Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3d232b29
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3d232b29
编写于
6月 17, 2022
作者:
C
ccrrong
提交者:
GitHub
6月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add bilinear interp v2 converter (#43307)
* add bilinear_interp_v2 converter
上级
b2b78f8e
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
362 addition
and
0 deletion
+362
-0
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+1
-0
paddle/fluid/inference/tensorrt/convert/bilinear_interp_v2_op.cc
...fluid/inference/tensorrt/convert/bilinear_interp_v2_op.cc
+133
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+95
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_bilinear_interp_v2.py
...tests/ir/inference/test_trt_convert_bilinear_interp_v2.py
+132
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
3d232b29
...
...
@@ -1943,6 +1943,7 @@ USE_TRT_CONVERTER(multiclass_nms);
USE_TRT_CONVERTER
(
multiclass_nms3
);
USE_TRT_CONVERTER
(
nearest_interp
);
USE_TRT_CONVERTER
(
nearest_interp_v2
);
USE_TRT_CONVERTER
(
bilinear_interp_v2
);
USE_TRT_CONVERTER
(
reshape
);
USE_TRT_CONVERTER
(
reduce_sum
);
USE_TRT_CONVERTER
(
gather_nd
);
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
3d232b29
...
...
@@ -52,6 +52,7 @@ list(
conv3d_op.cc
mish_op.cc
nearest_interp_v2_op.cc
bilinear_interp_v2_op.cc
pool3d_op.cc
deformable_conv_op.cc
preln_emb_eltwise_layernorm.cc
...
...
paddle/fluid/inference/tensorrt/convert/bilinear_interp_v2_op.cc
0 → 100644
浏览文件 @
3d232b29
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
namespace
framework
{
class
Scope
;
namespace
proto
{
class
OpDesc
;
}
// namespace proto
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
inference
{
namespace
tensorrt
{
class
BilinearInterpolateV2OpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
3
)
<<
"convert a fluid bilinear_interp_v2 op"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
std
::
string
input_name
=
op_desc
.
Input
(
"X"
).
front
();
std
::
string
output_name
=
op_desc
.
Output
(
"Out"
).
front
();
auto
input
=
engine_
->
GetITensor
(
input_name
);
auto
data_layout
=
framework
::
StringToDataLayout
(
BOOST_GET_CONST
(
std
::
string
,
op_desc
.
GetAttr
(
"data_layout"
)));
auto
interp_method
=
BOOST_GET_CONST
(
std
::
string
,
op_desc
.
GetAttr
(
"interp_method"
));
bool
align_corners
=
BOOST_GET_CONST
(
bool
,
op_desc
.
GetAttr
(
"align_corners"
));
auto
align_mode
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"align_mode"
));
auto
resize_inputs
=
op_desc
.
Inputs
();
auto
input_names
=
op_desc
.
Input
(
"X"
);
auto
out_h
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"out_h"
));
auto
out_w
=
BOOST_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"out_w"
));
auto
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Resize
,
*
input
);
if
(
align_mode
==
0
&&
!
align_corners
)
{
layer
->
setResizeMode
(
nvinfer1
::
ResizeMode
::
kLINEAR
);
}
auto
in_dim
=
input
->
getDimensions
();
float
scale_h
=
1.
f
;
float
scale_w
=
1.
f
;
// Scales Priority: Scale(tensor) > scale(attr) > out_d/out_h/out_w(attr)
bool
has_scale_input_attr
=
(
resize_inputs
.
find
(
"Scale"
)
!=
resize_inputs
.
end
());
bool
has_scale_input
=
has_scale_input_attr
&&
(
op_desc
.
Input
(
"Scale"
).
size
()
>
0
);
if
(
has_scale_input
)
{
auto
*
scale_var
=
scope
.
FindVar
(
op_desc
.
Input
(
"Scale"
)[
0
]);
auto
*
scale_tensor
=
scale_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
scale_d
=
scale_tensor
->
data
<
float
>
();
scale_h
=
scale_d
[
0
];
scale_w
=
scale_d
[
1
];
}
else
{
const
std
::
vector
<
float
>
scale_attr
=
BOOST_GET_CONST
(
std
::
vector
<
float
>
,
op_desc
.
