未验证 提交 29e89f6d 编写于 作者: X xiaoxiaohehe001 提交者: GitHub

[Paddle Inference]Add reshape op TRT converter unittest. (#35166)

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller

* add_reshape_teller
上级 627bd886
......@@ -839,7 +839,8 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
std::vector<int> shape =
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
if (!with_dynamic_shape && shape[0] == -1) return false;
if (!with_dynamic_shape && (shape[0] == -1 || shape.size() == 1))
return false;
}
if (op_type == "reduce_sum" || op_type == "reduce_mean") {
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
class TrtConvertReshapeTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
if self.dims == 1:
if len(attrs[0]['shape']) != 1:
return False
#To test if the shape contains 0
if len(attrs[0]['shape']) == 3:
if attrs[0]['shape'][1] == 0:
if self.dims != 3:
return False
if len(attrs[0]['shape']) == 4:
if attrs[0]['shape'][2] == 0:
if self.dims != 4:
return False
return True
def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]]):
if self.dims == 4:
return np.ones([1, 2, 4, 6]).astype(np.float32)
elif self.dims == 3:
return np.ones([1, 8, 6]).astype(np.float32)
elif self.dims == 2:
return np.ones([1, 48]).astype(np.float32)
elif self.dims == 1:
return np.ones([48]).astype(np.float32)
def generate_weight1(attrs: List[Dict[str, Any]]):
return np.array([1, 48]).astype(np.int32)
def generate_shapeT1_data(attrs: List[Dict[str, Any]]):
return np.array([2]).astype(np.int32)
def generate_shapeT2_data(attrs: List[Dict[str, Any]]):
return np.array([24]).astype(np.int32)
for dims in [4, 3, 2, 1]:
for num_input in [0, 1, 2, 3]:
for shape in [[1, 6, 8], [1, 2, 4, 6], [1, 1, 0, 12],
[1, 0, 6], [1, -1, 12], [2, -1], [3, 16],
[3, 4, 4], [48]]:
dics = [{"shape": shape, }, {}]
self.num_input = num_input
self.dims = dims
dics_intput = [{
"X": ["reshape_input"],
"Shape": ["shape_data"],
"ShapeTensor": ["shapeT1_data", "shapeT2_data"],
}, {
"X": ["reshape_input"],
"Shape": ["shape_data"],
}, {
"X": ["reshape_input"],
"ShapeTensor": ["shapeT1_data", "shapeT2_data"],
}, {
"X": ["reshape_input"]
}]
dics_weight = [{
"shape_data":
TensorConfig(data_gen=partial(generate_weight1, dics)),
"shapeT1_data": TensorConfig(data_gen=partial(
generate_shapeT1_data, dics)),
"shapeT2_data": TensorConfig(data_gen=partial(
generate_shapeT2_data, dics))
}, {
"shape_data":
TensorConfig(data_gen=partial(generate_weight1, dics))
}, {
"shapeT1_data": TensorConfig(data_gen=partial(
generate_shapeT1_data, dics)),
"shapeT2_data": TensorConfig(data_gen=partial(
generate_shapeT2_data, dics))
}, {}]
ops_config = [{
"op_type": "reshape",
"op_inputs": dics_intput[num_input],
"op_outputs": {
"Out": ["reshape_out"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights=dics_weight[num_input],
inputs={
"reshape_input": TensorConfig(data_gen=partial(
generate_input1, dics))
},
outputs=["reshape_out"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 4:
self.dynamic_shape.min_input_shape = {
"reshape_input": [1, 2, 4, 6]
}
self.dynamic_shape.max_input_shape = {
"reshape_input": [4, 2, 4, 6]
}
self.dynamic_shape.opt_input_shape = {
"reshape_input": [1, 2, 4, 6]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"reshape_input": [1, 8, 6]
}
self.dynamic_shape.max_input_shape = {
"reshape_input": [4, 8, 6]
}
self.dynamic_shape.opt_input_shape = {
"reshape_input": [1, 8, 6]
}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"reshape_input": [1, 48]}
self.dynamic_shape.max_input_shape = {"reshape_input": [4, 48]}
self.dynamic_shape.opt_input_shape = {"reshape_input": [1, 48]}
elif self.dims == 1:
self.dynamic_shape.min_input_shape = {"reshape_input": [48]}
self.dynamic_shape.max_input_shape = {"reshape_input": [48]}
self.dynamic_shape.opt_input_shape = {"reshape_input": [48]}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 2
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
if attrs[0]['shape'][0] > 1 and len(attrs[0]['shape']) > 1:
pass
else:
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
if len(program_config.weights) >= 1:
return True
return False
self.add_skip_case(teller1, SkipReasons.TRT_NOT_SUPPORT,
"INPUT ShapeTensor and Shape NOT SUPPORT")
def test(self):
self.add_skip_trt_case()
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册