op_teller.cc 105.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16

17
#include <bitset>
18

19
#include "paddle/fluid/framework/block_desc.h"
20
#include "paddle/fluid/framework/data_layout.h"
W
weishengying 已提交
21 22 23 24
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_factory.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
25

W
wanghuancoder 已提交
26 27 28 29 30 31
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

32 33 34 35 36 37
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
38
  SimpleOpTypeSetTeller() {
39
#if IS_TRT_VERSION_GE(7130)
Z
Zhang Jun 已提交
40
    // use TensorRT plugin
41
    teller_set.insert("group_norm");
Z
Zhang Jun 已提交
42 43
    teller_set.insert("multiclass_nms3");
    teller_set.insert("multiclass_nms");
44 45
    int8_teller_set.insert("multiclass_nms3");
    int8_teller_set.insert("multiclass_nms");
46
#endif
W
wenbin 已提交
47 48
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
49
    teller_set.insert("flatten_contiguous_range");
50
    int8_teller_set.insert("flatten_contiguous_range");
Z
zhoutianzi666 已提交
51 52 53 54
    teller_set.insert("rnn");
    int8_teller_set.insert("rnn");
    teller_set.insert("fill_constant_batch_size_like");
    int8_teller_set.insert("fill_constant_batch_size_like");
W
wenbin 已提交
55
#endif
W
wenbin 已提交
56
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
57 58
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
59 60
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
61 62 63 64 65 66
#endif
#if IS_TRT_VERSION_GE(8000)
    teller_set.insert("sparse_fc");
    int8_teller_set.insert("sparse_fc");
    teller_set.insert("sparse_multihead_matmul");
    int8_teller_set.insert("sparse_multihead_matmul");
67
#endif
68 69 70 71 72
#if IS_TRT_VERSION_GE(8522)
    teller_set.insert("flash_multihead_matmul");
    int8_teller_set.insert("flash_multihead_matmul");
    teller_set.insert("cross_multihead_matmul");
    int8_teller_set.insert("cross_multihead_matmul");
73 74
    teller_set.insert("qk_multihead_matmul");
    int8_teller_set.insert("qk_multihead_matmul");
75
#endif
76 77 78
#if IS_TRT_VERSION_GE(8200)
    teller_set.insert("round");
    int8_teller_set.insert("round");
X
xjmxyt 已提交
79
    teller_set.insert("set_value");
X
xjmxyt 已提交
80 81
    teller_set.insert("index_select");
    int8_teller_set.insert("index_select");
82 83
#endif
  }
84

W
weishengying 已提交
85 86 87 88
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

    std::unordered_set<std::string> control_set = {"conditional_block",
                                                   "while"};
    std::unordered_set<std::string> feed_fetch_set = {"feed", "fetch"};
    if (control_set.find(op_type) != control_set.end()) {
      return false;
    }

    if (feed_fetch_set.find(op_type) != feed_fetch_set.end()) {
      return false;
    }

    // Dont.t allow fp64!
    {
      auto inputs = desc.Inputs();
      for (auto iter : inputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            auto dtype = var_desc->GetDataType();
            if (dtype == framework::proto::VarType::FP64) {
              return false;
            }
          }
        }
      }

      auto outputs = desc.Outputs();
      for (auto iter : outputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            auto dtype = var_desc->GetDataType();
            if (dtype == framework::proto::VarType::FP64) {
              return false;
            }
          }
        }
      }
    }

W
weishengying 已提交
132 133 134 135 136 137
    // do not support the op which is labeled the `skip_quant`
    if ((desc.HasAttr("namescope") &&
         PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
             "/skip_quant_2/") ||
        desc.HasAttr("skip_quant"))
      return false;
138
    std::unordered_set<std::string> act_op_list = {
139 140 141 142 143 144 145 146 147 148 149
        "relu",       "relu6",       "sigmoid",
        "elu",        "selu",        "softsign",
        "softplus",   "stanh",       "thresholded_relu",
        "exp",        "log",         "sqrt",
        "abs",        "sin",         "cos",
        "tan",        "tanh",        "sinh",
        "cosh",       "asin",        "acos",
        "atan",       "asinh",       "acosh",
        "atanh",      "ceil",        "celu",
        "erf",        "floor",       "round",
        "sign",       "silu",        "logical_not",
150
        "reciprocal", "tanh_shrink", "logsigmoid",
151 152
        "rsqrt",      "swish",       "hard_sigmoid",
        "hard_swish", "leaky_relu"};
153
    std::unordered_set<std::string> unary_list = {
154 155 156 157 158 159
        "exp",   "log",         "sqrt",       "abs",         "sin",
        "cos",   "tan",         "tanh",       "sinh",        "cosh",
        "asin",  "acos",        "atan",       "asinh",       "acosh",
        "atanh", "ceil",        "celu",       "floor",       "round",
        "sign",  "logical_not", "reciprocal", "tanh_shrink", "logsigmoid",
        "erf",   "bitwise_not", "equal",      "not_equal",   "rsqrt"};
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

    // Static shape does not support 0 or 1 dim's input.
    if (!with_dynamic_shape) {
      auto inputs = desc.Inputs();
      for (auto iter : inputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            // Can't get feed op's TensorDesc
            if (op_type != "feed" && var_desc && !var_desc->Persistable()) {
              const auto shape = var_desc->GetShape();
              if (shape.size() == 1 || shape.size() == 0) return false;
            }
          }
        }
      }
    }

179
    if (act_op_list.find(op_type) != act_op_list.end()) {
J
JingZhuangzhuang 已提交
180
      auto* block = desc.Block();
181 182 183 184 185 186
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
187 188 189 190 191
#if !IS_TRT_VERSION_GE(7000)
      if (op_type == "erf") {
        VLOG(3) << op_type << " op does not support tensorrt.";
        return false;
      }
192 193
#endif
#if !IS_TRT_VERSION_GE(8600)
194 195 196
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
197 198 199 200 201
      if (x_shape.size() == 0 && unary_list.find(op_type) != unary_list.end()) {
        VLOG(3) << op_type
                << " op does not support 0 dim input when TensorRT < 8.6.";
        return false;
      }
202
#endif
J
JingZhuangzhuang 已提交
203
    }
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    if (op_type == "dropout") {
      /*
       * Some OpDescs Attribute support both constant value and dynamic
       * runtime value (which is a Variable(s) type). But TensorRT maybe
       * only support constant value Attribute, so we shall distinguish
       * this case in time and return False in OpTeller.Tell().
       * If Attribute is Variable(s), HasAttr() will return False
       */
      if (!desc.HasAttr("dropout_prob", /*with_attr_var=*/false)) {
        VLOG(3)
            << "Skip to convert into TRT while found Attribute('dropout_prob') "
               "is Variable type in dropout.";
        return false;
      }
    }

221
    if (op_type == "pool2d") {
222 223 224 225 226 227 228
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("ksize", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('ksize') is "
                   "Variable type in pool2d.";
        return false;
      }

229
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
230
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
231 232
      if (paddings.size() > 2) {
        return false;
233
      }
234 235 236 237 238 239 240 241 242 243
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
244 245
      if (desc.HasAttr("data_format")) {
        std::string data_format =
R
Ruibiao Chen 已提交
246
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
W
wenbin 已提交
247 248 249 250
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
251 252 253 254
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
R
Ruibiao Chen 已提交
255
            PADDLE_GET_CONST(std::string, desc.GetAttr("pooling_type"));
256 257 258 259 260
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
261 262
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
R
Ruibiao Chen 已提交
263
            if (!PADDLE_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
264
              if (desc.HasAttr("exclusive")) {
R
Ruibiao Chen 已提交
265
                if (PADDLE_GET_CONST(bool, desc.GetAttr("exclusive"))) {
266
                  std::vector<int> ksize =
R
Ruibiao Chen 已提交
267
                      PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
268 269 270 271 272 273 274 275 276 277 278 279 280
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
281 282 283 284
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
285 286
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

310 311
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
312 313 314 315
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
316
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
317 318 319 320 321 322 323 324 325 326 327 328 329 330
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
331

