeTensor") !=
          fill_constant_inputs.end()) {
1671
        if (!desc.Input("ShapeTensor").empty()) return false;
1672 1673 1674
      }
      if (fill_constant_inputs.find("ShapeTensorList") !=
          fill_constant_inputs.end()) {
1675
        if (!desc.Input("ShapeTensorList").empty()) return false;
1676
      }
1677 1678 1679
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 5;
1680 1681 1682 1683 1684 1685
      // only support int32, int64, float32
      if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
        return false;
      }
    }

已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
    if (op_type == "instance_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1723 1724
    }

1725
    if (op_type == "pad") {
1726
      if (!desc.HasAttr("pad_value") || !desc.HasAttr("paddings")) return false;
R
Ruibiao Chen 已提交
1727 1728
      const float pad_value =
          PADDLE_GET_CONST(float, desc.GetAttr("pad_value"));
1729 1730 1731 1732
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1733 1734
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1735 1736 1737 1738 1739 1740
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1741 1742 1743 1744 1745 1746 1747 1748
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
1749
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1762 1763
    }

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
    if (op_type == "pad3d") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "pad3d is not supported when TensorRT < 8.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "pad3d is not supported static shape";
        return false;
      }
      if (!desc.HasAttr("paddings") && !desc.HasInput("Paddings")) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "constant" && mode != "reflect" && mode != "replicate") {
          VLOG(3) << "The pad3d layer of TRT only support "
                     "constant/reflect/replicate mode.";
          return false;
        }
      }
      if (desc.HasAttr("data_format")) {
        std::string data_format =
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
        if (data_format != "NCDHW") {
          VLOG(3) << "The pad3d layer of TRT only support NCDHW data format.";
          return false;
        }
      }
    }
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1807 1808

      auto* block = desc.Block();
1809 1810 1811 1812 1813 1814
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1815 1816
      auto* alpha_var = block->FindVar(desc.Input("Alpha")[0]);
      if (!alpha_var) {
1817 1818 1819
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }
1820
      auto alpha_shape = alpha_var->GetShape();
1821
      if (!with_dynamic_shape && alpha_shape.empty()) {
1822 1823 1824
        VLOG(3) << op_type
                << " op does not support alpha's dim is 0 in tensorrt "
                   "static shape mode.";
1825 1826
        return false;
      }
1827 1828
    }

W
wangxinxin08 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
    }

1844 1845 1846 1847 1848 1849 1850
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
C
ccrrong 已提交
1851 1852 1853 1854
      std::vector<std::string> attrs{"pooled_height",
                                     "pooled_width",
                                     "spatial_scale",
                                     "sampling_ratio",
F
fengkuangxiaxia 已提交
1855
                                     "aligned"};
1856
      for (auto const& attr : attrs) {
1857 1858 1859 1860
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
R
Ruibiao Chen 已提交
1861
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_height"));
1862 1863 1864
      if (pooled_height <= 0) return false;

      const auto pooled_width =
R
Ruibiao Chen 已提交
1865
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_width"));
1866 1867 1868
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
R
Ruibiao Chen 已提交
1869
          PADDLE_GET_CONST(float, desc.GetAttr("spatial_scale"));
1870 1871 1872 1873
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
1874
        if (!desc.Input("RoisNum").empty()) {
1875 1876 1877
          return false;
        }
      }
1878 1879 1880
    }

    if (op_type == "shuffle_channel") {
1881
#if !IS_TRT_VERSION_GE(8000)
1882 1883
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
1884 1885
                   "the shuffle_channel op does not support dynamic shape "
                   "trt versions below 8.0 yet";
1886 1887
        return false;
      }
1888
#endif
1889 1890
    }

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
    if (op_type == "where") {
#if !IS_TRT_VERSION_GE(8400)
      VLOG(3) << "where is not supported when TensorRT < 8.4";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the where op does not support static shape yet";
        return false;
      }
    }

