未验证 提交 e79699fb 编写于 作者: S Sonder 提交者: GitHub

[Hackathon NO.73] 为 Paddle-TRT 添加 temporal_shift 算子 (#51207)

上级 ca8e21a6
......@@ -157,8 +157,8 @@ void TrtSupportNHWCPass::ApplyImpl(Graph *graph) const {
"nearest_interp_v2"};
// Ops must run under the original layout even though it has
// data_format/data_layout attribute, otherwise it will be very troublesome!
std::unordered_set<std::string> must_original_layout_ops{"affine_channel",
"softmax"};
std::unordered_set<std::string> must_original_layout_ops{
"affine_channel", "softmax", "temporal_shift"};
// OPs unrelated to layout are consistent according to the layout of input
// var!
std::unordered_set<std::string> any_layout_ops{"relu"};
......
......@@ -2546,6 +2546,7 @@ USE_TRT_CONVERTER(grid_sampler)
#endif
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(set_value)
USE_TRT_CONVERTER(temporal_shift)
#endif
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
......
......@@ -101,7 +101,8 @@ list(
elementwiseadd_transpose_op.cc
skip_groupnorm_act_op.cc
preln_groupnorm_act_op.cc
expand_v2_op.cc)
expand_v2_op.cc
temporal_shift_op.cc)
if(${TENSORRT_MAJOR_VERSION} GREATER_EQUAL 7)
list(APPEND CONVERT_FILES emb_eltwise_layernorm.cc
......
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
/*
* TemporalShiftOp.
*/
class TemporalShiftOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
#if IS_TRT_VERSION_GE(8200)
VLOG(3) << "convert a temporal shift op to tensorrt temporal layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
const float shift_ratio =
PADDLE_GET_CONST(float, op_desc.GetAttr("shift_ratio"));
const int T = PADDLE_GET_CONST(int, op_desc.GetAttr("seg_num"));
std::string data_format = "NCHW";
if (op_desc.HasAttr("data_format")) {
data_format =
PADDLE_GET_CONST(std::string, op_desc.GetAttr("data_format"));
}
if (data_format == "NHWC") {
// tanspose input to [N,C,H,W]
auto transpose_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
nvinfer1::Permutation perm{0, 3, 1, 2};
transpose_layer->setFirstTranspose(perm);
input = transpose_layer->getOutput(0);
}
auto input_dims = input->getDimensions();
const int C = input_dims.d[1];
const int H = input_dims.d[2];
const int W = input_dims.d[3];
// Reshape input to [N,T,C,H,W]
auto reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
nvinfer1::Dims reshape_dims{5, { -1, T, C, H, W }};
reshape_layer->setReshapeDimensions(reshape_dims);
input = reshape_layer->getOutput(0);
// Pad input to [N,T+2,C,H,W]
std::vector<int> pre_pad_v{0, 1, 0, 0, 0};
std::vector<int> post_pad_v{0, 1, 0, 0, 0};
nvinfer1::ITensor* pre_pad = Add1DConstantLayer(pre_pad_v);
nvinfer1::ITensor* post_pad = Add1DConstantLayer(post_pad_v);
int dims = 5;
std::vector<int> zeros_v(dims, 0);
auto const zeros = Add1DConstantLayer(zeros_v);
nvinfer1::ITensor* start{};
nvinfer1::ITensor* size{};
start = TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*zeros,
*pre_pad,
nvinfer1::ElementWiseOperation::kSUB)
->getOutput(0);
auto const total_padding =
TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*pre_pad,
*post_pad,
nvinfer1::ElementWiseOperation::kSUM)
->getOutput(0);
auto const input_shape = Shape(input);
size = TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*input_shape,
*total_padding,
nvinfer1::ElementWiseOperation::kSUM)
->getOutput(0);
nvinfer1::Dims stride;
stride.nbDims = dims;
std::fill_n(stride.d, dims, 1);
auto const& dummy = stride;
auto* slice_layer =
TRT_ENGINE_ADD_LAYER(engine_,
Slice,