W
wenbin 已提交
332
// strides > 1 and 'SAME' is only supported by trt7.0 above
333
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
334 335 336 337
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
R
Ruibiao Chen 已提交
338
              PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
339 340
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
R
Ruibiao Chen 已提交
341
                PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wenbin 已提交
342 343 344 345 346 347
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
348 349 350 351
          }
        }
      }
#endif
352 353 354 355 356 357 358 359 360
      auto* block = desc.Block();
      if (block) {
        auto* filter_var_desc = block->FindVar(desc.Input("Filter")[0]);
        if (!filter_var_desc->Persistable()) {
          VLOG(3) << "Trt not support filter is  a intermediate tensor in "
                     "conv2d op.";
          return false;
        }
      }
361 362
    }

W
wangxinxin08 已提交
363
    if (op_type == "deformable_conv") {
364 365 366
      if (!desc.HasAttr("groups") || !desc.HasAttr("strides") ||
          !desc.HasAttr("paddings"))
        return false;
W
wangxinxin08 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

R
Ruibiao Chen 已提交
382
      int groups = PADDLE_GET_CONST(int, desc.GetAttr("groups"));
W
wangxinxin08 已提交
383 384 385 386 387 388 389 390
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
R
Ruibiao Chen 已提交
391
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wangxinxin08 已提交
392 393 394 395 396 397 398
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
R
Ruibiao Chen 已提交
399
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wangxinxin08 已提交
400 401 402 403 404 405 406
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

407 408 409 410 411 412
    if (op_type == "bmm") {
      if (!with_dynamic_shape) {
        return false;
      }
    }

413 414 415 416
    if (op_type == "range") {
      if (!with_dynamic_shape) {
        return false;
      }
417 418 419 420 421 422 423 424 425
#if IS_TRT_VERSION_LT(8400)
      auto* block = desc.Block();
      auto start_var_name = desc.Input("Start")[0];
      auto* start_var_desc = block->FindVar(start_var_name);
      auto start_dtype = start_var_desc->GetDataType();
      if (start_dtype == framework::proto::VarType::FP32) {
        return false;
      }
#endif
426 427
    }

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    if (op_type == "sign") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "sign op is only supported by trt8.2 above ";
      return false;
#endif
    }

    if (op_type == "logical_not") {
#if IS_TRT_VERSION_GE(8400)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "logical_not op is only supported by trt8.4 above because of "
                 "cast op";
      return false;
#endif
    }
450

W
Wilber 已提交
451 452 453 454 455 456 457 458 459 460 461
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
462 463 464 465 466 467 468 469 470

      if (with_dynamic_shape && (x_shape.size() == 1 || x_shape.size() == 0)) {
        int axis = desc.HasAttr("axis")
                       ? PADDLE_GET_CONST(int, desc.GetAttr("axis"))
                       : -1;
        if (axis > 0) {
          return false;
        }
      }
W
Wilber 已提交
471
    }
472

473
    if (op_type == "group_norm") {
474 475 476 477
      if (!desc.HasAttr("epsilon") || !desc.HasAttr("groups") ||
          !desc.HasAttr("data_layout"))
        return false;

478 479
      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
480 481 482 483 484 485 486
      std::string layout_str =
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
      if (layout_str != "NCHW") {
        VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
                << layout_str;
        return false;
      }
487 488 489 490
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
491
      }
R
Ruibiao Chen 已提交
492
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
493 494
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
495 496 497 498 499
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
500
        }
501 502
      }
    }
503 504 505
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
506 507
      }
      std::vector<int> axis =
R
Ruibiao Chen 已提交
508
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
509 510 511 512
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
513 514 515 516 517 518
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
519 520 521
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
522
      if (axis.size() != x_shape.size()) return false;
523
      int dims = x_shape.size();
W
wenbin 已提交
524

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
543
        return false;
544 545
      }
    }
546
    if (op_type == "flatten2" || op_type == "flatten") {
547 548 549
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
550 551
#if IS_TRT_VERSION_GE(7130)
#else
552
        if (with_dynamic_shape) return false;
553
#endif
R
Ruibiao Chen 已提交
554
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
555 556 557
        if (axis != 1) return false;
      }
    }
558 559
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
560 561 562
        if (!desc.HasAttr("start_axis") || !desc.HasAttr("stop_axis")) {
          return false;
        }
R
Ruibiao Chen 已提交
563 564
        int start_axis = PADDLE_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = PADDLE_GET_CONST(int, desc.GetAttr("stop_axis"));
565 566 567 568 569 570 571 572 573 574 575
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
576 577 578 579 580 581
        if (dims == 0) {
          VLOG(3) << op_type
                  << " op does not support input's dim is 0 in tensorrt "
                     "static shape mode.";
          return false;
        }
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
598

599
    if (op_type == "gather") {
600 601 602 603 604 605 606 607 608
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
        if (desc.Input("Axis").size() >= 1) {
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
609
        auto* block = desc.Block();
610 611 612 613 614 615
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
616
#if !IS_TRT_VERSION_GE(7000)
617 618 619 620 621 622
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
623
#endif
624
      }
625
    }
Z
zlsh80826 已提交
626

627
    if (op_type == "gather_nd") {
628 629
      if (!with_dynamic_shape) return false;

630
      auto* block = desc.Block();
631 632 633 634 635 636
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
637
#if IS_TRT_VERSION_LT(8200)
638 639
      auto index_var_name = desc.Input("Index")[0];
      auto* index_var_desc = block->FindVar(index_var_name);
640 641
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
642 643
      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
644 645 646 647 648 649
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

650 651 652 653 654
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
655
#endif
656
    }
X
xjmxyt 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
    if (op_type == "index_select") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
      auto gather_inputs = desc.Inputs();
      if (!with_dynamic_shape) {
        return false;
      } else {
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }

        auto index_var_name = desc.Input("Index")[0];
        auto* index_var_desc = block->FindVar(index_var_name);
675

X
xjmxyt 已提交
676 677 678 679 680 681 682 683 684 685 686
        // The index input must be int32 or int64 datatype.
        if (index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT32 &&
            index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT64) {
          VLOG(3)
              << "Index select op Index input data type must be int32 or int64";
          return false;
        }
      }
    }
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    if (op_type == "take_along_axis") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) return false;
      auto* block = desc.Block();
      auto input_var_name = desc.Input("Input")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* input_var_desc = block->FindVar(input_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "take_along_axis op Index input data type must be int32";
        return false;
      }

      const auto input_shape = input_var_desc->GetShape();
      const auto index_shape = index_var_desc->GetShape();
      if (input_shape.size() != index_shape.size()) {
        VLOG(3) << "take_along_axis op Index input dims size ["
                << index_shape.size() << " ] not equal to input dims size ["
                << input_shape.size() << "]";
        return false;
      }
#else
      VLOG(3) << "take_along_axis op is only supported by trt8.2 above ";
      return false;
#endif
    }

717 718 719 720
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
721 722 723 724 725 726
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
727
      if (!has_attrs) return false;
Z
zlsh80826 已提交
728 729
    }

730 731 732 733 734 735
    if (op_type == "yolo_box_head") {
      if (with_dynamic_shape) return false;
      bool has_attrs = desc.HasAttr("class_num") && desc.HasAttr("anchors");
      if (!has_attrs) return false;
    }

736
    if (op_type == "arg_max" || op_type == "arg_min") {
737 738 739 740 741 742
      if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
                   "Variable type in arg_max.";
        return false;
      }

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto x_dtype = x_var_desc->GetDataType();

      if (!(x_dtype == framework::proto::VarType::FP32 ||
            x_dtype == framework::proto::VarType::FP16)) {
        return false;
      }

759
      int axis = desc.HasAttr("axis")
R
Ruibiao Chen 已提交
760
                     ? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
761
                     : -1;
X
xiaoxiaohehe001 已提交
762 763 764 765 766 767
      bool flatten = desc.HasAttr("flatten")
                         ? PADDLE_GET_CONST(bool, desc.GetAttr("flatten"))
                         : false;
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 3;
768
      if (axis == 0 || flatten || (dtype != 2 && dtype != 3)) return false;
769 770
    }

771 772
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
773
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
774
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
775
      if (data_layout != phi::DataLayout::kNCHW) return false;
776 777

      auto* block = desc.Block();
778 779 780 781 782 783
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
784 785 786 787 788 789
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
790 791
    }