1902 1903 1904 1905 1906
    if (op_type == "bitwise_not") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
1907
      if (dtype == framework::proto::VarType::INT8 ||
1908
          dtype == framework::proto::VarType::UINT8) {
1909
        VLOG(3) << "INT8 / UINT8 type convert to trt is not supported";
1910 1911
        return false;
      }
1912 1913 1914 1915 1916 1917
      if (dtype == framework::proto::VarType::BOOL) {
#if !IS_TRT_VERSION_GE(8400)
        VLOG(3) << "BOOL type support requires TensorRT 8.4";
        return false;
#elif !IS_TRT_VERSION_GE(8600)
        const auto x_shape = x_var_desc->GetShape();
1918
        if (x_shape.empty()) {
1919 1920 1921 1922
          VLOG(3)
              << "BOOL type does not support 0 dim input when TensorRT < 8.6.";
          return false;
        }
1923
#endif
1924
      }
1925 1926
    }

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
    if (op_type == "one_hot" || op_type == "one_hot_v2") {
#if IS_TRT_VERSION_LT(8510)
      VLOG(3) << "one_hot/one_hot_v2 is not supported when TensorRT < 8.5.1";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3)
            << "the one_hot/one_hot_v2 op does not support static shape yet";
        return false;
      }
      if (desc.HasAttr("allow_out_of_range")) {
        VLOG(3)
            << "allow_out_of_range one_hot/one_hot_v2 op is not supported now.";
        if (PADDLE_GET_CONST(bool, desc.GetAttr("allow_out_of_range")))
          return false;
      }
      if (desc.HasAttr("dtype")) {
        const int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
        if (dtype != 2 && dtype != 3 && dtype != 5) {
          VLOG(3) << "one_hot/one_hot_v2 op only support int32, int64, float.";
          return false;
        }
      }
      auto one_hot_inputs = desc.Inputs();
      if (one_hot_inputs.find("depth_tensor") != one_hot_inputs.end()) {
1952
        if (!desc.Input("depth_tensor").empty()) {
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
          return true;
        }
      }

      if (desc.HasAttr("depth")) {
        const int depth = PADDLE_GET_CONST(int, desc.GetAttr("depth"));
        if (depth <= 0) {
          VLOG(3) << "depth only support positive in one_hot/one_hot_v2 op.";
          return false;
        }
      }
    }

1966 1967 1968 1969 1970 1971 1972
    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1984 1985 1986 1987 1988
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
R
Ruibiao Chen 已提交
2005
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
F
feng_shuai 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
2015
                              input_shape[1] == biasqk_shape[3];
F
feng_shuai 已提交
2016 2017
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
2018 2019 2020 2021
        is_broadcastable =
            is_broadcastable || (biasqk_shape[0] == 1 && biasqk_shape[1] == 1 &&
                                 input_shape[1] == biasqk_shape[2] &&
                                 input_shape[1] == biasqk_shape[3]);
F
feng_shuai 已提交
2022 2023
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
2024 2025 2026 2027 2028 2029 2030
                  << ", 1, 1, " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << ", " << head_number << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << "/1, " << 1 << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "but got [" << biasqk_shape[0] << ", " << biasqk_shape[1]
                  << ", " << biasqk_shape[2] << ", " << biasqk_shape[3] << "].";
F
feng_shuai 已提交
2031 2032 2033
          return false;
        }
      } else {
2034 2035 2036
#if (IS_TRT_VERSION_GE(8000) && IS_TRT_VERSION_LT(8100)) || \
    (IS_TRT_VERSION_LT(7200))
        VLOG(3) << "There are some bugs with trt 8.0";
2037
        return false;
F
feng_shuai 已提交
2038
#endif
2039
      }
2040 2041
    }

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
    if (op_type == "multihead_matmul_roformer") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul_roformer does not support static "
                   "shape yet";
        return false;
      }

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
                              input_shape[1] == biasqk_shape[3];
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                  << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                  << ", " << head_number << ", " << input_shape[1] << ", "
                  << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                  << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                  << biasqk_shape[3] << "].";
          return false;
        }
      } else {
#if !IS_TRT_VERSION_GE(8000)
        VLOG(3) << "The version of TRT must be greater than 8000";
        return false;
#endif
      }
    }

