sched.c 216.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156
	struct list_head queue[MAX_RT_PRIO];
I
Ingo Molnar 已提交
157 158
};

159
struct rt_bandwidth {
I
Ingo Molnar 已提交
160 161 162 163 164
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
198 199
	spin_lock_init(&rt_b->rt_runtime_lock);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

237 238 239 240 241 242
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

243
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
244

245 246
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
247 248
struct cfs_rq;

P
Peter Zijlstra 已提交
249 250
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
251
/* task group related information */
252
struct task_group {
253
#ifdef CONFIG_CGROUP_SCHED
254 255
	struct cgroup_subsys_state css;
#endif
256 257

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
258 259 260 261 262
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
263 264 265 266 267 268
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

269
	struct rt_bandwidth rt_bandwidth;
270
#endif
271

272
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
273
	struct list_head list;
P
Peter Zijlstra 已提交
274 275 276 277

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
278 279
};

D
Dhaval Giani 已提交
280
#ifdef CONFIG_USER_SCHED
281 282 283 284 285 286 287 288

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

289
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
290 291 292 293
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294
#endif /* CONFIG_FAIR_GROUP_SCHED */
295 296 297 298

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 300
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
301
#define root_task_group init_task_group
302
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
303

304
/* task_group_lock serializes add/remove of task groups and also changes to
305 306
 * a task group's cpu shares.
 */
307
static DEFINE_SPINLOCK(task_group_lock);
308

309 310 311
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
312
#else /* !CONFIG_USER_SCHED */
313
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
314
#endif /* CONFIG_USER_SCHED */
315

316
/*
317 318 319 320
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
321 322 323
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
324
#define MIN_SHARES	2
325
#define MAX_SHARES	(1UL << 18)
326

327 328 329
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
330
/* Default task group.
I
Ingo Molnar 已提交
331
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
332
 */
333
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
334 335

/* return group to which a task belongs */
336
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
337
{
338
	struct task_group *tg;
339

340
#ifdef CONFIG_USER_SCHED
341
	tg = p->user->tg;
342
#elif defined(CONFIG_CGROUP_SCHED)
343 344
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
345
#else
I
Ingo Molnar 已提交
346
	tg = &init_task_group;
347
#endif
348
	return tg;
S
Srivatsa Vaddagiri 已提交
349 350 351
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
352
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
353
{
354
#ifdef CONFIG_FAIR_GROUP_SCHED
355 356
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
357
#endif
P
Peter Zijlstra 已提交
358

359
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
360 361
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
362
#endif
S
Srivatsa Vaddagiri 已提交
363 364 365 366
}

#else

P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
368

369
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
370

I
Ingo Molnar 已提交
371 372 373 374 375 376
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
377
	u64 min_vruntime;
378
	u64 pair_start;
I
Ingo Molnar 已提交
379 380 381

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
382 383 384 385 386 387

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
388 389
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
390
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
391 392 393

	unsigned long nr_spread_over;

394
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
395 396
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
397 398
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
399 400 401 402 403 404
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
405 406
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
407 408 409

#ifdef CONFIG_SMP
	/*
410
	 * the part of load.weight contributed by tasks
411
	 */
412
	unsigned long task_weight;
413

414 415 416 417 418 419 420
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
421

422 423 424 425
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
426
#endif
I
Ingo Molnar 已提交
427 428
#endif
};
L
Linus Torvalds 已提交
429

I
Ingo Molnar 已提交
430 431 432
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
433
	unsigned long rt_nr_running;
434
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
435 436
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
437
#ifdef CONFIG_SMP
438
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
439
	int overloaded;
P
Peter Zijlstra 已提交
440
#endif
P
Peter Zijlstra 已提交
441
	int rt_throttled;
P
Peter Zijlstra 已提交
442
	u64 rt_time;
P
Peter Zijlstra 已提交
443
	u64 rt_runtime;
I
Ingo Molnar 已提交
444
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
445
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
446

447
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
448 449
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
450 451 452 453 454
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
455 456
};

G
Gregory Haskins 已提交
457 458 459 460
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
461 462
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
463 464 465 466 467 468 469 470
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
471

I
Ingo Molnar 已提交
472
	/*
473 474 475 476
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
477
	atomic_t rto_count;
478 479 480
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
481 482
};

483 484 485 486
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
487 488 489 490
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
491 492 493 494 495 496 497
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
498
struct rq {
499 500
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
501 502 503 504 505 506

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
507 508
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
509
	unsigned char idle_at_tick;
510
#ifdef CONFIG_NO_HZ
511
	unsigned long last_tick_seen;
512 513
	unsigned char in_nohz_recently;
#endif
514 515
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
516 517 518 519
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
520 521
	struct rt_rq rt;

I
Ingo Molnar 已提交
522
#ifdef CONFIG_FAIR_GROUP_SCHED
523 524
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
525 526
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
527
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
528 529 530 531 532 533 534 535 536 537
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

538
	struct task_struct *curr, *idle;
539
	unsigned long next_balance;
L
Linus Torvalds 已提交
540
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
541

542
	u64 clock;
I
Ingo Molnar 已提交
543

L
Linus Torvalds 已提交
544 545 546
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
547
	struct root_domain *rd;
L
Linus Torvalds 已提交
548 549 550 551 552
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
553 554
	/* cpu of this runqueue: */
	int cpu;
555
	int online;
L
Linus Torvalds 已提交
556

557 558
	unsigned long avg_load_per_task;

559
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
560 561 562
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
563 564 565 566 567 568
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
569 570 571 572 573
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
574 575 576 577
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
578 579

	/* schedule() stats */
580 581 582
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
583 584

	/* try_to_wake_up() stats */
585 586
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
587 588

	/* BKL stats */
589
	unsigned int bkl_count;
L
Linus Torvalds 已提交
590
#endif
591
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
592 593
};

594
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
595

I
Ingo Molnar 已提交
596 597 598 599 600
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

601 602 603 604 605 606 607 608 609
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
610 611
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
613 614 615 616
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
617 618
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
619 620 621 622 623 624

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

625 626 627 628 629
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
630 631 632 633 634 635 636 637 638 639 640 641
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
642 643 644 645

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
646
enum {
P
Peter Zijlstra 已提交
647
#include "sched_features.h"
I
Ingo Molnar 已提交
648 649
};

P
Peter Zijlstra 已提交
650 651 652 653 654
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
655
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
656 657 658 659 660 661 662 663 664
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

665
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
666 667 668 669 670 671
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

672
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
700
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
730
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
773

774 775 776 777 778 779
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
780
/*
P
Peter Zijlstra 已提交
781
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
782 783
 * default: 1s
 */
P
Peter Zijlstra 已提交
784
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
785

786 787
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
788 789 790 791 792
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
793

794 795 796 797 798 799 800 801 802 803 804 805
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
806

L
Linus Torvalds 已提交
807
#ifndef prepare_arch_switch
808 809 810 811 812 813
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

814 815 816 817 818
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

819
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
820
static inline int task_running(struct rq *rq, struct task_struct *p)
821
{
822
	return task_current(rq, p);
823 824
}

825
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
826 827 828
{
}

829
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
830
{
831 832 833 834
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
835 836 837 838 839 840 841
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

842 843 844 845
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
846
static inline int task_running(struct rq *rq, struct task_struct *p)
847 848 849 850
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
851
	return task_current(rq, p);
852 853 854
#endif
}

855
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

872
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
873 874 875 876 877 878 879 880 881 882 883 884
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
885
#endif
886 887
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
888

889 890 891 892
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
893
static inline struct rq *__task_rq_lock(struct task_struct *p)
894 895
	__acquires(rq->lock)
{
896 897 898 899 900
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
901 902 903 904
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
905 906
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
907
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
908 909
 * explicitly disabling preemption.
 */
910
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
911 912
	__acquires(rq->lock)
{
913
	struct rq *rq;
L
Linus Torvalds 已提交
914

915 916 917 918 919 920
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
921 922 923 924
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
925
static void __task_rq_unlock(struct rq *rq)
926 927 928 929 930
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