GetAttr
(
"scale"
));
if
(
scale_attr
.
size
()
>
1
)
{
scale_h
=
scale_attr
[
0
];
scale_w
=
scale_attr
[
1
];
}
}
// axis are different in static/dynamic mode
bool
with_dynamic
=
engine_
->
with_dynamic_shape
();
int
h_axis
=
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
+
with_dynamic
;
int
w_axis
=
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
+
1
+
with_dynamic
;
if
(
scale_w
>
0.
&&
scale_h
>
0.
)
{
out_h
=
static_cast
<
int
>
(
in_dim
.
d
[
h_axis
]
*
scale_h
);
out_w
=
static_cast
<
int
>
(
in_dim
.
d
[
w_axis
]
*
scale_w
);
}
if
(
out_h
>
0
&&
out_w
>
0
)
{
scale_h
=
static_cast
<
float
>
(
out_h
)
/
static_cast
<
float
>
(
in_dim
.
d
[
h_axis
]);
scale_w
=
static_cast
<
float
>
(
out_w
)
/
static_cast
<
float
>
(
in_dim
.
d
[
w_axis
]);
}
std
::
vector
<
float
>
scales
;
if
(
engine_
->
with_dynamic_shape
())
{
scales
.
push_back
(
1.
f
);
}
if
(
data_layout
==
framework
::
DataLayout
::
kNCHW
)
{
scales
.
push_back
(
1.
f
);
scales
.
push_back
(
scale_h
);
scales
.
push_back
(
scale_w
);
}
else
if
(
data_layout
==
framework
::
DataLayout
::
kNHWC
)
{
scales
.
push_back
(
scale_h
);
scales
.
push_back
(
scale_w
);
scales
.
push_back
(
1.
f
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Data layout must be NCHW or NHWC."
));
}
layer
->
setScales
(
scales
.
data
(),
scales
.
size
());
RreplenishLayerAndOutput
(
layer
,
"bilinear_interp_v2"
,
{
output_name
},
test_mode
);
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
bilinear_interp_v2
,
BilinearInterpolateV2OpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
3d232b29
...
...
@@ -144,6 +144,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"conv3d_transpose"
,
"mish"
,
"nearest_interp_v2"
,
"bilinear_interp_v2"
,
"pool3d"
,
"deformable_conv"
,
"relu6"
,
...
...
@@ -239,6 +240,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"conv3d"
,
"conv3d_transpose"
,
"mish"
,
"bilinear_interp_v2"
,
"nearest_interp_v2"
,
"pool3d"
,
"deformable_conv"
,
...
...
@@ -875,6 +877,99 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
}
}
if
(
op_type
==
"bilinear_interp_v2"
)
{
std
::
vector
<
std
::
string
>
attrs
{
"data_layout"
,
"interp_method"
,
"align_corners"
,
"scale"
,
"out_h"
,
"out_w"
};
for
(
auto
const
attr
:
attrs
)
{
if
(
!
desc
.
HasAttr
(
attr
))
{
VLOG
(
3
)
<<
"The op_type "
<<
op_type
<<
" doesn't have the attr "
<<
attr
<<
" and return false"
;
return
false
;
}
}
auto
resize_inputs
=
desc
.
Inputs
();
if
(
resize_inputs
.
find
(
"SizeTensor"
)
!=
resize_inputs
.
end
())
{
if
(
desc
.
Input
(
"SizeTensor"
).
size
()
>=
1
)
{
VLOG
(
3
)
<<
"The Paddle-TRT doesn't support the SizeTensor for op_type "
<<
op_type
;
return
false
;
}
}
if
(
resize_inputs
.
find
(
"OutSize"
)
!=
resize_inputs
.
end
())
{
if
(
desc
.
Input
(
"OutSize"
).
size
()
>=
1
)
{
VLOG
(
3
)
<<
"The Paddle-TRT doesn't support the OutSize for op_type "
<<
op_type
;
return
false
;
}
}
auto
data_layout
=
framework
::
StringToDataLayout
(
BOOST_GET_CONST
(
std
::
string
,
desc
.
GetAttr
(
"data_layout"
)));
if
(
data_layout
!=
framework
::
DataLayout
::
kNCHW
&&
data_layout
!=
framework
::
DataLayout
::
kNHWC
)
{
VLOG
(
3
)
<<
"The op_type "
<<
op_type
<<
" is not NCHW or NHWC return false"
;
return
false
;
}
auto
interp_method
=
BOOST_GET_CONST
(
std
::
string
,
desc
.
GetAttr
(
"interp_method"
));
if
(
interp_method
!=
"bilinear"
)
{
VLOG
(
3
)
<<
"The interp_method of op_type "
<<
op_type
<<
" is not bilinear"
;
return
false
;
}
auto
align_corners
=
BOOST_GET_CONST
(
bool
,
desc
.
GetAttr
(
"align_corners"
));
if
(
align_corners
!=
false
)
{
VLOG
(
3
)
<<
"The bilinear_interp_v2 only supports align_corners with false."
;
return
false
;
}
bool
has_scale_input_size
=
(
resize_inputs
.
find
(
"Scale"
)
!=
resize_inputs
.
end
());
if
(
has_scale_input_size
&&
desc
.
Input
(
"Scale"
).
size
()
!=
1
)
{
const
std
::
vector
<
float
>
scale
=
BOOST_GET_CONST
(
std
::
vector
<
float
>
,
desc
.
GetAttr
(
"scale"
));
if
(
scale
.
size
()
<=
1
)
{
if
(
!
desc
.
HasAttr
(
"out_h"
)
||
!
desc
.
HasAttr
(
"out_w"
))
{
VLOG
(
3
)
<<
"The op_type "
<<
op_type
<<
" doesn't have Scale and the scale size <=1 and without "
"out_h / out_w, it will return false"
;
return
false
;
}
auto
out_h
=
BOOST_GET_CONST
(
int
,
desc
.
GetAttr
(
"out_h"
));
auto
out_w
=
BOOST_GET_CONST
(
int
,
desc
.
GetAttr
(
"out_w"
));
if
(
!
(
out_h
<=
0
&&
out_w
<=
0
))
{
if
(
out_h
<=
0
)
{
VLOG
(
3
)
<<
"The op_type "
<<
op_type
<<
"'s out_h must be greater than 0 if scale is not set."
;
return
false
;
}
if
(
out_w
<=
0
)
{
VLOG
(
3
)
<<
"The op_type "
<<
op_type
<<
"'s out_w must be greater than 0 if scale is not set."
;
return
false
;
}
}
}
else
{
for
(
size_t
i
=
0
;
i
<
scale
.
size
();
i
++
)
{
if
(
scale
[
i
]
<=
0
&&
with_dynamic_shape
)
{
VLOG
(
3
)
<<
"dynamic shape not support Attr(scale["
<<
i
<<
"]) "
<<
scale
[
i
]
<<
" less than 1 and Input(Scale) vector not set."
;
return
false
;
}
}
}
}
}
if
(
op_type
==
"hard_swish"
)
{
if
(
desc
.
Input
(
"X"
).
size
()
!=
1
)
{
VLOG
(
3
)
<<
"HardSwish op has only 1 input, but got "
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_bilinear_interp_v2.py
0 → 100644
浏览文件 @
3d232b29
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
import
unittest
class
TrtConvertBilinearInterpV2Test
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
weights
=
program_config
.
weights
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
ones
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float32
)
def
generate_input2
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
np
.
random
.
uniform
(
low
=
0.5
,
high
=
6.0
,
size
=
(
2
)).
astype
(
"float32"
)
for
data_layout
in
[
"NCHW"
,
"NHWC"
]:
for
scale_y
in
[
2.0
,
-
1.0
,
0.0
]:
for
scale_x
in
[
2.0
,
-
1.0
,
0.0
]:
scale
=
[
scale_y
,
scale_x
]
for
out_h
in
[
32
,
64
,
128
,
192
]:
for
out_w
in
[
32
,
64
]:
dics
=
[{
"data_layout"
:
data_layout
,
"interp_method"
:
"bilinear"
,
"align_corners"
:
False
,
"align_mode"
:
0
,
"scale"
:
scale
,
"out_h"
:
out_h
,
"out_w"
:
out_w
}]
ops_config
=
[{
"op_type"
:
"bilinear_interp_v2"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
"Scale"
:
[
"input_scale"
]
},
"op_outputs"
:
{
"Out"
:
[
"bilinear_interp_v2_output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"input_scale"
:
TensorConfig
(
data_gen
=
partial
(
generate_input2
,
dics
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
))
},
outputs
=
[
"bilinear_interp_v2_output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
64
,
64
]}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-2
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-2
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录