792
    if (op_type == "multiclass_nms" || op_type == "multiclass_nms3") {
Z
zlsh80826 已提交
793
      auto* block = desc.Block();
794 795 796 797 798 799
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
800 801 802 803 804 805 806 807
      auto multiclass_nms_inputs = desc.Inputs();
      if (multiclass_nms_inputs.find("RoisNum") !=
          multiclass_nms_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
      for (auto& param_name : multiclass_nms_inputs) {
Z
zlsh80826 已提交
808 809 810 811
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
812
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
813 814 815 816 817 818 819 820 821 822 823 824
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

825 826 827
      // TODO(wangxinxin08): tricky solution because the outputs of batchedNMS
      // plugin are not constient with those of multiclass_nms3
      if (desc.HasAttr("nms_eta") == false) return false;
R
Ruibiao Chen 已提交
828
      auto nms_eta = PADDLE_GET_CONST(float, desc.GetAttr("nms_eta"));
829 830
      if (nms_eta <= 1.0) return false;

R
Ruibiao Chen 已提交
831
      auto nms_top_k = PADDLE_GET_CONST(int, desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
832 833
      if (nms_top_k < 0) return false;

R
Ruibiao Chen 已提交
834
      auto keep_top_k = PADDLE_GET_CONST(int, desc.GetAttr("keep_top_k"));
Z
zlsh80826 已提交
835 836 837 838 839 840
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

841
    if (op_type == "nearest_interp") {
C
ccrrong 已提交
842 843
      std::vector<std::string> attrs{
          "interp_method", "align_corners", "scale", "out_h", "out_w"};
844
      for (auto const& attr : attrs) {
845 846
        if (!desc.HasAttr(attr)) return false;
      }
847
      if (desc.HasAttr("data_layout")) {
848
        auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
849
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
850 851
        if (data_layout != phi::DataLayout::kNCHW &&
            data_layout != phi::DataLayout::kNHWC)
852 853
          return false;
      }
854
      auto interp_method =
R
Ruibiao Chen 已提交
855
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
856
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
857 858 859 860 861
      auto scale = PADDLE_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
862 863 864 865
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
866
        }
867 868
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
869 870
          return false;
        }
871
      }
872 873 874 875 876 877 878 879 880
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
881
    }
882

883
    if (op_type == "nearest_interp_v2") {
C
ccrrong 已提交
884 885 886 887 888 889
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
890
      for (auto const& attr : attrs) {
891 892
        if (!desc.HasAttr(attr)) return false;
      }
893
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
894
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
895 896
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC)
897 898
        return false;
      auto interp_method =
R
Ruibiao Chen 已提交
899
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
900
      if (interp_method != "nearest") return false;
901

902
#if IS_TRT_VERSION_GE(8200)
903 904 905 906 907 908
      auto resize_inputs = desc.Inputs();
      if (with_dynamic_shape &&
          resize_inputs.find("SizeTensor") != resize_inputs.end() &&
          desc.Input("SizeTensor").size() == 2) {
        return true;
      }
909
#endif
910

R
Ruibiao Chen 已提交
911 912 913
      auto scale = PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
914
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
915
        if (scale.size() < 2) return false;
916 917 918 919 920 921 922 923
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

924
    if (op_type == "bilinear_interp_v2") {
925 926 927 928
      // trt 7011 result in test_solov2_trt_fp32.py TRT fp32 diff
#if IS_TRT_VERSION_LT(7100)
      return false;
#endif
C
ccrrong 已提交
929 930 931 932 933 934
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
935
      for (auto const& attr : attrs) {
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
        if (!desc.HasAttr(attr)) {
          VLOG(3) << "The op_type " << op_type << " doesn't have the attr "
                  << attr << " and return false";
          return false;
        }
      }

      auto resize_inputs = desc.Inputs();
      if (resize_inputs.find("SizeTensor") != resize_inputs.end()) {
        if (desc.Input("SizeTensor").size() >= 1) {
          VLOG(3)
              << "The Paddle-TRT doesn't support the SizeTensor for op_type "
              << op_type;
          return false;
        }
      }

      if (resize_inputs.find("OutSize") != resize_inputs.end()) {
954 955
        if (!with_dynamic_shape) {
          VLOG(3) << "Static shape don't support the OutSize for op_type "
956 957 958 959 960
                  << op_type;
          return false;
        }
      }

961
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
962
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
963 964
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC) {
965 966 967 968 969
        VLOG(3) << "The op_type " << op_type
                << " is not NCHW or NHWC return false";
        return false;
      }
      auto interp_method =
R
Ruibiao Chen 已提交
970
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
971 972 973 974 975 976
      if (interp_method != "bilinear") {
        VLOG(3) << "The interp_method of op_type " << op_type
                << " is not bilinear";
        return false;
      }

R
Ruibiao Chen 已提交
977 978
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
979 980 981 982 983 984 985 986 987 988 989
      if (align_corners != false) {
        VLOG(3)
            << "The bilinear_interp_v2 only supports align_corners with false.";
        return false;
      }

      bool has_scale_input_size =
          (resize_inputs.find("Scale") != resize_inputs.end());

      if (has_scale_input_size && desc.Input("Scale").size() != 1) {
        const std::vector<float> scale =
R
Ruibiao Chen 已提交
990
            PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
991 992 993 994 995 996 997
        if (scale.size() <= 1) {
          if (!desc.HasAttr("out_h") || !desc.HasAttr("out_w")) {
            VLOG(3) << "The op_type " << op_type
                    << " doesn't have Scale and the scale size <=1 and without "
                       "out_h / out_w, it will return false";
            return false;
          }
R
Ruibiao Chen 已提交
998 999
          auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
          auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
          if (!(out_h <= 0 && out_w <= 0)) {
            if (out_h <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_h must be greater than 0 if scale is not set.";
              return false;
            }
            if (out_w <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_w must be greater than 0 if scale is not set.";
              return false;
            }
          }
        } else {
          for (size_t i = 0; i < scale.size(); i++) {
            if (scale[i] <= 0 && with_dynamic_shape) {
              VLOG(3) << "dynamic shape not support Attr(scale[" << i << "]) "
                      << scale[i]
                      << " less than 1 and Input(Scale) vector not set.";
              return false;
            }
          }
        }
      }
    }

1025
    if (op_type == "squeeze2") {
1026 1027 1028 1029 1030 1031 1032
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("axes", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axes') is "
                   "Variable type in squeeze2.";
        return false;
      }

1033 1034
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1035
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1036 1037
      }
      if (axes.size() == 0) {
W
wenbin 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
        auto* block = desc.Block();
        if (block) {
          auto input_var_name = desc.Input("X")[0];
          auto* input_var_desc = block->FindVar(input_var_name);
          const auto input_shape = input_var_desc->GetShape();
          for (int s : input_shape) {
            if (s == -1) {
              VLOG(3) << "The necessary attributes of the squeeze2 operator "
                         "axes is "
                         "missing. ss ==== -1";
              return false;
            } else if (s == 1) {
              axes.push_back(s);
            }
          }
        }
        if (axes.size() == 0) {
          VLOG(3)
              << "The necessary attributes of the squeeze2 operator axes is "
                 "missing.";
          return false;
        }
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

    if (op_type == "unsqueeze2") {
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1073
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

1089
    if (op_type == "batch_norm") {
C
ccrrong 已提交
1090 1091
      const std::vector<std::string> bn_inputs = {
          "X", "Bias", "Mean", "Scale", "Variance"};
1092 1093 1094 1095 1096 1097 1098 1099 1100
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
1101 1102 1103 1104 1105 1106
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
        if (desc.Input("MomentumTensor").size() >= 1) {
          return false;
        }
      }
1107 1108 1109 1110 1111 1112
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1123 1124 1125 1126 1127 1128 1129 1130 1131
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
1132 1133 1134 1135 1136 1137 1138 1139
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
        if (desc.Input("SectionsTensorList").size() >= 1) {
1140 1141 1142
          if (!with_dynamic_shape) {
            return false;
          }
1143 1144
        }
      }
1145 1146
      if (!desc.HasAttr("axis")) {
        return false;
1147
      }
R
Ruibiao Chen 已提交
1148
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
1149

