未验证 提交 e86dbd62 编写于 作者: X xiaoxiaohehe001 提交者: GitHub

[Paddle Inference] Add bmm trt convert layer. (#46877)

上级 770501b8
......@@ -2174,6 +2174,7 @@ USE_TRT_CONVERTER(flatten);
USE_TRT_CONVERTER(flatten_contiguous_range);
USE_TRT_CONVERTER(matmul);
USE_TRT_CONVERTER(matmul_v2);
USE_TRT_CONVERTER(bmm);
USE_TRT_CONVERTER(conv2d);
USE_TRT_CONVERTER(relu);
USE_TRT_CONVERTER(exp);
......
......@@ -4,6 +4,7 @@ list(
CONVERT_FILES
matmul_op.cc
matmul_v2_op.cc
bmm_op.cc
conv2d_op.cc
fc_op.cc
pool2d_op.cc
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace framework {
class Scope;
namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle
namespace paddle {
namespace inference {
namespace tensorrt {
class BMMOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
framework::OpDesc op_desc(op, nullptr);
nvinfer1::ILayer* layer = nullptr;
// Declare inputs
auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]);
auto* input2 = engine_->GetITensor(op_desc.Input("Y")[0]);
auto output_name = op_desc.Output("Out")[0];
layer = TRT_ENGINE_ADD_LAYER(engine_,
MatrixMultiply,
*input1,
nvinfer1::MatrixOperation::kNONE,
*input2,
nvinfer1::MatrixOperation::kNONE);
RreplenishLayerAndOutput(layer, "bmm", {output_name}, test_mode);
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(bmm, BMMOpConverter);
......@@ -327,6 +327,12 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if (op_type == "bmm") {
if (!with_dynamic_shape) {
return false;
}
}
if (op_type == "matmul_v2") {
if (!with_dynamic_shape) {
return false;
......@@ -2115,6 +2121,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"mul",
"matmul",
"matmul_v2",
"bmm",
"conv2d",
"conv2d_fusion",
"pool2d",
......@@ -2227,6 +2234,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"mul",
"matmul",
"matmul_v2",
"bmm",
"conv2d",
"conv2d_fusion",
"pool2d",
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import os
class TrtConvertBmmTest_dynamic(TrtLayerAutoScanTest):
def sample_program_configs(self):
def generate_input(shape):
return np.random.random(shape).astype(np.float32)
for batch in [10, 11, 12, 13, 14, 15]:
for trans_x in [False]:
for trans_y in [False]:
input1_shape = [batch, 350, 75]
input2_shape = [batch, 75, 25]
dics = [{}]
ops_config = [{
"op_type": "bmm",
"op_inputs": {
"X": ["input1_data"],
"Y": ["input2_data"]
},
"op_outputs": {
"Out": ["output_data"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input1_data":
TensorConfig(
data_gen=partial(generate_input, input1_shape)),
"input2_data":
TensorConfig(
data_gen=partial(generate_input, input2_shape))
},
outputs=["output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input1_data": [10, 350, 75],
"input2_data": [10, 75, 25]
}
self.dynamic_shape.max_input_shape = {
"input1_data": [100, 350, 75],
"input2_data": [100, 75, 25]
}
self.dynamic_shape.opt_input_shape = {
"input1_data": [15, 350, 75],
"input2_data": [15, 75, 25]
}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
if dynamic_shape:
return 1, 3
else:
return 0, 4
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
# The output has little diff between gpu and trt in CI-Windows-Inference
tol_fp32 = 1e-4
tol_half = 1e-4
if (os.name == 'nt'):
tol_fp32 = 1e-2
tol_half = 1e-2
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), tol_fp32
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True), tol_half
def add_skip_trt_case(self):
pass
def test(self):
self.add_skip_trt_case()
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册