Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
04e5e7b7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
04e5e7b7
编写于
5月 11, 2023
作者:
Z
Zhang Jun
提交者:
GitHub
5月 11, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[inference Zero-Dim]add equal, elementwise_op trt 0d (#53704)
上级
dbb62692
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
230 addition
and
68 deletion
+230
-68
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+23
-27
test/ir/inference/test_trt_convert_elementwise.py
test/ir/inference/test_trt_convert_elementwise.py
+156
-0
test/ir/inference/test_trt_convert_equal.py
test/ir/inference/test_trt_convert_equal.py
+51
-41
未找到文件。
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
04e5e7b7
...
...
@@ -114,6 +114,25 @@ struct SimpleOpTypeSetTeller : public Teller {
"sign"
,
"silu"
,
"logical_not"
,
"reciprocal"
,
"tanh_shrink"
,
"logsigmoid"
,
"erf"
,
"bitwise_not"
,
"equal"
,
"not_equal"
,
"rsqrt"
};
// Static shape does not support 0 or 1 dim's input.
if
(
!
with_dynamic_shape
)
{
auto
inputs
=
desc
.
Inputs
();
for
(
auto
iter
:
inputs
)
{
for
(
auto
var_name
:
iter
.
second
)
{
auto
*
block
=
desc
.
Block
();
if
(
block
)
{
auto
*
var_desc
=
block
->
FindVar
(
var_name
);
// Can't get feed op's TensorDesc
if
(
op_type
!=
"feed"
&&
var_desc
&&
!
var_desc
->
Persistable
())
{
const
auto
shape
=
var_desc
->
GetShape
();
if
(
shape
.
size
()
==
1
||
shape
.
size
()
==
0
)
return
false
;
}
}
}
}
}
if
(
act_op_list
.
find
(
op_type
)
!=
act_op_list
.
end
())
{
auto
*
block
=
desc
.
Block
();
if
(
block
==
nullptr
)
{
...
...
@@ -122,15 +141,6 @@ struct SimpleOpTypeSetTeller : public Teller {
"the pass."
;
return
false
;
}
auto
x_var_name
=
desc
.
Input
(
"X"
)[
0
];
auto
*
x_var_desc
=
block
->
FindVar
(
x_var_name
);
const
auto
x_shape
=
x_var_desc
->
GetShape
();
if
(
!
with_dynamic_shape
&&
(
x_shape
.
size
()
==
1
||
x_shape
.
size
()
==
0
))
{
VLOG
(
3
)
<<
op_type
<<
" op does not support input's dim is 1 or 0 in tensorrt "
"static shape mode."
;
return
false
;
}
#if !IS_TRT_VERSION_GE(7000)
if
(
op_type
==
"erf"
)
{
VLOG
(
3
)
<<
op_type
<<
" op does not support tensorrt."
;
...
...
@@ -138,6 +148,9 @@ struct SimpleOpTypeSetTeller : public Teller {
}
#endif
#if !IS_TRT_VERSION_GE(8600)
auto
x_var_name
=
desc
.
Input
(
"X"
)[
0
];
auto
*
x_var_desc
=
block
->
FindVar
(
x_var_name
);
const
auto
x_shape
=
x_var_desc
->
GetShape
();
if
(
x_shape
.
size
()
==
0
&&
unary_list
.
find
(
op_type
)
!=
unary_list
.
end
())
{
VLOG
(
3
)
<<
op_type
<<
" op does not support 0 dim input when TensorRT < 8.6."
;
...
...
@@ -145,24 +158,6 @@ struct SimpleOpTypeSetTeller : public Teller {
}
#endif
}
// In static shape in Paddle-TRT, we can't allow that one op has a
// 1D intermediate tensor as input.
if
(
!
with_dynamic_shape
)
{
auto
inputs
=
desc
.
Inputs
();
for
(
auto
iter
:
inputs
)
{
for
(
auto
var_name
:
iter
.
second
)
{
auto
*
block
=
desc
.
Block
();
if
(
block
)
{
auto
*
var_desc
=
block
->
FindVar
(
var_name
);
// Can't get feed op's TensorDesc
if
(
op_type
!=
"feed"
&&
var_desc
&&
!
var_desc
->
Persistable
())
{
const
auto
shape
=
var_desc
->
GetShape
();
if
(
shape
.
size
()
==
1
)
return
false
;
}
}
}
}
}
if
(
op_type
==
"dropout"
)
{
/*
...
...
@@ -1505,6 +1500,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"elementwise op."
;
return
false
;
}
if
(
x_var_desc
->
Persistable
()
&&
!
with_dynamic_shape
)
{
VLOG
(
3
)
<<
"Input X is a parameter which is not supported for "
...
