Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7987a905
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
7987a905
编写于
10月 10, 2022
作者:
Z
zhoutianzi666
提交者:
GitHub
10月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle-TRT] support new quant format from slim (#46022)
上级
6e4cba14
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
153 addition
and
14 deletion
+153
-14
paddle/fluid/framework/ir/delete_quant_dequant_linear_op_pass.cc
...fluid/framework/ir/delete_quant_dequant_linear_op_pass.cc
+4
-6
paddle/fluid/inference/api/paddle_pass_builder.cc
paddle/fluid/inference/api/paddle_pass_builder.cc
+2
-2
paddle/fluid/inference/tensorrt/convert/matmul_v2_op.cc
paddle/fluid/inference/tensorrt/convert/matmul_v2_op.cc
+24
-6
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+1
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_matmul_v2.py
...ests/unittests/ir/inference/test_trt_convert_matmul_v2.py
+122
-0
未找到文件。
paddle/fluid/framework/ir/delete_quant_dequant_linear_op_pass.cc
浏览文件 @
7987a905
...
...
@@ -111,9 +111,6 @@ void DeleteQuantDequantLinearOpPass::ApplyImpl(ir::Graph* graph) const {
}
*/
std
::
unordered_set
<
const
Node
*>
nodes2rm
=
{};
int
bit_length
=
PADDLE_GET_CONST
(
int
,
quantize_linear_op
->
Op
()
->
GetAttr
(
"bit_length"
));
int
range
=
((
1
<<
(
bit_length
-
1
))
-
1
);
// Get input scale from tensor
const
LoDTensor
&
input_scale_tensor
=
...
...
@@ -124,7 +121,7 @@ void DeleteQuantDequantLinearOpPass::ApplyImpl(ir::Graph* graph) const {
platform
::
errors
::
InvalidArgument
(
"Input scale tensor's place should be CPU."
));
const
float
*
input_scale_data
=
input_scale_tensor
.
data
<
float
>
();
float
input_scale
=
input_scale_data
[
0
]
/
range
;
float
input_scale
=
input_scale_data
[
0
];
int
nums_any_ops
=
dequantize_linear_op_out
->
outputs
.
size
();
for
(
int
i
=
0
;
i
<
nums_any_ops
;
++
i
)
{
...
...
@@ -138,8 +135,9 @@ void DeleteQuantDequantLinearOpPass::ApplyImpl(ir::Graph* graph) const {
IR_NODE_LINK_TO
(
quantize_linear_op_x
,
dequantize_linear_op_out
->
outputs
[
i
]);
}
nodes2rm
.
insert
(
quantize_linear_op_scale
);
// Forbid removing weight tensor when weight is shared between ops
if
(
quantize_linear_op_scale
->
outputs
.
size
()
<=
1UL
)
nodes2rm
.
insert
(
quantize_linear_op_scale
);
nodes2rm
.
insert
(
quantize_linear_op
);
nodes2rm
.
insert
(
quantize_linear_op_out
);
nodes2rm
.
insert
(
dequantize_linear_op
);
...
...
paddle/fluid/inference/api/paddle_pass_builder.cc
浏览文件 @
7987a905
...
...
@@ -84,8 +84,7 @@ void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
void
PaddlePassBuilder
::
ClearPasses
()
{
passes_
.
clear
();
}
const
std
::
vector
<
std
::
string
>
kTRTSubgraphPasses
({
"identity_scale_op_clean_pass"
,
//
"adaptive_pool2d_convert_global_pass"
,
//
"adaptive_pool2d_convert_global_pass"
,
//
"shuffle_channel_detect_pass"
,
//
"quant_conv2d_dequant_fuse_pass"
,
//
"delete_fill_constant_op_pass"
,
//
...
...
@@ -93,6 +92,7 @@ const std::vector<std::string> kTRTSubgraphPasses({
"delete_quant_dequant_filter_op_pass"
,
//
"delete_weight_dequant_linear_op_pass"
,
//
"delete_quant_dequant_linear_op_pass"
,
//
"identity_scale_op_clean_pass"
,
//
"add_support_int8_pass"
,
//
// "fc_fuse_pass", //
"simplify_with_basic_ops_pass"
,
//
...
...
paddle/fluid/inference/tensorrt/convert/matmul_v2_op.cc
浏览文件 @
7987a905
...
...
@@ -37,9 +37,9 @@ class MatMulV2OpConverter : public OpConverter {
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"convert a
fluid matmul_v2 op to tensorrt matmul
layer "
;
VLOG
(
3
)
<<
"convert a
matmul_v2 op to tensorrt IMatrixMultiplyLayer
layer "
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
nvinfer1
::
ILayer
*
layer
=
nullptr
;
nvinfer1
::
I
MatrixMultiply
Layer
*
layer
=
nullptr
;
// Declare inputs
auto
*
input1
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
...
...
@@ -61,8 +61,9 @@ class MatMulV2OpConverter : public OpConverter {
:
nvinfer1
::
MatrixOperation
::
kNONE
;
int
one_num
=
0
;
bool
all_matrix
=
dims_x
.
nbDims
>=
2
&&
dims_y
.
nbDims
>=
2
;
nvinfer1
::
ITensor
*
new_shape_tensor
=
nullptr
;
if
(
dims_x
.
nbDims
<
dims_y
.
nbDims
)
{
if
(
dims_x
.
nbDims
<
dims_y
.
nbDims
&&
all_matrix
)
{
one_num
=
dims_y
.
nbDims
-
dims_x
.
nbDims
;
new_shape_tensor
=
Shape
(
input1
);
std
::
vector
<
int32_t
>
one_vec
(
one_num
,
1
);
...