1150
      if (!with_dynamic_shape && axis == 0) {
1151
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
1152
                   "TensorRT with static shape";
1153 1154 1155
        return false;
      }
      auto* block = desc.Block();
1156 1157 1158 1159 1160 1161
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1162 1163 1164 1165 1166 1167 1168
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
R
Ruibiao Chen 已提交
1169
        num = PADDLE_GET_CONST(int, desc.GetAttr("num"));
1170 1171 1172
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
R
Ruibiao Chen 已提交
1173
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
      }
      if (output_lengths.size() == 0 && num == 0) {
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
      if (output_lengths.size() == 0) {
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
1206 1207
        }
      }
1208 1209 1210 1211
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
1212
    }
1213

1214 1215 1216 1217 1218 1219 1220 1221
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
        if (desc.Input("ScaleTensor").size() >= 1) {
          return false;
        }
      }
      auto* block = desc.Block();
1222 1223 1224 1225 1226 1227
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1228 1229 1230
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1231
      auto dtype = x_var_desc->GetDataType();
W
wenbin 已提交
1232 1233 1234 1235 1236 1237 1238
      if (!with_dynamic_shape) {
        // At present, only support float32 or float16 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16)) {
          return false;
        }
      } else {
1239 1240
        // At present, only support float32 or float16 or int32 or int64 into
        // trt.
W
wenbin 已提交
1241 1242
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16 ||
1243 1244
              dtype == framework::proto::VarType::INT32 ||
              dtype == framework::proto::VarType::INT64)) {
W
wenbin 已提交
1245 1246
          return false;
        }
1247
      }
1248
    }
1249

F
feng_shuai 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3) << "roll converter does not support trt versions below 7.0";
      return false;
#endif
      if (!with_dynamic_shape) {
        return false;
      }
    }

    if (op_type == "strided_slice") {
1261 1262 1263 1264 1265
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3)
          << "strided_slice converter does not support trt versions below 7.0";
      return false;
#endif
F
feng_shuai 已提交
1266 1267 1268 1269 1270 1271 1272 1273
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends") || !desc.HasAttr("strides")) {
        VLOG(3)
            << "The necessary attributes of the strided_slice operator miss ";
        return false;
      }
    }

Z
zhoutianzi666 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    if (op_type == "rnn") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "LSTM") return false;
      }
      if (desc.HasAttr("dropout_prob")) {
        float dropout_prob =
            PADDLE_GET_CONST(float, desc.GetAttr("dropout_prob"));
        if (dropout_prob > 1e-5) return false;
      }
      // not support following four inputs for rnn in paddle-trt
      auto rnn_inputs = desc.Inputs();
      if (rnn_inputs.find("SequenceLength") != rnn_inputs.end()) {
        if (desc.Input("SequenceLength").size()) {
          return false;
        }
      }
    }

    if (op_type == "fill_constant_batch_size_like") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("input_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("output_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("Input")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 into trt.
      if (dtype != 5) {
        return false;
      }
    }

1325 1326 1327 1328 1329
    if (op_type == "fill_any_like") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the fill_any_like does not support static shape yet";
        return false;
      }
1330 1331 1332
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : -1;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto input_type = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(8400)
      if (dtype == 0 ||
          (dtype == -1 && input_type == framework::proto::VarType::BOOL)) {
        VLOG(3) << "the fill_any_like supports input of BOOL by trt8.4 above";
        return true;
      }
#endif
1343
      if (dtype != -1 && dtype != 2 && dtype != 5) {
1344 1345
        VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                   "trt8.4 below";
1346 1347 1348 1349 1350
        return false;
      }
      if (dtype == -1) {
        if (input_type != framework::proto::VarType::INT32 &&
            input_type != framework::proto::VarType::FP32) {
1351 1352
          VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                     "trt8.4 below";
1353 1354 1355 1356 1357
          return false;
        }
      }
    }

1358
    if (op_type == "slice") {
1359 1360
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
R
Ruibiao Chen 已提交
1361
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
1362 1363 1364
        if (!with_dynamic_shape) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), 0)) {
1365 1366
            return false;
          }
1367 1368
        }
      }
1369 1370
      std::vector<int> axes;
      if (!desc.HasAttr("axes")) {
1371
        VLOG(3) << "The necessary attributes of the slice operator axes "
1372
                   " are missing.";
1373 1374
        return false;
      } else {
1375
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
1386 1387
      // not support following four inputs for slice in paddle-trt
      auto slice_inputs = desc.Inputs();  // its size == 5
1388 1389 1390 1391 1392 1393 1394 1395
      if (slice_inputs.find("StartsTensor") != slice_inputs.end() &&
          desc.Input("StartsTensor").size()) {
        VLOG(3) << "The Slice has StartsTensor input.";
      } else {
        if (!desc.HasAttr("starts")) {
          VLOG(3) << "The necessary attributes of the slice operator starts or "
                     "StartsTensor"
                     " are missing.";
1396
          return false;
1397 1398 1399 1400 1401 1402 1403 1404
        } else {
          std::vector<int> starts =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
          if (axes.size() != starts.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and starts are not equal.";
            return false;
          }
1405 1406
        }
      }
1407 1408 1409 1410 1411 1412 1413 1414
      if (slice_inputs.find("EndsTensor") != slice_inputs.end() &&
          desc.Input("EndsTensor").size()) {
        VLOG(3) << "The Slice has EndsTensor input.";
      } else {
        if (!desc.HasAttr("ends")) {
          VLOG(3) << "The necessary attributes of the slice operator ends or "
                     "EndsTensor"
                     " are missing.";
1415
          return false;
1416 1417 1418 1419 1420 1421 1422 1423
        } else {
          std::vector<int> ends =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
          if (axes.size() != ends.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and ends are not equal.";
            return false;
          }
1424 1425 1426
        }
      }
      if (slice_inputs.find("StartsTensorList") != slice_inputs.end()) {
周周周 已提交
1427
        VLOG(3) << "The Slice has StartsTensorList input.";
1428 1429
      }
      if (slice_inputs.find("EndsTensorList") != slice_inputs.end()) {
周周周 已提交
1430
        VLOG(3) << "The Slice has EndsTensorList input.";
1431
      }
1432 1433
    }

1434 1435
    if (op_type == "less_than" || op_type == "greater_than" ||
        op_type == "logical_or" || op_type == "logical_xor" ||
1436 1437
        op_type == "logical_and" || op_type == "less_equal" ||
        op_type == "greater_equal") {
1438
#if IS_TRT_VERSION_GE(8400)
1439
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
1440
      if (!with_dynamic_shape) {
1441
        VLOG(3) << "Ops(" << op_type << ") do not support static shape yet.";
1442 1443
        return false;
      }
1444 1445 1446 1447 1448
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      auto x_dtype = x_var_desc->GetDataType();
      auto y_dtype = y_var_desc->GetDataType();
1449 1450 1451 1452
      if (op_type == "logical_or" || op_type == "logical_xor" ||
          op_type == "logical_and") {
        if (x_dtype != framework::proto::VarType::BOOL ||
            y_dtype != framework::proto::VarType::BOOL) {
1453 1454 1455 1456 1457
          VLOG(3) << "the op (" << op_type << ") only support input of BOOL.";
          return false;
        }
      }
      if (op_type == "less_than" || op_type == "greater_than" ||
1458
          op_type == "less_equal" || op_type == "greater_equal") {
1459 1460 1461 1462 1463
        if (x_dtype == framework::proto::VarType::BOOL ||
            y_dtype == framework::proto::VarType::BOOL) {
          VLOG(3)
              << "ElementWiseOperation::kLESS/ElementWiseOperation::kGREATER "
                 "do not support boolean datatype.";
1464 1465 1466 1467 1468 1469 1470 1471
          return false;
        }
      }
#else
      VLOG(3) << "these are not supported when TensorRT < 8.4";
      return false;
#endif
    }
1472
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
S
shentanyue 已提交
1473
        op_type == "elementwise_sub" || op_type == "elementwise_div" ||
1474
        op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1475 1476
        op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
        op_type == "elementwise_mod") {
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
1495
      auto* block = desc.Block();
1496 1497 1498 1499 1500 1501
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1502 1503 1504 1505
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
1506