...
test/ir/inference/test_trt_convert_elementwise.py
浏览文件 @
04e5e7b7
...
...
@@ -1214,5 +1214,161 @@ class TrtConvertPowOp(TrtLayerAutoScanTest):
self
.
run_test
()
class
TrtConvertElementwise0D
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
dims
,
op_type
):
shape
=
[]
if
dims
==
0
:
shape
=
[]
elif
dims
==
1
:
shape
=
[
8
]
elif
dims
==
2
:
shape
=
[
1
,
8
]
elif
dims
==
3
:
shape
=
[
1
,
8
,
8
]
else
:
shape
=
[
1
,
8
,
8
,
8
]
# elementwise_floordiv is integer only
if
op_type
==
"elementwise_floordiv"
:
return
np
.
random
.
randint
(
low
=
1
,
high
=
10000
,
size
=
shape
,
dtype
=
np
.
int32
)
elif
op_type
==
"elementwise_mod"
:
return
np
.
random
.
uniform
(
low
=
0.1
,
high
=
1.0
,
size
=
shape
).
astype
(
np
.
float32
)
else
:
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
dims
in
[[
0
,
0
],
[
0
,
1
],
[
0
,
2
],
[
1
,
0
],
[
2
,
0
]]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
,
"elementwise_sub"
,
"elementwise_div"
,
"elementwise_pow"
,
"elementwise_min"
,
"elementwise_max"
,
"elementwise_floordiv"
,
"elementwise_mod"
,
]:
for
axis
in
[
-
1
if
dims
[
0
]
==
1
or
dims
[
0
]
==
0
else
1
]:
self
.
dims
=
dims
[
0
]
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
"Y"
:
[
"weight"
],
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
0
],
"outputs_dtype"
:
{
"output_data"
:
np
.
float32
if
op_type
!=
"elementwise_floordiv"
else
np
.
int32
},
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
dims
[
1
],
op_type
)
)
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
dims
[
0
],
op_type
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
# The input.dims[1] must be equal to the weight's length.
if
self
.
dims
==
0
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[]}
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
16
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
8
]}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
8
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
8
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
8
]}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
1
,
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
16
,
16
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
8
,
8
]}
elif
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
8
,
8
,
8
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
8
,
8
,
8
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
4
,
8
,
8
,
8
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
if
not
dynamic_shape
and
(
self
.
dims
==
1
or
self
.
dims
==
0
):
return
0
,
3
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
False
),
(
1e-3
,
1e-3
)
# # for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
(
1e-3
,
1e-3
)
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
test/ir/inference/test_trt_convert_equal.py
浏览文件 @
04e5e7b7
...
...
@@ -40,54 +40,64 @@ class TrtConvertEqualOneInputCornerCase(TrtLayerAutoScanTest):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
op_type
in
[
"equal"
,
"not_equal"
]:
for
batch
in
[
1
,
2
,
4
]:
for
shape
in
[[
batch
,
1
],
[
batch
,
1
,
32
],
[
batch
,
1
,
16
,
32
]]:
for
axis
in
[
-
1
if
len
(
shape
)
==
1
else
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[{
"axis"
:
axis
},
{
"in_dtype"
:
0
,
"out_dtype"
:
5
}]
ops_config
=
[
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
],
"Y"
:
[
"input_data2"
],
},
"op_outputs"
:
{
"Out"
:
[
"compare_output_data"
]},
"op_attrs"
:
dics
[
0
],
"outputs_dtype"
:
{
"compare_output_data"
:
np
.
bool_
},
for
shape
in
[[],
[
1
,
1
],
[
1
,
1
,
32
],
[
1
,
1
,
16
,
32
]]:
for
axis
in
[
-
1
if
len
(
shape
)
==
1
or
len
(
shape
)
==
0
else
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[{
"axis"
:
axis
},
{
"in_dtype"
:
0
,
"out_dtype"
:
5
}]
ops_config
=
[
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
],
"Y"
:
[
"input_data2"
],
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"compare_output_data"
]},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
1
],
"outputs_dtype"
:
{
"output_data"
:
np
.
float32
},
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
"op_outputs"
:
{
"Out"
:
[
"compare_output_data"
]},
"op_attrs"
:
dics
[
0
],
"outputs_dtype"
:
{
"compare_output_data"
:
np
.
bool_
},
},
{
"op_type"
:
"cast"
,
"op_inputs"
:
{
"X"
:
[
"compare_output_data"
]},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
1
],
"outputs_dtype"
:
{
"output_data"
:
np
.
float32
},
},
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
# The input.dims[1] must be equal to the weight's length.
if
self
.
dims
==
0
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[],
"input_data2"
:
[],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[],
"input_data2"
:
[],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[],
"input_data2"
:
[],
}
if
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
1
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录