未验证 提交 4a55f5e7 编写于 作者: C chen 提交者: GitHub

add TRT op unbind (#55476)

上级 89e54d69
......@@ -2916,6 +2916,7 @@ USE_TRT_CONVERTER(skip_groupnorm_act)
USE_TRT_CONVERTER(preln_groupnorm_act)
USE_TRT_CONVERTER(cumsum)
USE_TRT_CONVERTER(assign)
USE_TRT_CONVERTER(unbind)
#if IS_TRT_VERSION_GE(8522)
USE_TRT_CONVERTER(flash_multihead_matmul)
USE_TRT_CONVERTER(cross_multihead_matmul)
......
......@@ -107,6 +107,7 @@ list(
cumsum_op.cc
temporal_shift_op.cc
einsum_op.cc
unbind_op.cc
assign_op.cc)
if(${TENSORRT_MAJOR_VERSION} GREATER_EQUAL 7)
......
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* Unbind Op
*/
class UnbindOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(3) << "convert a unbind op to tensorrt layer";
framework::OpDesc op_desc(op, nullptr);
std::string input_x_name = op_desc.Input("X").front();
auto* input_x_tensor = engine_->GetITensor(input_x_name);
auto in_dims = input_x_tensor->getDimensions();
auto in_shape_tensor = Shape(input_x_tensor);
auto rank = in_dims.nbDims;
int axis = 0;
if (op_desc.HasAttr("axis")) {
axis = PADDLE_GET_CONST(int, op_desc.GetAttr("axis"));
if (axis < 0) {
axis += rank;
}
}
std::vector<nvinfer1::ITensor*> in_shape_tensors;
std::vector<nvinfer1::ITensor*> newDims_tensors;
for (int32_t i = 0; i < rank; ++i) {
in_shape_tensors.push_back(GetEleTensorOfShape(in_shape_tensor, i));
if (i != axis) {
newDims_tensors.push_back(GetEleTensorOfShape(in_shape_tensor, i));
}
}
auto newDims_tensor = Concat(newDims_tensors);
std::vector<nvinfer1::ITensor*> start_tensors;
std::vector<nvinfer1::ITensor*> size_tensors = in_shape_tensors;
nvinfer1::Dims stride;
stride.nbDims = rank;
for (int i = 0; i < rank; ++i) {
if (axis == i) {
size_tensors[i] = Add1DConstantLayer(1);
}
start_tensors.push_back(Add1DConstantLayer(0));
stride.d[i] = 1;
}
int ii = 0;
for (auto& output_name : op_desc.Output("Out")) {
start_tensors[axis] = Add1DConstantLayer(ii++);
// 1 slice
auto inputSliced = TRT_ENGINE_ADD_LAYER(
engine_, Slice, *input_x_tensor, stride, stride, stride);
inputSliced->setInput(1, *Concat(start_tensors));
inputSliced->setInput(2, *Concat(size_tensors));
auto inputSliced_out = inputSliced->getOutput(0);
// 2 reshape
auto inputReshaped =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *inputSliced_out);
inputReshaped->setInput(1, *newDims_tensor);
RreplenishLayerAndOutput(
inputReshaped, "unbind", {output_name}, test_mode);
}
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(unbind, UnbindOpConverter);
......@@ -2663,6 +2663,21 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if (op_type == "unbind") {
if (!with_dynamic_shape) {
VLOG(3) << "the unbind does not support "
"static shape yet";
return false;
}
auto* block = desc.Block();
if (block == nullptr) {
VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass.";
return false;
}
}
if (op_type == "temporal_shift") {
#if !IS_TRT_VERSION_GE(8200)
VLOG(3) << "temporal_shift is not supported when TensorRT < 8.2";
......@@ -2901,6 +2916,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"temporal_shift",
"grid_sampler",
"cumsum",
"unbind",
"assign"};
std::unordered_set<std::string> teller_set{
......@@ -3064,6 +3080,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"temporal_shift",
"grid_sampler",
"cumsum",
"unbind",
"assign"};
};
......
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from functools import partial
from typing import List
import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest
import paddle.inference as paddle_infer
class TrtConvertUnbind(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
# self.trt_param.workspace_size = 1073741824
def generate_input1():
self.input_shape = [3, 400, 196, 80]
return np.random.random([3, 400, 196, 80]).astype(np.float32)
for dims in [4]:
for axis in [0]:
# for type in ["int32", "int64", "float32", "float64"]:
self.dims = dims
ops_config = [
{
"op_type": "unbind",
"op_inputs": {
"X": ["input_data"],
},
"op_outputs": {
"Out": [
"output_data0",
"output_data1",
"output_data2",
]
},
"op_attrs": {"axis": axis},
}
]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input1)
),
},
outputs=["output_data0", "output_data1", "output_data2"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_trt_nodes_num(attrs, dynamic_shape):
return 1, 4
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input_data": [3, 100, 196, 80]
}
self.dynamic_shape.max_input_shape = {
"input_data": [3, 400, 196, 80]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [3, 400, 196, 80]
}
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for static_shape
# clear_dynamic_shape()
# self.trt_param.precision = paddle_infer.PrecisionType.Float32
# yield self.create_inference_config(), (0, 6), 1e-5
# self.trt_param.precision = paddle_infer.PrecisionType.Half
# yield self.create_inference_config(), (0, 6), 1e-3
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-3
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册