1507 1508 1509 1510
      // These operations do not support boolean datatype.
      if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
          op_type == "elementwise_sub" || op_type == "elementwise_div" ||
          op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1511 1512
          op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
          op_type == "elementwise_mod") {
1513 1514
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_BOOL) {
1515 1516 1517 1518
          VLOG(3)
              << "These operations "
                 "(elementwise_add/mul/sub/div/pow/min/max/floordiv/mod) do "
                 "not support boolean datatype.";
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
          return false;
        }
      }
      // These operations input do not support int32 datatype.
      if (op_type == "elementwise_pow") {
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "These operations (elementwise_pow) do not support int32 "
                     "datatype.";
          return false;
        }
      }

1532 1533 1534 1535 1536 1537
      // The case when x_shape.size() == 1 is dealt with in common case
      if (!with_dynamic_shape && (!y_var_desc->Persistable()) &&
          y_shape.size() == 1) {
        VLOG(3) << "Static shape in trt not support y is  a 1D intermediate "
                   "tensor in "
                   "elementwise op.";
1538 1539
        return false;
      }
1540

1541 1542 1543 1544
      if (x_var_desc->Persistable() && !with_dynamic_shape) {
        VLOG(3)
            << "Input X is a parameter which is not supported for "
               "elementwise in tensorrt's static shape, swap x and y will work";
S
shentanyue 已提交
1545
        return false;
1546
      }
1547 1548
    }

W
Wilber 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557
    if (op_type == "pow") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
1558

W
Wilber 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567
      // the same as `elementwise_pow`.
      if (x_var_desc->GetDataType() ==
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "These operations (pow) do not support int32 "
                   "datatype.";
        return false;
      }
    }

1568 1569 1570 1571 1572 1573 1574 1575 1576
    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      int rank = x_shape.size();
      int axis = desc.HasAttr("axis")
                     ? PADDLE_GET_CONST(int, desc.GetAttr("axis"))
                     : -1;
      if (axis > rank || axis < -(rank + 1)) {
        return false;
      }
1595
    }
1596

1597 1598 1599
    if (op_type == "shape" && !with_dynamic_shape) {
      return false;
    }
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        return false;
      }
    }
W
Wang Bojun 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
    if (op_type == "fused_bias_dropout_residual_layer_norm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_bias_dropout_residual_layer_norm should run on "
                   "dynamic shape mode.";
        return false;
      }
      float dropout_rate =
          PADDLE_GET_CONST(float, desc.GetAttr("dropout_rate"));
      if (dropout_rate != 0.0f) {
        VLOG(4) << "preln_residual_bias trt layer can not work with "
                   "fused_bias_dropout_residual_layer_norm op in which the "
                   "dropout_rate != 0, stop convert";
        return false;
      }
    }
1626 1627
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
1628 1629 1630
        VLOG(3) << "fused_preln_embedding_eltwise_layernorm should run on "
                   "dynamic "
                   "shape mode.";
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1655

1656
#if IS_TRT_VERSION_LT(7000)
1657
      if (desc.HasAttr("approximate")) {
1658
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
R
Ruibiao Chen 已提交
1659
        if (PADDLE_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
1660
      }
1661
#endif
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    if (op_type == "fill_constant") {
      auto fill_constant_inputs = desc.Inputs();
      if (fill_constant_inputs.find("ValueTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ValueTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensorList") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensorList").size()) return false;
      }
1701 1702 1703
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 5;
1704 1705 1706 1707 1708 1709
      // only support int32, int64, float32
      if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
        return false;
      }
    }

已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
    if (op_type == "instance_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1747 1748
    }

1749
    if (op_type == "pad") {
1750
      if (!desc.HasAttr("pad_value") || !desc.HasAttr("paddings")) return false;
R
Ruibiao Chen 已提交
1751 1752
      const float pad_value =
          PADDLE_GET_CONST(float, desc.GetAttr("pad_value"));
1753 1754 1755 1756
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1757 1758
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1759 1760 1761 1762 1763 1764
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1765 1766 1767 1768 1769 1770 1771 1772
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
1773
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1786 1787
    }

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
    if (op_type == "pad3d") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "pad3d is not supported when TensorRT < 8.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "pad3d is not supported static shape";
        return false;
      }
      if (!desc.HasAttr("paddings") && !desc.HasInput("Paddings")) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "constant" && mode != "reflect" && mode != "replicate") {
          VLOG(3) << "The pad3d layer of TRT only support "
                     "constant/reflect/replicate mode.";
          return false;
        }
      }
      if (desc.HasAttr("data_format")) {
        std::string data_format =
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
        if (data_format != "NCDHW") {
          VLOG(3) << "The pad3d layer of TRT only support NCDHW data format.";
          return false;
        }
      }
    }
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1831 1832

      auto* block = desc.Block();
1833 1834 1835 1836 1837 1838
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1839 1840
      auto* alpha_var = block->FindVar(desc.Input("Alpha")[0]);
      if (!alpha_var) {
1841 1842 1843
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }
1844 1845 1846 1847 1848
      auto alpha_shape = alpha_var->GetShape();
      if (!with_dynamic_shape && alpha_shape.size() == 0) {
        VLOG(3) << op_type
                << " op does not support alpha's dim is 0 in tensorrt "
                   "static shape mode.";
1849 1850
        return false;
      }
1851 1852
    }

W
wangxinxin08 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
    }

1868 1869 1870 1871 1872 1873 1874
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
C
ccrrong 已提交
1875 1876 1877 1878
      std::vector<std::string> attrs{"pooled_height",
                                     "pooled_width",
                                     "spatial_scale",
                                     "sampling_ratio",
F
fengkuangxiaxia 已提交
1879
                                     "aligned"};
1880
      for (auto const& attr : attrs) {
1881 1882 1883 1884
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
R
Ruibiao Chen 已提交
1885
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_height"));
1886 1887 1888
      if (pooled_height <= 0) return false;

      const auto pooled_width =
R
Ruibiao Chen 已提交
1889
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_width"));
1890 1891 1892
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
R
Ruibiao Chen 已提交
1893
          PADDLE_GET_CONST(float, desc.GetAttr("spatial_scale"));
1894 1895 1896 1897 1898 1899 1900 1901
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
1902 1903 1904
    }

    if (op_type == "shuffle_channel") {
1905
#if !IS_TRT_VERSION_GE(8000)
1906 1907
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
1908 1909
                   "the shuffle_channel op does not support dynamic shape "
                   "trt versions below 8.0 yet";
1910 1911
        return false;
      }
1912
#endif
1913 1914
    }

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
    if (op_type == "where") {
#if !IS_TRT_VERSION_GE(8400)
      VLOG(3) << "where is not supported when TensorRT < 8.4";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the where op does not support static shape yet";
        return false;
      }
    }

1926 1927 1928 1929 1930
    if (op_type == "bitwise_not") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
1931
      if (dtype == framework::proto::VarType::INT8 ||
1932
          dtype == framework::proto::VarType::UINT8) {
1933
        VLOG(3) << "INT8 / UINT8 type convert to trt is not supported";
1934 1935
        return false;
      }
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
      if (dtype == framework::proto::VarType::BOOL) {
#if !IS_TRT_VERSION_GE(8400)
        VLOG(3) << "BOOL type support requires TensorRT 8.4";
        return false;
#elif !IS_TRT_VERSION_GE(8600)
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 0) {
          VLOG(3)
              << "BOOL type does not support 0 dim input when TensorRT < 8.6.";
          return false;
        }
1947
#endif
1948
      }
1949 1950
    }

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
    if (op_type == "one_hot" || op_type == "one_hot_v2") {
#if IS_TRT_VERSION_LT(8510)
      VLOG(3) << "one_hot/one_hot_v2 is not supported when TensorRT < 8.5.1";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3)
            << "the one_hot/one_hot_v2 op does not support static shape yet";
        return false;
      }
      if (desc.HasAttr("allow_out_of_range")) {
        VLOG(3)
            << "allow_out_of_range one_hot/one_hot_v2 op is not supported now.";
        if (PADDLE_GET_CONST(bool, desc.GetAttr("allow_out_of_range")))
          return false;
      }
      if (desc.HasAttr("dtype")) {
        const int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
        if (dtype != 2 && dtype != 3 && dtype != 5) {
          VLOG(3) << "one_hot/one_hot_v2 op only support int32, int64, float.";
          return false;
        }
      }
      auto one_hot_inputs = desc.Inputs();
      if (one_hot_inputs.find("depth_tensor") != one_hot_inputs.end()) {
        if (desc.Input("depth_tensor").size() != 0) {
          return true;
        }
      }

      if (desc.HasAttr("depth")) {
        const int depth = PADDLE_GET_CONST(int, desc.GetAttr("depth"));
        if (depth <= 0) {
          VLOG(3) << "depth only support positive in one_hot/one_hot_v2 op.";
          return false;
        }
      }
    }