W
Wangzheee 已提交
2094 2095 2096
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
2097
      }
2098 2099 2100 2101
      if (with_dynamic_shape) {
        return true;
      }
      // Static shape does not support the input tensors: Shape and ShapeTensor
2102
      auto reshape_inputs = desc.Inputs();
2103
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
2104
        if (!desc.Input("Shape").empty()) {
2105 2106 2107 2108
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
2109
        if (!desc.Input("ShapeTensor").empty()) {
2110 2111
          return false;
        }
W
Wangzheee 已提交
2112
      }
W
Wilber 已提交
2113
      std::vector<int> shape =
R
Ruibiao Chen 已提交
2114
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
W
Wilber 已提交
2115
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
X
xiaoxiaohehe001 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
      if (!with_dynamic_shape) {
        if (shape.size() == 1) {
          return false;
        }
        if (shape[0] == 0) {
          return true;
        } else {
          auto* block = desc.Block();
          auto x_var_name = desc.Input("X")[0];
          auto* x_var_desc = block->FindVar(x_var_name);
          const auto x_shape = x_var_desc->GetShape();
C
ccrrong 已提交
2127 2128 2129 2130
          int input_num = std::accumulate(
              x_shape.begin() + 1, x_shape.end(), 1, std::multiplies<int>());
          int shape_num = std::accumulate(
              shape.begin() + 1, shape.end(), 1, std::multiplies<int>());
X
xiaoxiaohehe001 已提交
2131 2132 2133 2134
          if (input_num == shape_num) {
            return true;
          }
        }
2135
        return false;
X
xiaoxiaohehe001 已提交
2136
      }
W
Wangzheee 已提交
2137
    }
2138

2139 2140 2141 2142
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
2143
        if (!desc.Input("Min").empty()) {
2144 2145 2146 2147
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
2148
        if (!desc.Input("Max").empty()) {
2149 2150 2151 2152 2153
          return false;
        }
      }

      auto* block = desc.Block();
2154 2155 2156 2157 2158 2159
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2160 2161 2162
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
2163
      if (!with_dynamic_shape && (x_shape.size() == 1 || x_shape.empty())) {
2164 2165 2166 2167 2168
        VLOG(3) << op_type
                << " op does not support input's dim is 1 or 0 in tensorrt "
                   "static shape mode.";
        return false;
      }
2169 2170
    }

2171
    if (op_type == "reduce_sum" || op_type == "reduce_mean" ||
2172
        op_type == "reduce_max" || op_type == "reduce_min" ||
2173 2174
        op_type == "reduce_prod" || op_type == "reduce_any" ||
        op_type == "reduce_all") {
2175 2176 2177 2178 2179 2180 2181
      if (!desc.HasAttr("dim", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('dim') is "
                   "Variable type in "
                << desc.Type();
        return false;
      }

2182 2183
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
2184 2185
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
2186
                   "reduce_all)";
2187 2188 2189 2190 2191 2192 2193 2194
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2195 2196
        return false;
      }
W
wenbin 已提交
2197 2198

      // The batch size dimension cannot be reduced if it's not dynamic shape.
2199
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
2200
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
2201
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
2202
        std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
2203
            PADDLE_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
2204
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
2205
        for (auto x : dim) {
2206
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
2207
        }
2208

2209
      } else {
R
Ruibiao Chen 已提交
2210 2211
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !PADDLE_GET_CONST(bool, desc.GetAttr("keep_dim")))
2212 2213
          return false;
      }
2214 2215

