未验证 提交 3429c04b 编写于 作者: W Wangzheee 提交者: GitHub

[Paddle TRT]fix_fc_int8_convert; fix_reshape_convert (#34787)

* fix_fc_reshape_convert

* fix
上级 fc537d4f
......@@ -153,6 +153,43 @@ QuantDequantFusePass::QuantDequantFusePass() {
.AddAttr("data_format")
.IsStringIn({"NCHW", "NHWC", "AnyLayout"})
.End();
AddOpCompat(OpCompat("depthwise_conv2d"))
.AddInput("Input")
.IsTensor()
.End()
.AddInput("Filter")
.IsTensor()
.End()
.AddInput("Bias")
.IsTensor()
.IsOptional()
.End()
.AddInput("ResidualData")
.IsTensor()
.IsOptional()
.End()
.AddOutput("Output")
.IsTensor()
.End()
.AddAttr("strides")
.IsType<std::vector<int>>()
.End()
.AddAttr("paddings")
.IsType<std::vector<int>>()
.End()
.AddAttr("padding_algorithm")
.IsOptional()
.IsStringIn({"EXPLICIT", "SAME", "VALID"})
.End()
.AddAttr("groups")
.IsNumGE(1)
.End()
.AddAttr("dilations")
.IsType<std::vector<int>>()
.End()
.AddAttr("data_format")
.IsStringIn({"NCHW", "NHWC", "AnyLayout"})
.End();
AddOpCompat(OpCompat("mul"))
.AddInput("X")
.IsTensor()
......
......@@ -33,6 +33,53 @@ namespace tensorrt {
*/
class FcOpConverter : public OpConverter {
public:
nvinfer1::ILayer* reshape_before_fc(nvinfer1::ITensor* before_fc,
nvinfer1::Dims x_dim,
int x_num_col_dims) {
// add shuffle before fc
nvinfer1::Dims reshape_before_fc_dim;
reshape_before_fc_dim.nbDims = x_num_col_dims + 3;
// padding shape "* x q x 1 x 1"
for (int i = 0; i < reshape_before_fc_dim.nbDims; i++) {
reshape_before_fc_dim.d[i] = 1;
}
for (int i = 0; i < x_dim.nbDims; i++) {
if (i < x_num_col_dims) {
reshape_before_fc_dim.d[i] = 0;
} else {
if (x_dim.d[i] < 0) {
reshape_before_fc_dim.d[x_num_col_dims] = -1;
break;
}
reshape_before_fc_dim.d[x_num_col_dims] *= x_dim.d[i];
}
}
auto* reshape_before_fc_layer =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *before_fc);
reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
return reshape_before_fc_layer;
}
nvinfer1::ILayer* reshape_after_fc(nvinfer1::ITensor* after_fc,
nvinfer1::Dims x_dim, int x_num_col_dims) {
// add shuffle after fc
nvinfer1::Dims reshape_after_fc_dim;
if (engine_->use_oss() && engine_->with_ernie() && x_dim.nbDims == 4 &&
x_dim.d[2] == 1 && x_dim.d[3] == 1 && x_num_col_dims == 1) {
// If use tensorrt'oss, the x_dim and x_num_col_dims need change
reshape_after_fc_dim.nbDims = 4;
} else {
reshape_after_fc_dim.nbDims = x_num_col_dims + 1;
}
for (int i = 0; i < reshape_after_fc_dim.nbDims; i++) {
reshape_after_fc_dim.d[i] = 0;
}
auto* reshape_after_fc_layer =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *after_fc);
reshape_after_fc_layer->setReshapeDimensions(reshape_after_fc_dim);
return reshape_after_fc_layer;
}
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias";
......@@ -92,10 +139,8 @@ class FcOpConverter : public OpConverter {
"it's %d-dimensional.",
Y_t->dims().size())); // a matrix
size_t n_output = Y_t->dims()[1];
int m = Y_t->dims()[0];
int n = Y_t->dims()[1];
auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
......@@ -119,47 +164,35 @@ class FcOpConverter : public OpConverter {
auto* fc_layer_int8 =
TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output,
nv_ksize, weight.get(), bias.get());
engine_->SetTensorDynamicRange(fc_layer_int8->getOutput(0), out_scale);
auto* fc_after_reshape_int8 = reshape_after_fc(
fc_layer_int8->getOutput(0), x_dim, x_num_col_dims);
engine_->SetTensorDynamicRange(fc_after_reshape_int8->getOutput(0),
out_scale);
if (activation_type == "relu") {
nvinfer1::IActivationLayer* relu_layer_int8 = TRT_ENGINE_ADD_LAYER(
engine_, Activation, *(fc_layer_int8->getOutput(0)),
engine_, Activation, *(fc_after_reshape_int8->getOutput(0)),
nvinfer1::ActivationType::kRELU);
RreplenishLayerAndOutput(relu_layer_int8, "relu_after_fc_shuffle",
{output_name}, test_mode);
} else {
RreplenishLayerAndOutput(fc_layer_int8, "shuffle_after_fc",
