Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8b063030
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8b063030
编写于
7月 27, 2023
作者:
M
ming1753
提交者:
GitHub
7月 27, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
paddle-TRT support float64 (#55520)
* Paddle-TRT support float64 in/out type, support fill_any_like_op in int64
上级
51ebcf68
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
349 addition
and
57 deletion
+349
-57
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+35
-6
paddle/fluid/inference/tensorrt/convert/cast_op.cc
paddle/fluid/inference/tensorrt/convert/cast_op.cc
+1
-0
paddle/fluid/inference/tensorrt/convert/fill_any_like_op.cc
paddle/fluid/inference/tensorrt/convert/fill_any_like_op.cc
+5
-0
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+1
-0
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+28
-45
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+22
-1
test/ir/inference/test_trt_convert_fill_any_like.py
test/ir/inference/test_trt_convert_fill_any_like.py
+10
-4
test/ir/inference/test_trt_convert_reduce.py
test/ir/inference/test_trt_convert_reduce.py
+5
-1
test/ir/inference/test_trt_float64.py
test/ir/inference/test_trt_float64.py
+242
-0
未找到文件。
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
8b063030
...
...
@@ -336,9 +336,9 @@ std::string TensorRtSubgraphPass::CreateTensorRTOp(
x
->
outputs
.
size
()
<=
1
)
{
params_not_shared
.
push_back
(
x
->
Name
());
}
// When TRT Engine's input is INT64, we need do some extra work.
// So we reserved a name for later use when casting INT64 -> INT32
.
// We must check whether scope has had the same name var!
// When TRT Engine's input is INT64
or FP64
, we need do some extra work.
// So we reserved a name for later use when casting INT64 -> INT32
or
//
FP64->FP32.
We must check whether scope has had the same name var!
if
(
x
->
Var
()
->
GetDataType
()
==
framework
::
proto
::
VarType
::
INT64
)
{
std
::
string
tmp_name
=
x
->
Name
()
+
"_cast_to_INT32"
;
LOG
(
WARNING
)
...
...
@@ -353,6 +353,20 @@ std::string TensorRtSubgraphPass::CreateTensorRTOp(
tmp_name));
*/
scope
->
Var
(
tmp_name
);
}
else
if
(
x
->
Var
()
->
GetDataType
()
==
framework
::
proto
::
VarType
::
FP64
)
{
std
::
string
tmp_name
=
x
->
Name
()
+
"_cast_to_FP32"
;
LOG
(
WARNING
)
<<
"tensorrt_subgraph's input named "
<<
x
->
Name
()
<<
" having float64 dtype in pdmodel description, we will "
"cast them to "
"float32 dtype to feed them into paddle-trt."
;
/*
PADDLE_ENFORCE_EQ(scope->FindVar(tmp_name),
nullptr,
platform::errors::InvalidArgument(
"The var name %s has exists in scope.",
tmp_name));
*/
scope
->
Var
(
tmp_name
);
}
}
...
...
@@ -489,9 +503,9 @@ std::string TensorRtSubgraphPass::CreateTensorRTOp(
renamed_output_rank
.
push_back
(
origin_name_output_rank
[
name
]);
origin_outputs_dtype
.
push_back
(
map_origin_outputs_dtype
[
name
]);
// When TRT Engine's output is INT64, we need do some extra work.
// So we reserved a name for later use when casting INT32 -> INT64
.
// We must check whether scope has had the same name var!
// When TRT Engine's output is INT64
or FP64
, we need do some extra work.
// So we reserved a name for later use when casting INT32 -> INT64
or FP32
//
-> FP64.
We must check whether scope has had the same name var!
if
(
static_cast
<
framework
::
proto
::
VarType_Type
>
(
map_origin_outputs_dtype
[
name
])
==
framework
::
proto
::
VarType
::
INT64
)
{
...
...
@@ -506,6 +520,21 @@ std::string TensorRtSubgraphPass::CreateTensorRTOp(
platform
::
errors
::
InvalidArgument
(
"The var name %s has exists in scope."
,
tmp_name
));
scope
->
Var
(
tmp_name
);
}
else
if
(
static_cast
<
framework
::
proto
::
VarType_Type
>
(
map_origin_outputs_dtype
[
name
])
==
framework
::
proto
::
VarType
::
FP64
)
{
std
::
string
tmp_name
=
name
+
"_cast_to_FP64"
;
LOG
(
WARNING
)
<<
"tensorrt_subgraph's output named "
<<
name
<<
" having float64 dtype in pdmodel description, but in fact "
"it is float32 "
"dtype after executing this tensorrt_subgraph, so we "
"need cast them into float64."
;
PADDLE_ENFORCE_EQ
(
scope
->
FindVar
(
tmp_name
),
nullptr
,
platform
::
errors
::
InvalidArgument
(
"The var name %s has exists in scope."
,
tmp_name
));
scope
->
Var
(
tmp_name
);
}
}
PADDLE_ENFORCE_EQ
(
output_mapping
.
empty
(),
...
...
paddle/fluid/inference/tensorrt/convert/cast_op.cc
浏览文件 @
8b063030
...
...
@@ -46,6 +46,7 @@ class CastOpConverter : public OpConverter {
layer
->
getOutput
(
0
)
->
setType
(
nvinfer1
::
DataType
::
kHALF
);
break
;
case
5
:
// FP32 = 5
case
6
:
// FP64 = 6
layer
->
setOutputType
(
0
,
nvinfer1
::
DataType
::
kFLOAT
);
layer
->
getOutput
(
0
)
->
setType
(
nvinfer1
::
DataType
::
kFLOAT
);
break
;
...
...
paddle/fluid/inference/tensorrt/convert/fill_any_like_op.cc
浏览文件 @
8b063030
...
...
@@ -37,6 +37,11 @@ class FillAnyLikeOpConverter : public OpConverter {
(
dtype
==
-
1
&&
input
->
getType
()
==
nvinfer1
::
DataType
::
kINT32
))
{
value_tensor
=
Add1DConstantLayer
(
static_cast
<
int32_t
>
(
value
),
output_name
+
"_value_tensor_"
);
}
else
if
(
dtype
==
3
)
{
LOG
(
WARNING
)
<<
"the fill_any_like has int64 dtype, it "
"will be cast to int32."
;
value_tensor
=
Add1DConstantLayer
(
static_cast
<
int32_t
>
(
value
),
output_name
+
"_value_tensor_"
);
}
else
{
value_tensor
=
Add1DConstantLayer
(
value
,
output_name
+
"_value_tensor_"
);
}
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
8b063030
...
...
@@ -117,6 +117,7 @@ namespace { // NOLINT
TRT_DT
FluidDataType2TRT
(
FluidDT
type
)
{
switch
(
type
)
{
case
FluidDT
::
VarType_Type_FP32
:
case
FluidDT
::
VarType_Type_FP64
:
return
TRT_DT
::
kFLOAT
;
case
FluidDT
::
VarType_Type_INT32
:
case
FluidDT
::
VarType_Type_INT64
:
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
8b063030
...
...
@@ -100,37 +100,6 @@ struct SimpleOpTypeSetTeller : public Teller {
return
false
;
}
// Dont.t allow fp64!
{
auto
inputs
=
desc
.
Inputs
();
for
(
auto
iter
:
inputs
)
{
for
(
auto
var_name
:
iter
.
second
)
{
auto
*
block
=
desc
.
Block
();
if
(
block
)
{
auto
*
var_desc
=
block
->
FindVar
(
var_name
);
auto
dtype
=
var_desc
->
GetDataType
();
if
(
dtype
==
framework
::
proto
::
VarType
::
FP64
)
{
return
false
;
}
}
}
}
auto
outputs
=
desc
.
Outputs
();
for
(
auto
iter
:
outputs
)
{
for
(
auto
var_name
:
iter
.
second
)
{
auto
*
block
=
desc
.
Block
();
if
(
block
)
{
auto
*
var_desc
=
block
->
FindVar
(
var_name
);
auto
dtype
=
var_desc
->
GetDataType
();
if
(
dtype
==
framework
::
proto
::
VarType
::
FP64
)
{
return
false
;
}
}
}
}
}
// do not support the op which is labeled the `skip_quant`
if
((
desc
.
HasAttr
(
"namescope"
)
&&
PADDLE_GET_CONST
(
std
::
string
,
desc
.
GetAttr
(
"op_namescope"
))
==
...
...
@@ -425,7 +394,8 @@ struct SimpleOpTypeSetTeller : public Teller {
auto
start_var_name
=
desc
.
Input
(
"Start"
)[
0
];
auto
*
start_var_desc
=
block
->
FindVar
(
start_var_name
);
auto
start_dtype
=
start_var_desc
->
GetDataType
();
if
(
start_dtype
==
framework
::
proto
::
VarType
::
FP32
)
{
if
(
start_dtype
==
framework
::
proto
::
VarType
::
FP32
||
start_dtype
==
framework
::
proto
::
VarType
::
FP64
)
{
return
false
;
}
#endif
...
...
@@ -751,7 +721,8 @@ struct SimpleOpTypeSetTeller : public Teller {
auto
x_dtype
=
x_var_desc
->
GetDataType
();
if
(
!
(
x_dtype
==
framework
::
proto
::
VarType
::
FP32
||
x_dtype
==
framework
::
proto
::
VarType
::
FP16
))
{
x_dtype
==
framework
::
proto
::
VarType
::
FP16
||
x_dtype
==
framework
::
proto
::
VarType
::
FP64
))
{
return
false
;
}
...
...
@@ -1229,16 +1200,18 @@ struct SimpleOpTypeSetTeller : public Teller {
const
auto
x_shape
=
x_var_desc
->
GetShape
();
auto
dtype
=
x_var_desc
->
GetDataType
();
if
(
!
with_dynamic_shape
)
{
// At present, only support float32 or float16 into trt.
// At present, only support float32 or float16
or float64
into trt.
if
(
!
(
dtype
==
framework
::
proto
::
VarType
::
FP32
||
dtype
==
framework
::
proto
::
VarType
::
FP64
||
dtype
==
framework
::
proto
::
VarType
::
FP16
))
{
return
false
;
}
}
else
{
// At present, only support float32 or float16 or
int32 or int64 into
// trt.
// At present, only support float32 or float16 or
float64 or int32 or
//
int64 into
trt.
if
(
!
(
dtype
==
framework
::
proto
::
VarType
::
FP32
||
dtype
==
framework
::
proto
::
VarType
::
FP16
||
dtype
==
framework
::
proto
::
VarType
::
FP64
||
dtype
==
framework
::
proto
::
VarType
::
INT32
||
dtype
==
framework
::
proto
::
VarType
::
INT64
))
{
return
false
;
...
...
@@ -1339,15 +1312,19 @@ struct SimpleOpTypeSetTeller : public Teller {
return
true
;
}
#endif
if
(
dtype
!=
-
1
&&
dtype
!=
2
&&
dtype
!=
5
)
{
VLOG
(
3
)
<<
"the fill_any_like only supports int32 and float32 by "
"trt8.4 below"
;
if
(
dtype
!=
-
1
&&
dtype
!=
2
&&
dtype
!=
3
&&
dtype
!=
5
&&
dtype
!=
6
)
{
VLOG
(
3
)
<<
"the fill_any_like only supports int32/int64/float32/float64 by"
"trt8.4 below"
;
return
false
;
}
if
(
dtype
==
-
1
)
{
if
(
input_type
!=
framework
::
proto
::
VarType
::
INT32
&&
input_type
!=
framework
::
proto
::
VarType
::
FP32
)
{
VLOG
(
3
)
<<
"the fill_any_like only supports int32 and float32 by "
input_type
!=
framework
::
proto
::
VarType
::
INT64
&&
input_type
!=
framework
::
proto
::
VarType
::
FP32
&&
input_type
!=
framework
::
proto
::
VarType
::
FP64
)
{
VLOG
(
3
)
<<
"the fill_any_like only supports "
"int32/int64/float32/float64 by"
"trt8.4 below"
;
return
false
;
}
...
...
@@ -2245,13 +2222,19 @@ struct SimpleOpTypeSetTeller : public Teller {
}
else
{
#if IS_TRT_VERSION_GE(7000)
if
(
dtype
!=
framework
::
proto
::
VarType
::
INT32
&&
dtype
!=
framework
::
proto
::
VarType
::
FP32
)
{
VLOG
(
3
)
<<
"reduce op input data type must be int32 or float32"
;
dtype
!=
framework
::
proto
::
VarType
::
INT64
&&
dtype
!=
framework
::
proto
::
VarType
::
FP32
&&
dtype
!=
framework
::
proto
::
VarType
::
FP64
)
{
VLOG
(
3
)
<<
"reduce op input data type must be int32 or int64 or "
"float32 or "
"float64"
;
return
false
;
}
#else
if
(
dtype
!=
framework
::
proto
::
VarType
::
FP32
)
{
VLOG
(
3
)
<<
"reduce op input data type must be float32 using TensorRT "
if
(
dtype
!=
framework
::
proto
::
VarType
::
FP32
&&
dtype
!=
framework
::
proto
::
VarType
::
FP64
)
{
VLOG
(
3
)
<<
"reduce op input data type must be float32 or float64 "
"using TensorRT "
"< 7.0"
;
return
false
;
}
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
8b063030
...
...
@@ -702,6 +702,14 @@ class TensorRTEngineOp : public framework::OperatorBase {
if
(
t
.
dtype
()
==
phi
::
DataType
::
FLOAT32
)
{
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
t
.
data
<
float
>
());
}
else
if
(
t
.
dtype
()
==
phi
::
DataType
::
FLOAT64
)
{
auto
fp32_tensor
=
scope
.
FindVar
(
x
+
"_cast_to_FP32"
)
->
GetMutable
<
phi
::
DenseTensor
>
();
*
fp32_tensor
=
phi
::
Cast
<
double
>
(
reinterpret_cast
<
const
phi
::
GPUContext
&>
(
dev_ctx
),
t
,
phi
::
DataType
::
FLOAT32
);
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
fp32_tensor
->
data
<
float
>
());
}
else
if
(
t
.
dtype
()
==
phi
::
DataType
::
INT64
)
{
auto
int32_tensor
=
scope
.
FindVar
(
x
+
"_cast_to_INT32"
)
->
GetMutable
<
phi
::
DenseTensor
>
();
...
...
@@ -722,7 +730,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The TRT Engine OP only support "
"float/int32_t/int64_t/float16/bool input."
));
"float/
double/
int32_t/int64_t/float16/bool input."
));
}
}
...
...
@@ -828,6 +836,19 @@ class TensorRTEngineOp : public framework::OperatorBase {
reinterpret_cast
<
const
phi
::
GPUContext
&>
(
dev_ctx
),
*
int32_tensor
,
phi
::
DataType
::
INT64
);
}
else
if
(
type
==
framework
::
proto
::
VarType
::
FP64
)
{
auto
y
=
Outputs
(
"Ys"
)[
i
];
auto
*
fluid_v
=
scope
.
FindVar
(
y
);
auto
*
fluid_t
=
fluid_v
->
GetMutable
<
phi
::
DenseTensor
>
();
auto
fp32_tensor
=
scope
.
FindVar
(
y
+
"_cast_to_FP64"
)
->
GetMutable
<
phi
::
DenseTensor
>
();
fp32_tensor
->
Resize
(
fluid_t
->
dims
());
dev_ctx
.
Alloc
<
float
>
(
fp32_tensor
);
framework
::
TensorCopy
(
*
fluid_t
,
dev_place
,
dev_ctx
,
fp32_tensor
);
*
fluid_t
=
phi
::
Cast
<
float
>
(
reinterpret_cast
<
const
phi
::
GPUContext
&>
(
dev_ctx
),
*
fp32_tensor
,
phi
::
DataType
::
FLOAT64
);
}
}
}
...
...
test/ir/inference/test_trt_convert_fill_any_like.py
浏览文件 @
8b063030
...
...
@@ -25,7 +25,7 @@ import paddle.inference as paddle_infer
class
TrtConvertExpandV2Test
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
if
self
.
dtype
in
[
0
,
3
,
4
]:
if
self
.
dtype
in
[
0
,
1
,
4
]:
return
False
if
self
.
dims
!=
4
and
self
.
dtype
!=
2
:
return
False
...
...
@@ -37,14 +37,20 @@ class TrtConvertExpandV2Test(TrtLayerAutoScanTest):
self
.
input_shape
=
[
1
,
1
,
4
,
6
]
if
self
.
dtype
==
0
:
return
np
.
random
.
random
([
1
,
1
,
4
,
6
]).
astype
(
np
.
bool_
)
elif
self
.
dtype
==
2
or
self
.
dtype
==
-
1
:
elif
self
.
dtype
==
1
:
return
np
.
random
.
random
([
1
,
1
,
4
,
6
]).
astype
(
np
.
int16
)
elif
self
.
dtype
==
2
:
return
np
.
random
.
random
([
1
,
1
,
4
,
6
]).
astype
(
np
.
int32
)
elif
self
.
dtype
==
3
:
return
np
.
random
.
random
([
1
,
1
,
4
,
6
]).
astype
(
np
.
int64
)
elif
self
.
dtype
==
4
:
return
np
.
random
.
random
([
1
,
1
,
4
,
6
]).
astype
(
np
.
float16
)
el
se
:
el
if
self
.
dtype
==
5
:
return
np
.
random
.
random
([
1
,
1
,
4
,
6
]).
astype
(
np
.
float32
)
elif
self
.
dtype
==
6
:
return
np
.
random
.
random
([
1
,
1
,
4
,
6
]).
astype
(
np
.
float64
)
else
:
return
np
.
random
.
random
([
1
,
1
,
4
,
6
]).
astype
(
np
.
int32
)
elif
self
.
dims
==
3
:
self
.
input_shape
=
[
1
,
8
,
6
]
return
np
.
random
.
random
([
1
,
8
,
6
]).
astype
(
np
.
int32
)
...
...
@@ -66,7 +72,7 @@ class TrtConvertExpandV2Test(TrtLayerAutoScanTest):
for
dims
in
[
1
,
2
,
3
,
4
]:
for
value
in
[
2
]:
for
dtype
in
[
-
1
,
0
,
2
,
3
,
4
,
5
]:
for
dtype
in
[
-
1
,
0
,
1
,
2
,
3
,
4
,
5
,
6
]:
dics
=
[
{
"value"
:
value
,
...
...
test/ir/inference/test_trt_convert_reduce.py
浏览文件 @
8b063030
...
...
@@ -53,6 +53,10 @@ class TrtConvertReduceTest(TrtLayerAutoScanTest):
return
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
np
.
int32
)
elif
dtype
==
0
:
return
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
np
.
bool_
)
elif
dtype
==
3
:
return
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
np
.
int64
)
elif
dtype
==
6
:
return
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
np
.
float64
)
for
keep_dim
in
[
True
,
False
]:
for
dim
in
[
...
...
@@ -67,7 +71,7 @@ class TrtConvertReduceTest(TrtLayerAutoScanTest):
[
3
,
4
,
5
],
]:
for
reduce_all
in
[
True
,
False
]:
for
out_dtype
in
[
-
1
,
0
,
2
,
5
]:
for
out_dtype
in
[
-
1
,
0
,
2
,
5
,
3
,
6
]:
if
out_dtype
!=
0
:
reduce_type_list
=
[
"reduce_max"
,
...
...
test/ir/inference/test_trt_float64.py
0 → 100644
浏览文件 @
8b063030
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
from
functools
import
partial
from
typing
import
Any
,
Dict
,
List
import
numpy
as
np
from
program_config
import
ProgramConfig
,
TensorConfig
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
import
paddle.inference
as
paddle_infer
class
TrtFloat64Test1
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
weights
=
program_config
.
weights
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
out_shape
=
list
(
inputs
[
'input_data'
].
shape
)
for
x
in
range
(
len
(
attrs
[
0
][
"axes"
])):
start
=
0
end
=
0
if
attrs
[
0
][
"starts"
][
x
]
<
0
:
start
=
(
attrs
[
0
][
"starts"
][
x
]
+
inputs
[
'input_data'
].
shape
[
attrs
[
0
][
"axes"
][
x
]]
)
else
:
start
=
attrs
[
0
][
"starts"
][
x
]
if
attrs
[
0
][
"ends"
][
x
]
<
0
:
end
=
(
attrs
[
0
][
"ends"
][
x
]
+
inputs
[
'input_data'
].
shape
[
attrs
[
0
][
"axes"
][
x
]]
)
else
:
end
=
attrs
[
0
][
"ends"
][
x
]
start
=
max
(
0
,
start
)
end
=
max
(
0
,
end
)
out_shape
[
attrs
[
0
][
"axes"
][
x
]]
=
end
-
start
if
start
>=
end
:
return
False
for
x
in
attrs
[
0
][
"decrease_axis"
]:
if
x
<
0
:
return
False
if
out_shape
[
x
]
!=
1
:
return
False
return
True
def
sample_program_configs
(
self
):
def
generate_input1
(
attrs
:
List
[
Dict
[
str
,
Any
]]):
return
(
10
*
np
.
random
.
random
([
6
,
6
,
64
,
64
])).
astype
(
np
.
float64
)
for
axes
in
[[
0
,
1
],
[
1
,
3
],
[
2
,
3
]]:
for
starts
in
[[
0
,
1
]]:
for
ends
in
[[
2
,
2
],
[
5
,
5
],
[
1
,
-
1
]]:
for
decrease_axis
in
[[],
[
1
],
[
2
],
[
-
1
],
[
-
100
]]:
for
infer_flags
in
[[
-
1
]]:
dics
=
[
{
"axes"
:
axes
,
"starts"
:
starts
,
"ends"
:
ends
,
"decrease_axis"
:
decrease_axis
,
"infer_flags"
:
infer_flags
,
}
]
ops_config
=
[
{
"op_type"
:
"slice"
,
"op_inputs"
:
{
"Input"
:
[
"input_data"
]},
"op_outputs"
:
{
"Out"
:
[
"slice_output_data"
]
},
"op_attrs"
:
dics
[
0
],
"outputs_dtype"
:
{
"slice_output_data"
:
np
.
float64
},
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input1
,
dics
)
)
},
outputs
=
[
"slice_output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
3
,
32
,
32
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
8
,
8
,
64
,
64
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
6
,
6
,
64
,
64
]}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
2
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
generate_trt_nodes_num
(
attrs
,
True
),
1e-3
def
test
(
self
):
self
.
run_test
()
class
TrtFloat64Test2
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
,
op_type
):
return
np
.
random
.
randint
(
low
=
1
,
high
=
10000
,
size
=
shape
).
astype
(
np
.
float64
)
for
shape
in
[[
2
,
32
,
16
],
[
1
,
8
,
16
,
32
]]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
,
"elementwise_sub"
,
]:
for
axis
in
[
0
,
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[
{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
],
"Y"
:
[
"input_data2"
],
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]},
"op_attrs"
:
dics
[
0
],
"outputs_dtype"
:
{
"slice_output_data"
:
np
.
float64
},
}
]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
,
op_type
)
),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
,
op_type
)
),
},
outputs
=
[
"output_data"
],
)
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
4
,
4
],
"input_data2"
:
[
1
,
4
,
4
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
128
,
128
,
256
],
"input_data2"
:
[
128
,
128
,
256
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
32
,
16
],
"input_data2"
:
[
2
,
32
,
16
],
}
elif
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
4
,
4
,
4
],
"input_data2"
:
[
1
,
4
,
4
,
4
],
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
8
,
128
,
64
,
128
],
"input_data2"
:
[
8
,
128
,
64
,
128
],
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
64
,
32
,
32
],
"input_data2"
:
[
2
,
64
,
32
,
32
],
}
def
generate_trt_nodes_num
(
attrs
,
dynamic_shape
):
return
1
,
3
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
(
1e-5
,
1e-5
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
(
1e-3
,
1e-3
)
def
add_skip_trt_case
(
self
):
pass
def
test
(
self
):
self
.
add_skip_trt_case
()
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录