931
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
932 933 934 935 936 937
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
938
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
939
 */
A
Alexey Dobriyan 已提交
940
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
941 942
	__acquires(rq->lock)
{
943
	struct rq *rq;
L
Linus Torvalds 已提交
944 945 946 947 948 949 950 951

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
987
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
988 989 990 991 992 993 994 995 996 997 998
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
999 1000
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1076
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1077 1078 1079 1080 1081 1082
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1083
#ifdef CONFIG_SMP
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1139
#endif /* CONFIG_SMP */
1140 1141

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1178 1179 1180 1181

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1182 1183
#endif

I
Ingo Molnar 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1197
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1198 1199 1200 1201 1202
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1203
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1204 1205
		return;

P
Peter Zijlstra 已提交
1206
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1269
#endif /* CONFIG_NO_HZ */
1270

1271
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1272
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1273 1274
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1275
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1276
}
1277
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1278

1279 1280 1281 1282 1283 1284 1285 1286
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1287 1288 1289
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1290
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1291

1292 1293 1294
/*
 * delta *= weight / lw
 */
1295
static unsigned long
1296 1297 1298 1299 1300
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1301 1302 1303 1304 1305 1306 1307
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1308 1309 1310 1311 1312

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1313
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1314
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1315 1316
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1317
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1318

1319
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1320 1321
}

1322
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1323 1324
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1325
	lw->inv_weight = 0;
1326 1327
}

1328
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1329 1330
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334 1335 1336 1337
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1338
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 1340 1341 1342
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 1355 1356
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1357 1358
 */
static const int prio_to_weight[40] = {
1359 1360 1361 1362 1363 1364 1365 1366
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1367 1368
};

1369 1370 1371 1372 1373 1374 1375
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1376
static const u32 prio_to_wmult[40] = {
1377 1378 1379 1380 1381 1382 1383 1384
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1385
};
1386

I
Ingo Molnar 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1412

1413 1414 1415 1416 1417 1418
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1429 1430 1431 1432
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

1444 1445
#ifdef CONFIG_FAIR_GROUP_SCHED

1446
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1447 1448 1449 1450 1451

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1452 1453
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1454 1455 1456 1457 1458 1459
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1460
	(*down)(parent, cpu, sd);
1461 1462 1463 1464 1465 1466 1467
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1468
	(*up)(parent, cpu, sd);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1483
__update_group_shares_cpu(struct task_group *tg, int cpu,
1484
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1485 1486 1487 1488 1489
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1490
	if (!tg->se[cpu])
1491 1492
		return;

1493
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1505 1506 1507
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1508 1509 1510 1511 1512 1513
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1514
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1515 1516 1517 1518

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1519
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1520 1521 1522 1523 1524 1525

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1526
	__set_se_shares(tg->se[cpu], shares);
1527 1528 1529
}

/*
1530 1531 1532
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1533 1534
 */
static void
1535
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1536
{
1537 1538 1539
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1540

1541 1542 1543
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1544 1545
	}

1546 1547 1548 1549 1550
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1551 1552 1553 1554 1555 1556

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1557
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1558 1559 1560 1561 1562
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1563 1564 1565
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1566
 */
1567
static void
1568
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1569
{
1570
	unsigned long load;
1571

1572 1573 1574 1575 1576 1577 1578
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1579

1580
	tg->cfs_rq[cpu]->h_load = load;
1581 1582
}

1583 1584
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1585 1586 1587
{
}

1588
static void update_shares(struct sched_domain *sd)
1589
{
1590
	walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1591 1592
}

1593 1594 1595 1596 1597 1598 1599
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1600
static void update_h_load(int cpu)
1601
{
1602
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1603 1604 1605 1606 1607 1608 1609 1610 1611
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

1612
static inline void update_shares(struct sched_domain *sd)
1613 1614 1615
{
}

1616 1617 1618 1619
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1620 1621
#endif

1622 1623
#endif

I
Ingo Molnar 已提交
1624 1625
#include "sched_stats.h"
#include "sched_idletask.c"
1626 1627
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1628 1629 1630 1631 1632
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1633 1634
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1635

1636
static void inc_nr_running(struct rq *rq)
1637 1638 1639 1640
{
	rq->nr_running++;
}

1641
static void dec_nr_running(struct rq *rq)
1642 1643 1644 1645
{
	rq->nr_running--;
}

1646 1647 1648
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1649 1650 1651 1652
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1653

I
Ingo Molnar 已提交
1654 1655 1656 1657 1658 1659 1660 1661
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1662

I
Ingo Molnar 已提交
1663 1664
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1665 1666
}

1667
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1668
{
I
Ingo Molnar 已提交
1669
	sched_info_queued(p);
1670
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1671
	p->se.on_rq = 1;
1672 1673
}

1674
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1675
{
1676
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1677
	p->se.on_rq = 0;
1678 1679
}

1680
/*
I
Ingo Molnar 已提交
1681
 * __normal_prio - return the priority that is based on the static prio
1682 1683 1684
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1685
	return p->static_prio;
1686 1687
}

1688 1689 1690 1691 1692 1693 1694
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1695
static inline int normal_prio(struct task_struct *p)
1696 1697 1698
{
	int prio;

1699
	if (task_has_rt_policy(p))
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1713
static int effective_prio(struct task_struct *p)
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1726
/*
I
Ingo Molnar 已提交
1727
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1728
 */
I
Ingo Molnar 已提交
1729
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1730
{
1731
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1732
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1733

1734
	enqueue_task(rq, p, wakeup);
1735
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1736 1737 1738 1739 1740
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1741
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1742
{
1743
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1744 1745
		rq->nr_uninterruptible++;

1746
	dequeue_task(rq, p, sleep);
1747
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1748 1749 1750 1751 1752 1753
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1754
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1755 1756 1757 1758
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1759 1760
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1761
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1762
#ifdef CONFIG_SMP
1763 1764 1765 1766 1767 1768
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1769 1770
	task_thread_info(p)->cpu = cpu;
#endif
1771 1772
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1785
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1786

1787 1788 1789 1790 1791 1792
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1793 1794 1795
/*
 * Is this task likely cache-hot:
 */
1796
static int
1797 1798 1799 1800
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1801 1802 1803
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1804
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1805 1806
		return 1;

1807 1808 1809
	if (p->sched_class != &fair_sched_class)
		return 0;

1810 1811 1812 1813 1814
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1815 1816 1817 1818 1819 1820
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1821
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1822
{
I
Ingo Molnar 已提交
1823 1824
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1825 1826
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1827
	u64 clock_offset;
I
Ingo Molnar 已提交
1828 1829

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1830 1831 1832 1833

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1834 1835 1836 1837
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1838 1839 1840 1841 1842
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1843
#endif
1844 1845
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1846 1847

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1848 1849
}

1850
struct migration_req {
L
Linus Torvalds 已提交
1851 1852
	struct list_head list;

1853
	struct task_struct *task;
L
Linus Torvalds 已提交
1854 1855 1856
	int dest_cpu;

	struct completion done;
1857
};
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1863
static int
1864
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1865
{
1866
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1867 1868 1869 1870 1871

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1872
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1881

L
Linus Torvalds 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1894
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1895 1896
{
	unsigned long flags;
I
Ingo Molnar 已提交
1897
	int running, on_rq;
1898
	struct rq *rq;
L
Linus Torvalds 已提交
1899

1900 1901 1902 1903 1904 1905 1906 1907
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1943

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1957

1958 1959 1960 1961 1962 1963 1964
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1980
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1992 1993
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1994 1995 1996 1997
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1998
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1999
{
2000
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2001
	unsigned long total = weighted_cpuload(cpu);
2002

2003
	if (type == 0)
I
Ingo Molnar 已提交
2004
		return total;
2005

I
Ingo Molnar 已提交
2006
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2007 2008 2009
}

/*
2010 2011
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2012
 */
A
Alexey Dobriyan 已提交
2013
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2014
{
2015
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2016
	unsigned long total = weighted_cpuload(cpu);
2017

