Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1c6013dd
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1c6013dd
编写于
11月 10, 2022
作者:
W
wenbin
提交者:
GitHub
11月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
skip_merge_layernorm (#47810)
* skip_merge_layernorm * add UT * modify comments
上级
00ea0b2f
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
956 addition
and
43 deletion
+956
-43
paddle/fluid/framework/ir/preln_layernorm_x_fuse_pass.cc
paddle/fluid/framework/ir/preln_layernorm_x_fuse_pass.cc
+104
-28
paddle/fluid/framework/ir/preln_layernorm_x_fuse_pass.h
paddle/fluid/framework/ir/preln_layernorm_x_fuse_pass.h
+11
-1
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+1
-0
paddle/fluid/inference/tensorrt/convert/skip_merge_layernorm_op.cc
...uid/inference/tensorrt/convert/skip_merge_layernorm_op.cc
+94
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+11
-0
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
+1
-0
paddle/fluid/inference/tensorrt/plugin/merge_layernorm_op_plugin.cu
...id/inference/tensorrt/plugin/merge_layernorm_op_plugin.cu
+0
-14
paddle/fluid/inference/tensorrt/plugin/skip_merge_layernorm_op_plugin.cu
...ference/tensorrt/plugin/skip_merge_layernorm_op_plugin.cu
+340
-0
paddle/fluid/inference/tensorrt/plugin/skip_merge_layernorm_op_plugin.h
...nference/tensorrt/plugin/skip_merge_layernorm_op_plugin.h
+141
-0
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
.../paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/ir/inference/test_skip_merge_layernorm_fuse_pass.py
...tests/ir/inference/test_skip_merge_layernorm_fuse_pass.py
+250
-0
未找到文件。
paddle/fluid/framework/ir/preln_layernorm_x_fuse_pass.cc
浏览文件 @
1c6013dd
...
...
@@ -36,7 +36,7 @@ struct PrelnLayerNormX : public PatternBase {
PrelnLayerNormX
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"preln_layernorm_x"
)
{}
void
operator
()(
PDNode
*
x
,
PDNode
*
y
);
void
operator
()(
PDNode
*
x
,
PDNode
*
y
,
const
std
::
string
&
norm_type
);
// declare operator node's name
PATTERN_DECL_NODE
(
elementwise_bias
);
PATTERN_DECL_NODE
(
elementwise0
);
...
...
@@ -51,34 +51,33 @@ struct PrelnLayerNormX : public PatternBase {
PATTERN_DECL_NODE
(
layer_norm_out
);
};
void
PrelnLayerNormX
::
operator
()(
PDNode
*
x
,
PDNode
*
y
)
{
void
PrelnLayerNormX
::
operator
()(
PDNode
*
x
,
PDNode
*
y
,
const
std
::
string
&
norm_type
)
{
auto
*
elementwise1
=
pattern
->
NewNode
(
elementwise1_repr
())
->
assert_is_op
(
"elementwise_add"
);
auto
*
elementwise1_out_var
=
pattern
->
NewNode
(
elementwise1_out_repr
())
->
assert_is_op_output
(
"elementwise_add"
,
"Out"
)
->
assert_is_op_input
(
"layernorm_shift_partition"
,
"X"
);
->
assert_is_op_input
(
norm_type
,
"X"
);
elementwise1
->
LinksFrom
({
x
,
y
}).
LinksTo
({
elementwise1_out_var
});
// Create nodes for layer_norm op.
auto
*
layer_norm
=
pattern
->
NewNode
(
layer_norm_repr
())
->
assert_is_op
(
"layernorm_shift_partition"
);
auto
*
layer_norm_bias_var
=
pattern
->
NewNode
(
layer_norm_bias_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"layernorm_shift_partition"
,
"Bias"
);
auto
*
layer_norm_scale_var
=
pattern
->
NewNode
(
layer_norm_scale_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
"layernorm_shift_partition"
,
"Scale"
);
auto
*
layer_norm_out_var
=
pattern
->
NewNode
(
layer_norm_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"layernorm_shift_partition"
,
"Y"
);
auto
*
layer_norm
=
pattern
->
NewNode
(
layer_norm_repr
())
->
assert_is_op
(
norm_type
);
auto
*
layer_norm_bias_var
=
pattern
->
NewNode
(
layer_norm_bias_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
norm_type
,
"Bias"
);
auto
*
layer_norm_scale_var
=
pattern
->
NewNode
(
layer_norm_scale_repr
())
->
AsInput
()
->
assert_is_persistable_var
()
->
assert_is_op_input
(
norm_type
,
"Scale"
);
auto
*
layer_norm_out_var
=
pattern
->
NewNode
(
layer_norm_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
norm_type
,
"Y"
);
// Add links for layer_norm op.
layer_norm
...
...
@@ -89,7 +88,8 @@ void PrelnLayerNormX::operator()(PDNode *x, PDNode *y) {
}
// namespace patterns
int
PrelnLayerNormXFusePass
::
ApplyPattern
(
ir
::
Graph
*
graph
)
const
{
int
PrelnLayerNormXFusePass
::
ApplyLayerNormShiftPattern
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
FusePassBase
::
Init
(
"preln_layernorm_x_fuse"
,
graph
);
...
...
