Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
4c38b87e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4c38b87e
编写于
12月 02, 2022
作者:
G
gem5
提交者:
GitHub
12月 02, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add some compare and logical trt converter (#48592)
上级
fcf26279
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
608 addition
and
14 deletion
+608
-14
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+6
-0
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
+81
-14
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+38
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_compare_and_logical.py
...ests/ir/inference/test_trt_convert_compare_and_logical.py
+483
-0
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
4c38b87e
...
...
@@ -2238,6 +2238,12 @@ USE_TRT_CONVERTER(elementwise_max_tensor);
USE_TRT_CONVERTER
(
elementwise_min_tensor
);
USE_TRT_CONVERTER
(
elementwise_pow_tensor
);
USE_TRT_CONVERTER
(
elementwise_floordiv_tensor
);
USE_TRT_CONVERTER
(
less_than
);
USE_TRT_CONVERTER
(
greater_than
);
USE_TRT_CONVERTER
(
logical_or
);
USE_TRT_CONVERTER
(
logical_xor
);
USE_TRT_CONVERTER
(
logical_and
);
USE_TRT_CONVERTER
(
less_equal
);
USE_TRT_CONVERTER
(
transpose
);
USE_TRT_CONVERTER
(
transpose2
);
USE_TRT_CONVERTER
(
flatten
);
...
...
paddle/fluid/inference/tensorrt/convert/elementwise_op.cc
100644 → 100755
浏览文件 @
4c38b87e
...
...
@@ -74,8 +74,12 @@ class ElementwiseTensorOpConverter : public OpConverter {
nvinfer1
::
Dims
dims_y
=
Y
->
getDimensions
();
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
int
axis
=
-
1
;
// axis here is relative to explicit batch
int
axis
=
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"axis"
));
if
(
op_type_
!=
"logical_or"
&&
op_type_
!=
"logical_xor"
&&
op_type_
!=
"logical_and"
)
{
axis
=
PADDLE_GET_CONST
(
int
,
op_desc
.
GetAttr
(
"axis"
));
}
int
real_x_rank
=
dims_x
.
nbDims
;
int
real_y_rank
=
dims_y
.
nbDims
;
if
(
!
engine_
->
with_dynamic_shape
())
{
...
...
@@ -139,17 +143,40 @@ class ElementwiseTensorOpConverter : public OpConverter {
X
=
tmp
;
}
auto
op_pair
=
ops
.
find
(
op_type_
);
PADDLE_ENFORCE_NE
(
op_pair
,
ops
.
end
(),
platform
::
errors
::
InvalidArgument
(
"Elementwise op's type(%s) is not supported. Please "
"check if the op_type is correct."
,
op_type_
));
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
X
,
*
reshape_y_tensor
,
op_pair
->
second
);
RreplenishLayerAndOutput
(
layer
,
"elementwise"
,
{
output_name
},
test_mode
);
if
(
op_type_
==
"less_equal"
)
{
auto
*
less_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
X
,
*
reshape_y_tensor
,
nvinfer1
::
ElementWiseOperation
::
kLESS
);
auto
*
equal_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
X
,
*
reshape_y_tensor
,
nvinfer1
::
ElementWiseOperation
::
kEQUAL
);
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
(
less_layer
->
getOutput
(
0
)),
*
(
equal_layer
->
getOutput
(
0
)),
nvinfer1
::
ElementWiseOperation
::
kOR
);
RreplenishLayerAndOutput
(
layer
,
"elementwise"
,
{
output_name
},
test_mode
);
}
else
{
auto
op_pair
=
ops
.
find
(
op_type_
);
PADDLE_ENFORCE_NE
(
op_pair
,
ops
.
end
(),
platform
::
errors
::
InvalidArgument
(
"Elementwise op's type(%s) is not supported. Please "
"check if the op_type is correct."
,
op_type_
));
auto
*
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
ElementWise
,
*
X
,
*
reshape_y_tensor
,
op_pair
->
second
);
RreplenishLayerAndOutput
(
layer
,
"elementwise"
,
{
output_name
},
test_mode
);
}
}
protected:
...
...