1990 1991 1992 1993 1994 1995 1996
    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

2008 2009 2010 2011 2012
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
R
Ruibiao Chen 已提交
2029
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
F
feng_shuai 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
2039
                              input_shape[1] == biasqk_shape[3];
F
feng_shuai 已提交
2040 2041
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
2042 2043 2044 2045
        is_broadcastable =
            is_broadcastable || (biasqk_shape[0] == 1 && biasqk_shape[1] == 1 &&
                                 input_shape[1] == biasqk_shape[2] &&
                                 input_shape[1] == biasqk_shape[3]);
F
feng_shuai 已提交
2046 2047
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
2048 2049 2050 2051 2052 2053 2054
                  << ", 1, 1, " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << ", " << head_number << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << "/1, " << 1 << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "but got [" << biasqk_shape[0] << ", " << biasqk_shape[1]
                  << ", " << biasqk_shape[2] << ", " << biasqk_shape[3] << "].";
F
feng_shuai 已提交
2055 2056 2057
          return false;
        }
      } else {
2058 2059 2060
#if (IS_TRT_VERSION_GE(8000) && IS_TRT_VERSION_LT(8100)) || \
    (IS_TRT_VERSION_LT(7200))
        VLOG(3) << "There are some bugs with trt 8.0";
2061
        return false;
F
feng_shuai 已提交
2062
#endif
2063
      }
2064 2065
    }

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
    if (op_type == "multihead_matmul_roformer") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul_roformer does not support static "
                   "shape yet";
        return false;
      }

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
                              input_shape[1] == biasqk_shape[3];
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                  << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                  << ", " << head_number << ", " << input_shape[1] << ", "
                  << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                  << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                  << biasqk_shape[3] << "].";
          return false;
        }
      } else {
#if !IS_TRT_VERSION_GE(8000)
        VLOG(3) << "The version of TRT must be greater than 8000";
        return false;
#endif
      }
    }

W
Wangzheee 已提交
2118 2119 2120
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
2121
      }
2122 2123 2124 2125
      if (with_dynamic_shape) {
        return true;
      }
      // Static shape does not support the input tensors: Shape and ShapeTensor
2126
      auto reshape_inputs = desc.Inputs();
2127 2128 2129 2130 2131 2132 2133 2134 2135
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
        if (desc.Input("ShapeTensor").size() >= 1) {
          return false;
        }
W
Wangzheee 已提交
2136
      }
W
Wilber 已提交
2137
      std::vector<int> shape =
R
Ruibiao Chen 已提交
2138
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
W
Wilber 已提交
2139
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
X
xiaoxiaohehe001 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
      if (!with_dynamic_shape) {
        if (shape.size() == 1) {
          return false;
        }
        if (shape[0] == 0) {
          return true;
        } else {
          auto* block = desc.Block();
          auto x_var_name = desc.Input("X")[0];
          auto* x_var_desc = block->FindVar(x_var_name);
          const auto x_shape = x_var_desc->GetShape();
C
ccrrong 已提交
2151 2152 2153 2154
          int input_num = std::accumulate(
              x_shape.begin() + 1, x_shape.end(), 1, std::multiplies<int>());
          int shape_num = std::accumulate(
              shape.begin() + 1, shape.end(), 1, std::multiplies<int>());
X
xiaoxiaohehe001 已提交
2155 2156 2157 2158
          if (input_num == shape_num) {
            return true;
          }
        }
2159
        return false;
X
xiaoxiaohehe001 已提交
2160
      }
W
Wangzheee 已提交
2161
    }
2162

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
        if (desc.Input("Min").size() >= 1) {
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
        if (desc.Input("Max").size() >= 1) {
          return false;
        }
      }

      auto* block = desc.Block();
2178 2179 2180 2181 2182 2183
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2184 2185 2186
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
2187 2188 2189 2190 2191 2192
      if (!with_dynamic_shape && (x_shape.size() == 1 || x_shape.size() == 0)) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 or 0 in tensorrt "
                   "static shape mode.";
        return false;
      }
2193 2194
    }

2195
    if (op_type == "reduce_sum" || op_type == "reduce_mean" ||
2196
        op_type == "reduce_max" || op_type == "reduce_min" ||
2197 2198
        op_type == "reduce_prod" || op_type == "reduce_any" ||
        op_type == "reduce_all") {
2199 2200 2201 2202 2203 2204 2205
      if (!desc.HasAttr("dim", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('dim') is "
                   "Variable type in "
                << desc.Type();
        return false;
      }

2206 2207
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
2208 2209
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
2210
                   "reduce_all)";
2211 2212 2213 2214 2215 2216 2217 2218
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2219 2220
        return false;
      }
W
wenbin 已提交
2221 2222

      // The batch size dimension cannot be reduced if it's not dynamic shape.
2223
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
2224
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
2225
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
2226
        std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
2227
            PADDLE_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
2228
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
2229
        for (auto x : dim) {
2230
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
2231
        }
2232

2233
      } else {
R
Ruibiao Chen 已提交
2234 2235
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !PADDLE_GET_CONST(bool, desc.GetAttr("keep_dim")))
2236 2237
          return false;
      }
2238 2239

      auto dtype = x_var_desc->GetDataType();
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
      if (op_type == "reduce_all" || op_type == "reduce_any") {
        if (dtype != framework::proto::VarType::BOOL) {
          VLOG(3)
              << "reduce_all and reduce_any op input data type must be bool";
          return false;
        }
      } else {
#if IS_TRT_VERSION_GE(7000)
        if (dtype != framework::proto::VarType::INT32 &&
            dtype != framework::proto::VarType::FP32) {
          VLOG(3) << "reduce op input data type must be int32 or float32";
          return false;
        }
#else
        if (dtype != framework::proto::VarType::FP32) {
          VLOG(3) << "reduce op input data type must be float32 using TensorRT "
                     "< 7.0";
          return false;
        }
2259
#endif
2260
      }
2261
    }
W
wenbin 已提交
2262 2263 2264
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
2265
      auto tile_inputs = desc.Inputs();
2266 2267 2268 2269 2270
      if (!with_dynamic_shape) {
        if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
          if (desc.Input("repeat_times_tensor").size() >= 1) {
            return false;
          }
2271
        }
2272 2273 2274 2275
        if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
          if (desc.Input("RepeatTimes").size() >= 1) {
            return false;
          }
2276
        }
2277
        if (!desc.HasAttr("repeat_times")) return false;
W
wenbin 已提交
2278 2279 2280
      }
    }
#endif
2281

2282 2283 2284 2285 2286
    // conv3d_transpose
    if (op_type == "conv3d_transpose") {
      // trt doen't support output_padding when < 8406
      // output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
2287 2288
      if (desc.HasAttr("output_padding")) {
        const std::vector<int> output_padding =
R
Ruibiao Chen 已提交
2289
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("output_padding"));
2290 2291 2292 2293 2294 2295
        if (output_padding.size() > 0) {
          int max_padding =
              *std::max_element(output_padding.begin(), output_padding.end());
          if (max_padding > 0) return false;
        }
      }
2296
#endif
2297 2298
    }

W
wenbin 已提交
2299 2300 2301
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
R
Ruibiao Chen 已提交
2302
            PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
2317

W
wenbin 已提交
2318
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
2319
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wenbin 已提交
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
2341
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
W
wenbin 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

C
ccrrong 已提交
2359
    if (op_type == "cast") {
Z
zhoutianzi666 已提交
2360 2361 2362 2363
// trt 6015 result in Windows ppyolo_mbv3 TRT fp32 diff
#if !IS_TRT_VERSION_GE(7000)
      return false;
#endif
C
ccrrong 已提交
2364 2365 2366 2367 2368 2369
      if (!(desc.HasAttr("in_dtype") && desc.HasAttr("out_dtype"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (in_dtype or "
                   "out_dtype)";
        return false;
      }
R
Ruibiao Chen 已提交
2370 2371
      int in_dtype = PADDLE_GET_CONST(int, desc.GetAttr("in_dtype"));
      int out_dtype = PADDLE_GET_CONST(int, desc.GetAttr("out_dtype"));
2372

