Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
94cc1d6b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
94cc1d6b
编写于
4月 13, 2023
作者:
G
gaoziyuan
提交者:
GitHub
4月 13, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Hackathon NO.75] 为 Paddle-TRT 添加 expend_as_v2 算子 (#51028)
--------- Co-authored-by:
N
Zhang Jun
<
ewalker@live.cn
>
上级
57201d9d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
334 addition
and
27 deletion
+334
-27
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/expand_v2_op.cc
paddle/fluid/inference/tensorrt/convert/expand_v2_op.cc
+53
-25
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+28
-2
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_expand_as_v2.py
...s/unittests/ir/inference/test_trt_convert_expand_as_v2.py
+252
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
94cc1d6b
...
...
@@ -2685,6 +2685,7 @@ USE_TRT_CONVERTER(tanh_shrink)
USE_TRT_CONVERTER
(
logsigmoid
)
USE_TRT_CONVERTER
(
lookup_table
)
USE_TRT_CONVERTER
(
expand_v2
)
USE_TRT_CONVERTER
(
expand_as_v2
)
USE_TRT_CONVERTER
(
take_along_axis
)
USE_TRT_CONVERTER
(
skip_groupnorm_act
)
USE_TRT_CONVERTER
(
preln_groupnorm_act
)
...
...
paddle/fluid/inference/tensorrt/convert/expand_v2_op.cc
浏览文件 @
94cc1d6b
/* Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 202
3
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -18,12 +18,12 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
class
Expand
V2
OpConverter
:
public
OpConverter
{
class
ExpandOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"convert a
expand_v2
op to trt expand layer."
;
VLOG
(
3
)
<<
"convert a
paddle "
<<
op_type_
<<
"
op to trt expand layer."
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
auto
*
input
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
)[
0
]);
auto
inputs
=
op_desc
.
Inputs
();
...
...
@@ -33,25 +33,40 @@ class ExpandV2OpConverter : public OpConverter {
nvinfer1
::
ITensor
*
shape_tensor
=
nullptr
;
int32_t
shape_rank
=
0
;
if
(
inputs
.
find
(
"Shape"
)
!=
inputs
.
end
()
&&
op_desc
.
Input
(
"Shape"
).
size
()
>=
1
)
{
shape_tensor
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Shape"
)[
0
]);
shape_rank
=
shape_tensor
->
getDimensions
().
d
[
0
];
}
else
if
(
inputs
.
find
(
"expand_shapes_tensor"
)
!=
inputs
.
end
()
&&
op_desc
.
Input
(
"expand_shapes_tensor"
).
size
()
>=
1
)
{
int
shape_size
=
op_desc
.
Input
(
"expand_shapes_tensor"
).
size
();
std
::
vector
<
nvinfer1
::
ITensor
*>
shape_tensors
;
for
(
int
i
=
0
;
i
<
shape_size
;
++
i
)
{
shape_tensors
.
push_back
(
engine_
->
GetITensor
(
op_desc
.
Input
(
"expand_shapes_tensor"
)[
i
]));
if
(
op_type_
==
"expand_v2"
)
{
if
(
inputs
.
find
(
"Shape"
)
!=
inputs
.
end
()
&&
op_desc
.
Input
(
"Shape"
).
size
()
>=
1
)
{
shape_tensor
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Shape"
)[
0
]);
shape_rank
=
shape_tensor
->
getDimensions
().
nbDims
;
}
else
if
(
inputs
.
find
(
"expand_shapes_tensor"
)
!=
inputs
.
end
()
&&
op_desc
.
Input
(
"expand_shapes_tensor"
).
size
()
>=
1
)
{
int
shape_size
=
op_desc
.
Input
(
"expand_shapes_tensor"
).
size
();
std
::
vector
<
nvinfer1
::
ITensor
*>
shape_tensors
;
for
(
int
i
=
0
;
i
<
shape_size
;
++
i
)
{
shape_tensors
.
push_back
(
engine_
->
GetITensor
(
op_desc
.
Input
(
"expand_shapes_tensor"
)[
i
]));
}
shape_tensor
=
Concat
(
shape_tensors
);
shape_rank
=
shape_size
;
}
else
{
std
::
vector
<
int32_t
>
shape
=
PADDLE_GET_CONST
(
std
::
vector
<
int32_t
>
,
op_desc
.
GetAttr
(
"shape"
));
shape_tensor
=
Add1DConstantLayer
(
shape
,
output_name
+
"_shape_tensor_"
);
shape_rank
=
shape
.
size
();
}
}
else
if
(
op_type_
==
"expand_as_v2"
)
{
if
(
inputs
.
find
(
"Y"
)
!=
inputs
.
end
())
{
shape_tensor
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Y"
)[
0
]);
shape_rank
=
shape_tensor
->
getDimensions
().
nbDims
;
}
else
{
std
::
vector
<
int32_t
>
shape
=
PADDLE_GET_CONST
(
std
::
vector
<
int32_t
>
,
op_desc
.
GetAttr
(
"target_shape"
));
shape_tensor
=
Add1DConstantLayer
(
shape
,
output_name
+
"_target_shape_tensor_"
);
shape_rank
=
shape
.
size
();
}
shape_tensor
=
Concat
(
shape_tensors
);
shape_rank
=
shape_size
;
}
else
{
std
::
vector
<
int32_t
>
shape
=
PADDLE_GET_CONST
(
std
::
vector
<
int32_t
>
,
op_desc
.
GetAttr
(
"shape"
));
shape_tensor
=
Add1DConstantLayer
(
shape
,
output_name
+
"_shape_tensor_"
);
shape_rank
=
shape
.
size
();
}
nvinfer1
::
ITensor
*
input_shape_tensor
;
...
...
@@ -68,8 +83,7 @@ class ExpandV2OpConverter : public OpConverter {
input_shape_tensor
=
Shape
(
input
);
}
auto
*
shuffle
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Shuffle
,
*
input
);
shuffle
->
setInput
(
1
,
*
input_shape_tensor
);
auto
*
newInputTensor
=
Reshape
(
input
,
input_shape_tensor
);
std
::
vector
<
int32_t
>
start_vec
(
shape_rank
,
0
);
nvinfer1
::
Dims
start
;
...
...
@@ -91,13 +105,26 @@ class ExpandV2OpConverter : public OpConverter {
auto
strides_tensor
=
Min
(
one_tensor
,
input_sub_tensor
);
auto
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Slice
,
*
shuffle
->
getOutput
(
0
)
,
start
,
size
,
stride
);
engine_
,
Slice
,
*
newInputTensor
,
start
,
size
,
stride
);
layer
->
setInput
(
1
,
*
starts_tensor
);
layer
->
setInput
(
2
,
*
sizes_tensor
);
layer
->
setInput
(
3
,
*
strides_tensor
);
RreplenishLayerAndOutput
(
layer
,
"expand_v2"
,
{
output_name
},
test_mode
);
RreplenishLayerAndOutput
(
layer
,
op_type_
,
{
output_name
},
test_mode
);
}
protected:
std
::
string
op_type_
;
};
class
ExpandV2OpConverter
:
public
ExpandOpConverter
{
public:
ExpandV2OpConverter
()
{
op_type_
=
"expand_v2"
;
}
};
class
ExpandAsV2OpConverter
:
public
ExpandOpConverter
{
public:
ExpandAsV2OpConverter
()
{
op_type_
=
"expand_as_v2"
;
}
};
}
// namespace tensorrt
...
...
@@ -105,3 +132,4 @@ class ExpandV2OpConverter : public OpConverter {
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
expand_v2
,
ExpandV2OpConverter
);
REGISTER_TRT_OP_CONVERTER
(
expand_as_v2
,
ExpandAsV2OpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
94cc1d6b
...
...
@@ -2654,11 +2654,35 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if
(
op_type
==
"expand_v2"
)
{
if
(
op_type
==
"expand_
as_v2"
||
op_type
==
"expand_
v2"
)
{
if
(
!
with_dynamic_shape
)
{
VLOG
(
3
)
<<
"the "
<<
op_type
<<
"does not support "
"static shape yet"
;
return
false
;
}
if
(
!
desc
.
HasAttr
(
"shape"
))
{
auto
inputs
=
desc
.
Inputs
();
if
(
op_type
==
"expand_as_v2"
)
{
if
(
!
desc
.
HasAttr
(
"target_shape"
)
&&
inputs
.
find
(
"Y"
)
==
inputs
.
end
())
{
VLOG
(
3
)
<<
"expand_as_v2 op need have input(Y) or attr(target_shape). "
;
return
false
;
}
}
else
if
(
op_type
==
"expand_v2"
)
{
if
(
!
desc
.
HasAttr
(
"shape"
)
&&
inputs
.
find
(
"Shape"
)
==
inputs
.
end
()
&&
inputs
.
find
(
"expand_shapes_tensor"
)
==
inputs
.
end
())
{
VLOG
(
3
)
<<
"expand_v2 op need have input(Shape) or "
"input(expand_shapes_tensor) or attr(shape) . "
;
return
false
;
}
}
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
VLOG
(
3
)
<<
"The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass."
;
return
false
;
}
}
...
...
@@ -2921,6 +2945,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"skip_merge_layernorm"
,
"lookup_table_v2"
,
"expand_v2"
,
"expand_as_v2"
,
"fuse_eleadd_transpose"
,
"skip_groupnorm_act"
,
"preln_groupnorm_act"
,
...
...
@@ -3080,6 +3105,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"lookup_table"
,
"lookup_table_v2"
,
"expand_v2"
,
"expand_as_v2"
,
"fuse_eleadd_transpose"
,
"skip_groupnorm_act"
,
"preln_groupnorm_act"
,
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_expand_as_v2.py
0 → 100644
浏览文件 @
94cc1d6b
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
Any
,
Dict
,
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtConvertExpandASV2Test
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
if
len
(
attrs
[
0
][
'target_shape'
])
<
self
.
dims
:
return
False
if
self
.
dims
==
1
:
if
len
(
attrs
[
0
][
'target_shape'
])
==
4
:
return
False
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
self
.
dims
==
4
:
self
.
input_shape
=
[
1
,
8
,
1
,
32
]
return
np
.
random
.
random
([
1
,
8
,
1
,
32
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
3
:
self
.
input_shape
=
[
1
,
32
,
32
]
return
np
.
random
.
random
([
1
,
32
,
32
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
2
:
self
.
input_shape
=
[
1
,
32
]
return
np
.
random
.
random
([
1
,
32
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
1
:
self
.
input_shape
=
[
32
]
return
np
.
random
.
random
([
32
]).
astype
(
np
.
float32
)
for
dims
in
[
1
,
2
,
3
,
4
]:
for
shape
in
[
[
10
,
8
,
32
,
32
],
[
2
,
8
,
32
,
32
],
[
8
,
32
,
32
],
[
2
,
32
],
[
32
],
]:
dics
=
[
{
"target_shape"
:
shape
,
},
]
self
.
dims
=
dims
ops_config
=
[
{
"op_type"
:
"expand_as_v2"
,
"op_inputs"
:
{
"X"
:
[
"expand_v2_input"
]},
"op_outputs"
:
{
"Out"
:
[
"expand_v2_out"
]},
"op_attrs"
:
dics
[
0
],
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"expand_v2_input"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
)
)
},
outputs
=
[
"expand_v2_out"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"expand_v2_input"
:
[
1
,
8
,
1
,
32
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"expand_v2_input"
:
[
10
,
8
,
1
,
32
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"expand_v2_input"
:
[
1
,
8
,
1
,
32
]
}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"expand_v2_input"
:
[
1
,
32
,
32
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"expand_v2_input"
:
[
8
,
32
,
32
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"expand_v2_input"
:
[
1
,
32
,
32
]
}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"expand_v2_input"
:
[
1
,
32
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"expand_v2_input"
:
[
4
,
32
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"expand_v2_input"
:
[
1
,
32
]
}
elif
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"expand_v2_input"
:
[
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"expand_v2_input"
:
[
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"expand_v2_input"
:
[
32
]}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
dynamic_shape
:
return
1
,
2
else
:
return
0
,
3
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
clear_dynamic_shape
()
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-3
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
class
TrtConvertExpandV2Test2
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
self
.
dims
==
1
:
self
.
input_shape
=
[
1
]
return
np
.
random
.
random
([
1
]).
astype
(
np
.
float32
)
for
dims
in
[
1
]:
for
shape
in
[[
10
]]:
dics
=
[
{
"target_shape"
:
shape
,
},
]
self
.
dims
=
dims
dics_intput
=
[
{
"X"
:
[
"expand_v2_input"
],
"Y"
:
[
"shapeT1_data"
]},
]
ops_config
=
[
{
"op_type"
:
"fill_constant"
,
"op_inputs"
:
{},
"op_outputs"
:
{
"Out"
:
[
"shapeT1_data"
]},
"op_attrs"
:
{
"dtype"
:
2
,
"str_value"
:
"10"
,
"shape"
:
[
1
],
},
},
{
"op_type"
:
"expand_as_v2"
,
"op_inputs"
:
dics_intput
[
0
],
"op_outputs"
:
{
"Out"
:
[
"expand_v2_out"
]},
"op_attrs"
:
dics
[
0
],
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"expand_v2_input"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
)
)
},
outputs
=
[
"expand_v2_out"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
():
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"expand_v2_input"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"expand_v2_input"
:
[
1
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"expand_v2_input"
:
[
1
]}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
clear_dynamic_shape
()
# for dynamic_shape
generate_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
# fill_constant will be folded by constnt folding pass!
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-3
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录