...
@@ -80,7 +81,7 @@ class MatMulV2OpConverter : public OpConverter {
*
input2
,
matrix_operation_Y
);
}
else
if
(
dims_x
.
nbDims
>
dims_y
.
nbDims
)
{
}
else
if
(
dims_x
.
nbDims
>
dims_y
.
nbDims
&&
all_matrix
)
{
one_num
=
dims_x
.
nbDims
-
dims_y
.
nbDims
;
new_shape_tensor
=
Shape
(
input2
);
std
::
vector
<
int32_t
>
one_vec
(
one_num
,
1
);
...
...
@@ -105,9 +106,26 @@ class MatMulV2OpConverter : public OpConverter {
*
input2
,
matrix_operation_Y
);
}
VLOG
(
3
)
<<
"Convert a fluid matmul_v2_op_float to TensorRT "
;
if
(
dims_x
.
nbDims
==
1
)
layer
->
setOperation
(
0
,
nvinfer1
::
MatrixOperation
::
kVECTOR
);
if
(
dims_y
.
nbDims
==
1
)
layer
->
setOperation
(
1
,
nvinfer1
::
MatrixOperation
::
kVECTOR
);
nvinfer1
::
ILayer
*
final_layer
=
static_cast
<
nvinfer1
::
ILayer
*>
(
layer
);
// When vec * vec, trt produces a scalar, so to be consistent with paddle,
// we need add a reshape.
if
(
dims_x
.
nbDims
==
1
&&
dims_y
.
nbDims
==
1
)
{
auto
reshape_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
layer
->
getOutput
(
0
));
nvinfer1
::
Dims
reshape_dim
;
reshape_dim
.
nbDims
=
1
;
reshape_dim
.
d
[
0
]
=
1
;
reshape_layer
->
setReshapeDimensions
(
reshape_dim
);
final_layer
=
static_cast
<
nvinfer1
::
ILayer
*>
(
reshape_layer
);
}
VLOG
(
3
)
<<
"Convert a matmul_v2_op to TensorRT "
;
RreplenishLayerAndOutput
(
layer
,
"matmul_v2_op"
,
{
output_name
},
test_mode
);
RreplenishLayerAndOutput
(
final_layer
,
"matmul_v2_op"
,
{
output_name
},
test_mode
);
}
};
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
7987a905
...
...
@@ -46,6 +46,7 @@ struct SimpleOpTypeSetTeller : public Teller {
#if IS_TRT_VERSION_GE(7000)
teller_set
.
insert
(
"tile"
);
teller_set
.
insert
(
"flatten_contiguous_range"
);
int8_teller_set
.
insert
(
"flatten_contiguous_range"
);
teller_set
.
insert
(
"rnn"
);
int8_teller_set
.
insert
(
"rnn"
);
teller_set
.
insert
(
"fill_constant_batch_size_like"
);
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_matmul_v2.py
浏览文件 @
7987a905
...
...
@@ -193,5 +193,127 @@ class TrtConvertMatmulTest_dynamic2(TrtLayerAutoScanTest):
self
.
run_test
()
class
TrtConvertMatmulTest_dynamic3
(
TrtLayerAutoScanTest
):
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
# case0: mat * vec
# case1: vec * mat
# case2: vec * vec
for
case
in
[
0
,
1
,
2
]:
for
batch
in
range
(
20
,
23
):
for
trans_x
in
[
False
,
True
]:
for
trans_y
in
[
False
,
True
]:
self
.
case
=
case
input1_shape
=
[]
input2_shape
=
[]
if
case
==
0
:
input1_shape
=
[
batch
,
50
]
input2_shape
=
[
50
]
elif
case
==
1
:
input1_shape
=
[
50
]
input2_shape
=
[
50
,
batch
]
elif
case
==
2
:
input1_shape
=
[
50
]
input2_shape
=
[
50
]
if
(
case
==
0
or
case
==
1
):
dics
=
[{
"trans_x"
:
False
,
"trans_y"
:
False
,
}]
elif
(
case
==
2
):
dics
=
[{
"trans_x"
:
trans_x
,
"trans_y"
:
trans_y
,
}]
ops_config
=
[{
"op_type"
:
"matmul_v2"
,
"op_inputs"
:
{
"X"
:
[
"input1_data"
],
"Y"
:
[
"input2_data"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input1_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
input1_shape
)),
"input2_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
input2_shape
))
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
():
if
(
self
.
case
==
0
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input1_data"
:
[
20
,
50
],
"input2_data"
:
[
50
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input1_data"
:
[
30
,
50
],
"input2_data"
:
[
50
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input1_data"
:
[
25
,
50
],
"input2_data"
:
[
50
]
}
elif
(
self
.
case
==
1
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input2_data"
:
[
50
,
20
],
"input1_data"
:
[
50
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input2_data"
:
[
50
,
30
],
"input1_data"
:
[
50
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input2_data"
:
[
50
,
25
],
"input1_data"
:
[
50
]
}
elif
(
self
.
case
==
2
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input2_data"
:
[
30
],
"input1_data"
:
[
50
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input2_data"
:
[
50
],
"input1_data"
:
[
50
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input2_data"
:
[
50
],
"input1_data"
:
[
50
]
}
generate_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录