@@ -168,6 +195,11 @@ const std::unordered_map<std::string, nvinfer1::ElementWiseOperation>
{
"pow"
,
nvinfer1
::
ElementWiseOperation
::
kPOW
},
{
"max"
,
nvinfer1
::
ElementWiseOperation
::
kMAX
},
{
"floordiv"
,
nvinfer1
::
ElementWiseOperation
::
kFLOOR_DIV
},
{
"less_than"
,
nvinfer1
::
ElementWiseOperation
::
kLESS
},
{
"greater_than"
,
nvinfer1
::
ElementWiseOperation
::
kGREATER
},
{
"logical_or"
,
nvinfer1
::
ElementWiseOperation
::
kOR
},
{
"logical_xor"
,
nvinfer1
::
ElementWiseOperation
::
kXOR
},
{
"logical_and"
,
nvinfer1
::
ElementWiseOperation
::
kAND
},
};
class
ElementwiseTensorAddOpConverter
:
public
ElementwiseTensorOpConverter
{
...
...
@@ -204,13 +236,41 @@ class ElementwiseTensorPowOpConverter : public ElementwiseTensorOpConverter {
public:
ElementwiseTensorPowOpConverter
()
{
op_type_
=
"pow"
;
}
};
class
ElementwiseTensorFloorDivOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorFloorDivOpConverter
()
{
op_type_
=
"floordiv"
;
}
};
class
ElementwiseTensorLessThanOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorLessThanOpConverter
()
{
op_type_
=
"less_than"
;
}
};
class
ElementwiseTensorGreaterThanOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorGreaterThanOpConverter
()
{
op_type_
=
"greater_than"
;
}
};
class
ElementwiseTensorLogicalOrOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorLogicalOrOpConverter
()
{
op_type_
=
"logical_or"
;
}
};
class
ElementwiseTensorLogicalXorOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorLogicalXorOpConverter
()
{
op_type_
=
"logical_xor"
;
}
};
class
ElementwiseTensorLogicalAndOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorLogicalAndOpConverter
()
{
op_type_
=
"logical_and"
;
}
};
class
ElementwiseTensorLessEqualOpConverter
:
public
ElementwiseTensorOpConverter
{
public:
ElementwiseTensorLessEqualOpConverter
()
{
op_type_
=
"less_equal"
;
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
...
...
@@ -248,3 +308,10 @@ REGISTER_TRT_OP_CONVERTER(elementwise_pow_tensor,
ElementwiseTensorPowOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
elementwise_floordiv_tensor
,
ElementwiseTensorFloorDivOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
less_than
,
ElementwiseTensorLessThanOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
greater_than
,
ElementwiseTensorGreaterThanOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
logical_or
,
ElementwiseTensorLogicalOrOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
logical_xor
,
ElementwiseTensorLogicalXorOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
logical_and
,
ElementwiseTensorLogicalAndOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
less_equal
,
ElementwiseTensorLessEqualOpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
4c38b87e
...
...
@@ -1322,6 +1322,32 @@ struct SimpleOpTypeSetTeller : public Teller {
}
}
if
(
op_type
==
"less_than"
||
op_type
==
"greater_than"
||
op_type
==
"logical_or"
||
op_type
==
"logical_xor"
||
op_type
==
"logical_and"
||
op_type
==
"less_equal"
)
{
#if IS_TRT_VERSION_GE(8400)
if
(
!
with_dynamic_shape
)
{
VLOG
(
3
)
<<
"these ops do not support static shape yet"
;
return
false
;
}
if
(
op_type
==
"logical_or"
||
op_type
==
"logical_xor"
||
op_type
==
"logical_and"
)
{
auto
*
block
=
desc
.
Block
();
auto
*
x_var_desc
=
block
->
FindVar
(
desc
.
Input
(
"X"
)[
0
]);
auto
*
y_var_desc
=
block
->
FindVar
(
desc
.
Input
(
"Y"
)[
0
]);
auto
x_dtype
=
x_var_desc
->
GetDataType
();
auto
y_dtype
=
y_var_desc
->
GetDataType
();
if
(
x_dtype
!=
framework
::
proto
::
VarType
::
BOOL
||
y_dtype
!=
framework
::
proto
::
VarType
::
BOOL
)
{
VLOG
(
3
)
<<
"the op only support input of BOOL."
;
return
false
;
}
}
#else
VLOG
(
3
)
<<
"these are not supported when TensorRT < 8.4"
;
return
false
;
#endif
}
if
(
op_type
==
"elementwise_add"
||
op_type
==
"elementwise_mul"
||
op_type
==
"elementwise_sub"
||
op_type
==
"elementwise_div"
||
op_type
==
"elementwise_pow"
||
op_type
==
"elementwise_min"
||
...
