未验证 提交 ccf5b80b 编写于 作者: 提交者: GitHub

add test (#35710)

上级 bda154d1
......@@ -44,22 +44,7 @@ class PadOpConverter : public OpConverter {
const std::vector<int> paddings =
BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
nvinfer1::Dims input_shape = input->getDimensions();
int nbDims = input_shape.nbDims;
int pad_size = static_cast<int>(paddings.size());
PADDLE_ENFORCE_GE(
nbDims, 2,
platform::errors::InvalidArgument(
"Input X[0]'s dimension should greater than or equal to 2. "
"But received %d.",
nbDims));
PADDLE_ENFORCE_EQ(
(nbDims + 1) * 2, pad_size,
platform::errors::InvalidArgument("Input X[0]'s dimension(nbDims for "
"short) should meet the condition:"
"(nbDims + 1) * 2 == pad_size. But "
"received nbDims:%d, pad_size:%d.",
nbDims, pad_size));
nvinfer1::DimsHW pre_pad(paddings[pad_size - 4], paddings[pad_size - 2]);
nvinfer1::DimsHW post_pad(paddings[pad_size - 3], paddings[pad_size - 1]);
......
......@@ -686,6 +686,29 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
VLOG(3) << "The pad layer of TRT only support zero.";
return false;
}
std::vector<int64_t> shape;
auto* block = desc.Block();
for (auto& param_name : desc.Inputs()) {
for (auto& var_name : param_name.second) {
auto* var_desc = block->FindVar(var_name);
shape = var_desc->GetShape();
}
}
int nbDims = shape.size();
std::vector<int> paddings =
BOOST_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
int pad_size = paddings.size();
if (nbDims < 2) {
return false;
}
if (nbDims * 2 != pad_size) {
return false;
}
for (int i = 0; i < pad_size - 4; i++) {
if (paddings[i] != 0) {
return false;
}
}
}
if (op_type == "prelu") {
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
class TrtConvertPadTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
inputs = program_config.inputs
weights = program_config.weights
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
if attrs[0]['pad_value'] != 0.0:
return False
for x in attrs[0]['paddings']:
if x < 0:
return False
return True
def sample_program_configs(self):
def generate_input1(attrs: List[Dict[str, Any]]):
return np.ones([1, 3, 64, 64]).astype(np.float32)
def generate_weight1(attrs: List[Dict[str, Any]]):
return np.random.random([24, 3, 3, 3]).astype(np.float32)
for pad_value in [0.0, 1.0, 2.0, -100, 100.0]:
for paddings in [[0, 0, 0, 0, 1, 1, 1, 1],
[0, 0, 0, 0, 1, 2, 3, 4],
[0, 0, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, -1, -1, 1, 1]]:
dics = [{"pad_value": pad_value, "paddings": paddings}, {}]
ops_config = [{
"op_type": "pad",
"op_inputs": {
"X": ["input_data"]
},
"op_outputs": {
"Out": ["pad_output_data"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data":
TensorConfig(data_gen=partial(generate_input1, dics))
},
outputs=["pad_output_data"])
yield program_config
def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {"input_data": [1, 3, 32, 32]}
self.dynamic_shape.max_input_shape = {"input_data": [4, 3, 64, 64]}
self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 64, 64]}
def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}
def generate_trt_nodes_num(attrs, dynamic_shape):
for x in range(len(program_config.ops[0].attrs['paddings']) - 4):
if program_config.ops[0].attrs['paddings'][x] != 0:
return 0, 3
return 1, 2
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, False), 1e-2
# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(attrs,
True), 1e-2
def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
for x in range(len(program_config.ops[0].attrs['paddings']) - 4):
if program_config.ops[0].attrs['paddings'][x] != 0:
return True
return False
self.add_skip_case(
teller1, SkipReasons.TRT_NOT_IMPLEMENTED,
"NOT Implemented: we need to add support pad not only inplement on h or w, such as paddings = [0, 0, 1, 1, 1, 1, 1, 1]"
)
pass
def test(self):
self.add_skip_trt_case()
self.run_test()
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册