      auto dtype = x_var_desc->GetDataType();
2216 2217 2218 2219 2220 2221 2222 2223 2224
      if (op_type == "reduce_all" || op_type == "reduce_any") {
        if (dtype != framework::proto::VarType::BOOL) {
          VLOG(3)
              << "reduce_all and reduce_any op input data type must be bool";
          return false;
        }
      } else {
#if IS_TRT_VERSION_GE(7000)
        if (dtype != framework::proto::VarType::INT32 &&
M
ming1753 已提交
2225 2226 2227 2228 2229 2230
            dtype != framework::proto::VarType::INT64 &&
            dtype != framework::proto::VarType::FP32 &&
            dtype != framework::proto::VarType::FP64) {
          VLOG(3) << "reduce op input data type must be int32 or int64 or "
                     "float32 or "
                     "float64";
2231 2232 2233
          return false;
        }
#else
M
ming1753 已提交
2234 2235 2236 2237
        if (dtype != framework::proto::VarType::FP32 &&
            dtype != framework::proto::VarType::FP64) {
          VLOG(3) << "reduce op input data type must be float32 or float64 "
                     "using TensorRT "
2238 2239 2240
                     "< 7.0";
          return false;
        }
2241
#endif
2242
      }
2243
    }
W
wenbin 已提交
2244 2245 2246
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
2247
      auto tile_inputs = desc.Inputs();
2248 2249
      if (!with_dynamic_shape) {
        if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
2250
          if (!desc.Input("repeat_times_tensor").empty()) {
2251 2252
            return false;
          }
2253
        }
2254
        if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
2255
          if (!desc.Input("RepeatTimes").empty()) {
2256 2257
            return false;
          }
2258
        }
2259
        if (!desc.HasAttr("repeat_times")) return false;
W
wenbin 已提交
2260 2261 2262
      }
    }
#endif
2263

2264 2265 2266 2267 2268
    // conv3d_transpose
    if (op_type == "conv3d_transpose") {
      // trt doen't support output_padding when < 8406
      // output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
2269 2270
      if (desc.HasAttr("output_padding")) {
        const std::vector<int> output_padding =
R
Ruibiao Chen 已提交
2271
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("output_padding"));
2272 2273 2274 2275 2276 2277
        if (output_padding.size() > 0) {
          int max_padding =
              *std::max_element(output_padding.begin(), output_padding.end());
          if (max_padding > 0) return false;
        }
      }
2278
#endif
2279 2280
    }

W
wenbin 已提交
2281 2282 2283
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
R
Ruibiao Chen 已提交
2284
            PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
2299

W
wenbin 已提交
2300
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
2301
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wenbin 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
2323
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
W
wenbin 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

C
ccrrong 已提交
2341
    if (op_type == "cast") {
Z
zhoutianzi666 已提交
2342 2343 2344 2345
// trt 6015 result in Windows ppyolo_mbv3 TRT fp32 diff
#if !IS_TRT_VERSION_GE(7000)
      return false;
#endif
C
ccrrong 已提交
2346 2347 2348 2349 2350 2351
      if (!(desc.HasAttr("in_dtype") && desc.HasAttr("out_dtype"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (in_dtype or "
                   "out_dtype)";
        return false;
      }
R
Ruibiao Chen 已提交
2352 2353
      int in_dtype = PADDLE_GET_CONST(int, desc.GetAttr("in_dtype"));
      int out_dtype = PADDLE_GET_CONST(int, desc.GetAttr("out_dtype"));
2354

2355
      if (in_dtype == 0 || out_dtype == 0) {
2356
#if IS_TRT_VERSION_GE(8400)
2357 2358 2359 2360 2361 2362
        if (with_dynamic_shape) {
          VLOG(3) << "the cast op supports inputs and outputs of BOOL by "
                     "trt8.4 above ";
          return true;
        }
#endif
C
ccrrong 已提交
2363 2364
        return false;
      }
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
2375
      if (!with_dynamic_shape && (x_shape.size() == 1 || x_shape.empty())) {
2376 2377 2378 2379 2380
        VLOG(3) << op_type
                << " op does not support input's dim is 1 or 0 in tensorrt "
                   "static shape mode.";
        return false;
      }
C
ccrrong 已提交
2381 2382
    }

X
xjmxyt 已提交
2383 2384 2385 2386
    if (op_type == "set_value") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
2387 2388
      auto inputs = desc.Inputs();
      if (inputs.find("StartsTensorList") != inputs.end()) {
2389
        if (!desc.Input("StartsTensorList").empty()) {
2390 2391 2392 2393
          return false;
        }
      }
      if (inputs.find("EndsTensorList") != inputs.end()) {
2394
        if (!desc.Input("EndsTensorList").empty()) {
2395 2396 2397 2398
          return false;
        }
      }
      if (inputs.find("StepsTensorList") != inputs.end()) {
2399
        if (!desc.Input("StepsTensorList").empty()) {
2400 2401 2402
          return false;
        }
      }
X
xjmxyt 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411
      if (!(desc.HasAttr("axes") && desc.HasAttr("starts") &&
            desc.HasAttr("steps"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (axes or "
                   "starts or steps)";
        return false;
      }
    }