*const_cast<nvinfer1::ITensor*>(input),
dummy,
dummy,
stride);
slice_layer->setInput(1, *start);
slice_layer->setInput(2, *size);
#if IS_TRT_VERSION_GE(8500)
slice_layer->setMode(nvinfer1::SampleMode::kFILL);
#else
slice_layer->setMode(nvinfer1::SliceMode::kFILL);
#endif
// Slice Padded Tensor
const int slice_c = static_cast<int>(C * shift_ratio);
const int slice_c2 = static_cast<int>(C * shift_ratio * 2);
nvinfer1::ITensor* slice_start1 = Add1DConstantLayer(zeros_v);
nvinfer1::ITensor* slice_start2 =
Add1DConstantLayer(std::vector<int>{0, 2, slice_c, 0, 0});
nvinfer1::ITensor* slice_start3 =
Add1DConstantLayer(std::vector<int>{0, 1, slice_c2, 0, 0});
nvinfer1::ITensor* slice_size_base = Shape(input);
nvinfer1::ITensor* sub_size1 =
Add1DConstantLayer(std::vector<int>{0, 0, C - slice_c, 0, 0});
nvinfer1::ITensor* sub_size2 = Add1DConstantLayer(
std::vector<int>{0, 0, C + slice_c - slice_c2, 0, 0});
nvinfer1::ITensor* sub_size3 =
Add1DConstantLayer(std::vector<int>{0, 0, slice_c2, 0, 0});
// [N, T, C, H, W] - [0, 0, C - slice_c, 0, 0] = [N, T, slice_c, H, W]
nvinfer1::ITensor* slice_size1 =
TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*slice_size_base,
*sub_size1,
nvinfer1::ElementWiseOperation::kSUB)
->getOutput(0);
nvinfer1::ITensor* slice_size2 =
TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*slice_size_base,
*sub_size2,
nvinfer1::ElementWiseOperation::kSUB)
->getOutput(0);
nvinfer1::ITensor* slice_size3 =
TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*slice_size_base,
*sub_size3,
nvinfer1::ElementWiseOperation::kSUB)
->getOutput(0);
auto* slice1_layer = TRT_ENGINE_ADD_LAYER(
engine_, Slice, *slice_layer->getOutput(0), dummy, dummy, stride);
slice1_layer->setInput(1, *slice_start1);
slice1_layer->setInput(2, *slice_size1);
auto* slice2_layer = TRT_ENGINE_ADD_LAYER(
engine_, Slice, *slice_layer->getOutput(0), dummy, dummy, stride);
slice2_layer->setInput(1, *slice_start2);
slice2_layer->setInput(2, *slice_size2);
auto* slice3_layer = TRT_ENGINE_ADD_LAYER(
engine_, Slice, *slice_layer->getOutput(0), dummy, dummy, stride);
slice3_layer->setInput(1, *slice_start3);
slice3_layer->setInput(2, *slice_size3);
// Concatenate slices along the third dimension (C)
nvinfer1::IConcatenationLayer* concat_layer;
if (!slice_c) {
nvinfer1::ITensor* concat_inputs[2] = {slice2_layer->getOutput(0),
slice3_layer->getOutput(0)};
concat_layer =
TRT_ENGINE_ADD_LAYER(engine_, Concatenation, concat_inputs, 2);
concat_layer->setAxis(2);
} else {
nvinfer1::ITensor* concat_inputs[3] = {slice1_layer->getOutput(0),
slice2_layer->getOutput(0),
slice3_layer->getOutput(0)};
concat_layer =
TRT_ENGINE_ADD_LAYER(engine_, Concatenation, concat_inputs, 3);
concat_layer->setAxis(2);
}
// Reshape output to [N*T,C,H,W]
auto* reshape_layer3 =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *concat_layer->getOutput(0));
reshape_layer3->setReshapeDimensions(input_dims);
// Set output
auto output_name = op_desc.Output("Out")[0];
if (data_format == "NHWC") {
// Transpose output to [N*T,C,H,W] -> [N*T,H,W,C]
auto transpose_layer2 =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *reshape_layer3->getOutput(0));
nvinfer1::Permutation permute_order{0, 2, 3, 1};
transpose_layer2->setFirstTranspose(permute_order);
RreplenishLayerAndOutput(
transpose_layer2, "temporal_shift", {output_name}, test_mode);
} else {
RreplenishLayerAndOutput(
reshape_layer3, "temporal_shift", {output_name}, test_mode);
}
#else
VLOG(3) << "Temporal shift is not supported when TensorRT < 8.2";