2373
      if (in_dtype == 0 || out_dtype == 0) {
2374
#if IS_TRT_VERSION_GE(8400)
2375 2376 2377 2378 2379 2380
        if (with_dynamic_shape) {
          VLOG(3) << "the cast op supports inputs and outputs of BOOL by "
                     "trt8.4 above ";
          return true;
        }
#endif
C
ccrrong 已提交
2381 2382
        return false;
      }
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (!with_dynamic_shape && (x_shape.size() == 1 || x_shape.size() == 0)) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 or 0 in tensorrt "
                   "static shape mode.";
        return false;
      }
C
ccrrong 已提交
2399 2400
    }

X
xjmxyt 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
    if (op_type == "set_value") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
      if (!(desc.HasAttr("axes") && desc.HasAttr("starts") &&
            desc.HasAttr("steps"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (axes or "
                   "starts or steps)";
        return false;
      }
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();
      auto update_name = desc.Input("ValueTensor")[0];
      auto* update_desc = block->FindVar(update_name);
      const auto update_shape = update_desc->GetShape();
      if (update_shape.size() != input_shape.size()) return false;
    }

2422 2423 2424
    if (op_type == "top_k_v2" || op_type == "top_k") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
2425 2426 2427 2428 2429 2430 2431

      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2432
      auto* x_var_desc = block->FindVar(x_var_name);
2433 2434 2435 2436 2437 2438 2439
      auto x_dtype = x_var_desc->GetDataType();

      if (!(x_dtype == framework::proto::VarType::FP32 ||
            x_dtype == framework::proto::VarType::FP16)) {
        return false;
      }

2440 2441 2442 2443 2444 2445 2446
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "top_k/top_k_v2 does not support 1-dimensional input in "
                   "tensorrt";
        return false;
      }
      if (desc.HasAttr("axis")) {
R
Ruibiao Chen 已提交
2447
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
2448 2449 2450 2451 2452 2453 2454
        if (axis == 0) {
          VLOG(3) << "top_k_v2 does not support axis == 0 in "
                     "tensorrt";
          return false;
        }
      }
      if (desc.HasAttr("sorted")) {
R
Ruibiao Chen 已提交
2455
        bool sorted = PADDLE_GET_CONST(bool, desc.GetAttr("sorted"));
2456 2457 2458 2459 2460 2461 2462 2463
        if (!sorted) {
          VLOG(3) << "top_k_v2 does not support results not sorted in "
                     "tensorrt";
          return false;
        }
      }
    }

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
#if IS_TRT_VERSION_GE(8000)
    if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the sparse_fc and sparse_multihead_matmul does not support "
                   "static shape yet";
        return false;
      }
    }
#endif

S
Sanbu 已提交
2474
    if (op_type == "equal" || op_type == "not_equal") {
C
ccrrong 已提交
2475
#if !IS_TRT_VERSION_GE(8000)
2476
      VLOG(3) << "equal is not supported when TensorRT < 8.0";
C
ccrrong 已提交
2477 2478
      return false;
#else
2479 2480 2481 2482 2483 2484
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
      if (!with_dynamic_shape) {
        VLOG(3) << "the equal does not support "
                   "static shape yet";
        return false;
      }
2485 2486 2487
      if (!desc.HasAttr("axis")) {
        return false;
      }
R
Ruibiao Chen 已提交
2488
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
C
ccrrong 已提交
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
      if (axis == 0) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
#endif
    }

W
wenbin 已提交
2502 2503 2504 2505 2506 2507 2508
    if (op_type == "layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517

    if (op_type == "preln_layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }

W
Wang Bojun 已提交
2518 2519 2520 2521 2522 2523 2524
    if (op_type == "merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2525

W
Wang Bojun 已提交
2526 2527 2528 2529 2530 2531 2532
    if (op_type == "reverse_roll") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The reverse roll fused op does not support static shape "
                   "mode yet.";
        return false;
      }
    }
W
wenbin 已提交
2533 2534 2535 2536 2537 2538 2539 2540
    if (op_type == "skip_merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }

W
wenbin 已提交
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
    if (op_type == "skip_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The skip_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }

    if (op_type == "preln_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The preln_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }
2556 2557 2558 2559 2560 2561 2562
    if (op_type == "trans_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The trans_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
2563 2564 2565 2566 2567 2568 2569
    if (op_type == "fuse_eleadd_transpose") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The fuse_eleadd_transpose op does not support "
                   "static shape yet";
        return false;
      }
    }
2570
    if (op_type == "lookup_table" || op_type == "lookup_table_v2") {
2571 2572 2573 2574 2575 2576 2577
      if (!with_dynamic_shape) {
        VLOG(3) << "the lookup_table does not support "
                   "static shape yet";
        return false;
      }
    }

2578
    if (op_type == "expand_as_v2" || op_type == "expand_v2") {
2579
      if (!with_dynamic_shape) {
2580 2581 2582
        VLOG(3) << "the " << op_type
                << "does not support "
                   "static shape yet";
2583 2584
        return false;
      }
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

      auto inputs = desc.Inputs();
      if (op_type == "expand_as_v2") {
        if (!desc.HasAttr("target_shape") && inputs.find("Y") == inputs.end()) {
          VLOG(3)
              << "expand_as_v2 op need have input(Y) or attr(target_shape). ";
          return false;
        }
      } else if (op_type == "expand_v2") {
        if (!desc.HasAttr("shape") && inputs.find("Shape") == inputs.end() &&
            inputs.find("expand_shapes_tensor") == inputs.end()) {
          VLOG(3) << "expand_v2 op need have input(Shape) or "
                     "input(expand_shapes_tensor) or attr(shape) . ";
          return false;
        }
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2607 2608
        return false;
      }
2609 2610 2611 2612 2613 2614 2615 2616 2617

#if IS_TRT_VERSION_LT(8000)
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 0) {
        return false;  // not supported 0 dim.
      }
#endif
2618 2619
    }

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
    if (op_type == "grid_sampler") {
#if !IS_TRT_VERSION_GE(8510)
      VLOG(3) << "grid_sampler is not supported when TensorRT < 8.5.1";
      return false;
#else
      if (!with_dynamic_shape) {
        VLOG(3) << "the grid_sampler does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("mode") || !desc.HasAttr("padding_mode") ||
          !desc.HasAttr("align_corners")) {
        VLOG(3) << "grid_sampler need attributes : mode, padding_mode, "
                   "align_corners";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      auto grid_name = desc.Input("Grid")[0];
      auto* grid_desc = block->FindVar(grid_name);
      const auto grid_shape = grid_desc->GetShape();

      if (input_shape.size() != 4 || grid_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT GridSample layer.";
        return false;
      }

#endif
    }

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
    if (op_type == "cumsum") {
#if !IS_TRT_VERSION_GE(7220)
      VLOG(3) << "cumsum is not supported when TensorRT < 7.2.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the cumsum does not support "
                   "static shape yet";
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
    }

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
    if (op_type == "temporal_shift") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "temporal_shift is not supported when TensorRT < 8.2";
      return false;
#endif

      if (!with_dynamic_shape) {
        VLOG(3) << "the temporal shift does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("shift_ratio") || !desc.HasAttr("seg_num")) {
        VLOG(3) << "temporal shift need attributes : shift_ratio and seg_num";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT TemporalShift layer.";
        return false;
      }
    }

W
weishengying 已提交
2717 2718 2719 2720 2721
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
2722
  }
W
wenbin 已提交
2723