2412 2413
    if (op_type == "top_k_v2" || op_type == "top_k") {
      if (desc.HasAttr("axis")) {
R
Ruibiao Chen 已提交
2414
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
2415
        if (!with_dynamic_shape && axis == 0) {
2416
          VLOG(3) << "top_k_v2 does not support axis == 0 in "
2417
                     "tensorrt static shape.";
2418 2419 2420 2421
          return false;
        }
      }
      if (desc.HasAttr("sorted")) {
R
Ruibiao Chen 已提交
2422
        bool sorted = PADDLE_GET_CONST(bool, desc.GetAttr("sorted"));
2423
        if (!sorted) {
2424 2425
          VLOG(3) << op_type
                  << " does not support results not sorted in "
2426 2427 2428 2429 2430 2431
                     "tensorrt";
          return false;
        }
      }
    }

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
#if IS_TRT_VERSION_GE(8000)
    if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the sparse_fc and sparse_multihead_matmul does not support "
                   "static shape yet";
        return false;
      }
    }
#endif

S
Sanbu 已提交
2442
    if (op_type == "equal" || op_type == "not_equal") {
C
ccrrong 已提交
2443
#if !IS_TRT_VERSION_GE(8000)
2444
      VLOG(3) << "equal is not supported when TensorRT < 8.0";
C
ccrrong 已提交
2445 2446
      return false;
#else
2447 2448 2449 2450 2451 2452
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
      if (!with_dynamic_shape) {
        VLOG(3) << "the equal does not support "
                   "static shape yet";
        return false;
      }
2453 2454 2455
      if (!desc.HasAttr("axis")) {
        return false;
      }
R
Ruibiao Chen 已提交
2456
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
C
ccrrong 已提交
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
      if (axis == 0) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
#endif
    }

W
wenbin 已提交
2470 2471 2472 2473 2474 2475 2476
    if (op_type == "layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485

    if (op_type == "preln_layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }

W
Wang Bojun 已提交
2486 2487 2488 2489 2490 2491 2492
    if (op_type == "merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2493

W
Wang Bojun 已提交
2494 2495 2496 2497 2498 2499 2500
    if (op_type == "reverse_roll") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The reverse roll fused op does not support static shape "
                   "mode yet.";
        return false;
      }
    }
W
wenbin 已提交
2501 2502 2503 2504 2505 2506 2507 2508
    if (op_type == "skip_merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }

W
wenbin 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
    if (op_type == "skip_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The skip_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }

    if (op_type == "preln_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The preln_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }
2524 2525 2526 2527 2528 2529 2530
    if (op_type == "trans_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The trans_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
2531 2532 2533 2534 2535 2536 2537
    if (op_type == "fuse_eleadd_transpose") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The fuse_eleadd_transpose op does not support "
                   "static shape yet";
        return false;
      }
    }
2538
    if (op_type == "lookup_table" || op_type == "lookup_table_v2") {
2539 2540 2541 2542 2543 2544 2545
      if (!with_dynamic_shape) {
        VLOG(3) << "the lookup_table does not support "
                   "static shape yet";
        return false;
      }
    }