...
@@ -2382,6 +2408,12 @@ struct SimpleOpTypeSetTeller : public Teller {
"elementwise_max"
,
"elementwise_floordiv"
,
"equal"
,
"less_than"
,
"greater_than"
,
"logical_or"
,
"logical_xor"
,
"logical_and"
,
"less_equal"
,
"dropout"
,
"fill_any_like"
,
"prelu"
,
...
...
@@ -2514,6 +2546,12 @@ struct SimpleOpTypeSetTeller : public Teller {
"elementwise_max"
,
"elementwise_floordiv"
,
"equal"
,
"less_than"
,
"greater_than"
,
"logical_or"
,
"logical_xor"
,
"logical_and"
,
"less_equal"
,
"dropout"
,
"fill_any_like"
,
"prelu"
,
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_compare_and_logical.py
0 → 100755
浏览文件 @
4c38b87e
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtConvertLogicalTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
shape
in
[[
2
,
16
],
[
2
,
16
,
32
],
[
1
,
32
,
16
,
32
]]:
for
op_type
in
[
"logical_and"
,
"logical_or"
,
"logical_xor"
]:
for
axis
in
[
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[
{
"axis"
:
axis
},
{
"in_dtype"
:
5
,
"out_dtype"
:
0
},
{
"in_dtype"
:
0
,
"out_dtype"
:
5
},
]
ops_config
=
[
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
]},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data1"
]},
"op_attrs"
:
dics
[
1
],
"outputs_dtype"
:
{
"cast_output_data1"
:
np
.
bool
},
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"input_data2"
]},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data3"
]},
"op_attrs"
:
dics
[
1
],
"outputs_dtype"
:
{
"cast_output_data1"
:
np
.
bool
},
},
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data1"
],
"Y"
:
[
"cast_output_data3"
],
},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data0"
]},
"op_attrs"
:
dics
[
0
],
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data0"
]},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
2
],
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
if
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
dynamic_shape
:
ver
=
paddle_infer
.
get_trt_compile_version
()
if
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8400
:
return
0
,
7
return
1
,
3
return
0
,
7
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
class
TrtConvertCompareTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
shape
in
[[
2
,
16
],
[
2
,
16
,
32
],
[
1
,
32
,
16
,
32
]]:
for
op_type
in
[
"less_than"
,
"greater_than"
]:
for
axis
in
[
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[
{
"axis"
:
axis
},
{
"in_dtype"
:
0
,
"out_dtype"
:
5
},
]
ops_config
=
[
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
],
"Y"
:
[
"input_data2"
],
},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data0"
]},
"op_attrs"
:
dics
[
0
],
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data0"
]},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
1
],
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
if
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
ver
=
paddle_infer
.
get_trt_compile_version
()
if
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8400
:
return
0
,
5
if
not
dynamic_shape
:
return
0
,
5
return
1
,
3
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
class
TrtConvertLessEqualTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
shape
in
[[
2
,
16
],
[
2
,
16
,
32
],
[
1
,
32
,
16
,
32
]]:
for
op_type
in
[
"less_equal"
]:
for
axis
in
[
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[
{
"axis"
:
axis
},
{
"in_dtype"
:
5
,
"out_dtype"
:
2
},
{
"in_dtype"
:
0
,
"out_dtype"
:
5
},
]
ops_config
=
[
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
]},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data1"
]},
"op_attrs"
:
dics
[
1
],
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"input_data2"
]},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data2"
]},
"op_attrs"
:
dics
[
1
],
},
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data1"
],
"Y"
:
[
"cast_output_data2"
],
},
"op_outputs"
:
{
"Out"
:
[
"cast_output_data0"
]},
"op_attrs"
:
dics
[
0
],
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"cast_output_data0"
]},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
2
],
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
2
,
16
],
}
if
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
,
32
],
"input_data2"
:
[
2
,
16
,
32
],
}
if
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
1
,
32
,
16
,
32
],
"input_data2"
:
[
1
,
32
,
16
,
32
],
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
ver
=
paddle_infer
.
get_trt_compile_version
()
if
(
ver
[
0
]
*
1000
+
ver
[
1
]
*
100
+
ver
[
2
]
*
10
<
8400
or
not
dynamic_shape
):
return
2
,
5
else
:
return
1
,
3
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录