RreplenishLayerAndOutput(fc_after_reshape_int8, "shuffle_after_fc",
{output_name}, test_mode);
}
} else {
// add fc layer
auto* fc_layer_before =
auto* fc_layer_float =
TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *inputs, n_output,
weight.get(), bias.get());
fc_layer_before->setName(
("fc_layer_before(Output: " + output_name + ")").c_str());
// add shuffle after fc
nvinfer1::Dims reshape_after_fc_dim;
if (engine_->use_oss() && engine_->with_ernie() && x_dim.nbDims == 4 &&
x_dim.d[2] == 1 && x_dim.d[3] == 1 && x_num_col_dims == 1) {
// If use tensorrt'oss, the x_dim and x_num_col_dims need change
reshape_after_fc_dim.nbDims = 4;
} else {
reshape_after_fc_dim.nbDims = x_num_col_dims + 1;
}
for (int i = 0; i < reshape_after_fc_dim.nbDims; i++) {
reshape_after_fc_dim.d[i] = 0;
}
auto* fc_layer_float = TRT_ENGINE_ADD_LAYER(
engine_, Shuffle, *fc_layer_before->getOutput(0));
fc_layer_float->setReshapeDimensions(reshape_after_fc_dim);
auto* fc_after_reshape_float = reshape_after_fc(
fc_layer_float->getOutput(0), x_dim, x_num_col_dims);
if (activation_type == "relu") {
nvinfer1::IActivationLayer* relu_layer_float = TRT_ENGINE_ADD_LAYER(
engine_, Activation, *(fc_layer_float->getOutput(0)),
engine_, Activation, *(fc_after_reshape_float->getOutput(0)),
nvinfer1::ActivationType::kRELU);
RreplenishLayerAndOutput(relu_layer_float, "relu_after_fc_shuffle",
{output_name}, test_mode);
} else {
RreplenishLayerAndOutput(fc_layer_float, "shuffle_after_fc",
RreplenishLayerAndOutput(fc_after_reshape_float, "shuffle_after_fc",
{output_name}, test_mode);
}
}
......@@ -169,12 +202,10 @@ class FcOpConverter : public OpConverter {
weight_data_tmp.reserve(Y_t->numel());
memcpy(weight_data_tmp.data(), weight_data, Y_t->numel() * sizeof(float));
tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
static_cast<void*>(weight_data),
static_cast<size_t>(Y_t->numel())};
weight.dims.assign({n, m});
float* bias_data = nullptr;
int bias_num = 0;
if (with_bias) {
......@@ -204,28 +235,7 @@ class FcOpConverter : public OpConverter {
"converter expects x_dim.nbDims > x_num_col_dims, but "
"x_dim.nbDims : %d, x_num_col_dims : %d.",
x_dim.nbDims, x_num_col_dims));
// add shuffle before fc
nvinfer1::Dims reshape_before_fc_dim;
reshape_before_fc_dim.nbDims = x_num_col_dims + 3;
// padding shape "* x q x 1 x 1"
for (int i = 0; i < reshape_before_fc_dim.nbDims; i++) {
reshape_before_fc_dim.d[i] = 1;
}
for (int i = 0; i < x_dim.nbDims; i++) {
if (i < x_num_col_dims) {
reshape_before_fc_dim.d[i] = 0;
} else {
if (x_dim.d[i] < 0) {
reshape_before_fc_dim.d[x_num_col_dims] = -1;
break;
}
reshape_before_fc_dim.d[x_num_col_dims] *= x_dim.d[i];
}
}
auto* reshape_before_fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
reshape_before_fc_layer->setName(
("shuffle_before_fc(Output: " + output_name + ")").c_str());
auto* reshape_before_fc_layer = reshape_before_fc(X, x_dim, x_num_col_dims);
auto* reshape_itensor = reshape_before_fc_layer->getOutput(0);
if (enable_int8) {
engine_->SetTensorDynamicRange(reshape_itensor, in_scale);
......
......@@ -698,15 +698,22 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
return false;
}
}
if (op_type == "reshape" || op_type == "reshape2") {
if (!desc.HasAttr("shape")) {
return false;
}
// Paddle-TRT does not support the input tensors: Shape and ShapeTensor
auto reshape_inputs = desc.Inputs();
if (reshape_inputs.find("Shape") != reshape_inputs.end() ||
reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
return false;
if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
if (desc.Input("Shape").size() >= 1) {
return false;
}
}
if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
if (desc.Input("ShapeTensor").size() >= 1) {
return false;
}
}
std::vector<int> shape =
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册