W
weishengying 已提交
2724 2725 2726
 private:
  // use this set for no calib int8.
  std::unordered_set<std::string> int8_teller_set{
2727
      "matrix_multiply",
2728
      "bmm",
2729
      "range",
W
weishengying 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2753
      "acosh",
W
weishengying 已提交
2754 2755 2756
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2757
      "rsqrt",
2758
      "sign",
G
gem5 已提交
2759
      "reciprocal",
2760
      "logical_not",
W
weishengying 已提交
2761
      "erf",
2762
      "square",
W
weishengying 已提交
2763 2764 2765 2766 2767 2768 2769
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2770
      "pad3d",
W
weishengying 已提交
2771 2772 2773 2774 2775 2776
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2777 2778
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2779
      "elementwise_floordiv",
2780
      "elementwise_mod",
W
weishengying 已提交
2781
      "equal",
S
Sanbu 已提交
2782
      "not_equal",
2783 2784 2785 2786 2787 2788
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2789
      "greater_equal",
W
weishengying 已提交
2790
      "dropout",
2791
      "fill_any_like",
W
weishengying 已提交
2792 2793 2794 2795 2796
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2797
      "where",
2798
      "bitwise_not",
2799 2800
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2801 2802
      "swish",
      "silu",
2803
      "celu",
W
weishengying 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
X
xiaoxiaohehe001 已提交
2818
      "group_norm",
W
weishengying 已提交
2819 2820 2821
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2822
      "arg_min",
W
weishengying 已提交
2823 2824 2825 2826
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2827
      "reduce_max",
2828
      "reduce_min",
W
weishengying 已提交
2829
      "reduce_mean",
2830
      "reduce_sum",
2831 2832 2833
      "reduce_prod",
      "reduce_any",
      "reduce_all",
W
weishengying 已提交
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
      "bilinear_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2846
      "multihead_matmul_roformer",
W
weishengying 已提交
2847 2848 2849 2850
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
W
Wang Bojun 已提交
2851
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "preln_skip_layernorm",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
2867
      "layernorm_shift_partition",
W
Wang Bojun 已提交
2868
      "reverse_roll",
2869
      "take_along_axis",
2870 2871
      "tanh_shrink",
      "logsigmoid",
W
wenbin 已提交
2872
      "preln_layernorm_shift_partition",
2873
      "lookup_table",
2874
      "lookup_table_v2",
2875
      "trans_layernorm",
W
wenbin 已提交
2876 2877
      "merge_layernorm",
      "skip_merge_layernorm",
W
wenbin 已提交
2878
      "expand_v2",
2879
      "expand_as_v2",
2880
      "fuse_eleadd_transpose",
W
wenbin 已提交
2881
      "skip_groupnorm_act",
2882
      "preln_groupnorm_act",
2883
      "temporal_shift",
2884 2885
      "grid_sampler",
      "cumsum"};
W
wenbin 已提交
2886

W
weishengying 已提交
2887
  std::unordered_set<std::string> teller_set{
2888
      "matrix_multiply",
2889
      "bmm",
2890
      "range",
W
weishengying 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2914
      "acosh",
W
weishengying 已提交
2915 2916 2917
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2918
      "rsqrt",
2919
      "sign",
G
gem5 已提交
2920
      "reciprocal",
2921
      "logical_not",
W
weishengying 已提交
2922
      "erf",
2923
      "square",
W
weishengying 已提交
2924 2925 2926 2927 2928 2929 2930
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2931
      "pad3d",
W
weishengying 已提交
2932 2933 2934 2935 2936 2937
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
W
Wilber 已提交
2938
      "pow",
2939 2940
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2941
      "elementwise_floordiv",
2942
      "elementwise_mod",
W
weishengying 已提交
2943
      "equal",
S
Sanbu 已提交
2944
      "not_equal",
2945 2946 2947 2948 2949 2950
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2951
      "greater_equal",
W
weishengying 已提交
2952
      "dropout",
2953
      "fill_any_like",
W
weishengying 已提交
2954 2955 2956 2957 2958
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2959
      "where",
2960
      "bitwise_not",
2961 2962
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2963 2964
      "swish",
      "silu",
2965
      "celu",
W
weishengying 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2983
      "arg_min",
W
weishengying 已提交
2984 2985 2986 2987
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2988
      "reduce_max",
2989
      "reduce_min",
W
weishengying 已提交
2990
      "reduce_mean",
2991
      "reduce_sum",
2992 2993 2994
      "reduce_prod",
      "reduce_any",
      "reduce_all",
W
weishengying 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
      "conv3d",
      "conv3d_transpose",
      "mish",
      "bilinear_interp_v2",
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
3007
      "multihead_matmul_roformer",
W
weishengying 已提交
3008 3009 3010 3011 3012
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_skip_layernorm",
W
Wang Bojun 已提交
3013
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
      "fused_token_prune",
3029
      "layernorm_shift_partition",
W
Wang Bojun 已提交
3030
      "reverse_roll",
3031
      "tanh_shrink",
3032
      "take_along_axis",
3033
      "logsigmoid",
W
wenbin 已提交
3034
      "preln_layernorm_shift_partition",
3035
      "trans_layernorm",
W
Wang Bojun 已提交
3036
      "merge_layernorm",
W
wenbin 已提交
3037
      "skip_merge_layernorm",
3038
      "lookup_table",
3039
      "lookup_table_v2",
W
wenbin 已提交
3040
      "expand_v2",
3041
      "expand_as_v2",
3042
      "fuse_eleadd_transpose",
W
wenbin 已提交
3043
      "skip_groupnorm_act",
3044
      "preln_groupnorm_act",
3045
      "temporal_shift",
3046 3047
      "grid_sampler",
      "cumsum"};
W
weishengying 已提交
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
};

struct GenericPluginTeller : public Teller {
 public:
  GenericPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // only consider dynamic_shape mode
    if (!with_dynamic_shape) {
      return false;
    }
3061 3062 3063 3064
    if (op_type == "yolo_box") {
      if (!desc.HasAttr("iou_aware") && !desc.HasAttr("iou_aware_factor"))
        return false;
    }
W
weishengying 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
    if (use_no_calib_int8) {
      return false;
    } else {
      framework::InitDefaultKernelSignatureMap();
      bool res = phi::OpUtilsMap::Instance().HasArgumentMappingFn(op_type) ||
                 phi::DefaultKernelSignatureMap::Instance().Has(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no KernelSignature";
        return false;
      }
      res = phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no CompatiblePhiKernel in phi.";
        return false;
      }
      auto& dynamic_infermeta_factory =
          tensorrt::DynamicMetaFnFactory::Instance();
      res = dynamic_infermeta_factory.Contains(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no DynamicMetaFn.";
        return false;
      }
      return true;
    }
  }
};

struct CustomPluginTeller : public Teller {
 public:
  CustomPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    std::string expect_plugin_name;

    if (with_dynamic_shape) {
      expect_plugin_name = op_type + "_paddle_trt_dynamic_plugin";
    } else {
      expect_plugin_name = op_type + "_paddle_trt_plugin";
    }

    int num = 0;
    auto creators = GetPluginRegistry()->getPluginCreatorList(&num);

    for (int i = 0; i < num; i++) {
      if (std::string(creators[i]->getPluginName()) == expect_plugin_name)
        return true;
    }
    return false;
  }
};

bool OpTeller::Tell(const framework::ir::Node* node,
                    bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
W
Wangzheee 已提交
3123 3124 3125 3126 3127 3128
  // do not support the op which is labeled the `skip_quant`
  if ((desc.HasAttr("namescope") &&
       PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
    return false;
W
weishengying 已提交
3129 3130
  auto& default_teller = GetDefaultTeller();
  if ((*default_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3131
    SetOpConverterType(node->Op(), OpConverterType::Default);
W
weishengying 已提交
3132 3133 3134 3135
    return true;
  }
  auto& generic_plugin_teller = GetGenericPluginTeller();
  if ((*generic_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3136
    SetOpConverterType(node->Op(), OpConverterType::GenericPluginCreater);
W
weishengying 已提交
3137 3138 3139 3140
    return true;
  }
  auto& custom_plugin_teller = GetCustomPluginTeller();
  if ((*custom_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3141
    SetOpConverterType(node->Op(), OpConverterType::CustomPluginCreater);
W
weishengying 已提交
3142 3143
    return true;
  }
3144 3145
  return false;
}
3146

W
weishengying 已提交
3147 3148 3149 3150 3151
OpTeller::OpTeller() {
  tellers_.emplace_back(new tensorrt::SimpleOpTypeSetTeller);
  tellers_.emplace_back(new tensorrt::GenericPluginTeller);
  tellers_.emplace_back(new tensorrt::CustomPluginTeller);
}
3152

3153 3154 3155
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle