Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1a1d596b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1a1d596b
编写于
6月 17, 2022
作者:
津
津
提交者:
GitHub
6月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[inference]add trt act layer convert (#43504)
* add activation layer
上级
ce704ee9
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
174 addition
and
62 deletion
+174
-62
paddle/fluid/inference/tensorrt/convert/activation_op.cc
paddle/fluid/inference/tensorrt/convert/activation_op.cc
+103
-7
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+22
-24
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_activation.py
...sts/unittests/ir/inference/test_trt_convert_activation.py
+49
-31
未找到文件。
paddle/fluid/inference/tensorrt/convert/activation_op.cc
浏览文件 @
1a1d596b
...
...
@@ -49,14 +49,30 @@ class ActivationOpConverter : public OpConverter {
<<
"convert a fluid Activation op to tensorrt activation layer whose "
"type is "
<<
op_type_
;
const
nvinfer1
::
ITensor
*
input_tensor
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
*
input_tensor
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
op_pair
=
ops
.
find
(
op_type_
);
nvinfer1
::
IActivationLayer
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Activation
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input_tensor
),
op_pair
->
second
);
nvinfer1
::
IActivationLayer
*
layer
=
nullptr
;
if
(
op_type_
==
"softplus"
)
{
const
float
beta
=
op_desc
.
HasAttr
(
"beta"
)
?
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"beta"
))
:
1.0
f
;
const
float
threshold
=
op_desc
.
HasAttr
(
"threshold"
)
?
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"threshold"
))
:
20.0
f
;
auto
*
layer_clip
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Activation
,
*
input_tensor
,
nvinfer1
::
ActivationType
::
kCLIP
);
layer_clip
->
setAlpha
(
-
3.40282e+038
);
layer_clip
->
setBeta
(
threshold
/
beta
);
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Activation
,
*
layer_clip
->
getOutput
(
0
),
op_pair
->
second
);
layer
->
setAlpha
(
1.0
f
/
beta
);
layer
->
setBeta
(
beta
);
}
else
{
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Activation
,
*
input_tensor
,
op_pair
->
second
);
}
#if IS_TRT_VERSION_GE(5130)
// max(alpha, min(beta, x))
...
...
@@ -64,6 +80,41 @@ class ActivationOpConverter : public OpConverter {
layer
->
setAlpha
(
0.
);
layer
->
setBeta
(
6.
);
}
if
(
op_type_
==
"elu"
)
{
const
float
alpha
=
op_desc
.
HasAttr
(
"alpha"
)
?
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"alpha"
))
:
1.0
f
;
layer
->
setAlpha
(
alpha
);
}
if
(
op_type_
==
"selu"
)
{
const
float
alpha
=
op_desc
.
HasAttr
(
"alpha"
)
?
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"alpha"
))
:
1.0507009873554804934193349852946
;
const
float
scale
=
op_desc
.
HasAttr
(
"scale"
)
?
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"scale"
))
:
1.6732632423543772848170429916717
;
layer
->
setAlpha
(
alpha
);
layer
->
setBeta
(
scale
);
}
if
(
op_type_
==
"stanh"
)
{
const
float
scale_a
=
op_desc
.
HasAttr
(
"scale_a"
)
?
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"scale_a"
))
:
0.67
f
;
const
float
scale_b
=
op_desc
.
HasAttr
(
"scale_b"
)
?
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"scale_b"
))
:
1.7159
f
;
layer
->
setAlpha
(
scale_b
);
layer
->
setBeta
(
scale_a
);
}
if
(
op_type_
==
"thresholded_relu"
)
{
const
float
threshold
=
op_desc
.
HasAttr
(
"threshold"
)
?
BOOST_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"threshold"
))
:
1.0
f
;
layer
->
setAlpha
(
threshold
);
}
#endif
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
...
...
@@ -83,8 +134,13 @@ const std::unordered_map<std::string, nvinfer1::ActivationType>
{
"tanh"
,
nvinfer1
::
ActivationType
::
kTANH
},
#if IS_TRT_VERSION_GE(5130)
{
"relu6"
,
nvinfer1
::
ActivationType
::
kCLIP
},
{
"elu"
,
nvinfer1
::
ActivationType
::
kELU
},
{
"selu"
,
nvinfer1
::
ActivationType
::
kSELU
},
{
"softsign"
,
nvinfer1
::
ActivationType
::
kSOFTSIGN
},
{
"softplus"
,
nvinfer1
::
ActivationType
::
kSOFTPLUS
},
{
"stanh"
,
nvinfer1
::
ActivationType
::
kSCALED_TANH
},
{
"thresholded_relu"
,
nvinfer1
::
ActivationType
::
kTHRESHOLDED_RELU
}};
#endif
};
class
ReluOpConverter
:
public
ActivationOpConverter
{
public:
...
...
@@ -101,11 +157,43 @@ class TanhOpConverter : public ActivationOpConverter {
TanhOpConverter
()
{
op_type_
=
"tanh"
;
}
};
#if IS_TRT_VERSION_GE(5130)
class
Relu6OpConverter
:
public
ActivationOpConverter
{
public:
Relu6OpConverter
()
{
op_type_
=
"relu6"
;
}
};
class
EluOpConverter
:
public
ActivationOpConverter
{
public:
EluOpConverter
()
{
op_type_
=
"elu"
;
}
};
class
SeluOpConverter
:
public
ActivationOpConverter
{
public:
SeluOpConverter
()
{
op_type_
=
"selu"
;
}
};
class
SoftsignOpConverter
:
public
ActivationOpConverter
{
public:
SoftsignOpConverter
()
{
op_type_
=
"softsign"
;
}
};
class
SoftplusOpConverter
:
public
ActivationOpConverter
{
public:
SoftplusOpConverter
()
{
op_type_
=
"softplus"
;
}
};
class
STanhOpConverter
:
public
ActivationOpConverter
{
public:
STanhOpConverter
()
{
op_type_
=
"stanh"
;
}
};
class
ThreasholdedReluOpConverter
:
public
ActivationOpConverter
{
public:
ThreasholdedReluOpConverter
()
{
op_type_
=
"thresholded_relu"
;
}
};
#endif
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
...
