未验证 提交 bfced39e 编写于 作者: Z zlsh80826 提交者: GitHub

[Paddle-TRT] nearest_interp op (#31626)

* nearest_interp op converter w/ dynamic/static

* fix data_layout include

* add trt nearest unit_test

* add nearest_interp NHWC test

* update trt nearest interp nhwc testcase

* remove asterisk for python2 compatibility

* add empty line to prevent conflict

* nearest_interp op converter w/ dynamic/static

* fix data_layout include

* add trt nearest unit_test

* add nearest_interp NHWC test

* update trt nearest interp nhwc testcase

* remove asterisk for python2 compatibility

* add empty line to prevent conflict

* change the priority of out_h, out_w
上级 7ccf6b60
......@@ -1192,6 +1192,8 @@ USE_TRT_CONVERTER(scale);
USE_TRT_CONVERTER(stack);
USE_TRT_CONVERTER(clip);
USE_TRT_CONVERTER(gather);
USE_TRT_CONVERTER(nearest_interp);
#endif
namespace paddle_infer {
......
......@@ -6,6 +6,8 @@ nv_library(tensorrt_converter
shuffle_channel_op.cc swish_op.cc instance_norm_op.cc stack_op.cc transpose_op.cc flatten_op.cc
emb_eltwise_layernorm.cc skip_layernorm.cc scale_op.cc slice_op.cc hard_sigmoid_op.cc hard_swish_op.cc clip_op.cc
gather_op.cc
nearest_interp_op.cc
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry)
nv_test(test_op_converter SRCS test_op_converter.cc DEPS
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle
namespace paddle {
namespace inference {
namespace tensorrt {
class NearestInterpolateOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(3) << "convert a fluid nearest_interp op";
framework::OpDesc op_desc(op, nullptr);
std::string input_name = op_desc.Input("X").front();
std::string output_name = op_desc.Output("Out").front();
auto input = engine_->GetITensor(input_name);
auto data_layout = framework::StringToDataLayout(
BOOST_GET_CONST(std::string, op_desc.GetAttr("data_layout")));
auto interp_method =
BOOST_GET_CONST(std::string, op_desc.GetAttr("interp_method"));
bool align_corners =
BOOST_GET_CONST(bool, op_desc.GetAttr("align_corners"));
auto input_names = op_desc.Input("X");
auto scale = BOOST_GET_CONST(float, op_desc.GetAttr("scale"));
auto out_h = BOOST_GET_CONST(int, op_desc.GetAttr("out_h"));
auto out_w = BOOST_GET_CONST(int, op_desc.GetAttr("out_w"));
auto layer = TRT_ENGINE_ADD_LAYER(engine_, Resize, *input);
layer->setAlignCorners(align_corners);
auto in_dim = input->getDimensions();
float scale_h = 1.f;
float scale_w = 1.f;
std::vector<float> scales;
if (scale > 0.f && (out_h <= 0 && out_w <= 0)) {
scale_h = scale;
scale_w = scale;
} else {
// axis are different in static/dynamic mode
PADDLE_ENFORCE_GT(
out_h, 0, platform::errors::InvalidArgument(
"out_h must be greater than 0 if scale is not set."));
PADDLE_ENFORCE_GT(
out_w, 0, platform::errors::InvalidArgument(
"out_w must be greater than 0 if scale is not set."));
bool with_dynamic = engine_->with_dynamic_shape();
int h_axis = (data_layout == framework::DataLayout::kNCHW) + with_dynamic;
int w_axis =
(data_layout == framework::DataLayout::kNCHW) + 1 + with_dynamic;
scale_h =
static_cast<float>(out_h) / static_cast<float>(in_dim.d[h_axis]);
scale_w =
static_cast<float>(out_w) / static_cast<float>(in_dim.d[w_axis]);
}
if (engine_->with_dynamic_shape()) {
scales.push_back(1.f);
}
if (data_layout == framework::DataLayout::kNCHW) {
scales.push_back(1.f);
scales.push_back(scale_h);
scales.push_back(scale_w);
} else if (data_layout == framework::DataLayout::kNHWC) {
// NHWC
scales.push_back(scale_h);
scales.push_back(scale_w);
scales.push_back(1.f);
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Data layout must be NCHW or NHWC."));
}
layer->setScales(scales.data(), scales.size());
RreplenishLayerAndOutput(layer, "nearest_interp", {output_name}, test_mode);
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(nearest_interp, NearestInterpolateOpConverter);
......@@ -14,6 +14,7 @@
#include "paddle/fluid/inference/tensorrt/op_teller.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/data_layout.h"
namespace paddle {
namespace framework {
......@@ -110,6 +111,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"flatten2",
"flatten",
"gather",
"nearest_interp",
};
};
......@@ -187,10 +190,29 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
if (axis != 1) return false;
}
}
if (op_type == "gather") {
// current not support axis from input, use default 0
if (!with_dynamic_shape || desc.Input("Axis").size() > 0) return false;
}
if (op_type == "nearest_interp") {
std::vector<std::string> attrs{"data_layout", "interp_method",
"align_corners", "scale",
"out_h", "out_w"};
for (auto const attr : attrs) {