@@ -113,7 +113,7 @@ int PrelnLayerNormXFusePass::ApplyPattern(ir::Graph *graph) const {
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
patterns
::
PrelnLayerNormX
fused_pattern
(
gpd
.
mutable_pattern
(),
"preln_layernorm_x_fuse"
);
fused_pattern
(
x
,
y
);
fused_pattern
(
x
,
y
,
"layernorm_shift_partition"
);
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
...
...
@@ -137,10 +137,7 @@ int PrelnLayerNormXFusePass::ApplyPattern(ir::Graph *graph) const {
LOG
(
WARNING
)
<<
"preln_layernorm_x_fuse pass in op compat failed."
;
return
;
}
static
int
cnt
=
0
;
if
(
cnt
++
>
0
)
{
// return;
}
std
::
unordered_set
<
const
Node
*>
del_node_set
;
// Create an PrelnLayerNormX op node
OpDesc
new_desc
(
*
layer_norm
->
Op
());
...
...
@@ -171,9 +168,88 @@ int PrelnLayerNormXFusePass::ApplyPattern(ir::Graph *graph) const {
return
found_subgraph_count
;
}
int
PrelnLayerNormXFusePass
::
ApplyMergeLayerNormPattern
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
FusePassBase
::
Init
(
"preln_layernorm_x_fuse"
,
graph
);
int
found_subgraph_count
=
0
;
GraphPatternDetector
gpd
;
PDNode
*
x
=
nullptr
;
PDNode
*
y
=
nullptr
;
x
=
gpd
.
mutable_pattern
()
->
NewNode
(
"preln_layernorm_x_fuse/x"
)
->
AsInput
()
->
assert_var_not_persistable
()
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
y
=
gpd
.
mutable_pattern
()
->
NewNode
(
"preln_layernorm_x_fuse/y"
)
->
AsInput
()
->
assert_var_not_persistable
()
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
patterns
::
PrelnLayerNormX
fused_pattern
(
gpd
.
mutable_pattern
(),
"preln_layernorm_x_fuse"
);
fused_pattern
(
x
,
y
,
"merge_layernorm"
);
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
if
(
subgraph
.
count
(
x
)
<=
0
||
subgraph
.
count
(
y
)
<=
0
)
{
LOG
(
WARNING
)
<<
"The subgraph is empty."
;
return
;
}
VLOG
(
4
)
<<
"handle preln layernorm x fuse"
;
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise1
,
elementwise1
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise1_out
,
elementwise1_out
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm
,
layer_norm
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_bias
,
layer_norm_bias
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_scale
,
layer_norm_scale
,
fused_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
layer_norm_out
,
layer_norm_out
,
fused_pattern
);
if
(
!
IsCompat
(
subgraph
,
graph
))
{
LOG
(
WARNING
)
<<
"preln_layernorm_x_fuse pass in op compat failed."
;
return
;
}
std
::
unordered_set
<
const
Node
*>
del_node_set
;
// Create an PrelnLayerNormX op node
OpDesc
new_desc
(
*
layer_norm
->
Op
());
new_desc
.
SetType
(
"skip_merge_layernorm"
);
new_desc
.
SetInput
(
"X"
,
{
subgraph
.
at
(
x
)
->
Name
()});
new_desc
.
SetInput
(
"Y"
,
{
subgraph
.
at
(
y
)
->
Name
()});
new_desc
.
SetOutput
(
"Out"
,
{
layer_norm_out
->
Name
()});
new_desc
.
RemoveOutput
(
"Y"
);
new_desc
.
Flush
();
auto
fused_node
=
graph
->
CreateOpNode
(
&
new_desc
);
// OpDesc will be copied.
del_node_set
.
insert
(
elementwise1
);
del_node_set
.
insert
(
layer_norm
);
del_node_set
.
insert
(
elementwise1_out
);
GraphSafeRemoveNodes
(
graph
,
del_node_set
);
IR_NODE_LINK_TO
(
subgraph
.
at
(
x
),
fused_node
);
IR_NODE_LINK_TO
(
subgraph
.
at
(
y
),
fused_node
);
IR_NODE_LINK_TO
(
layer_norm_scale
,
fused_node
);
IR_NODE_LINK_TO
(
layer_norm_bias
,
fused_node
);
IR_NODE_LINK_TO
(
fused_node
,
layer_norm_out
);
found_subgraph_count
++
;
};
gpd
(
graph
,
handler
);
return
found_subgraph_count
;
}
void
PrelnLayerNormXFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
FusePassBase
::
Init
(
"preln_layernorm_x_fuse"
,
graph
);
int
found_subgraph_count
=
ApplyPattern
(
graph
);
int
found_subgraph_count
=
ApplyLayerNormShiftPattern
(
graph
);
found_subgraph_count
+=
ApplyMergeLayerNormPattern
(
graph
);
AddStatis
(
found_subgraph_count
);
}
...
...
paddle/fluid/framework/ir/preln_layernorm_x_fuse_pass.h
浏览文件 @
1c6013dd
...
...
@@ -28,6 +28,15 @@ namespace ir {
// other_op4 layernorm_shift_partition other_op4 other_op3
// |
// other_op3
// or
// | | | |
// other_op1 other_op2 other_op1 other_op2
// | | fuse \ /
// |------elementwise_add -> preln_merge_layernorm
// | | | |
// other_op4 merge_layernorm other_op4 other_op3
// |
// other_op3
class
Graph
;
class
PrelnLayerNormXFusePass
:
public
FusePassBase
{
...
...
