Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
1b1d6d3f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1b1d6d3f
编写于
12月 01, 2022
作者:
X
xiaoxiaohehe001
提交者:
GitHub
12月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle Inference] Add sign and not trt converter (#48557)
上级
529e74e4
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
209 addition
and
12 deletion
+209
-12
paddle/fluid/inference/tensorrt/convert/unary_op.cc
paddle/fluid/inference/tensorrt/convert/unary_op.cc
+22
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+39
-11
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_unary.py
...id/tests/unittests/ir/inference/test_trt_convert_unary.py
+148
-1
未找到文件。
paddle/fluid/inference/tensorrt/convert/unary_op.cc
浏览文件 @
1b1d6d3f
...
...
@@ -90,7 +90,11 @@ const std::unordered_map<std::string, std::vector<nvinfer1::UnaryOperation>>
{
"floor"
,
{
nvinfer1
::
UnaryOperation
::
kFLOOR
}},
{
"rsqrt"
,
{
nvinfer1
::
UnaryOperation
::
kSQRT
,
nvinfer1
::
UnaryOperation
::
kRECIP
}},
{
"logical_not"
,
{
nvinfer1
::
UnaryOperation
::
kNOT
}},
{
"reciprocal"
,
{
nvinfer1
::
UnaryOperation
::
kRECIP
}},
#if IS_TRT_VERSION_GE(8200)
{
"sign"
,
{
nvinfer1
::
UnaryOperation
::
kSIGN
}},
#endif
#if IS_TRT_VERSION_GE(7000)
{
"erf"
,
{
nvinfer1
::
UnaryOperation
::
kERF
}},
#endif
...
...
@@ -167,10 +171,24 @@ class RsqrtOpConverter : public UnaryOpConverter {
public:
RsqrtOpConverter
()
{
op_type_
=
"rsqrt"
;
}
};
class
LogicalNotOpConverter
:
public
UnaryOpConverter
{
public:
LogicalNotOpConverter
()
{
op_type_
=
"logical_not"
;
}
};
class
ReciprocalOpConverter
:
public
UnaryOpConverter
{
public:
ReciprocalOpConverter
()
{
op_type_
=
"reciprocal"
;
}
};
#if IS_TRT_VERSION_GE(8200)
class
SignOpConverter
:
public
UnaryOpConverter
{
public:
SignOpConverter
()
{
op_type_
=
"sign"
;
}
};
#endif
#if IS_TRT_VERSION_GE(7000)
class
ErfOpConverter
:
public
UnaryOpConverter
{
public:
...
...
@@ -199,7 +217,11 @@ REGISTER_TRT_OP_CONVERTER(atanh, AtanhOpConverter);
REGISTER_TRT_OP_CONVERTER
(
ceil
,
CeilOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
floor
,
FloorOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
rsqrt
,
RsqrtOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
logical_not
,
LogicalNotOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
reciprocal
,
ReciprocalOpConverter
);
#if IS_TRT_VERSION_GE(8200)
REGISTER_TRT_OP_CONVERTER
(
sign
,
SignOpConverter
);
#endif
#if IS_TRT_VERSION_GE(7000)
REGISTER_TRT_OP_CONVERTER
(
erf
,
ErfOpConverter
);
#endif
paddle/fluid/inference/tensorrt/op_teller.cc
100755 → 100644
浏览文件 @
1b1d6d3f
...
...
@@ -79,17 +79,18 @@ struct SimpleOpTypeSetTeller : public Teller {
desc
.
HasAttr
(
"skip_quant"
))
return
false
;
std
::
unordered_set
<
std
::
string
>
act_op_list
=
{
"relu"
,
"relu6"
,
"sigmoid"
,
"elu"
,
"selu"
,
"softsign"
,
"softplus"
,
"stanh"
,
"thresholded_relu"
,
"exp"
,
"log"
,
"sqrt"
,
"abs"
,
"sin"
,
"cos"
,
"tan"
,
"tanh"
,
"sinh"
,
"cosh"
,
"asin"
,
"acos"
,
"atan"
,
"asinh"
,
"atanh"
,
"ceil"
,
"floor"
,
"erf"
,
"reciprocal"
,
"silu"
,
"celu"
,
"tanh_shrink"
,
"logsigmoid"
};
"relu"
,
"relu6"
,
"sigmoid"
,
"elu"
,
"selu"
,
"softsign"
,
"softplus"
,
"stanh"
,
"thresholded_relu"
,
"exp"
,
"log"
,
"sqrt"
,
"abs"
,
"sin"
,
"cos"
,
"tan"
,
"tanh"
,
"sinh"
,
"cosh"
,
"asin"
,
"acos"
,
"atan"
,
"asinh"
,
"atanh"
,
"ceil"
,
"floor"
,
"erf"
,
"reciprocal"
,
"silu"
,
"celu"
,
"tanh_shrink"
,
"logsigmoid"
,
"sign"
,
"logical_not"
};
if
(
act_op_list
.
find
(
op_type
)
!=
act_op_list
.
end
())
{
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
...
...
@@ -336,6 +337,29 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if
(
op_type
==
"sign"
)
{
#if IS_TRT_VERSION_GE(8200)
if
(
!
with_dynamic_shape
)
{
return
false
;
}
#else
VLOG
(
3
)
<<
"sign op is only supported by trt8.2 above "
;
return
false
;
#endif
}
if
(
op_type
==
"logical_not"
)
{
#if IS_TRT_VERSION_GE(8400)
if
(
!
with_dynamic_shape
)
{
return
false
;
}
#else
VLOG
(
3
)
<<
"logical_not op is only supported by trt8.4 above because of "
"cast op"
;
return
false
;
#endif
}
if
(
op_type
==
"matmul_v2"
)
{
if
(
!
with_dynamic_shape
)
{
return
false
;
...
...
@@ -2341,7 +2365,9 @@ struct SimpleOpTypeSetTeller : public Teller {
"ceil"
,
"floor"
,
"rsqrt"
,
"sign"
,
"reciprocal"
,
"logical_not"
,
"erf"
,
"softmax"
,
"sigmoid"
,
...
...
@@ -2471,7 +2497,9 @@ struct SimpleOpTypeSetTeller : public Teller {
"ceil"
,
"floor"
,
"rsqrt"
,
"sign"
,
"reciprocal"
,
"logical_not"
,
"erf"
,
"softmax"
,
"sigmoid"
,
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_unary.py
浏览文件 @
1b1d6d3f
...
...
@@ -59,8 +59,10 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
"floor"
,
"rsqrt"
,
"reciprocal"
,
"sign"
,
]:
self
.
dims
=
dims
self
.
op_type
=
op_type
dics
=
[{}]
ops_config
=
[
...
...
@@ -121,7 +123,14 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
self
.
dims
==
1
:
ver
=
paddle_infer
.
get_trt_compile_version
()
if
self
.
dims
==
1
or
(
self
.
op_type
==
"sign"
and
(
not
dynamic_shape
or
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8200
)
):
return
0
,
3
return
1
,
2
...
...
@@ -155,5 +164,143 @@ class TrtConvertActivationTest(TrtLayerAutoScanTest):
self
.
run_test
()
class
TrtConvertLogicalNotTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
shape
in
[[
2
,
16
],
[
2
,
16
,
32
],
[
1
,
32
,
16
,
32
]]:
for
op_type
in
[
"logical_not"
]:
for
axis
in
[
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[
{
"axis"
:
axis
},
{
"in_dtype"
:
5
,
"out_dtype"
:
0
},
{
"in_dtype"
:
0
,
"out_dtype"
:
5
},
]
ops_config
=
[
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
]},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data1"
]},
"op_attrs"
:
dics
[
1
],
"outputs_dtype"
:
{
"cast_output_data1"
:
np
.
bool
},
},
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data1"
],
},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data0"
]},
"op_attrs"
:
dics
[
0
],
"outputs_dtype"
:
{
"cast_output_data0"
:
np
.
bool
},
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data0"
]},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
2
],
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
16
],
}
if
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
16
,
32
],
}
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
32
,
16
,
32
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
dynamic_shape
:
ver
=
paddle_infer
.
get_trt_compile_version
()
if
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8400
:
return
0
,
5
return
1
,
2
return
0
,
5
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录