N
Nick Piggin 已提交
2018
	if (type == 0)
I
Ingo Molnar 已提交
2019
		return total;
2020

I
Ingo Molnar 已提交
2021
	return max(rq->cpu_load[type-1], total);
2022 2023
}

N
Nick Piggin 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2041 2042
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2043
			continue;
2044

N
Nick Piggin 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2061 2062
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2063 2064 2065 2066 2067 2068 2069 2070

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2071
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2072 2073 2074 2075 2076 2077 2078

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2079
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2080
 */
I
Ingo Molnar 已提交
2081
static int
2082 2083
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2084 2085 2086 2087 2088
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2089
	/* Traverse only the allowed CPUs */
2090
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2091

2092
	for_each_cpu_mask(i, *tmp) {
2093
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2119

2120
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2121 2122 2123
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2124 2125
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2126 2127
		if (tmp->flags & flag)
			sd = tmp;
2128
	}
N
Nick Piggin 已提交
2129

2130 2131 2132
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2133
	while (sd) {
2134
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2135
		struct sched_group *group;
2136 2137 2138 2139 2140 2141
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2142 2143 2144

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2145 2146 2147 2148
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2149

2150
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2151 2152 2153 2154 2155
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2156

2157
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2189
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2190
{
2191
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2192 2193
	unsigned long flags;
	long old_state;
2194
	struct rq *rq;
L
Linus Torvalds 已提交
2195

2196 2197 2198
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2199
	smp_wmb();
L
Linus Torvalds 已提交
2200 2201 2202 2203 2204
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2205
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2206 2207 2208
		goto out_running;

	cpu = task_cpu(p);
2209
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2216 2217 2218
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2219 2220 2221 2222 2223 2224
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2225
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2226 2227 2228 2229 2230 2231
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2245
#endif /* CONFIG_SCHEDSTATS */
2246

L
Linus Torvalds 已提交
2247 2248
out_activate:
#endif /* CONFIG_SMP */
2249 2250 2251 2252 2253 2254 2255 2256 2257
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2258
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2259
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2260 2261 2262
	success = 1;

out_running:
I
Ingo Molnar 已提交
2263 2264
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2265
	p->state = TASK_RUNNING;
2266 2267 2268 2269
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2270 2271 2272 2273 2274 2275
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2276
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2277
{
2278
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2279 2280 2281
}
EXPORT_SYMBOL(wake_up_process);

2282
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288 2289
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2290 2291 2292 2293 2294 2295 2296
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2297
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2298 2299
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2300 2301 2302

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2303 2304 2305 2306 2307 2308
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2309
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2310
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2311
#endif
N
Nick Piggin 已提交
2312

P
Peter Zijlstra 已提交
2313
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2314
	p->se.on_rq = 0;
2315
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2316

2317 2318 2319 2320
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2321 2322 2323 2324 2325 2326 2327
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2342
	set_task_cpu(p, cpu);
2343 2344 2345 2346 2347

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2348 2349
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2350

2351
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2352
	if (likely(sched_info_on()))
2353
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2354
#endif
2355
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2356 2357
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2358
#ifdef CONFIG_PREEMPT
2359
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2360
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2361
#endif
N
Nick Piggin 已提交
2362
	put_cpu();
L
Linus Torvalds 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2372
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2373 2374
{
	unsigned long flags;
I
Ingo Molnar 已提交
2375
	struct rq *rq;
L
Linus Torvalds 已提交
2376 2377

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2378
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2379
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2380 2381 2382

	p->prio = effective_prio(p);

2383
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2384
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2385 2386
	} else {
		/*
I
Ingo Molnar 已提交
2387 2388
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2389
		 */
2390
		p->sched_class->task_new(rq, p);
2391
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2392
	}
I
Ingo Molnar 已提交
2393
	check_preempt_curr(rq, p);
2394 2395 2396 2397
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2398
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2399 2400
}

2401 2402 2403
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2404 2405
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2406 2407 2408 2409 2410 2411 2412 2413 2414
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2415
 * @notifier: notifier struct to unregister
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2445
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2457
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2458

2459 2460 2461
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2462
 * @prev: the current task that is being switched out
2463 2464 2465 2466 2467 2468 2469 2470 2471
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2472 2473 2474
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2475
{
2476
	fire_sched_out_preempt_notifiers(prev, next);
2477 2478 2479 2480
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2481 2482
/**
 * finish_task_switch - clean up after a task-switch
2483
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2484 2485
 * @prev: the thread we just switched away from.
 *
2486 2487 2488 2489
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2490 2491
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2492
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2493 2494 2495
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2496
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2497 2498 2499
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2500
	long prev_state;
L
Linus Torvalds 已提交
2501 2502 2503 2504 2505

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2506
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2507 2508
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2509
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2510 2511 2512 2513 2514
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2515
	prev_state = prev->state;
2516 2517
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2518 2519 2520 2521
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2522

2523
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2524 2525
	if (mm)
		mmdrop(mm);
2526
	if (unlikely(prev_state == TASK_DEAD)) {
2527 2528 2529
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2530
		 */
2531
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2532
		put_task_struct(prev);
2533
	}
L
Linus Torvalds 已提交
2534 2535 2536 2537 2538 2539
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2540
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2541 2542
	__releases(rq->lock)
{
2543 2544
	struct rq *rq = this_rq();

2545 2546 2547 2548 2549
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2550
	if (current->set_child_tid)
2551
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2552 2553 2554 2555 2556 2557
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2558
static inline void
2559
context_switch(struct rq *rq, struct task_struct *prev,
2560
	       struct task_struct *next)
L
Linus Torvalds 已提交
2561
{
I
Ingo Molnar 已提交
2562
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2563

2564
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2565 2566
	mm = next->mm;
	oldmm = prev->active_mm;
2567 2568 2569 2570 2571 2572 2573
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2574
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2575 2576 2577 2578 2579 2580
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2581
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2582 2583 2584
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2585 2586 2587 2588 2589 2590 2591
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2592
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2593
#endif
L
Linus Torvalds 已提交
2594 2595 2596 2597

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2598 2599 2600 2601 2602 2603 2604
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2628
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2643 2644
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2645

2646
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2656
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2657 2658 2659 2660 2661
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2677
/*
I
Ingo Molnar 已提交
2678 2679
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2680
 */
I
Ingo Molnar 已提交
2681
static void update_cpu_load(struct rq *this_rq)
2682
{
2683
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2696 2697 2698 2699 2700 2701 2702
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2703 2704
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2705 2706
}

I
Ingo Molnar 已提交
2707 2708
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2709 2710 2711 2712 2713 2714
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2715
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2716 2717 2718
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2719
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2720 2721 2722 2723
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2724
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2725 2726 2727 2728 2729 2730 2731
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2732 2733
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738 2739 2740 2741
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2742
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2756
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2757 2758 2759 2760
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2761 2762
	int ret = 0;

2763 2764 2765 2766 2767
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2768
	if (unlikely(!spin_trylock(&busiest->lock))) {
2769
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2770 2771 2772
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2773
			ret = 1;
L
Linus Torvalds 已提交
2774 2775 2776
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2777
	return ret;
L
Linus Torvalds 已提交
2778 2779 2780 2781 2782
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2783
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2784 2785
 * the cpu_allowed mask is restored.
 */
2786
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2787
{
2788
	struct migration_req req;
L
Linus Torvalds 已提交
2789
	unsigned long flags;
2790
	struct rq *rq;
L
Linus Torvalds 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2801

L
Linus Torvalds 已提交
2802 2803 2804 2805 2806
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2807

L
Linus Torvalds 已提交
2808 2809 2810 2811 2812 2813 2814
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2815 2816
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2817 2818 2819 2820
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2821
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2822
	put_cpu();
N
Nick Piggin 已提交
2823 2824
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2825 2826 2827 2828 2829 2830
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2831 2832
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2833
{
2834
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2835
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2836
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2837 2838 2839 2840
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2841
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2842 2843 2844 2845 2846
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2847
static
2848
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2849
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2850
		     int *all_pinned)
L
Linus Torvalds 已提交
2851 2852 2853 2854 2855 2856 2857
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2858 2859
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2860
		return 0;
2861
	}
2862 2863
	*all_pinned = 0;

