Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
39bc7eab
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
39bc7eab
编写于
9月 14, 2021
作者:
X
xiaoxiaohehe001
提交者:
GitHub
9月 14, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle Inference]Add BN op TRT converter unittest (#35527)
* add_bn_ * add_bn_teller * add_bn_teller * add_bn_teller * add_bn_teller
上级
e93228e8
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
226 addition
and
1 deletion
+226
-1
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+6
-1
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_batch_norm.py
...sts/unittests/ir/inference/test_trt_convert_batch_norm.py
+220
-0
未找到文件。
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
39bc7eab
...
...
@@ -513,7 +513,12 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
return
false
;
}
}
auto
batch_norm_inputs
=
desc
.
Inputs
();
if
(
batch_norm_inputs
.
find
(
"MomentumTensor"
)
!=
batch_norm_inputs
.
end
())
{
if
(
desc
.
Input
(
"MomentumTensor"
).
size
()
>=
1
)
{
return
false
;
}
}
if
(
desc
.
Output
(
"Y"
).
size
()
!=
1
)
{
VLOG
(
3
)
<<
"Invalid output Y's size of batch_norm TRT "
"converter. Expected 1, received "
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_batch_norm.py
0 → 100644
浏览文件 @
39bc7eab
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
class
TrtConvertBatchNormTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
if
self
.
dims
==
4
:
if
attrs
[
0
][
'data_layout'
]
==
"NCHW"
:
return
np
.
ones
([
batch
,
3
,
24
,
24
]).
astype
(
np
.
float32
)
elif
attrs
[
0
][
'data_layout'
]
==
"NHWC"
:
return
np
.
ones
([
batch
,
24
,
24
,
3
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
3
:
return
np
.
ones
([
batch
,
3
,
24
]).
astype
(
np
.
float32
)
elif
self
.
dims
==
2
:
return
np
.
ones
([
batch
,
3
]).
astype
(
np
.
float32
)
def
generate_bias
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
return
np
.
full
((
3
),
0.9
).
astype
(
"float32"
)
def
generate_mean
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
return
np
.
full
((
3
),
0.9
).
astype
(
"float32"
)
def
generate_scale
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
return
np
.
full
((
3
),
1.1
).
astype
(
"float32"
)
def
generate_variance
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
return
np
.
full
((
3
),
1.2
).
astype
(
"float32"
)
def
generate_MomentumTensor
(
attrs
:
List
[
Dict
[
str
,
Any
]],
batch
):
return
np
.
full
((
3
),
0.9
).
astype
(
"float32"
)
for
dims
in
[
2
,
3
,
4
]:
for
num_input
in
[
0
,
1
]:
for
batch
in
[
1
,
2
,
4
]:
for
epsilon
in
[
1e-6
,
1e-5
,
1e-4
]:
for
data_layout
in
[
"NCHW"
]:
for
momentum
in
[
0.9
,
0.8
]:
self
.
num_input
=
num_input
self
.
dims
=
dims
dics
=
[{
"epsilon"
:
epsilon
,
"data_layout"
:
data_layout
,
"momentum"
:
momentum
,
"is_test"
:
True
,
"trainable_statistics"
:
False
},
{}]
dics_intput
=
[{
"X"
:
[
"batch_norm_input"
],
"Bias"
:
[
"Bias"
],
"Mean"
:
[
"Mean"
],
"Scale"
:
[
"Scale"
],
"Variance"
:
[
"Variance"
],
"MomentumTensor"
:
[
"MomentumTensor"
]
},
{
"X"
:
[
"batch_norm_input"
],
"Bias"
:
[
"Bias"
],
"Mean"
:
[
"Mean"
],
"Scale"
:
[
"Scale"
],
"Variance"
:
[
"Variance"
]
}]
dics_intputs
=
[{
"Bias"
:
TensorConfig
(
data_gen
=
partial
(
generate_bias
,
dics
,
batch
)),
"Mean"
:
TensorConfig
(
data_gen
=
partial
(
generate_mean
,
dics
,
batch
)),
"Scale"
:
TensorConfig
(
data_gen
=
partial
(
generate_scale
,
dics
,
batch
)),
"Variance"
:
TensorConfig
(
data_gen
=
partial
(
generate_variance
,
dics
,
batch
)),
"MomentumTensor"
:
TensorConfig
(
data_gen
=
partial
(
generate_MomentumTensor
,
dics
,
batch
)),
},
{
"Bias"
:
TensorConfig
(
data_gen
=
partial
(
generate_bias
,
dics
,
batch
)),
"Mean"
:
TensorConfig
(
data_gen
=
partial
(
generate_mean
,
dics
,
batch
)),
"Scale"
:
TensorConfig
(
data_gen
=
partial
(
generate_scale
,
dics
,
batch
)),
"Variance"
:
TensorConfig
(
data_gen
=
partial
(
generate_variance
,
dics
,
batch
))
}]
ops_config
=
[{
"op_type"
:
"batch_norm"
,
"op_inputs"
:
dics_intput
[
num_input
],
"op_outputs"
:
{
"Y"
:
[
"batch_norm_out"
],
"MeanOut"
:
[
"Mean"
],
"VarianceOut"
:
[
"Variance"
],
"SavedMean"
:
[
"SavedMean"
],
"SavedVariance"
:
[
"SavedVariance"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
dics_intputs
[
num_input
],
inputs
=
{
"batch_norm_input"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
,
batch
))
},
outputs
=
[
"batch_norm_out"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
4
:
if
attrs
[
0
][
'data_layout'
]
==
"NCHW"
:
self
.
dynamic_shape
.
min_input_shape
=
{
"batch_norm_input"
:
[
1
,
3
,
24
,
24
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"batch_norm_input"
:
[
4
,
3
,
48
,
48
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"batch_norm_input"
:
[
1
,
3
,
24
,
48
]
}
elif
attrs
[
0
][
'data_layout'
]
==
"NHWC"
:
self
.
dynamic_shape
.
min_input_shape
=
{
"batch_norm_input"
:
[
1
,
24
,
24
,
3
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"batch_norm_input"
:
[
4
,
48
,
48
,
3
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"batch_norm_input"
:
[
1
,
24
,
48
,
3
]
}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"batch_norm_input"
:
[
1
,
3
,
24
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"batch_norm_input"
:
[
4
,
3
,
48
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"batch_norm_input"
:
[
1
,
3
,
48
]
}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"batch_norm_input"
:
[
1
,
3
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"batch_norm_input"
:
[
4
,
3
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"batch_norm_input"
:
[
1
,
3
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
def
add_skip_trt_case
(
self
):
def
teller1
(
program_config
,
predictor_config
):
if
len
(
program_config
.
weights
)
==
5
:
return
True
return
False
self
.
add_skip_case
(
teller1
,
SkipReasons
.
TRT_NOT_SUPPORT
,
"INPUT MomentumTensor NOT SUPPORT"
)
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录