...
@@ -113,4 +201,12 @@ class Relu6OpConverter : public ActivationOpConverter {
REGISTER_TRT_OP_CONVERTER
(
relu
,
ReluOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
sigmoid
,
SigmoidOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
tanh
,
TanhOpConverter
);
#if IS_TRT_VERSION_GE(5130)
REGISTER_TRT_OP_CONVERTER
(
relu6
,
Relu6OpConverter
);
REGISTER_TRT_OP_CONVERTER
(
elu
,
EluOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
selu
,
SeluOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
softsign
,
SoftsignOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
softplus
,
SoftplusOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
stanh
,
STanhOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
thresholded_relu
,
ThreasholdedReluOpConverter
);
#endif
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
1a1d596b
...
...
@@ -73,6 +73,12 @@ struct SimpleOpTypeSetTeller : public Teller {
"conv2d_fusion"
,
"pool2d"
,
"relu"
,
"elu"
,
"selu"
,
"softsign"
,
"softplus"
,
"stanh"
,
"thresholded_relu"
,
"exp"
,
"log"
,
"sqrt"
,
...
...
@@ -163,6 +169,12 @@ struct SimpleOpTypeSetTeller : public Teller {
"conv2d_fusion"
,
"pool2d"
,
"relu"
,
"elu"
,
"selu"
,
"softsign"
,
"softplus"
,
"stanh"
,
"thresholded_relu"
,
"exp"
,
"log"
,
"sqrt"
,
...
...
@@ -261,30 +273,16 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
return
false
;
for
(
auto
&
teller
:
tellers_
)
{
std
::
unordered_set
<
std
::
string
>
act_op_list
=
{
"relu"
,
"elu"
,
"selu"
,
"softsign"
,
"softplus"
,
"stanh"
,
"thresholded_relu"
,
"exp"
,
"log"
,
"sqrt"
,
"abs"
,
"sin"
,
"cos"
,
"tan"
,
"sinh"
,
"cosh"
,
"asin"
,
"acos"
,
"atan"
,
"asinh"
,
"atanh"
,
"ceil"
,
"floor"
,
"erf"
};
std
::
unordered_set
<
std
::
string
>
act_op_list
=
{
"relu"
,
"relu6"
,
"sigmoid"
,
"elu"
,
"selu"
,
"softsign"
,
"softplus"
,
"stanh"
,
"thresholded_relu"
,
"exp"
,
"log"
,
"sqrt"
,
"abs"
,
"sin"
,
"cos"
,
"tan"
,
"tanh"
,
"sinh"
,
"cosh"
,
"asin"
,
"acos"
,
"atan"
,
"asinh"
,
"atanh"
,
"ceil"
,
"floor"
,
"erf"
};
if
(
act_op_list
.
find
(
op_type
)
!=
act_op_list
.
end
())
{
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_activation.py
浏览文件 @
1a1d596b
...
...
@@ -30,43 +30,61 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
def
generate_input1
(
dims
,
batch
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
dims
==
1
:
return
np
.
ones
([
32
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
32
]).
astype
(
np
.
float32
)
elif
dims
==
2
:
return
np
.
ones
([
3
,
32
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
3
,
32
]).
astype
(
np
.
float32
)
elif
dims
==
3
:
return
np
.
ones
([
3
,
32
,
32
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
3
,
32
,
32
]).
astype
(
np
.
float32
)
else
:
return
np
.
ones
([
batch
,
3
,
32
,
32
]).
astype
(
np
.
float32
)
return
np
.
random
.
random
([
batch
,
3
,
32
,
32
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
batch
in
[
1
,
4
]:
for
op_type
in
[
"relu"
,
"sigmoid"
,
"tanh"
,
"relu6"
]:
self
.
dims
=
dims
dics
=
[{}]
ops_config
=
[{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dims
,
batch
,
dics
))
},
outputs
=
[
"output_data"
])
yield
program_config
for
op_type
in
[
"relu"
,
"sigmoid"
,
"tanh"
,
"relu6"
,
"elu"
,
"selu"
,
"softsign"
,
"stanh"
,
"thresholded_relu"
,
"softplus"
]:
# few samples to reduce time
#for beta in [-0.2, 0.5, 0.67, 3]:
# for alpha in [-0.2, 0.5, 0.67, 3]:
for
beta
in
[
0.67
]:
for
alpha
in
[
0.67
]:
self
.
dims
=
dims
dics
=
[{}]
if
op_type
==
"elu"
:
dics
=
[{
"alpha"
:
alpha
}]
if
op_type
==
"selu"
:
dics
=
[{
"alpha"
:
beta
,
"scale"
:
alpha
}]
if
op_type
==
"stanh"
:
dics
=
[{
"scale_a"
:
beta
,
"scale_b"
:
alpha
}]
if
op_type
==
"thresholded_relu"
:
dics
=
[{
"threshold"
:
alpha
}]
if
op_type
==
"softplus"
:
dics
=
[{
"beta"
:
beta
}]
ops_config
=
[{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dims
,
batch
,
dics
))
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录