2546
    if (op_type == "expand_as_v2" || op_type == "expand_v2") {
2547
      if (!with_dynamic_shape) {
2548 2549 2550
        VLOG(3) << "the " << op_type
                << "does not support "
                   "static shape yet";
2551 2552
        return false;
      }
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574

      auto inputs = desc.Inputs();
      if (op_type == "expand_as_v2") {
        if (!desc.HasAttr("target_shape") && inputs.find("Y") == inputs.end()) {
          VLOG(3)
              << "expand_as_v2 op need have input(Y) or attr(target_shape). ";
          return false;
        }
      } else if (op_type == "expand_v2") {
        if (!desc.HasAttr("shape") && inputs.find("Shape") == inputs.end() &&
            inputs.find("expand_shapes_tensor") == inputs.end()) {
          VLOG(3) << "expand_v2 op need have input(Shape) or "
                     "input(expand_shapes_tensor) or attr(shape) . ";
          return false;
        }
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2575 2576
        return false;
      }
2577 2578 2579 2580 2581 2582 2583 2584 2585

#if IS_TRT_VERSION_LT(8000)
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 0) {
        return false;  // not supported 0 dim.
      }
#endif
2586 2587
    }

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
    if (op_type == "grid_sampler") {
#if !IS_TRT_VERSION_GE(8510)
      VLOG(3) << "grid_sampler is not supported when TensorRT < 8.5.1";
      return false;
#else
      if (!with_dynamic_shape) {
        VLOG(3) << "the grid_sampler does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("mode") || !desc.HasAttr("padding_mode") ||
          !desc.HasAttr("align_corners")) {
        VLOG(3) << "grid_sampler need attributes : mode, padding_mode, "
                   "align_corners";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      auto grid_name = desc.Input("Grid")[0];
      auto* grid_desc = block->FindVar(grid_name);
      const auto grid_shape = grid_desc->GetShape();

      if (input_shape.size() != 4 || grid_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT GridSample layer.";
        return false;
      }

#endif
    }

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
    if (op_type == "cumsum") {
#if !IS_TRT_VERSION_GE(7220)
      VLOG(3) << "cumsum is not supported when TensorRT < 7.2.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the cumsum does not support "
                   "static shape yet";
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
    }

C
chen 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
    if (op_type == "unbind") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the unbind does not support "
                   "static shape yet";
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
    }

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
    if (op_type == "temporal_shift") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "temporal_shift is not supported when TensorRT < 8.2";
      return false;
#endif

      if (!with_dynamic_shape) {
        VLOG(3) << "the temporal shift does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("shift_ratio") || !desc.HasAttr("seg_num")) {
        VLOG(3) << "temporal shift need attributes : shift_ratio and seg_num";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT TemporalShift layer.";
        return false;
      }
    }

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
    if (op_type == "einsum") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "einsum is not supported when TensorRT < 8.2";
      return false;
#else
      if (!with_dynamic_shape) {
        VLOG(3) << "the einsum does not support "
                   "static shape yet";
        return false;
      }
      auto operand_inputs = desc.Input("Operands");
      if (operand_inputs.size() > 2) {
        VLOG(3) << "TensorRT currently supports up to 2 input tensors"
                << "to einsum but operation had" << operand_inputs.size()
                << "input tensors !";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto equation = PADDLE_GET_CONST(std::string, desc.GetAttr("equation"));
      if (equation.find("...") != std::string::npos) {
        VLOG(3) << "TensorRT currently does not support ellipses !";
        return false;
      }
#endif
    }

W
weishengying 已提交
2733 2734 2735 2736 2737
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
2738
  }
W
wenbin 已提交
2739