2864 2865
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2866
		return 0;
2867
	}
L
Linus Torvalds 已提交
2868

2869 2870 2871 2872 2873 2874
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2875 2876
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2877
#ifdef CONFIG_SCHEDSTATS
2878
		if (task_hot(p, rq->clock, sd)) {
2879
			schedstat_inc(sd, lb_hot_gained[idle]);
2880 2881
			schedstat_inc(p, se.nr_forced_migrations);
		}
2882 2883 2884 2885
#endif
		return 1;
	}

2886 2887
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2888
		return 0;
2889
	}
L
Linus Torvalds 已提交
2890 2891 2892
	return 1;
}

2893 2894 2895 2896 2897
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2898
{
2899
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2900 2901
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2902

2903
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2904 2905
		goto out;

2906 2907
	pinned = 1;

L
Linus Torvalds 已提交
2908
	/*
I
Ingo Molnar 已提交
2909
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2910
	 */
I
Ingo Molnar 已提交
2911 2912
	p = iterator->start(iterator->arg);
next:
2913
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2914
		goto out;
2915
	/*
2916
	 * To help distribute high priority tasks across CPUs we don't
2917 2918 2919
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2920 2921
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2922
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2923 2924 2925
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2926 2927
	}

I
Ingo Molnar 已提交
2928
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2929
	pulled++;
I
Ingo Molnar 已提交
2930
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2931

2932
	/*
2933
	 * We only want to steal up to the prescribed amount of weighted load.
2934
	 */
2935
	if (rem_load_move > 0) {
2936 2937
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2938 2939
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2940 2941 2942
	}
out:
	/*
2943
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2944 2945 2946 2947
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2948 2949 2950

	if (all_pinned)
		*all_pinned = pinned;
2951 2952

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2953 2954
}

I
Ingo Molnar 已提交
2955
/*
P
Peter Williams 已提交
2956 2957 2958
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2959 2960 2961 2962
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2963
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2964 2965 2966
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2967
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2968
	unsigned long total_load_moved = 0;
2969
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2970 2971

	do {
P
Peter Williams 已提交
2972 2973
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2974
				max_load_move - total_load_moved,
2975
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2976
		class = class->next;
P
Peter Williams 已提交
2977
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2978

P
Peter Williams 已提交
2979 2980 2981
	return total_load_moved > 0;
}

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3018
	const struct sched_class *class;
P
Peter Williams 已提交
3019 3020

	for (class = sched_class_highest; class; class = class->next)
3021
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3022 3023 3024
			return 1;

	return 0;
I
Ingo Molnar 已提交
3025 3026
}

L
Linus Torvalds 已提交
3027 3028
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3029 3030
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3031 3032 3033
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3034
		   unsigned long *imbalance, enum cpu_idle_type idle,
3035
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3036 3037 3038
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3039
	unsigned long max_pull;
3040 3041
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3042
	int load_idx, group_imb = 0;
3043 3044 3045 3046 3047 3048
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3049 3050

	max_load = this_load = total_load = total_pwr = 0;
3051 3052
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3053
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3054
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3055
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3056 3057 3058
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3059 3060

	do {
3061
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3062 3063
		int local_group;
		int i;
3064
		int __group_imb = 0;
3065
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3066
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3067 3068 3069

		local_group = cpu_isset(this_cpu, group->cpumask);

3070 3071 3072
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3073
		/* Tally up the load of all CPUs in the group */
3074
		sum_weighted_load = sum_nr_running = avg_load = 0;
3075 3076
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3077 3078

		for_each_cpu_mask(i, group->cpumask) {
3079 3080 3081 3082 3083 3084
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3085

3086
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3087 3088
				*sd_idle = 0;

L
Linus Torvalds 已提交
3089
			/* Bias balancing toward cpus of our domain */
3090 3091 3092 3093 3094 3095
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3096
				load = target_load(i, load_idx);
3097
			} else {
N
Nick Piggin 已提交
3098
				load = source_load(i, load_idx);
3099 3100 3101 3102 3103
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3104 3105

			avg_load += load;
3106
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3107
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3108 3109
		}

3110 3111 3112
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3113 3114
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3115
		 */
3116 3117
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3118 3119 3120 3121
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3122
		total_load += avg_load;
3123
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3124 3125

		/* Adjust by relative CPU power of the group */
3126 3127
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3128

3129 3130 3131
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3132
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3133

L
Linus Torvalds 已提交
3134 3135 3136
		if (local_group) {
			this_load = avg_load;
			this = group;
3137 3138 3139
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3140
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3141 3142
			max_load = avg_load;
			busiest = group;
3143 3144
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3145
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3146
		}
3147 3148 3149 3150 3151 3152

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3153 3154 3155
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3156 3157 3158 3159 3160 3161 3162 3163 3164

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3165
		/*
3166 3167
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3168 3169
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3170
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3171
			goto group_next;
3172

I
Ingo Molnar 已提交
3173
		/*
3174
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3175 3176 3177 3178 3179
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3180 3181
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3182 3183
			group_min = group;
			min_nr_running = sum_nr_running;
3184 3185
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3186
		}
3187

I
Ingo Molnar 已提交
3188
		/*
3189
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3201
		}
3202 3203
group_next:
#endif
L
Linus Torvalds 已提交
3204 3205 3206
		group = group->next;
	} while (group != sd->groups);

3207
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3208 3209 3210 3211 3212 3213 3214 3215
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3216
	busiest_load_per_task /= busiest_nr_running;
3217 3218 3219
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3220 3221 3222 3223 3224 3225 3226 3227
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3228
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3229 3230
	 * appear as very large values with unsigned longs.
	 */
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3243 3244

	/* Don't want to pull so many tasks that a group would go idle */
3245
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3246

L
Linus Torvalds 已提交
3247
	/* How much load to actually move to equalise the imbalance */
3248 3249
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3250 3251
			/ SCHED_LOAD_SCALE;

3252 3253 3254 3255 3256 3257
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3258
	if (*imbalance < busiest_load_per_task) {
3259
		unsigned long tmp, pwr_now, pwr_move;
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3271

I
Ingo Molnar 已提交
3272 3273
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3274
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3275 3276 3277 3278 3279 3280 3281 3282 3283
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3284 3285 3286 3287
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3288 3289 3290
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3291 3292
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3293
		if (max_load > tmp)
3294
			pwr_move += busiest->__cpu_power *
3295
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3296 3297

		/* Amount of load we'd add */
3298
		if (max_load * busiest->__cpu_power <
3299
				busiest_load_per_task * SCHED_LOAD_SCALE)
3300 3301
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3302
		else
3303 3304 3305 3306
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3307 3308 3309
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3310 3311
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3312 3313 3314 3315 3316
	}

	return busiest;

out_balanced:
3317
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3318
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3319
		goto ret;
L
Linus Torvalds 已提交
3320

3321 3322 3323 3324 3325
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3326
ret:
L
Linus Torvalds 已提交
3327 3328 3329 3330 3331 3332 3333
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3334
static struct rq *
I
Ingo Molnar 已提交
3335
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3336
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3337
{
3338
	struct rq *busiest = NULL, *rq;
3339
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3340 3341 3342
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3343
		unsigned long wl;
3344 3345 3346 3347

		if (!cpu_isset(i, *cpus))
			continue;

3348
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3349
		wl = weighted_cpuload(i);
3350

I
Ingo Molnar 已提交
3351
		if (rq->nr_running == 1 && wl > imbalance)
3352
			continue;
L
Linus Torvalds 已提交
3353

I
Ingo Molnar 已提交
3354 3355
		if (wl > max_load) {
			max_load = wl;
3356
			busiest = rq;
L
Linus Torvalds 已提交
3357 3358 3359 3360 3361 3362
		}
	}

	return busiest;
}

3363 3364 3365 3366 3367 3368
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3369 3370 3371 3372
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3373
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3374
			struct sched_domain *sd, enum cpu_idle_type idle,
3375
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3376
{
P
Peter Williams 已提交
3377
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3378 3379
	struct sched_group *group;
	unsigned long imbalance;
3380
	struct rq *busiest;
3381
	unsigned long flags;
N
Nick Piggin 已提交
3382