#endif
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(temporal_shift, TemporalShiftOpConverter);
......@@ -2603,6 +2603,42 @@ struct SimpleOpTypeSetTeller : public Teller {
#endif
}
if (op_type == "temporal_shift") {
#if !IS_TRT_VERSION_GE(8200)
VLOG(3) << "temporal_shift is not supported when TensorRT < 8.2";
return false;
#endif
if (!with_dynamic_shape) {
VLOG(3) << "the temporal shift does not support "
"static shape yet";
return false;
}
if (!desc.HasAttr("shift_ratio") || !desc.HasAttr("seg_num")) {
VLOG(3) << "temporal shift need attributes : shift_ratio and seg_num";
return false;
}
auto* block = desc.Block();
if (block == nullptr) {
VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
"Developers need to check whether block_desc is passed in "
"the pass.";
return false;
}
auto input_name = desc.Input("X")[0];
auto* input_desc = block->FindVar(input_name);
const auto input_shape = input_desc->GetShape();
if (input_shape.size() != 4) {
VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
"using TRT TemporalShift layer.";
return false;
}
}
if (use_no_calib_int8) {
return int8_teller_set.count(op_type);
} else {
......@@ -2764,6 +2800,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"fuse_eleadd_transpose",
"skip_groupnorm_act",
"preln_groupnorm_act",
"temporal_shift",
"grid_sampler"};
std::unordered_set<std::string> teller_set{
......@@ -2918,6 +2955,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"fuse_eleadd_transpose",
"skip_groupnorm_act",
"preln_groupnorm_act",
"temporal_shift",
"grid_sampler"};
};
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from functools import partial
from typing import List
import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest
import paddle.inference as paddle_infer
class TrtConvertTemporalShiftTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_configs(self):
def generate_input1(attrs):
T = attrs[0]["seg_num"]
shape = [2 * T, 10, 64, 64]
return np.random.uniform(low=0.1, high=1.0, size=shape).astype(
np.float32
)
for shift_value in [0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.49]:
for T in range(2, 5):
for data_format in ["NCHW", "NHWC"]:
dics = [
{
"shift_ratio": shift_value,
"seg_num": T,
"data_format": data_format,
},
{},
]
ops_config = [
{
"op_type": "temporal_shift",
"op_inputs": {"X": ["input_data"]},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": dics[0],
}
]
ops = self.generate_op_config(ops_config)
for i in range(10):
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input1, dics)
),
},
outputs=["output_data"],
)
yield program_config
def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
t = attrs[0]['seg_num']
self.dynamic_shape.min_input_shape = {
"input_data": [2 * t, 10, 64, 64]
}
self.dynamic_shape.max_input_shape = {
"input_data": [5 * t, 10, 64, 64]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [3 * t, 10, 64, 64]
}
def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, is_dynamic_shape):
valid_version = (8, 2, 0)
compile_version = paddle_infer.get_trt_compile_version()
runtime_version = paddle_infer.get_trt_runtime_version()
self.assertTrue(compile_version == runtime_version)
if compile_version < valid_version:
return 0, 3
if is_dynamic_shape:
return 1, 2
return 0, 3
attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False
), 1e-3
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-3
def test(self):
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册