W
weishengying 已提交
2740 2741 2742
 private:
  // use this set for no calib int8.
  std::unordered_set<std::string> int8_teller_set{
2743
      "matrix_multiply",
2744
      "bmm",
2745
      "range",
W
weishengying 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2769
      "acosh",
W
weishengying 已提交
2770 2771 2772
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2773
      "rsqrt",
2774
      "sign",
G
gem5 已提交
2775
      "reciprocal",
2776
      "logical_not",
W
weishengying 已提交
2777
      "erf",
2778
      "square",
W
weishengying 已提交
2779 2780 2781 2782 2783 2784 2785
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2786
      "pad3d",
W
weishengying 已提交
2787 2788 2789 2790 2791 2792
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2793 2794
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2795
      "elementwise_floordiv",
2796
      "elementwise_mod",
W
weishengying 已提交
2797
      "equal",
S
Sanbu 已提交
2798
      "not_equal",
2799 2800 2801 2802 2803 2804
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2805
      "greater_equal",
W
weishengying 已提交
2806
      "dropout",
2807
      "fill_any_like",
W
weishengying 已提交
2808 2809 2810 2811 2812
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2813
      "where",
2814
      "bitwise_not",
2815 2816
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2817 2818
      "swish",
      "silu",
2819
      "celu",
W
weishengying 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
X
xiaoxiaohehe001 已提交
2834
      "group_norm",
W
weishengying 已提交
2835 2836 2837
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2838
      "arg_min",
W
weishengying 已提交
2839 2840 2841 2842
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2843
      "reduce_max",
2844
      "reduce_min",
W
weishengying 已提交
2845
      "reduce_mean",
2846
      "reduce_sum",
2847 2848 2849
      "reduce_prod",
      "reduce_any",
      "reduce_all",
W
weishengying 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
      "bilinear_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2862
      "multihead_matmul_roformer",
W
weishengying 已提交
2863 2864 2865 2866
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
W
Wang Bojun 已提交
2867
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "preln_skip_layernorm",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
2883
      "layernorm_shift_partition",
W
Wang Bojun 已提交
2884
      "reverse_roll",
2885
      "take_along_axis",
2886 2887
      "tanh_shrink",
      "logsigmoid",
W
wenbin 已提交
2888
      "preln_layernorm_shift_partition",
2889
      "lookup_table",
2890
      "lookup_table_v2",
2891
      "trans_layernorm",
W
wenbin 已提交
2892 2893
      "merge_layernorm",
      "skip_merge_layernorm",
W
wenbin 已提交
2894
      "expand_v2",
2895
      "expand_as_v2",
2896
      "fuse_eleadd_transpose",
W
wenbin 已提交
2897
      "skip_groupnorm_act",
2898
      "preln_groupnorm_act",
2899
      "temporal_shift",
2900
      "grid_sampler",
M
ming1753 已提交
2901
      "cumsum",
C
chen 已提交
2902
      "unbind",
M
ming1753 已提交
2903
      "assign"};
W
wenbin 已提交
2904

W
weishengying 已提交
2905
  std::unordered_set<std::string> teller_set{
2906
      "matrix_multiply",
2907
      "bmm",
2908
      "range",
W
weishengying 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2932
      "acosh",
W
weishengying 已提交
2933 2934 2935
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2936
      "rsqrt",
2937
      "sign",
G
gem5 已提交
2938
      "reciprocal",
2939
      "logical_not",
W
weishengying 已提交
2940
      "erf",
2941
      "square",
W
weishengying 已提交
2942 2943 2944 2945 2946 2947 2948
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2949
      "pad3d",
W
weishengying 已提交
2950 2951 2952 2953 2954 2955
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
W
Wilber 已提交
2956
      "pow",
2957 2958
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2959
      "elementwise_floordiv",
2960
      "elementwise_mod",
W
weishengying 已提交
2961
      "equal",
S
Sanbu 已提交
2962
      "not_equal",
2963 2964 2965 2966 2967 2968
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2969
      "greater_equal",
W
weishengying 已提交
2970
      "dropout",
2971
      "fill_any_like",
W
weishengying 已提交
2972 2973 2974 2975 2976
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2977
      "where",
2978
      "bitwise_not",
2979 2980
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2981 2982
      "swish",
      "silu",
2983
      "celu",
W
weishengying 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "yolo_box_head",
      "arg_max",
3001
      "arg_min",
W
weishengying 已提交
3002 3003 3004 3005
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
3006
      "reduce_max",
3007
      "reduce_min",
W
weishengying 已提交
3008
      "reduce_mean",
3009
      "reduce_sum",
3010 3011 3012
      "reduce_prod",
      "reduce_any",
      "reduce_all",
W
weishengying 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
      "conv3d",
      "conv3d_transpose",
      "mish",
      "bilinear_interp_v2",
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
3025
      "multihead_matmul_roformer",
W
weishengying 已提交
3026 3027 3028 3029 3030
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_skip_layernorm",
W
Wang Bojun 已提交
3031
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
      "fused_token_prune",
3047
      "layernorm_shift_partition",
W
Wang Bojun 已提交
3048
      "reverse_roll",
3049
      "tanh_shrink",
3050
      "take_along_axis",
3051
      "logsigmoid",
W
wenbin 已提交
3052
      "preln_layernorm_shift_partition",
3053
      "trans_layernorm",
W
Wang Bojun 已提交
3054
      "merge_layernorm",
W
wenbin 已提交
3055
      "skip_merge_layernorm",
3056
      "lookup_table",
3057
      "lookup_table_v2",
W
wenbin 已提交
3058
      "expand_v2",
3059
      "expand_as_v2",
3060
      "fuse_eleadd_transpose",
W
wenbin 已提交
3061
      "skip_groupnorm_act",
3062
      "preln_groupnorm_act",
3063
      "temporal_shift",
3064
      "grid_sampler",
M
ming1753 已提交
3065
      "cumsum",
C
chen 已提交
3066
      "unbind",
M
ming1753 已提交
3067
      "assign"};
W
weishengying 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
};

