Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
dd304f31
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dd304f31
编写于
12月 06, 2022
作者:
Z
Zhang Jun
提交者:
GitHub
12月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[inference][trt] add reduce max for trt (#48684)
* add reduce max for trt
上级
0c7f3575
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
83 addition
and
215 deletion
+83
-215
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+2
-1
paddle/fluid/inference/tensorrt/convert/reduce_op.cc
paddle/fluid/inference/tensorrt/convert/reduce_op.cc
+28
-10
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+6
-3
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_reduce.py
...d/tests/unittests/ir/inference/test_trt_convert_reduce.py
+47
-40
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_reduce_sum.py
...sts/unittests/ir/inference/test_trt_convert_reduce_sum.py
+0
-161
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
dd304f31
...
...
@@ -2318,9 +2318,10 @@ USE_TRT_CONVERTER(nearest_interp_v2);
USE_TRT_CONVERTER
(
bilinear_interp_v2
);
USE_TRT_CONVERTER
(
reshape
);
USE_TRT_CONVERTER
(
reshape2
);
USE_TRT_CONVERTER
(
reduce_sum
);
USE_TRT_CONVERTER
(
gather_nd
);
USE_TRT_CONVERTER
(
reduce_mean
);
USE_TRT_CONVERTER
(
reduce_max
);
USE_TRT_CONVERTER
(
reduce_sum
);
USE_TRT_CONVERTER
(
tile
);
USE_TRT_CONVERTER
(
conv3d
);
USE_TRT_CONVERTER
(
conv3d_transpose
);
...
...
paddle/fluid/inference/tensorrt/convert/reduce_op.cc
浏览文件 @
dd304f31
...
...
@@ -42,12 +42,7 @@ class ReduceOpConverter : public OpConverter {
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a paddle "
<<
op_type
<<
" op to tensorrt reduce layer"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
nvinfer1
::
ReduceOperation
reduce_type
=
nvinfer1
::
ReduceOperation
::
kSUM
;
if
(
op_type
==
"reduce_sum"
)
{
reduce_type
=
nvinfer1
::
ReduceOperation
::
kSUM
;
}
else
if
(
op_type
==
"reduce_mean"
)
{
reduce_type
=
nvinfer1
::
ReduceOperation
::
kAVG
;
}
auto
reduce_type
=
ops_
.
find
(
op_type
);
auto
*
x
=
engine_
->
GetITensor
(
op_desc
.
Input
(
"X"
).
front
());
nvinfer1
::
Dims
input_shape
=
x
->
getDimensions
();
...
...
@@ -64,8 +59,12 @@ class ReduceOpConverter : public OpConverter {
for
(
int
i
=
0
;
i
<
input_dims
;
++
i
)
{
reduce_dim
|=
1
<<
i
;
}
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Reduce
,
*
x
,
reduce_type
,
reduce_dim
,
keep_dim
);
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Reduce
,
*
x
,
reduce_type
->
second
.
front
(),
reduce_dim
,
keep_dim
);
}
else
{
auto
CvtToBitMask
=
[
&
](
const
std
::
vector
<
int32_t
>&
dims
)
->
uint32_t
{
uint32_t
res
=
0
;
...
...
@@ -79,8 +78,12 @@ class ReduceOpConverter : public OpConverter {
}
return
res
;
};
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Reduce
,
*
x
,
reduce_type
,
CvtToBitMask
(
dim
),
keep_dim
);
layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Reduce
,
*
x
,
reduce_type
->
second
.
front
(),
CvtToBitMask
(
dim
),
keep_dim
);
}
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
...
...
@@ -91,6 +94,16 @@ class ReduceOpConverter : public OpConverter {
protected:
std
::
string
op_type
;
static
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
nvinfer1
::
ReduceOperation
>>
ops_
;
};
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
nvinfer1
::
ReduceOperation
>>
ReduceOpConverter
::
ops_
=
{
{
"reduce_mean"
,
{
nvinfer1
::
ReduceOperation
::
kAVG
}},
{
"reduce_sum"
,
{
nvinfer1
::
ReduceOperation
::
kSUM
}},
{
"reduce_max"
,
{
nvinfer1
::
ReduceOperation
::
kMAX
}},
};
class
ReduceSumOpConverter
:
public
ReduceOpConverter
{
...
...
@@ -103,9 +116,14 @@ class ReduceMeanOpConverter : public ReduceOpConverter {
ReduceMeanOpConverter
()
{
op_type
=
"reduce_mean"
;
}
};
class
ReduceMaxOpConverter
:
public
ReduceOpConverter
{
public:
ReduceMaxOpConverter
()
{
op_type
=
"reduce_max"
;
}
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
reduce_sum
,
ReduceSumOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
reduce_mean
,
ReduceMeanOpConverter
);
REGISTER_TRT_OP_CONVERTER
(
reduce_max
,
ReduceMaxOpConverter
);
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
dd304f31
...
...
@@ -2038,7 +2038,8 @@ struct SimpleOpTypeSetTeller : public Teller {
const
auto
x_shape
=
x_var_desc
->
GetShape
();
}
if
(
op_type
==
"reduce_sum"
||
op_type
==
"reduce_mean"
)
{
if
(
op_type
==
"reduce_sum"
||
op_type
==
"reduce_mean"
||
op_type
==
"reduce_max"
)
{
if
(
!
desc
.
HasAttr
(
"dim"
,
/*with_attr_var=*/
false
))
{
VLOG
(
3
)
<<
"Skip to convert into TRT while found Attribute('dim') is "
"Variable type in "
...
...
@@ -2470,8 +2471,9 @@ struct SimpleOpTypeSetTeller : public Teller {
"affine_channel"
,
"nearest_interp"
,
"anchor_generator"
,
"reduce_
sum
"
,
"reduce_
max
"
,
"reduce_mean"
,
"reduce_sum"
,
"conv3d"
,
"conv3d_transpose"
,
"mish"
,
...
...
@@ -2610,8 +2612,9 @@ struct SimpleOpTypeSetTeller : public Teller {
"affine_channel"
,
"nearest_interp"
,
"anchor_generator"
,
"reduce_
sum
"
,
"reduce_
max
"
,
"reduce_mean"
,
"reduce_sum"
,
"conv3d"
,
"conv3d_transpose"
,
"mish"
,
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_reduce
_mean
.py
→
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_reduce.py
浏览文件 @
dd304f31
...
...
@@ -23,7 +23,7 @@ from trt_layer_auto_scan_test import TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtConvertReduce
Mean
Test
(
TrtLayerAutoScanTest
):
class
TrtConvertReduceTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
attrs
=
[
...
...
@@ -66,44 +66,51 @@ class TrtConvertReduceMeanTest(TrtLayerAutoScanTest):
]:
for
reduce_all
in
[
True
,
False
]:
for
out_dtype
in
[
-
1
,
2
,
5
]:
dics
=
[
{
"keep_dim"
:
keep_dim
,
"dim"
:
dim
,
"reduce_all"
:
reduce_all
,
"out_dtype"
:
out_dtype
,
"in_dtype"
:
out_dtype
,
},
{},
]
ops_config
=
[
{
"op_type"
:
"reduce_mean"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
]},
"op_outputs"
:
{
"Out"
:
[
"reduce_output_data"
]},
"op_attrs"
:
dics
[
0
],
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
out_dtype
,
dics
for
op_type
in
[
"reduce_max"
,
"reduce_mean"
,
"reduce_sum"
,
]:
dics
=
[
{
"keep_dim"
:
keep_dim
,
"dim"
:
dim
,
"reduce_all"
:
reduce_all
,
"out_dtype"
:
out_dtype
,
"in_dtype"
:
out_dtype
,
},
{},
]
ops_config
=
[
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data"
]},
"op_outputs"
:
{
"Out"
:
[
"reduce_output_data"
]
},
"op_attrs"
:
dics
[
0
],
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
out_dtype
,
dics
)
)
)
},
outputs
=
[
"reduce_output_data"
],
)
},
outputs
=
[
"reduce_output_data"
],
)
if
not
self
.
is_program_valid
(
program_config
):
continue
if
not
self
.
is_program_valid
(
program_config
):
continue
yield
program_config
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
...
...
@@ -139,22 +146,22 @@ class TrtConvertReduceMeanTest(TrtLayerAutoScanTest):
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
1e-5
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
5e-4
,
5e-4
)
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
5e-4
,
5e-4
)
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_reduce_sum.py
已删除
100644 → 0
浏览文件 @
0c7f3575
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
Any
,
Dict
,
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtConvertReduceSumTest
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# dim should be in (-rank, rank), and not NONE
rank
=
len
(
inputs
[
'input_data'
].
shape
)
for
x
in
attrs
[
0
][
"dim"
]:
if
x
>=
rank
or
x
<=
-
rank
:
return
False
if
len
(
attrs
[
0
][
"dim"
])
==
0
:
return
False
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
dtype
,
attrs
:
List
[
Dict
[
str
,
Any
]]):
if
dtype
==
-
1
or
dtype
==
5
:
return
np
.
random
.
random
([
1
,
3
,
32
,
32
]).
astype
(
np
.
float32
)
elif
dtype
==
2
:
return
np
.
random
.
random
([
1
,
3
,
32
,
32
]).
astype
(
np
.
int32
)
for
keep_dim
in
[
True
,
False
]:
for
dim
in
[
[],
[
1
],
[
0
],
[
0
,
1
],
[
1
,
2
,
3
],
[
-
2
,
0
,
3
],
[
-
3
],
[
-
4
,
1
],
[
3
,
4
,
5
],
]:
for
reduce_all
in
[
True
,
False
]:
for
out_dtype
in
[
-
1
,
2
,
5
]:
dics
=
[
{
"keep_dim"
:
keep_dim
,
"dim"
:
dim
,
"reduce_all"
:
reduce_all
,
"out_dtype"
:
out_dtype
,
"in_dtype"
:
out_dtype
,
},
{},
]
ops_config
=
[
{
"op_type"
:
"reduce_sum"
,
"op_inputs"
:
{
"X"
:
[
"input_data"
]},
"op_outputs"
:
{
"Out"
:
[
"reduce_output_data"
]},
"op_attrs"
:
dics
[
0
],
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
out_dtype
,
dics
)
)
},
outputs
=
[
"reduce_output_data"
],
)
if
not
self
.
is_program_valid
(
program_config
):
continue
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
3
,
64
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
dynamic_shape
:
if
(
not
attrs
[
0
][
'keep_dim'
])
and
attrs
[
0
][
'reduce_all'
]:
return
0
,
3
else
:
return
1
,
2
else
:
if
0
in
attrs
[
0
][
'dim'
]
or
attrs
[
0
][
'reduce_all'
]:
return
0
,
3
else
:
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录