if (!desc.HasAttr(attr)) return false;
}
auto data_layout = framework::StringToDataLayout(
BOOST_GET_CONST(std::string, desc.GetAttr("data_layout")));
if (data_layout != framework::DataLayout::kNCHW &&
data_layout != framework::DataLayout::kNHWC)
return false;
auto interp_method =
BOOST_GET_CONST(std::string, desc.GetAttr("interp_method"));
if (interp_method != "nearest") return false;
}
if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
}
return false;
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from inference_pass_test import InferencePassTest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.core import PassVersionChecker
from paddle.fluid.core import AnalysisConfig
class TRTNearestInterpTest(InferencePassTest):
def setUp(self):
self.set_params()
with fluid.program_guard(self.main_program, self.startup_program):
if self.data_layout == 'NCHW':
shape = [
-1, self.channels, self.origin_shape[0],
self.origin_shape[1]
]
else:
shape = [
-1, self.origin_shape[0], self.origin_shape[1],
self.channels
]
data = fluid.data(name='data', shape=shape, dtype='float32')
resize_out = self.append_nearest_interp(data)
out = fluid.layers.batch_norm(resize_out, is_test=True)
if self.data_layout == 'NCHW':
shape = [
self.bs, self.channels, self.origin_shape[0],
self.origin_shape[1]
]
else:
shape = [
self.bs, self.origin_shape[0], self.origin_shape[1],
self.channels
]
self.feeds = {'data': np.random.random(shape).astype('float32'), }
self.enable_trt = True
self.trt_parameters = TRTNearestInterpTest.TensorRTParam(
1 << 30, self.bs, 1, AnalysisConfig.Precision.Float32, False, False)
self.fetch_list = [out]
def set_params(self):
self.bs = 4
self.scale = 1
self.channels = 3
self.origin_shape = (32, 32) # HW
self.resize_shape = (64, 64) # HW
self.align_corners = True
self.data_layout = 'NCHW'
def append_nearest_interp(self, data):
if self.scale > 0.:
return fluid.layers.resize_nearest(
data,
scale=self.scale,
align_corners=self.align_corners,
data_format=self.data_layout)
return fluid.layers.resize_nearest(
data,
out_shape=self.resize_shape,
align_corners=self.align_corners,
data_format=self.data_layout)
def test_check_output(self):
if core.is_compiled_with_cuda():
use_gpu = True
self.check_output_with_option(use_gpu, flatten=True)
self.assertTrue(
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
class TRTNearestInterpTest1(TRTNearestInterpTest):
def set_params(self):
self.bs = 4
self.scale = -1
self.channels = 3
self.origin_shape = (32, 32) # HW
self.resize_shape = (64, 64) # HW
self.align_corners = True
self.data_layout = 'NCHW'
class TRTNearestInterpTest2(TRTNearestInterpTest):
def set_params(self):
self.bs = 4
self.scale = 2.
self.channels = 3
self.origin_shape = (32, 32) # HW
self.resize_shape = (64, 64) # HW
self.align_corners = False
self.data_layout = 'NCHW'
class TRTNearestInterpTest3(TRTNearestInterpTest):
def set_params(self):
self.bs = 4
self.scale = -1
self.channels = 3
self.origin_shape = (32, 32) # HW
self.resize_shape = (64, 64) # HW
self.align_corners = False
self.data_layout = 'NCHW'
class TRTNearestInterpTest4(TRTNearestInterpTest):
def set_params(self):
self.bs = 4
self.scale = -1
self.channels = 3
self.origin_shape = (32, 32) # HW
self.resize_shape = (47, 48) # HW
self.align_corners = False
self.data_layout = 'NCHW'
class TRTNearestInterpTest5(TRTNearestInterpTest):
def set_params(self):
self.bs = 4
self.scale = -1
self.channels = 3
self.origin_shape = (32, 32) # HW
self.resize_shape = (64, 64) # HW
self.align_corners = True
self.data_layout = 'NHWC'
class TRTNearestInterpTest6(TRTNearestInterpTest):
def set_params(self):
self.bs = 4
self.scale = 2.
self.channels = 3
self.origin_shape = (32, 32) # HW
self.resize_shape = (64, 64) # HW
self.align_corners = False
self.data_layout = 'NHWC'
class TRTNearestInterpTest7(TRTNearestInterpTest):
def set_params(self):
self.bs = 4
self.scale = -1
self.channels = 3
self.origin_shape = (32, 32) # HW
self.resize_shape = (64, 64) # HW
self.align_corners = False
self.data_layout = 'NHWC'
class TRTNearestInterpTest8(TRTNearestInterpTest):
def set_params(self):
self.bs = 4
self.scale = -1
self.channels = 3
self.origin_shape = (32, 32) # HW
self.resize_shape = (47, 48) # HW
self.align_corners = False
self.data_layout = 'NHWC'
class TRTNearestInterpTest9(TRTNearestInterpTest):
def set_params(self):
self.bs = 4
self.scale = -1
self.channels = 3
self.origin_shape = (32, 32) # HW
self.resize_shape = (47, 48) # HW
self.align_corners = False
self.data_layout = 'NHWC'
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册