@@ -52,7 +61,8 @@ class PrelnLayerNormXFusePass : public FusePassBase {
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
int
ApplyPattern
(
ir
::
Graph
*
graph
)
const
;
int
ApplyLayerNormShiftPattern
(
ir
::
Graph
*
graph
)
const
;
int
ApplyMergeLayerNormPattern
(
ir
::
Graph
*
graph
)
const
;
};
}
// namespace ir
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
1c6013dd
...
...
@@ -2322,6 +2322,7 @@ USE_TRT_CONVERTER(celu)
USE_TRT_CONVERTER
(
layernorm_shift_partition
)
USE_TRT_CONVERTER
(
preln_layernorm_shift_partition
)
USE_TRT_CONVERTER
(
merge_layernorm
)
USE_TRT_CONVERTER
(
skip_merge_layernorm
)
USE_TRT_CONVERTER
(
generic_plugin_creater
)
USE_TRT_CONVERTER
(
custom_plugin_creater
)
USE_TRT_CONVERTER
(
tanh_shrink
)
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
1c6013dd
...
...
@@ -82,6 +82,7 @@ list(
logsigmoid_op.cc
preln_layernorm_shift_partition_op.cc
merge_layernorm_op.cc
skip_merge_layernorm_op.cc
generic_and_custom_plugin_creater.cc
fused_lookup_tables_op.cc
expand_v2_op.cc
)
...
...
paddle/fluid/inference/tensorrt/convert/skip_merge_layernorm_op.cc
0 → 100644
浏览文件 @
1c6013dd
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/plugin/skip_merge_layernorm_op_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
SkipMergeLayernormOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a fluid skip_merge_layernorm op to tensorrt "
"skip_merge_layernorm "
"plugin"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
auto
*
X
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
).
front
());
auto
*
Y
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"Y"
).
front
());
auto
*
Bias_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Bias"
).
front
());
auto
*
Scale_v
=
scope
.
FindVar
(
op_desc
.
Input
(
"Scale"
).
front
());
const
int
begin_norm_axis
=
op_desc
.
HasAttr
(
"begin_norm_axis"
)
?
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"begin_norm_axis"
))
:
1
;
const
float
eps
=
op_desc
.
HasAttr
(
"epsilon"
)
?
PADDLE_GET_CONST
(
float
,
op_desc
.
GetAttr
(
"epsilon"
))
:
1e-5
f
;
PADDLE_ENFORCE_NOT_NULL
(
Bias_v
,
platform
::
errors
::
InvalidArgument
(
"Input(Bias) of layer_norm should not be null."
));
PADDLE_ENFORCE_NOT_NULL
(
Scale_v
,
platform
::
errors
::
InvalidArgument
(
"Input(Scale) of layer_norm should not be null."
));
PADDLE_ENFORCE_EQ
(
begin_norm_axis
,
2
,
platform
::
errors
::
InvalidArgument
(
"The begin_norm_axis of SkipLayerLayernorm should be %d"
,
begin_norm_axis
));
auto
*
Bias_t
=
Bias_v
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
*
Scale_t
=
Scale_v
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
bias_weight
=
engine_
->
GetFp32TrtWeight
(
op_desc
.
Input
(
"Bias"
).
front
(),
*
Bias_t
);
auto
scale_weight
=
engine_
->
GetFp32TrtWeight
(
op_desc
.
Input
(
"Scale"
).
front
(),
*
Scale_t
);
bool
with_fp16
=
engine_
->
WithFp16
()
&&
!
engine_
->
disable_trt_plugin_fp16
();
nvinfer1
::
ILayer
*
skip_merge_layernorm_layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
plugin
::
SkipMergeLayernormPluginDynamic
*
plugin
=
new
plugin
::
SkipMergeLayernormPluginDynamic
(
static_cast
<
const
float
*>
(
bias_weight
.
get
().
values
),
bias_weight
.
get
().
count
,
static_cast
<
const
float
*>
(
scale_weight
.
get
().
values
),
scale_weight
.
get
().
count
,
eps
,
begin_norm_axis
,
with_fp16
);
std
::
vector
<
nvinfer1
::
ITensor
*>
plugin_inputs
{
X
,
Y
};
skip_merge_layernorm_layer
=
engine_
->
AddDynamicPlugin
(
plugin_inputs
.
data
(),
2
,
plugin
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Currently, MergeLayernorm TRT Plugin only support dynamic shape "
"mode."
));
}
auto
output_name
=
op_desc
.
Output
(
"Out"
).
front
();
RreplenishLayerAndOutput
(
skip_merge_layernorm_layer
,
"skip_merge_layernorm"
,
{
output_name
},
test_mode
);
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
skip_merge_layernorm
,
SkipMergeLayernormOpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
1c6013dd
...
...
@@ -2132,6 +2132,14 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if
(
op_type
==
"skip_merge_layernorm"
)
{
if
(
!
with_dynamic_shape
)
{
VLOG
(
3
)
<<
"The merge_layernorm op does not support "
"static shape yet"
;
return
false
;
}
}
if
(
op_type
==
"lookup_table"
)
{
if
(
!
with_dynamic_shape
)
{
VLOG
(
3
)
<<
"the lookup_table does not support "
...
...
@@ -2288,6 +2296,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"logsigmoid"
,
"preln_layernorm_shift_partition"
,
"lookup_table"
,
"merge_layernorm"
,
"skip_merge_layernorm"
,
// "lookup_table_v2",
"expand_v2"
};
...
...
@@ -2410,6 +2420,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"logsigmoid"
,
"preln_layernorm_shift_partition"
,
"merge_layernorm"
,
"skip_merge_layernorm"
,
"lookup_table"
,
// "lookup_table_v2",
"expand_v2"
};
...
...
paddle/fluid/inference/tensorrt/plugin/CMakeLists.txt
浏览文件 @
1c6013dd
...
...
@@ -34,6 +34,7 @@ list(
layernorm_shift_partition_op.cu
prelnlayernorm_shift_partition_op.cu
merge_layernorm_op_plugin.cu
skip_merge_layernorm_op_plugin.cu
generic_plugin.cu
lookup_table.cu
)
...
...
paddle/fluid/inference/tensorrt/plugin/merge_layernorm_op_plugin.cu
浏览文件 @
1c6013dd
...
...
@@ -255,20 +255,6 @@ nvinfer1::DimsExprs MergeLayernormPluginDynamic::getOutputDimensions(
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
TRT_NOEXCEPT
{
PADDLE_ENFORCE_EQ
(
output_index
,
0
,
platform
::
errors
::
InvalidArgument
(
"There is only one output of the MergeLayernorm, "
"so the index should be zero,"
"but it's (%d)"
,
output_index
));
PADDLE_ENFORCE_EQ
(
nb_inputs
,
1
,
platform
::
errors
::
InvalidArgument
(
"The Input of the MergeLayernorm should be 1, but we found "
"it has (%d) inputs"
,
nb_inputs
));
nvinfer1
::
DimsExprs
ret
;
ret
.
nbDims
=
3
;
ret
.
d
[
0
]
=
inputs
[
0
].
d
[
0
];
...
...
paddle/fluid/inference/tensorrt/plugin/skip_merge_layernorm_op_plugin.cu
0 → 100644
浏览文件 @
1c6013dd
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include "paddle/fluid/inference/tensorrt/plugin/skip_merge_layernorm_op_plugin.h"
#include "paddle/phi/kernels/funcs/math_cuda_utils.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
#define FINAL_MASK 0xffffffff
template
<
typename
T
>
__global__
void
merge_layernorm_v2
(
T
*
out
,
const
T
*
__restrict
input0
,
const
T
*
__restrict
input1
,
const
T
*
__restrict
gamma
,
const
T
*
__restrict
beta
,
const
float
layernorm_eps
,
int
batch
,
int
H
,
int
W
,
int
n
)
{
// input is [batch, 2*H, 2*W, n/4]
// output is [batch, H, W, n]
// grid (W, H, batch)
// block (n)
const
int
kIte
=
4
;
const
int
tid
=
threadIdx
.
x
;
const
int
W_idx
=
blockIdx
.
x
;
const
int
H_idx
=
blockIdx
.
y
;
const
size_t
batch_offset
=
blockIdx
.
z
*
H
*
W
*
n
;
const
int
input_H_stride
=
W
*
n
/
2
;
const
int
output_H_stride
=
W
*
n
;
const
int
n_4
=
n
>>
2
;
__shared__
float
s_mean
;
__shared__
float
s_variance
;
float
mean
=
0.0
f
;
float
variance
=
0.0
f
;
float
local_out
[
kIte
];
float
sum
=
0.0
f
;
#pragma unroll
for
(
int
i
=
0
;
i
<
kIte
;
i
++
)
{
int
col_id
=
i
*
blockDim
.
x
+
tid
;
if
(
col_id
<
n
)
{
int
part_id
=
col_id
/
n_4
;
int
offset_in_W
=
part_id
/
2
;
int
offset_in_H
=
part_id
%
2
;
size_t
input_id
=
batch_offset
+
(
2
*
H_idx
+
offset_in_H
)
*
input_H_stride
+
(
2
*
W_idx
+
offset_in_W
)
*
n_4
+
(
col_id
%
n_4
);
local_out
[
i
]
=
static_cast
<
float
>
(
__ldg
(
input0
+
input_id
));
local_out
[
i
]
+=
static_cast
<
float
>
(
__ldg
(
input1
+
input_id
));
sum
+=
local_out
[
i
];
}
}
mean
=
phi
::
funcs
::
blockReduceSum
<
float
>
(
sum
,
FINAL_MASK
);
if
(
tid
==
0
)
{
s_mean
=
mean
/
n
;
}
__syncthreads
();
float
var
=
0.0
f
;
#pragma unroll
for
(
int
i
=
0
;
i
<
kIte
;
i
++
)
{
int
col_id
=
i
*
blockDim
.
x
+
tid
;
if
(
col_id
<
n
)
{
local_out
[
i
]
=
local_out
[
i
]
-
s_mean
;
var
+=
local_out
[
i
]
*
local_out
[
i
];
}
}
variance
=
phi
::
funcs
::
blockReduceSum
<
float
>
(
var
,
FINAL_MASK
);
if
(
tid
==
0
)
{
s_variance
=
rsqrtf
(
variance
/
n
+
layernorm_eps
);
}
__syncthreads
();
#pragma unroll
for
(
int
i
=
0
;
i
<
kIte
;
i
++
)
{
int
col_id
=
i
*
blockDim
.
x
+
tid
;
if
(
col_id
<
n
)
{
size_t
output_idx
=
batch_offset
+
H_idx
*
output_H_stride
+
W_idx
*
n
+
col_id
;
out
[
output_idx
]
=
static_cast
<
T
>
(
local_out
[
i
]
*
s_variance
*
static_cast
<
float
>
(
__ldg
(
&
gamma
[
col_id
]))
+
static_cast
<
float
>
(
__ldg
(
&
beta
[
col_id
])));
}
}
}
template
<
typename
T
>
void
invokeMergeLayernorm
(
T
*
output
,
const
T
*
input0
,
const
T
*
input1
,
const
T
*
gamma
,
const
T
*
beta
,
float
layernorm_eps
,
int
batch
,
int
H
,
int
W
,
int
n
,
cudaStream_t
stream
)
{
if
((
W
%
2
!=
0
)
||
(
H
%
2
!=
0
))
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"H(W) of merge layernorm should be a multiple of 2."
));
}
dim3
grid
(
W
/
2
,
H
/
2
,
batch
);
int
blockSize
=
(
n
+
31
)
/
32
*
32
;
merge_layernorm_v2
<
T
><<<
grid
,
blockSize
,
0
,
stream
>>>
(
output
,
input0
,
input1
,
gamma
,
beta
,
layernorm_eps
,
batch
,
H
/
2
,
W
/
2
,
n
*
4
);
}
template
void
invokeMergeLayernorm
<
float
>(
float
*
output
,
const
float
*
input0
,
const
float
*
input1
,
const
float
*
gamma
,
const
float
*
beta
,
float
layernorm_eps
,
int
batch
,
int
H
,
int
W
,
int
n
,
cudaStream_t
stream
);
template
void
invokeMergeLayernorm
<
half
>(
half
*
output
,
const
half
*
input0
,
const
half
*
input1
,
const
half
*
gamma
,
const
half
*
beta
,
float
layernorm_eps
,
int
batch
,
int
H
,
int
W
,
int
n
,
cudaStream_t
stream
);
template
<
typename
T
>
static
void
convertAndCopy
(
const
std
::
vector
<
float
>
&
host
,
T
*
dev
)
{
T
*
host_ptr
=
new
T
[
host
.
size
()];
std
::
transform
(
host
.
begin
(),
host
.
end
(),
host_ptr
,
[](
float
x
)
{
return
static_cast
<
T
>
(
x
);
});
cudaMemcpy
(
dev
,
host_ptr
,
sizeof
(
T
)
*
host
.
size
(),
cudaMemcpyHostToDevice
);
delete
host_ptr
;
}
void
SkipMergeLayernormPluginDynamic
::
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
TRT_NOEXCEPT
{}
SkipMergeLayernormPluginDynamic
::
SkipMergeLayernormPluginDynamic
(
const
float
*
bias_d
,
const
size_t
bias_num
,
const
float
*
scale_d
,
const
size_t
scale_num
,
const
float
eps
,
const
int
begin_norm_axis
,
const
bool
with_fp16
,
std
::
shared_ptr
<
void
>
bias_device
,
std
::
shared_ptr
<
void
>
scale_device
)
:
eps_
(
eps
),
begin_norm_axis_
(
begin_norm_axis
),
with_fp16_
(
with_fp16
),
bias_device_
(
bias_device
),
scale_device_
(
scale_device
)
{
bias_
.
resize
(
bias_num
);
scale_
.
resize
(
scale_num
);
std
::
copy
(
bias_d
,
bias_d
+
bias_num
,
bias_
.
data
());
std
::
copy
(
scale_d
,
scale_d
+
scale_num
,
scale_
.
data
());
int
type_size
=
with_fp16_
?
sizeof
(
half
)
:
sizeof
(
float
);
if
(
bias_device_
==
nullptr
)
{
void
*
p
;
cudaMalloc
(
&
p
,
bias_num
*
type_size
);
bias_device_
.
reset
(
p
,
[](
void
*
ptr
)
{
cudaFree
(
ptr
);
});
if
(
with_fp16
)
{
convertAndCopy
<
half
>
(
bias_
,
reinterpret_cast
<
half
*>
(
p
));
}
else
{
convertAndCopy
<
float
>
(
bias_
,
reinterpret_cast
<
float
*>
(
p
));
}
}
if
(
scale_device_
==
nullptr
)
{
void
*
p
;
cudaMalloc
(
&
p
,
scale_num
*
type_size
);
scale_device_
.
reset
(
p
,
[](
void
*
ptr
)
{
cudaFree
(
ptr
);
});
if
(
with_fp16
)
{
convertAndCopy
<
half
>
(
scale_
,
reinterpret_cast
<
half
*>
(
p
));
}
else
{
convertAndCopy
<
float
>
(
scale_
,
reinterpret_cast
<
float
*>
(
p
));
}
}
}
bool
SkipMergeLayernormPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
TRT_NOEXCEPT
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of MergeLayernorm "
"plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
if
(
with_fp16_
)
{
return
in
.
type
==
nvinfer1
::
DataType
::
kHALF
&&
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
else
{
return
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
&&
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
}
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
// output
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
nvinfer1
::
DataType
SkipMergeLayernormPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
TRT_NOEXCEPT
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The MergeLayernorm only has one input, so the "
"index value should be 0, but get %d."
,
index
));
return
input_types
[
0
];
}
nvinfer1
::
DimsExprs
SkipMergeLayernormPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
TRT_NOEXCEPT
{
nvinfer1
::
DimsExprs
ret
;
ret
.
nbDims
=
3
;
ret
.
d
[
0
]
=
inputs
[
0
].
d
[
0
];
ret
.
d
[
1
]
=
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kFLOOR_DIV
,
*
inputs
[
0
].
d
[
1
],
*
expr_builder
.
constant
(
4
));
ret
.
d
[
2
]
=
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kPROD
,
*
inputs
[
0
].
d
[
2
],
*
expr_builder
.
constant
(
4
));
return
ret
;
}
int
SkipMergeLayernormPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
{
const
auto
&
input_dims
=
input_desc
[
0
].
dims
;
auto
input_type
=
input_desc
[
0
].
type
;
int
batch
=
input_dims
.
d
[
0
];
int
input_resolution
=
static_cast
<
int
>
(
std
::
sqrt
(
input_dims
.
d
[
1
]));
int
dim
=
static_cast
<
int
>
(
input_dims
.
d
[
2
]);
PADDLE_ENFORCE_EQ
(
input_resolution
*
input_resolution
,
input_dims
.
d
[
1
],
platform
::
errors
::
InvalidArgument
(
"The MergeLayernorm TRT Plugin get invalid input_resolution %d"
,
input_resolution
));
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
VLOG
(
3
)
<<
"TRT Plugin DataType selected. MergeLayernorm-->fp32"
;
invokeMergeLayernorm
<
float
>
(
reinterpret_cast
<
float
*>
(
outputs
[
0
]),
reinterpret_cast
<
const
float
*>
(
inputs
[
0
]),
reinterpret_cast
<
const
float
*>
(
inputs
[
1
]),
reinterpret_cast
<
const
float
*>
(
scale_device_
.
get
()),
reinterpret_cast
<
const
float
*>
(
bias_device_
.
get
()),
eps_
,
batch
,
input_resolution
,
input_resolution
,
dim
,
stream
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kHALF
)
{
VLOG
(
3
)
<<
"TRT Plugin DataType selected. MergeLayernorm-->fp16"
;
invokeMergeLayernorm
<
half
>
(
reinterpret_cast
<
half
*>
(
outputs
[
0
]),
reinterpret_cast
<
const
half
*>
(
inputs
[
0
]),
reinterpret_cast
<
const
half
*>
(
inputs
[
1
]),
reinterpret_cast
<
const
half
*>
(
scale_device_
.
get
()),
reinterpret_cast
<
const
half
*>
(
bias_device_
.
get
()),
eps_
,
batch
,
input_resolution
,
input_resolution
,
dim
,
stream
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The MergeLayernorm TRT Plugin's input type should be float or half."
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tensorrt/plugin/skip_merge_layernorm_op_plugin.h
0 → 100644
浏览文件 @
1c6013dd
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
namespace
plugin
{
class
SkipMergeLayernormPluginDynamic
:
public
DynamicPluginTensorRT
{
public:
SkipMergeLayernormPluginDynamic
(
const
float
*
bias_d
,
const
size_t
bias_num
,
const
float
*
scale_d
,
const
size_t
scale_num
,
const
float
eps
,
const
int
begin_norm_axis
,
const
bool
with_fp16
,
std
::
shared_ptr
<
void
>
bias_device
=
nullptr
,
std
::
shared_ptr
<
void
>
scale_device
=
nullptr
);
SkipMergeLayernormPluginDynamic
(
void
const
*
serialData
,
size_t
serialLength
)
{
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
bias_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
scale_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
eps_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
begin_norm_axis_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
with_fp16_
);
}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
TRT_NOEXCEPT
override
{
return
new
SkipMergeLayernormPluginDynamic
(
bias_
.
data
(),
bias_
.
size
(),
scale_
.
data
(),
scale_
.
size
(),
eps_
,
begin_norm_axis_
,
with_fp16_
,
bias_device_
,
scale_device_
);
}
const
char
*
getPluginType
()
const
TRT_NOEXCEPT
override
{
return
"skip_merge_layernorm_plugin_dynamic"
;
}
int
getNbOutputs
()
const
TRT_NOEXCEPT
override
{
return
1
;
}
int
initialize
()
TRT_NOEXCEPT
override
{
return
0
;
}
size_t
getSerializationSize
()
const
TRT_NOEXCEPT
override
{
return
SerializedSize
(
bias_
)
+
SerializedSize
(
scale_
)
+
SerializedSize
(
eps_
)
+
SerializedSize
(
begin_norm_axis_
)
+
SerializedSize
(
with_fp16_
);
}
void
serialize
(
void
*
buffer
)
const
TRT_NOEXCEPT
override
{
SerializeValue
(
&
buffer
,
bias_
);
SerializeValue
(
&
buffer
,
scale_
);
SerializeValue
(
&
buffer
,
eps_
);
SerializeValue
(
&
buffer
,
begin_norm_axis_
);
SerializeValue
(
&
buffer
,
with_fp16_
);
}
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
// NOLINT
TRT_NOEXCEPT
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
inOut
,
int
nbInputs
,
int
nbOutputs
)
TRT_NOEXCEPT
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
TRT_NOEXCEPT
override
;
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nbInputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nbOutputs
)
const
TRT_NOEXCEPT
override
{
return
0
;
}
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
inputTypes
,
int
nbInputs
)
const
TRT_NOEXCEPT
override
;
void
destroy
()
TRT_NOEXCEPT
override
{
delete
this
;
}
private:
std
::
vector
<
float
>
bias_
;
std
::
vector
<
float
>
scale_
;
float
eps_
;
int
begin_norm_axis_
;
bool
with_fp16_
;
std
::
shared_ptr
<
void
>
bias_device_
=
nullptr
;
std
::
shared_ptr
<
void
>
scale_device_
=
nullptr
;
};
class
SkipMergeLayernormPluginDynamicCreator
:
public
TensorRTPluginCreator
{
public:
const
char
*
getPluginName
()
const
TRT_NOEXCEPT
override
{
return
"skip_merge_layernorm_plugin_dynamic"
;
}
const
char
*
getPluginVersion
()
const
TRT_NOEXCEPT
override
{
return
"1"
;
}
nvinfer1
::
IPluginV2
*
deserializePlugin
(
const
char
*
name
,
const
void
*
serial_data
,
size_t
serial_length
)
TRT_NOEXCEPT
override
{
return
new
SkipMergeLayernormPluginDynamic
(
serial_data
,
serial_length
);
}
};
REGISTER_TRT_PLUGIN_V2
(
SkipMergeLayernormPluginDynamicCreator
);
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
浏览文件 @
1c6013dd
...
...
@@ -124,6 +124,8 @@ if(WITH_GPU AND TENSORRT_FOUND)
set_tests_properties
(
test_trt_dynamic_shape PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_trt_inspector PROPERTIES TIMEOUT 60
)
set_tests_properties
(
test_merge_layernorm_fuse_pass PROPERTIES TIMEOUT 180
)
set_tests_properties
(
test_skip_merge_layernorm_fuse_pass PROPERTIES TIMEOUT
180
)
if
(
WITH_NV_JETSON
)
set_tests_properties
(
test_trt_pool_op
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_skip_merge_layernorm_fuse_pass.py
0 → 100644
浏览文件 @
1c6013dd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
auto_scan_test
import
PassAutoScanTest
from
program_config
import
TensorConfig
,
ProgramConfig
,
OpConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
import
unittest
import
hypothesis.strategies
as
st
class
TestMergeLayernormFusePass
(
PassAutoScanTest
):
#
# | | | |
# other_op1 other_op2 other_op1 other_op2
# | | fuse \ /
# |------elementwise_add -> skip_merge_layernorm
# | | | |
# other_op4 merge_layernorm other_op4 other_op3
# |
# other_op3
def
sample_predictor_configs
(
self
,
program_config
):
# trt dynamic_shape fp32
config
=
self
.
create_trt_inference_config
()
config
.
enable_tensorrt_engine
(
max_batch_size
=
1
,
workspace_size
=
1
<<
20
,
min_subgraph_size
=
0
,
precision_mode
=
paddle_infer
.
PrecisionType
.
Float32
,
use_static
=
False
,
use_calib_mode
=
False
,
)
config
.
set_trt_dynamic_shape_info
(
{
"input0_data"
:
[
1
,
196
,
96
],
"input1_data"
:
[
1
,
196
,
96
]},
{
"input0_data"
:
[
4
,
3136
,
384
],
"input1_data"
:
[
4
,
3136
,
384
]},
{
"input0_data"
:
[
1
,
3136
,
96
],
"input1_data"
:
[
1
,
3136
,
96
]},
)
yield
config
,
[
"skip_merge_layernorm"
],
(
1e-5
,
1e-5
)
# trt dynamic_shape fp16
config
=
self
.
create_trt_inference_config
()
config
.
enable_tensorrt_engine
(
max_batch_size
=
1
,
workspace_size
=
1
<<
20
,
min_subgraph_size
=
0
,
precision_mode
=
paddle_infer
.
PrecisionType
.
Half
,
use_static
=
False
,
use_calib_mode
=
False
,
)
config
.
set_trt_dynamic_shape_info
(
{
"input0_data"
:
[
1
,
196
,
96
],
"input1_data"
:
[
1
,
196
,
96
]},
{
"input0_data"
:
[
4
,
3136
,
384
],
"input1_data"
:
[
4
,
3136
,
384
]},
{
"input0_data"
:
[
1
,
3136
,
96
],
"input1_data"
:
[
1
,
3136
,
96
]},
)
yield
config
,
[
"skip_merge_layernorm"
],
(
3e-3
,
3e-3
)
def
sample_program_config
(
self
,
draw
):
batch_size
=
draw
(
st
.
integers
(
min_value
=
1
,
max_value
=
4
))
input_H_W
=
draw
(
st
.
sampled_from
([
56
,
28
,
14
]))
input_n
=
draw
(
st
.
sampled_from
([
96
,
192
,
384
]))
layernorm_40_begin_norm_axis
=
2
layernorm_40_epsilon
=
draw
(
st
.
floats
(
min_value
=
0.0000001
,
max_value
=
0.001
)
)
def
generate_input
(
attrs
):
return
np
.
random
.
random
(
[
attrs
[
3
][
'batch_size'
],
attrs
[
3
][
'input_H_W'
]
*
attrs
[
3
][
'input_H_W'
],
attrs
[
3
][
'input_n'
],
]
).
astype
(
np
.
float32
)
def
generate_weight
(
attrs
):
return
np
.
random
.
random
([
attrs
[
3
][
'input_n'
]
*
4
]).
astype
(
np
.
float32
)
attrs
=
[
{
'shape'
:
[
-
1
,
input_H_W
,
input_H_W
,
input_n
]},
{
'shape'
:
[
-
1
,
int
(
input_H_W
*
input_H_W
/
4
),
int
(
input_n
*
4
)]},
{
'begin_norm_axis'
:
layernorm_40_begin_norm_axis
,
'epsilon'
:
layernorm_40_epsilon
,
},
{
'batch_size'
:
batch_size
,
'input_H_W'
:
input_H_W
,
'input_n'
:
input_n
,
},
]
elementadd_op
=
OpConfig
(
type
=
"elementwise_add"
,
inputs
=
{
'X'
:
[
'input0_data'
],
'Y'
:
[
'input1_data'
]},
outputs
=
{
'Out'
:
[
'elementadd_op_out'
]},
attrs
=
{
'axis'
:
-
1
},
)
reshape2_00_op
=
OpConfig
(
type
=
"reshape2"
,
inputs
=
{
'X'
:
[
'elementadd_op_out'
]},
outputs
=
{
'Out'
:
[
'reshape2_00_out'
],
'XShape'
:
[
'reshape2_00_outxshape'
],
},
attrs
=
{
'shape'
:
attrs
[
0
][
'shape'
]},
)
strided_slice_10_op
=
OpConfig
(
type
=
"strided_slice"
,
inputs
=
{
'Input'
:
[
'reshape2_00_out'
]},
outputs
=
{
'Out'
:
[
'strided_slice_10_out'
]},
attrs
=
{
'axes'
:
[
1
,
2
],
'starts'
:
[
0
,
0
],
'infer_flags'
:
[
1
,
1
],
'ends'
:
[
attrs
[
3
][
'input_H_W'
],
attrs
[
3
][
'input_H_W'
]],
'strides'
:
[
2
,
2
],
},
)
strided_slice_11_op
=
OpConfig
(
type
=
"strided_slice"
,
inputs
=
{
'Input'
:
[
'reshape2_00_out'
]},
outputs
=
{
'Out'
:
[
'strided_slice_11_out'
]},
attrs
=
{
'axes'
:
[
1
,
2
],
'starts'
:
[
1
,
0
],
'infer_flags'
:
[
1
,
1
],
'ends'
:
[
attrs
[
3
][
'input_H_W'
],
attrs
[
3
][
'input_H_W'
]],
'strides'
:
[
2
,
2
],
},
)
strided_slice_12_op
=
OpConfig
(
type
=
"strided_slice"
,
inputs
=
{
'Input'
:
[
'reshape2_00_out'
]},
outputs
=
{
'Out'
:
[
'strided_slice_12_out'
]},
attrs
=
{
'axes'
:
[
1
,
2
],
'starts'
:
[
0
,
1
],
'infer_flags'
:
[
1
,
1
],
'ends'
:
[
attrs
[
3
][
'input_H_W'
],
attrs
[
3
][
'input_H_W'
]],
'strides'
:
[
2
,
2
],
},
)
strided_slice_13_op
=
OpConfig
(
type
=
"strided_slice"
,
inputs
=
{
'Input'
:
[
'reshape2_00_out'
]},
outputs
=
{
'Out'
:
[
'strided_slice_13_out'
]},
attrs
=
{
'axes'
:
[
1
,
2
],
'starts'
:
[
1
,
1
],
'infer_flags'
:
[
1
,
1
],
'ends'
:
[
attrs
[
3
][
'input_H_W'
],
attrs
[
3
][
'input_H_W'
]],
'strides'
:
[
2
,
2
],
},
)
concat_20_op
=
OpConfig
(
type
=
"concat"
,
inputs
=
{
'X'
:
[
'strided_slice_10_out'
,
'strided_slice_11_out'
,
'strided_slice_12_out'
,
'strided_slice_13_out'
,
]
},
outputs
=
{
'Out'
:
[
'concat_20_out'
]},
attrs
=
{
'axis'
:
-
1
},
)
reshape2_30_op
=
OpConfig
(
type
=
'reshape2'
,
inputs
=
{
'X'
:
[
'concat_20_out'
]},
outputs
=
{
'Out'
:
[
'reshape2_30_Out'
],
'XShape'
:
[
'reshape2_30_XShape'
],
},
attrs
=
{
'shape'
:
attrs
[
1
][
'shape'
]},
)
layernorm_40_op
=
OpConfig
(
type
=
'layer_norm'
,
inputs
=
{
'X'
:
[
'reshape2_30_Out'
],
'Bias'
:
[
'layer_norm_bias'
],
'Scale'
:
[
'layer_norm_scale'
],
},
outputs
=
{
"Y"
:
[
"layer_norm_out"
],
"Mean"
:
[
"layer_norm_outMean"
],
"Variance"
:
[
"layer_norm_outVariance"
],
},
attrs
=
{
'begin_norm_axis'
:
attrs
[
2
][
'begin_norm_axis'
],
'epsilon'
:
attrs
[
2
][
'epsilon'
],
},
)
program_config
=
ProgramConfig
(
ops
=
[
elementadd_op
,
reshape2_00_op
,
strided_slice_10_op
,
strided_slice_11_op
,
strided_slice_12_op
,
strided_slice_13_op
,
concat_20_op
,
reshape2_30_op
,
layernorm_40_op
,
],
weights
=
{
'layer_norm_bias'
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
,
attrs
)
),
'layer_norm_scale'
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
,
attrs
)
),
},
inputs
=
{
'input0_data'
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
attrs
)
),
'input1_data'
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
attrs
)
),
},
outputs
=
[
'layer_norm_out'
],
)
return
program_config
def
test
(
self
):
self
.
run_and_statis
(
quant
=
False
,
max_examples
=
50
,
passes
=
[
"preln_layernorm_x_fuse_pass"
],
max_duration
=
250
,
min_success_num
=
50
,
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录