struct GenericPluginTeller : public Teller {
 public:
  GenericPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // only consider dynamic_shape mode
    if (!with_dynamic_shape) {
      return false;
    }
3081 3082 3083 3084
    if (op_type == "yolo_box") {
      if (!desc.HasAttr("iou_aware") && !desc.HasAttr("iou_aware_factor"))
        return false;
    }
W
weishengying 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
    if (use_no_calib_int8) {
      return false;
    } else {
      framework::InitDefaultKernelSignatureMap();
      bool res = phi::OpUtilsMap::Instance().HasArgumentMappingFn(op_type) ||
                 phi::DefaultKernelSignatureMap::Instance().Has(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no KernelSignature";
        return false;
      }
      res = phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no CompatiblePhiKernel in phi.";
        return false;
      }
      auto& dynamic_infermeta_factory =
          tensorrt::DynamicMetaFnFactory::Instance();
      res = dynamic_infermeta_factory.Contains(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no DynamicMetaFn.";
        return false;
      }
      return true;
    }
  }
};

struct CustomPluginTeller : public Teller {
 public:
  CustomPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    std::string expect_plugin_name;

    if (with_dynamic_shape) {
      expect_plugin_name = op_type + "_paddle_trt_dynamic_plugin";
    } else {
      expect_plugin_name = op_type + "_paddle_trt_plugin";
    }

    int num = 0;
    auto creators = GetPluginRegistry()->getPluginCreatorList(&num);

    for (int i = 0; i < num; i++) {
      if (std::string(creators[i]->getPluginName()) == expect_plugin_name)
        return true;
    }
    return false;
  }
};

bool OpTeller::Tell(const framework::ir::Node* node,
                    bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
W
Wangzheee 已提交
3143 3144 3145 3146 3147 3148
  // do not support the op which is labeled the `skip_quant`
  if ((desc.HasAttr("namescope") &&
       PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
    return false;
W
weishengying 已提交
3149 3150
  auto& default_teller = GetDefaultTeller();
  if ((*default_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3151
    SetOpConverterType(node->Op(), OpConverterType::Default);
W
weishengying 已提交
3152 3153 3154 3155
    return true;
  }
  auto& generic_plugin_teller = GetGenericPluginTeller();
  if ((*generic_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3156
    SetOpConverterType(node->Op(), OpConverterType::GenericPluginCreater);
W
weishengying 已提交
3157 3158 3159 3160
    return true;
  }
  auto& custom_plugin_teller = GetCustomPluginTeller();
  if ((*custom_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3161
    SetOpConverterType(node->Op(), OpConverterType::CustomPluginCreater);
W
weishengying 已提交
3162 3163
    return true;
  }
3164 3165
  return false;
}
3166

W
weishengying 已提交
3167 3168 3169 3170 3171
OpTeller::OpTeller() {
  tellers_.emplace_back(new tensorrt::SimpleOpTypeSetTeller);
  tellers_.emplace_back(new tensorrt::GenericPluginTeller);
  tellers_.emplace_back(new tensorrt::CustomPluginTeller);
}
3172

3173 3174 3175
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle