Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
11b9d85f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
11b9d85f
编写于
11月 28, 2022
作者:
W
Wang Bojun
提交者:
GitHub
11月 28, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix: multihead matmul biasqk broadcast support for [1,1,seq,seq] shape (#47975)
* add trt support
上级
57e22f58
变更
5
展开全部
隐藏空白更改
内联
并排
Showing
5 changed file
with
606 addition
and
6 deletion
+606
-6
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+11
-5
paddle/fluid/inference/tensorrt/plugin/qkv_to_context_plugin.cu
.../fluid/inference/tensorrt/plugin/qkv_to_context_plugin.cu
+45
-0
paddle/fluid/operators/fused/multihead_matmul_op.cu
paddle/fluid/operators/fused/multihead_matmul_op.cu
+29
-1
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_multihead_matmul.py
...ittests/ir/inference/test_trt_convert_multihead_matmul.py
+414
-0
python/paddle/fluid/tests/unittests/test_fused_multihead_matmul_op.py
...e/fluid/tests/unittests/test_fused_multihead_matmul_op.py
+107
-0
未找到文件。
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
11b9d85f
...
@@ -1744,13 +1744,19 @@ struct SimpleOpTypeSetTeller : public Teller {
...
@@ -1744,13 +1744,19 @@ struct SimpleOpTypeSetTeller : public Teller {
input_shape
[
1
]
==
biasqk_shape
[
3
];
input_shape
[
1
]
==
biasqk_shape
[
3
];
bool
is_broadcastable
=
biasqk_shape
[
1
]
==
1
&&
biasqk_shape
[
2
]
==
1
&&
bool
is_broadcastable
=
biasqk_shape
[
1
]
==
1
&&
biasqk_shape
[
2
]
==
1
&&
input_shape
[
1
]
==
biasqk_shape
[
3
];
input_shape
[
1
]
==
biasqk_shape
[
3
];
is_broadcastable
=
is_broadcastable
||
(
biasqk_shape
[
0
]
==
1
&&
biasqk_shape
[
1
]
==
1
&&
input_shape
[
1
]
==
biasqk_shape
[
2
]
&&
input_shape
[
1
]
==
biasqk_shape
[
3
]);
if
(
!
(
has_same_shape
||
is_broadcastable
))
{
if
(
!
(
has_same_shape
||
is_broadcastable
))
{
VLOG
(
3
)
<<
"The BiasQK's shape is invalid, expect ["
<<
input_shape
[
0
]
VLOG
(
3
)
<<
"The BiasQK's shape is invalid, expect ["
<<
input_shape
[
0
]
<<
", 1, 1, "
<<
input_shape
[
1
]
<<
"] or ["
<<
input_shape
[
0
]
<<
", 1, 1, "
<<
input_shape
[
1
]
<<
"] "
<<
", "
<<
head_number
<<
", "
<<
input_shape
[
1
]
<<
", "
<<
"or ["
<<
input_shape
[
0
]
<<
", "
<<
head_number
<<
", "
<<
input_shape
[
1
]
<<
"] but ["
<<
biasqk_shape
[
0
]
<<
", "
<<
input_shape
[
1
]
<<
", "
<<
input_shape
[
1
]
<<
"] "
<<
biasqk_shape
[
1
]
<<
", "
<<
biasqk_shape
[
2
]
<<
", "
<<
"or ["
<<
input_shape
[
0
]
<<
"/1, "
<<
1
<<
", "
<<
biasqk_shape
[
3
]
<<
"]."
;
<<
input_shape
[
1
]
<<
", "
<<
input_shape
[
1
]
<<
"] "
<<
"but got ["
<<
biasqk_shape
[
0
]
<<
", "
<<
biasqk_shape
[
1
]
<<
", "
<<
biasqk_shape
[
2
]
<<
", "
<<
biasqk_shape
[
3
]
<<
"]."
;
return
false
;
return
false
;
}
}
}
else
{
}
else
{
...
...
paddle/fluid/inference/tensorrt/plugin/qkv_to_context_plugin.cu
浏览文件 @
11b9d85f
...
@@ -309,6 +309,19 @@ __global__ void broadcast(const T *src,
...
@@ -309,6 +309,19 @@ __global__ void broadcast(const T *src,
}
}
}
}
template
<
typename
T
>
__global__
void
broadcast_batch_head_number
(
const
T
*
src
,
T
*
dst
,
const
int
batch_size
,
const
int
seq_len
,
const
int
head_num
)
{
int
batch_id
=
blockIdx
.
x
%
seq_len
;
int
dst_offset
=
blockIdx
.
x
*
seq_len
;
if
(
threadIdx
.
x
<
seq_len
)
{
dst
[
threadIdx
.
x
+
dst_offset
]
=
src
[
threadIdx
.
x
+
batch_id
*
seq_len
];
}
}
int
QkvToContextPluginDynamic
::
enqueue
(
int
QkvToContextPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
...
@@ -353,6 +366,22 @@ int QkvToContextPluginDynamic::enqueue(
...
@@ -353,6 +366,22 @@ int QkvToContextPluginDynamic::enqueue(
head_number_
);
head_number_
);
qk_bias
=
temp_qk_bias
;
qk_bias
=
temp_qk_bias
;
}
}
// fit to [batch, head_num, length, length] + [1, 1, length, length]
if
(
ProductDim
(
input_desc
[
1
].
dims
)
==
(
seq_len
*
seq_len
))
{
temp_qk_bias_tensor
.
Resize
({
batch
,
head_number_
,
seq_len
,
seq_len
});
auto
*
temp_qk_bias
=
reinterpret_cast
<
float
*>
(
temp_qk_bias_tensor
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
)));
int
grid
=
batch
*
head_number_
*
seq_len
;
int
block
=
round_up
(
seq_len
);
broadcast_batch_head_number
<<<
grid
,
block
,
0
,
stream
>>>
(
static_cast
<
const
float
*>
(
inputs
[
1
]),
temp_qk_bias
,
batch
,
seq_len
,
head_number_
);
qk_bias
=
temp_qk_bias
;
}
// fake qk_bias
// fake qk_bias
if
(
ProductDim
(
input_desc
[
1
].
dims
)
==
ProductDim
(
input_desc
[
0
].
dims
))
{
if
(
ProductDim
(
input_desc
[
1
].
dims
)
==
ProductDim
(
input_desc
[
0
].
dims
))
{
qk_bias
=
fake_qk_bias_
;
qk_bias
=
fake_qk_bias_
;
...
@@ -424,6 +453,22 @@ int QkvToContextPluginDynamic::enqueue(
...
@@ -424,6 +453,22 @@ int QkvToContextPluginDynamic::enqueue(
head_number_
);
head_number_
);
qk_bias
=
temp_qk_bias
;
qk_bias
=
temp_qk_bias
;
}
}
// fit to [batch, head_num, length, length] + [1, 1, length, length]
if
(
ProductDim
(
input_desc
[
1
].
dims
)
==
(
seq_len
*
seq_len
))
{
temp_qk_bias_tensor
.
Resize
({
batch
,
head_number_
,
seq_len
,
seq_len
});
auto
*
temp_qk_bias
=
reinterpret_cast
<
half
*>
(
temp_qk_bias_tensor
.
mutable_data
<
int16_t
>
(
platform
::
CUDAPlace
(
device_id
)));
int
grid
=
batch
*
head_number_
*
seq_len
;
int
block
=
round_up
(
seq_len
);
broadcast_batch_head_number
<<<
grid
,
block
,
0
,
stream
>>>
(
static_cast
<
const
half
*>
(
inputs
[
1
]),
temp_qk_bias
,
batch
,
seq_len
,
head_number_
);
qk_bias
=
temp_qk_bias
;
}
// padding: mask_half_ = [1.0,....1.0...1.0....,0.0f]
// padding: mask_half_ = [1.0,....1.0...1.0....,0.0f]
// no_padding: mask_half_ = [1.0,....1.0,.........,1.0f]
// no_padding: mask_half_ = [1.0,....1.0,.........,1.0f]
bool
bias_is_mask
=
false
;
bool
bias_is_mask
=
false
;
...
...
paddle/fluid/operators/fused/multihead_matmul_op.cu
浏览文件 @
11b9d85f
...
@@ -256,6 +256,19 @@ __global__ void broadcast(const T *src,
...
@@ -256,6 +256,19 @@ __global__ void broadcast(const T *src,
}
}
}
}
template
<
typename
T
>
__global__
void
broadcast_batch_head_number
(
const
T
*
src
,
T
*
dst
,
const
int
batch_size
,
const
int
seq_len
,
const
int
head_num
)
{
int
src_seq_id
=
blockIdx
.
x
%
seq_len
;
int
dst_offset
=
blockIdx
.
x
*
seq_len
;
if
(
threadIdx
.
x
<
seq_len
)
{
dst
[
threadIdx
.
x
+
dst_offset
]
=
src
[
threadIdx
.
x
+
src_seq_id
*
seq_len
];
}
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
MultiHeadMatMulV2Kernel
:
public
framework
::
OpKernel
<
T
>
{
class
MultiHeadMatMulV2Kernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
...
@@ -286,6 +299,7 @@ class MultiHeadMatMulV2Kernel : public framework::OpKernel<T> {
...
@@ -286,6 +299,7 @@ class MultiHeadMatMulV2Kernel : public framework::OpKernel<T> {
Tensor
temp_bias_tensor
;
Tensor
temp_bias_tensor
;
// if bias_qk is[batch, 1, 1, seq_len], the bias_qk_d need to be broadcasted
// if bias_qk is[batch, 1, 1, seq_len], the bias_qk_d need to be broadcasted
if
(
bias_qk
&&
bias_qk
->
numel
()
==
(
batch
*
seq_len
))
{
if
(
bias_qk
&&
bias_qk
->
numel
()
==
(
batch
*
seq_len
))
{
VLOG
(
4
)
<<
"Do broadcasted bias_qk from [batch, 1, 1, seq_len]"
;
temp_bias_tensor
.
Resize
({
batch
*
head_number
*
seq_len
*
seq_len
});
temp_bias_tensor
.
Resize
({
batch
*
head_number
*
seq_len
*
seq_len
});
auto
*
temp_qk_bias
=
device_ctx
.
template
Alloc
<
T
>(
auto
*
temp_qk_bias
=
device_ctx
.
template
Alloc
<
T
>(
&
temp_bias_tensor
,
temp_bias_tensor
.
numel
()
*
sizeof
(
T
));
&
temp_bias_tensor
,
temp_bias_tensor
.
numel
()
*
sizeof
(
T
));
...
@@ -295,6 +309,19 @@ class MultiHeadMatMulV2Kernel : public framework::OpKernel<T> {
...
@@ -295,6 +309,19 @@ class MultiHeadMatMulV2Kernel : public framework::OpKernel<T> {
bias_qk_d
,
temp_qk_bias
,
seq_len
,
head_number
);
bias_qk_d
,
temp_qk_bias
,
seq_len
,
head_number
);
bias_qk_d
=
static_cast
<
const
T
*>
(
temp_qk_bias
);
bias_qk_d
=
static_cast
<
const
T
*>
(
temp_qk_bias
);
}
}
// if bias_qk is[1, 1, seq_len, seq_len], the bias_qk_d need to be
// broadcasted
if
(
bias_qk
&&
bias_qk
->
numel
()
==
(
1
*
seq_len
*
seq_len
))
{
VLOG
(
4
)
<<
"do broadcasted bias_qk from [1, 1, seq_len, seq_len]"
;
temp_bias_tensor
.
Resize
({
batch
*
head_number
*
seq_len
*
seq_len
});
auto
*
temp_qk_bias
=
device_ctx
.
template
Alloc
<
T
>(
&
temp_bias_tensor
,
temp_bias_tensor
.
numel
()
*
sizeof
(
T
));
int
grid
=
batch
*
head_number
*
seq_len
;
int
block
=
round_up
(
seq_len
);
broadcast_batch_head_number
<<<
grid
,
block
,
0
,
stream
>>>
(
bias_qk_d
,
temp_qk_bias
,
batch
,
seq_len
,
head_number
);
bias_qk_d
=
static_cast
<
const
T
*>
(
temp_qk_bias
);
}
if
(
!
bias_qk
)
{
if
(
!
bias_qk
)
{
int
size
=
batch
*
head_number
*
seq_len
*
seq_len
;
int
size
=
batch
*
head_number
*
seq_len
*
seq_len
;
temp_bias_tensor
.
Resize
({
size
});
temp_bias_tensor
.
Resize
({
size
});
...
@@ -333,7 +360,8 @@ class MultiHeadMatMulV2Kernel : public framework::OpKernel<T> {
...
@@ -333,7 +360,8 @@ class MultiHeadMatMulV2Kernel : public framework::OpKernel<T> {
// (B * S, hidden) * (hidden, 3 * N * H) -> (B * S * 3 * N * H)
// (B * S, hidden) * (hidden, 3 * N * H) -> (B * S * 3 * N * H)
auto
blas
=
phi
::
funcs
::
GetBlas
<
phi
::
GPUContext
,
T
>
(
device_ctx
);
auto
blas
=
phi
::
funcs
::
GetBlas
<
phi
::
GPUContext
,
T
>
(
device_ctx
);
blas
.
MatMul
(
input_matrix
,
w_matrix
,
&
temp_out_tensor
);
blas
.
MatMul
(
input_matrix
,
w_matrix
,
&
temp_out_tensor
);
VLOG
(
2
)
<<
"(B * S, hidden) * (hidden, 3 * N * H) -> (B * S * 3 * N * H)"
;
VLOG
(
2
)
<<
temp_out_tensor
;
// temp_out_tensor.Resize(temp_out_dims);
// temp_out_tensor.Resize(temp_out_dims);
Tensor
multihead_temp_tensor
;
Tensor
multihead_temp_tensor
;
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_multihead_matmul.py
浏览文件 @
11b9d85f
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_fused_multihead_matmul_op.py
浏览文件 @
11b9d85f
...
@@ -29,6 +29,113 @@ def stable_softmax(x):
...
@@ -29,6 +29,113 @@ def stable_softmax(x):
return
exps
/
np
.
sum
(
exps
)
return
exps
/
np
.
sum
(
exps
)
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"Paddle core is not compiled with CUDA"
)
class
TestFusedMultiHeadMatmulOp_biasqk2
(
OpTest
):
def
config
(
self
):
self
.
seq_len
=
128
self
.
size_per_head
=
64
self
.
head_number
=
12
self
.
batch_size
=
8
self
.
scale
=
0.125
def
setUp
(
self
):
self
.
op_type
=
"multihead_matmul"
self
.
config
()
h
=
self
.
seq_len
w
=
self
.
head_number
*
self
.
size_per_head
self
.
Input
=
(
np
.
random
.
random
((
self
.
batch_size
,
h
,
w
)).
astype
(
"float32"
)
-
0.5
)
self
.
WQ
=
np
.
random
.
random
((
w
,
w
)).
astype
(
"float32"
)
self
.
KQ
=
np
.
random
.
random
((
w
,
w
)).
astype
(
"float32"
)
self
.
VQ
=
np
.
random
.
random
((
w
,
w
)).
astype
(
"float32"
)
self
.
CombinedW
=
np
.
hstack
((
self
.
WQ
,
self
.
KQ
,
self
.
VQ
)).
reshape
(
(
w
,
3
,
w
)
)
self
.
Q
=
np
.
dot
(
self
.
Input
,
self
.
WQ
)
self
.
K
=
np
.
dot
(
self
.
Input
,
self
.
KQ
)
self
.
V
=
np
.
dot
(
self
.
Input
,
self
.
VQ
)
self
.
BiasQ
=
np
.
random
.
random
((
1
,
w
)).
astype
(
"float32"
)
self
.
BiasK
=
np
.
random
.
random
((
1
,
w
)).
astype
(
"float32"
)
self
.
BiasV
=
np
.
random
.
random
((
1
,
w
)).
astype
(
"float32"
)
self
.
CombinedB
=
np
.
vstack
((
self
.
BiasQ
,
self
.
BiasK
,
self
.
BiasV
))
self
.
BiasQK
=
np
.
random
.
random
(
(
1
,
1
,
self
.
seq_len
,
self
.
seq_len
)
).
astype
(
"float32"
)
# Compute Q path
fc_q
=
self
.
Q
+
self
.
BiasQ
reshape_q
=
np
.
reshape
(
fc_q
,
(
self
.
batch_size
,
self
.
seq_len
,
self
.
head_number
,
self
.
size_per_head
,
),
)
transpose_q
=
np
.
transpose
(
reshape_q
,
(
0
,
2
,
1
,
3
))
scale_q
=
self
.
scale
*
transpose_q
# Compute K path
fc_k
=
self
.
K
+
self
.
BiasK
reshape_k
=
np
.
reshape
(
fc_k
,
(
self
.
batch_size
,
self
.
seq_len
,
self
.
head_number
,
self
.
size_per_head
,
),
)
transpose_k
=
np
.
transpose
(
reshape_k
,
(
0
,
2
,
3
,
1
))
# Compute Q*K
q_k
=
np
.
matmul
(
scale_q
,
transpose_k
)
eltadd_qk
=
q_k
+
np
.
tile
(
self
.
BiasQK
,
[
self
.
batch_size
,
self
.
head_number
,
1
,
1
]
)
softmax_qk
=
np
.
apply_along_axis
(
stable_softmax
,
3
,
eltadd_qk
)
# Compute V path
fc_v
=
self
.
V
+
self
.
BiasV
reshape_v
=
np
.
reshape
(
fc_v
,
(
self
.
batch_size
,
self
.
seq_len
,
self
.
head_number
,
self
.
size_per_head
,
),
)
transpose_v
=
np
.
transpose
(
reshape_v
,
(
0
,
2
,
1
,
3
))
# Compute QK*V
qkv
=
np
.
matmul
(
softmax_qk
,
transpose_v
)
transpose_qkv
=
np
.
transpose
(
qkv
,
(
0
,
2
,
1
,
3
))
reshape_qkv
=
np
.
reshape
(
transpose_qkv
,
(
self
.
batch_size
,
h
,
w
))
print
(
"biasqk shape"
)
print
(
self
.
BiasQK
.
shape
)
self
.
inputs
=
{
"Input"
:
self
.
Input
,
"W"
:
self
.
CombinedW
,
"Bias"
:
self
.
CombinedB
,
"BiasQK"
:
self
.
BiasQK
,
}
self
.
attrs
=
{
"transpose_Q"
:
False
,
"transpose_K"
:
True
,
"transpose_V"
:
False
,
"head_number"
:
self
.
head_number
,
"alpha"
:
self
.
scale
,
}
self
.
outputs
=
{
"Out"
:
reshape_qkv
}
def
test_check_output
(
self
):
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
2e-3
)
@
unittest
.
skipIf
(
@
unittest
.
skipIf
(
not
core
.
is_compiled_with_cuda
(),
"Paddle core is not compiled with CUDA"
not
core
.
is_compiled_with_cuda
(),
"Paddle core is not compiled with CUDA"
)
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录