3383 3384
	cpus_setall(*cpus);

3385 3386 3387
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3388
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3389
	 * portraying it as CPU_NOT_IDLE.
3390
	 */
I
Ingo Molnar 已提交
3391
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3392
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3393
		sd_idle = 1;
L
Linus Torvalds 已提交
3394

3395
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3396

3397
redo:
3398
	update_shares(sd);
3399
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3400
				   cpus, balance);
3401

3402
	if (*balance == 0)
3403 3404
		goto out_balanced;

L
Linus Torvalds 已提交
3405 3406 3407 3408 3409
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3410
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3411 3412 3413 3414 3415
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3416
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3417 3418 3419

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3420
	ld_moved = 0;
L
Linus Torvalds 已提交
3421 3422 3423 3424
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3425
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3426 3427
		 * correctly treated as an imbalance.
		 */
3428
		local_irq_save(flags);
N
Nick Piggin 已提交
3429
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3430
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3431
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3432
		double_rq_unlock(this_rq, busiest);
3433
		local_irq_restore(flags);
3434

3435 3436 3437
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3438
		if (ld_moved && this_cpu != smp_processor_id())
3439 3440
			resched_cpu(this_cpu);

3441
		/* All tasks on this runqueue were pinned by CPU affinity */
3442
		if (unlikely(all_pinned)) {
3443 3444
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3445
				goto redo;
3446
			goto out_balanced;
3447
		}
L
Linus Torvalds 已提交
3448
	}
3449

P
Peter Williams 已提交
3450
	if (!ld_moved) {
L
Linus Torvalds 已提交
3451 3452 3453 3454 3455
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3456
			spin_lock_irqsave(&busiest->lock, flags);
3457 3458 3459 3460 3461

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3462
				spin_unlock_irqrestore(&busiest->lock, flags);
3463 3464 3465 3466
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3467 3468 3469
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3470
				active_balance = 1;
L
Linus Torvalds 已提交
3471
			}
3472
			spin_unlock_irqrestore(&busiest->lock, flags);
3473
			if (active_balance)
L
Linus Torvalds 已提交
3474 3475 3476 3477 3478 3479
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3480
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3481
		}
3482
	} else
L
Linus Torvalds 已提交
3483 3484
		sd->nr_balance_failed = 0;

3485
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3486 3487
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3488 3489 3490 3491 3492 3493 3494 3495 3496
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3497 3498
	}

P
Peter Williams 已提交
3499
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3500
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3501 3502 3503
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3504 3505 3506 3507

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3508
	sd->nr_balance_failed = 0;
3509 3510

out_one_pinned:
L
Linus Torvalds 已提交
3511
	/* tune up the balancing interval */
3512 3513
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3514 3515
		sd->balance_interval *= 2;

3516
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3517
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3518 3519 3520 3521
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3522 3523
	if (ld_moved)
		update_shares(sd);
3524
	return ld_moved;
L
Linus Torvalds 已提交
3525 3526 3527 3528 3529 3530
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3531
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3532 3533
 * this_rq is locked.
 */
3534
static int
3535 3536
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3537 3538
{
	struct sched_group *group;
3539
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3540
	unsigned long imbalance;
P
Peter Williams 已提交
3541
	int ld_moved = 0;
N
Nick Piggin 已提交
3542
	int sd_idle = 0;
3543
	int all_pinned = 0;
3544 3545

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3546

3547 3548 3549 3550
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3551
	 * portraying it as CPU_NOT_IDLE.
3552 3553 3554
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3555
		sd_idle = 1;
L
Linus Torvalds 已提交
3556

3557
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3558
redo:
3559
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3560
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3561
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3562
	if (!group) {
I
Ingo Molnar 已提交
3563
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3564
		goto out_balanced;
L
Linus Torvalds 已提交
3565 3566
	}

3567
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3568
	if (!busiest) {
I
Ingo Molnar 已提交
3569
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3570
		goto out_balanced;
L
Linus Torvalds 已提交
3571 3572
	}

N
Nick Piggin 已提交
3573 3574
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3575
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3576

P
Peter Williams 已提交
3577
	ld_moved = 0;
3578 3579 3580
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3581 3582
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3583
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3584 3585
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3586
		spin_unlock(&busiest->lock);
3587

3588
		if (unlikely(all_pinned)) {
3589 3590
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3591 3592
				goto redo;
		}
3593 3594
	}

P
Peter Williams 已提交
3595
	if (!ld_moved) {
I
Ingo Molnar 已提交
3596
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3597 3598
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3599 3600
			return -1;
	} else
3601
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3602

3603
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3604
	return ld_moved;
3605 3606

out_balanced:
I
Ingo Molnar 已提交
3607
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3608
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3609
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3610
		return -1;
3611
	sd->nr_balance_failed = 0;
3612

3613
	return 0;
L
Linus Torvalds 已提交
3614 3615 3616 3617 3618 3619
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3620
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3621 3622
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3623 3624
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3625
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3626 3627

	for_each_domain(this_cpu, sd) {
3628 3629 3630 3631 3632 3633
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3634
			/* If we've pulled tasks over stop searching: */
3635 3636
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3637 3638 3639 3640 3641 3642

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3643
	}
I
Ingo Molnar 已提交
3644
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3645 3646 3647 3648 3649
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3650
	}
L
Linus Torvalds 已提交
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3661
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3662
{
3663
	int target_cpu = busiest_rq->push_cpu;
3664 3665
	struct sched_domain *sd;
	struct rq *target_rq;
3666

3667
	/* Is there any task to move? */
3668 3669 3670 3671
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3672 3673

	/*
3674
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3675
	 * we need to fix it. Originally reported by
3676
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3677
	 */
3678
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3679

3680 3681
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3682 3683
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3684 3685

	/* Search for an sd spanning us and the target CPU. */
3686
	for_each_domain(target_cpu, sd) {
3687
		if ((sd->flags & SD_LOAD_BALANCE) &&
3688
		    cpu_isset(busiest_cpu, sd->span))
3689
				break;
3690
	}
3691

3692
	if (likely(sd)) {
3693
		schedstat_inc(sd, alb_count);
3694

P
Peter Williams 已提交
3695 3696
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3697 3698 3699 3700
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3701
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3702 3703
}

3704 3705 3706
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3707
	cpumask_t cpu_mask;
3708 3709 3710 3711 3712
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3713
/*
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3724
 *
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3781 3782 3783 3784 3785
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3786
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3787
{
3788 3789
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3790 3791
	unsigned long interval;
	struct sched_domain *sd;
3792
	/* Earliest time when we have to do rebalance again */
3793
	unsigned long next_balance = jiffies + 60*HZ;
3794
	int update_next_balance = 0;
3795
	int need_serialize;
3796
	cpumask_t tmp;
L
Linus Torvalds 已提交
3797

3798
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3799 3800 3801 3802
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3803
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3804 3805 3806 3807 3808 3809
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3810 3811 3812
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3813
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3814

3815
		if (need_serialize) {
3816 3817 3818 3819
			if (!spin_trylock(&balancing))
				goto out;
		}

3820
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3821
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3822 3823
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3824 3825 3826
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3827
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3828
			}
3829
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3830
		}
3831
		if (need_serialize)
3832 3833
			spin_unlock(&balancing);
out:
3834
		if (time_after(next_balance, sd->last_balance + interval)) {
3835
			next_balance = sd->last_balance + interval;
3836 3837
			update_next_balance = 1;
		}
3838 3839 3840 3841 3842 3843 3844 3845

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3846
	}
3847 3848 3849 3850 3851 3852 3853 3854

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3855 3856 3857 3858 3859 3860 3861 3862 3863
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3864 3865 3866 3867
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3868

I
Ingo Molnar 已提交
3869
	rebalance_domains(this_cpu, idle);
3870 3871 3872 3873 3874 3875 3876

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3877 3878
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3879 3880 3881 3882
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3883
		cpu_clear(this_cpu, cpus);
3884 3885 3886 3887 3888 3889 3890 3891 3892
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3893
			rebalance_domains(balance_cpu, CPU_IDLE);
3894 3895

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3896 3897
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3910
static inline void trigger_load_balance(struct rq *rq, int cpu)
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3937
			if (ilb < nr_cpu_ids)
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3962
}
I
Ingo Molnar 已提交
3963 3964 3965

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3966 3967 3968
/*
 * on UP we do not need to balance between CPUs:
 */
3969
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3970 3971
{
}
I
Ingo Molnar 已提交
3972

L
Linus Torvalds 已提交
3973 3974 3975 3976 3977 3978 3979
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3980 3981
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3982
 */
3983
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3984 3985
{
	unsigned long flags;
3986 3987
	u64 ns, delta_exec;
	struct rq *rq;
3988

3989 3990
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3991
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3992 3993
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3994 3995 3996 3997
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3998

L
Linus Torvalds 已提交
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4022 4023 4024 4025 4026
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4027
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4061
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4062 4063
	cputime64_t tmp;

4064 4065 4066 4067
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4068

L
Linus Torvalds 已提交
4069 4070 4071 4072 4073 4074 4075 4076
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4077
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4078
		cpustat->system = cputime64_add(cpustat->system, tmp);
4079
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4080 4081 4082 4083 4084 4085 4086
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4098 4099 4100 4101 4102 4103 4104 4105 4106
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4107
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4108 4109 4110 4111 4112 4113 4114

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4115
	} else
L
Linus Torvalds 已提交
4116 4117 4118
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4130
	struct task_struct *curr = rq->curr;
4131 4132

	sched_clock_tick();
I
Ingo Molnar 已提交
4133 4134

	spin_lock(&rq->lock);
4135
	update_rq_clock(rq);
4136
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4137
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4138
	spin_unlock(&rq->lock);
4139

4140
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4141 4142
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4143
#endif
L
Linus Torvalds 已提交
4144 4145 4146 4147
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4148
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4149 4150 4151 4152
{
	/*
	 * Underflow?
	 */
4153 4154
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4155 4156 4157 4158
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4159 4160
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4161 4162 4163
}
EXPORT_SYMBOL(add_preempt_count);

4164
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4165 4166 4167 4168
{
	/*
	 * Underflow?
	 */
4169 4170
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4171 4172 4173
	/*
	 * Is the spinlock portion underflowing?
	 */
4174 4175 4176 4177
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4178 4179 4180 4181 4182 4183 4184
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4185
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4186
 */
I
Ingo Molnar 已提交
4187
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4188
{
4189 4190 4191 4192 4193
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4194
	debug_show_held_locks(prev);
4195
	print_modules();
I
Ingo Molnar 已提交
4196 4197
	if (irqs_disabled())
		print_irqtrace_events(prev);
4198 4199 4200 4201 4202

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4203
}
L
Linus Torvalds 已提交
4204

I
Ingo Molnar 已提交
4205 4206 4207 4208 4209
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4210
	/*
I
Ingo Molnar 已提交
4211
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4212 4213 4214
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4215
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4216 4217
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4218 4219
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4220
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4221 4222
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4223 4224
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4225 4226
	}
#endif
I
Ingo Molnar 已提交
4227 4228 4229 4230 4231 4232
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4233
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4234
{
4235
	const struct sched_class *class;
I
Ingo Molnar 已提交
4236
	struct task_struct *p;
L
Linus Torvalds 已提交
4237 4238

	/*
I
Ingo Molnar 已提交
4239 4240
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4241
	 */
I
Ingo Molnar 已提交
4242
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4243
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4244 4245
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4246 4247
	}

I
Ingo Molnar 已提交
4248 4249
	class = sched_class_highest;
	for ( ; ; ) {
4250
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4251 4252 4253 4254 4255 4256 4257 4258 4259
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4260

I
Ingo Molnar 已提交
4261 4262 4263 4264 4265 4266
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4267
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4268
	struct rq *rq;
M
Mike Galbraith 已提交
4269
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4283

M
Mike Galbraith 已提交
4284 4285
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4286

4287 4288 4289 4290
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4291
	update_rq_clock(rq);
4292 4293
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4294 4295

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4296
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4297
			prev->state = TASK_RUNNING;
4298
		else
4299
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4300
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4301 4302
	}

4303 4304 4305 4306
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4307

I
Ingo Molnar 已提交
4308
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4309 4310
		idle_balance(cpu, rq);

4311
	prev->sched_class->put_prev_task(rq, prev);
4312
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4313 4314

	if (likely(prev != next)) {
4315 4316
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4317 4318 4319 4320
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4321
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4322 4323 4324 4325 4326 4327
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4328 4329 4330
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4331 4332
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4333 4334

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4335
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4336

L
Linus Torvalds 已提交
4337 4338 4339 4340 4341 4342 4343 4344
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4345
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4346
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4347 4348 4349 4350 4351
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4352

L
Linus Torvalds 已提交
4353 4354
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4355
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4356
	 */
N
Nick Piggin 已提交
4357
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4358 4359
		return;

4360 4361 4362 4363
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4364

4365 4366 4367 4368 4369 4370
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4371 4372 4373 4374
}
EXPORT_SYMBOL(preempt_schedule);

/*
4375
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4376 4377 4378 4379 4380 4381 4382
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4383

4384
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4385 4386
	BUG_ON(ti->preempt_count || !irqs_disabled());

4387 4388 4389 4390 4391 4392
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4393

4394 4395 4396 4397 4398 4399
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4400 4401 4402 4403
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4404 4405
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4406
{
4407
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4408 4409 4410 4411
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4412 4413
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4414 4415 4416
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4417
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4418 4419 4420 4421 4422
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4423
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4424

4425
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4426 4427
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4428
		if (curr->func(curr, mode, sync, key) &&
4429
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4430 4431 4432 4433 4434 4435 4436 4437 4438
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4439
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4440
 */
4441
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4442
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4455
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4456 4457 4458 4459 4460
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4461
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4473
void
I
Ingo Molnar 已提交
4474
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4491
void complete(struct completion *x)
L
Linus Torvalds 已提交
4492 4493 4494 4495 4496
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4497
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4498 4499 4500 4501
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4502
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4503 4504 4505 4506 4507
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4508
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4509 4510 4511 4512
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4513 4514
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4515 4516 4517 4518 4519 4520 4521
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4522 4523 4524 4525
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4526 4527
				timeout = -ERESTARTSYS;
				break;
4528 4529
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4530 4531 4532
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4533
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4534
		__remove_wait_queue(&x->wait, &wait);
4535 4536
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4537 4538
	}
	x->done--;
4539
	return timeout ?: 1;
L
Linus Torvalds 已提交
4540 4541
}

4542 4543
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4544 4545 4546 4547
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4548
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4549
	spin_unlock_irq(&x->wait.lock);
4550 4551
	return timeout;
}
L
Linus Torvalds 已提交
4552

4553
void __sched wait_for_completion(struct completion *x)
4554 4555
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4556
}
4557
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4558

4559
unsigned long __sched
4560
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4561
{
4562
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4563
}
4564
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4565

4566
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4567
{
4568 4569 4570 4571
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4572
}
4573
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4574

4575
unsigned long __sched
4576 4577
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4578
{
4579
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4580
}
4581
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4582

M
Matthew Wilcox 已提交
4583 4584 4585 4586 4587 4588 4589 4590 4591
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4592 4593
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4594
{
I
Ingo Molnar 已提交
4595 4596 4597 4598
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4599

4600
	__set_current_state(state);
L
Linus Torvalds 已提交
4601

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4616 4617 4618
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4619
long __sched
I
Ingo Molnar 已提交
4620
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4621
{
4622
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4623 4624 4625
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4626
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4627
{
4628
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4629 4630 4631
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4632
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4633
{
4634
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4635 4636 4637
}
EXPORT_SYMBOL(sleep_on_timeout);

4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4650
void rt_mutex_setprio(struct task_struct *p, int prio)
4651 4652
{
	unsigned long flags;
4653
	int oldprio, on_rq, running;
4654
	struct rq *rq;
4655
	const struct sched_class *prev_class = p->sched_class;
4656 4657 4658 4659

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4660
	update_rq_clock(rq);
4661

4662
	oldprio = p->prio;
I
Ingo Molnar 已提交
4663
	on_rq = p->se.on_rq;
4664
	running = task_current(rq, p);
4665
	if (on_rq)
4666
		dequeue_task(rq, p, 0);
4667 4668
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4669 4670 4671 4672 4673 4674

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4675 4676
	p->prio = prio;

4677 4678
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4679
	if (on_rq) {
4680
		enqueue_task(rq, p, 0);
4681 4682

		check_class_changed(rq, p, prev_class, oldprio, running);
4683 4684 4685 4686 4687 4688
	}
	task_rq_unlock(rq, &flags);
}

#endif

4689
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4690
{
I
Ingo Molnar 已提交
4691
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4692
	unsigned long flags;
4693
	struct rq *rq;
L
Linus Torvalds 已提交
4694 4695 4696 4697 4698 4699 4700 4701

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4702
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4703 4704 4705 4706
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4707
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4708
	 */
4709
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4710 4711 4712
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4713
	on_rq = p->se.on_rq;
4714
	if (on_rq)
4715
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4716 4717

	p->static_prio = NICE_TO_PRIO(nice);
4718
	set_load_weight(p);
4719 4720 4721
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4722

I
Ingo Molnar 已提交
4723
	if (on_rq) {
4724
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4725
		/*
4726 4727
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4728
		 */
4729
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4730 4731 4732 4733 4734 4735 4736
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4737 4738 4739 4740 4741
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4742
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4743
{
4744 4745
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4746

M
Matt Mackall 已提交
4747 4748 4749 4750
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4762
	long nice, retval;
L
Linus Torvalds 已提交
4763 4764 4765 4766 4767 4768

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4769 4770
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4771 4772 4773 4774 4775 4776 4777 4778 4779
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4780 4781 4782
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4801
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4802 4803 4804 4805 4806 4807 4808 4809
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4810
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4811 4812 4813
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4814
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4829
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4830 4831 4832 4833 4834 4835 4836 4837
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4838
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4839
{
4840
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4841 4842 4843
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4844 4845
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4846
{
I
Ingo Molnar 已提交
4847
	BUG_ON(p->se.on_rq);
4848

L
Linus Torvalds 已提交
4849
	p->policy = policy;
I
Ingo Molnar 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4862
	p->rt_priority = prio;
4863 4864 4865
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4866
	set_load_weight(p);
L
Linus Torvalds 已提交
4867 4868 4869
}

/**
4870
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4871 4872 4873
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4874
 *
4875
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4876
 */
I
Ingo Molnar 已提交
4877 4878
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4879
{
4880
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4881
	unsigned long flags;
4882
	const struct sched_class *prev_class = p->sched_class;
4883
	struct rq *rq;
L
Linus Torvalds 已提交
4884

4885 4886
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4887 4888 4889 4890 4891
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4892 4893
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4894
		return -EINVAL;
L
Linus Torvalds 已提交
4895 4896
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4897 4898
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4899 4900
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4901
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4902
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4903
		return -EINVAL;
4904
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4905 4906
		return -EINVAL;

4907 4908 4909 4910
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4911
		if (rt_policy(policy)) {
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4928 4929 4930 4931 4932 4933
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4934

4935 4936 4937 4938 4939
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4940

4941 4942 4943 4944 4945
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4946
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4947 4948 4949
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4950 4951 4952
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4953 4954 4955 4956 4957
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4958 4959 4960 4961
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4962
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4963 4964 4965
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4966 4967
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4968 4969
		goto recheck;
	}
I
Ingo Molnar 已提交
4970
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4971
	on_rq = p->se.on_rq;
4972
	running = task_current(rq, p);
4973
	if (on_rq)
4974
		deactivate_task(rq, p, 0);
4975 4976
	if (running)
		p->sched_class->put_prev_task(rq, p);
4977

L
Linus Torvalds 已提交
4978
	oldprio = p->prio;
I
Ingo Molnar 已提交
4979
	__setscheduler(rq, p, policy, param->sched_priority);
4980

4981 4982
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4983 4984
	if (on_rq) {
		activate_task(rq, p, 0);
4985 4986

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4987
	}
4988 4989 4990
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4991 4992
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4993 4994 4995 4996
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4997 4998
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4999 5000 5001
{
	struct sched_param lparam;
	struct task_struct *p;
5002
	int retval;
L
Linus Torvalds 已提交
5003 5004 5005 5006 5007

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5008 5009 5010

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5011
	p = find_process_by_pid(pid);
5012 5013 5014
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5015

L
Linus Torvalds 已提交
5016 5017 5018 5019 5020 5021 5022 5023 5024
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5025 5026
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5027
{
5028 5029 5030 5031
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5051
	struct task_struct *p;
5052
	int retval;
L
Linus Torvalds 已提交
5053 5054

	if (pid < 0)
5055
		return -EINVAL;
L
Linus Torvalds 已提交
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5077
	struct task_struct *p;
5078
	int retval;
L
Linus Torvalds 已提交
5079 5080

	if (!param || pid < 0)
5081
		return -EINVAL;
L
Linus Torvalds 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5108
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5109 5110
{
	cpumask_t cpus_allowed;
5111
	cpumask_t new_mask = *in_mask;
5112 5113
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5114

5115
	get_online_cpus();
L
Linus Torvalds 已提交
5116 5117 5118 5119 5120
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5121
		put_online_cpus();
L
Linus Torvalds 已提交
5122 5123 5124 5125 5126
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5127
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5138 5139 5140 5141
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5142
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5143
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5144
 again:
5145
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5146

P
Paul Menage 已提交
5147
	if (!retval) {
5148
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5159 5160
out_unlock:
	put_task_struct(p);
5161
	put_online_cpus();
L
Linus Torvalds 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5192
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5193 5194 5195 5196
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5197
	struct task_struct *p;
L
Linus Torvalds 已提交
5198 5199
	int retval;

5200
	get_online_cpus();
L
Linus Torvalds 已提交
5201 5202 5203 5204 5205 5206 5207
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5208 5209 5210 5211
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5212
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5213 5214 5215

out_unlock:
	read_unlock(&tasklist_lock);
5216
	put_online_cpus();
L
Linus Torvalds 已提交
5217

5218
	return retval;
L
Linus Torvalds 已提交
5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5249 5250
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5251 5252 5253
 */
asmlinkage long sys_sched_yield(void)
{
5254
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5255

5256
	schedstat_inc(rq, yld_count);
5257
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5258 5259 5260 5261 5262 5263

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5264
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5265 5266 5267 5268 5269 5270 5271 5272
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5273
static void __cond_resched(void)
L
Linus Torvalds 已提交
5274
{
5275 5276 5277
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5278 5279 5280 5281 5282
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5283 5284 5285 5286 5287 5288 5289
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5290
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5291
{
5292 5293
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5294 5295 5296 5297 5298
		__cond_resched();
		return 1;
	}
	return 0;
}
5299
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5300 5301 5302 5303 5304

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5305
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5306 5307 5308
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5309
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5310
{
N
Nick Piggin 已提交
5311
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5312 5313
	int ret = 0;

N
Nick Piggin 已提交
5314
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5315
		spin_unlock(lock);
N
Nick Piggin 已提交
5316 5317 5318 5319
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5320
		ret = 1;
L
Linus Torvalds 已提交
5321 5322
		spin_lock(lock);
	}
J
Jan Kara 已提交
5323
	return ret;
L
Linus Torvalds 已提交
5324 5325 5326 5327 5328 5329 5330
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5331
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5332
		local_bh_enable();
L
Linus Torvalds 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5344
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5355
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5356 5357 5358 5359 5360 5361 5362
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5363
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5364

5365
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5366 5367 5368
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5369
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5370 5371 5372 5373 5374
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5375
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5376 5377
	long ret;

5378
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5379 5380 5381
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5382
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5403
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5404
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5428
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5429
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5446
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5447
	unsigned int time_slice;
5448
	int retval;
L
Linus Torvalds 已提交
5449 5450 5451
	struct timespec t;

	if (pid < 0)
5452
		return -EINVAL;
L
Linus Torvalds 已提交
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5464 5465 5466 5467 5468 5469
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5470
		time_slice = DEF_TIMESLICE;
5471
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5472 5473 5474 5475 5476
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5477 5478
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5479 5480
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5481
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5482
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5483 5484
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5485

L
Linus Torvalds 已提交
5486 5487 5488 5489 5490
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5491
static const char stat_nam[] = "RSDTtZX";
5492

5493
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5494 5495
{
	unsigned long free = 0;
5496
	unsigned state;
L
Linus Torvalds 已提交
5497 5498

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5499
	printk(KERN_INFO "%-13.13s %c", p->comm,
5500
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5501
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5502
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5503
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5504
	else
I
Ingo Molnar 已提交
5505
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5506 5507
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5508
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5509
	else
I
Ingo Molnar 已提交
5510
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5511 5512 5513
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5514
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5515 5516
		while (!*n)
			n++;
5517
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5518 5519
	}
#endif
5520
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5521
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5522

5523
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5524 5525
}

I
Ingo Molnar 已提交
5526
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5527
{
5528
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5529

5530 5531 5532
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5533
#else
5534 5535
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5536 5537 5538 5539 5540 5541 5542 5543
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5544
		if (!state_filter || (p->state & state_filter))
5545
			sched_show_task(p);
L
Linus Torvalds 已提交
5546 5547
	} while_each_thread(g, p);

5548 5549
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5550 5551 5552
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5553
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5554 5555 5556 5557 5558
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5559 5560
}

I
Ingo Molnar 已提交
5561 5562
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5563
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5564 5565
}

5566 5567 5568 5569 5570 5571 5572 5573
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5574
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5575
{
5576
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5577 5578
	unsigned long flags;

I
Ingo Molnar 已提交
5579 5580 5581
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5582
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5583
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5584
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5585 5586 5587

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5588 5589 5590
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5591 5592 5593
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5594 5595 5596
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5597
	task_thread_info(idle)->preempt_count = 0;
5598
#endif
I
Ingo Molnar 已提交
5599 5600 5601 5602
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5639 5640 5641 5642
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5643
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5662
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5663 5664
 * call is not atomic; no spinlocks may be held.
 */
5665
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5666
{
5667
	struct migration_req req;
L
Linus Torvalds 已提交
5668
	unsigned long flags;
5669
	struct rq *rq;
5670
	int ret = 0;
L
Linus Torvalds 已提交
5671 5672

	rq = task_rq_lock(p, &flags);
5673
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5674 5675 5676 5677
		ret = -EINVAL;
		goto out;
	}

5678 5679 5680 5681 5682 5683
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5684
	if (p->sched_class->set_cpus_allowed)
5685
		p->sched_class->set_cpus_allowed(p, new_mask);
5686
	else {
5687 5688
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5689 5690
	}

L
Linus Torvalds 已提交
5691
	/* Can the task run on the task's current CPU? If so, we're done */
5692
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5693 5694
		goto out;

5695
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5696 5697 5698 5699 5700 5701 5702 5703 5704
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5705

L
Linus Torvalds 已提交
5706 5707
	return ret;
}
5708
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5709 5710

/*
I
Ingo Molnar 已提交
5711
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5712 5713 5714 5715 5716 5717
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5718 5719
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5720
 */
5721
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5722
{
5723
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5724
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5725 5726

	if (unlikely(cpu_is_offline(dest_cpu)))
5727
		return ret;
L
Linus Torvalds 已提交
5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5740
	on_rq = p->se.on_rq;
5741
	if (on_rq)
5742
		deactivate_task(rq_src, p, 0);
5743

L
Linus Torvalds 已提交
5744
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5745 5746 5747
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5748
	}
5749
	ret = 1;
L
Linus Torvalds 已提交
5750 5751
out:
	double_rq_unlock(rq_src, rq_dest);
5752
	return ret;
L
Linus Torvalds 已提交
5753 5754 5755 5756 5757 5758 5759
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5760
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5761 5762
{
	int cpu = (long)data;
5763
	struct rq *rq;
L
Linus Torvalds 已提交
5764 5765 5766 5767 5768 5769

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5770
		struct migration_req *req;
L
Linus Torvalds 已提交
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5793
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5794 5795
		list_del_init(head->next);

N
Nick Piggin 已提交
5796 5797 5798
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5828
/*
5829
 * Figure out where task on dead CPU should go, use force if necessary.
5830 5831
 * NOTE: interrupts should be disabled by the caller
 */
5832
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5833
{
5834
	unsigned long flags;
L
Linus Torvalds 已提交
5835
	cpumask_t mask;
5836 5837
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5838

5839 5840 5841 5842 5843 5844 5845
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5846
		if (dest_cpu >= nr_cpu_ids)
5847 5848 5849
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5850
		if (dest_cpu >= nr_cpu_ids) {
5851 5852 5853
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5854 5855 5856 5857
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5858
			 * cpuset_cpus_allowed() will not block. It must be
5859 5860
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5861
			rq = task_rq_lock(p, &flags);
5862
			p->cpus_allowed = cpus_allowed;
5863 5864
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5865

5866 5867 5868 5869 5870
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5871
			if (p->mm && printk_ratelimit()) {
5872 5873
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5874 5875
					task_pid_nr(p), p->comm, dead_cpu);
			}
5876
		}
5877
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5878 5879 5880 5881 5882 5883 5884 5885 5886
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5887
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5888
{
5889
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5903
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5904

5905
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5906

5907 5908
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5909 5910
			continue;

5911 5912 5913
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5914

5915
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5916 5917
}

I
Ingo Molnar 已提交
5918 5919
/*
 * Schedules idle task to be the next runnable task on current CPU.
5920 5921
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5922 5923 5924
 */
void sched_idle_next(void)
{
5925
	int this_cpu = smp_processor_id();
5926
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5927 5928 5929 5930
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5931
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5932

5933 5934 5935
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5936 5937 5938
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5939
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5940

5941 5942
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5943 5944 5945 5946

	spin_unlock_irqrestore(&rq->lock, flags);
}

5947 5948
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5962
/* called under rq->lock with disabled interrupts */
5963
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5964
{
5965
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5966 5967

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5968
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5969 5970

	/* Cannot have done final schedule yet: would have vanished. */
5971
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5972

5973
	get_task_struct(p);
L
Linus Torvalds 已提交
5974 5975 5976

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5977
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5978 5979
	 * fine.
	 */
5980
	spin_unlock_irq(&rq->lock);
5981
	move_task_off_dead_cpu(dead_cpu, p);
5982
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5983

5984
	put_task_struct(p);
L
Linus Torvalds 已提交
5985 5986 5987 5988 5989
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5990
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5991
	struct task_struct *next;
5992

I
Ingo Molnar 已提交
5993 5994 5995
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5996
		update_rq_clock(rq);
5997
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5998 5999 6000
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6001

L
Linus Torvalds 已提交
6002 6003 6004 6005
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6006 6007 6008
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6009 6010
	{
		.procname	= "sched_domain",
6011
		.mode		= 0555,
6012
	},
I
Ingo Molnar 已提交
6013
	{0, },
6014 6015 6016
};

static struct ctl_table sd_ctl_root[] = {
6017
	{
6018
		.ctl_name	= CTL_KERN,
6019
		.procname	= "kernel",
6020
		.mode		= 0555,
6021 6022
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6023
	{0, },
6024 6025 6026 6027 6028
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6029
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6030 6031 6032 6033

	return entry;
}

6034 6035
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6036
	struct ctl_table *entry;
6037

6038 6039 6040
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6041
	 * will always be set. In the lowest directory the names are
6042 6043 6044
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6045 6046
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6047 6048 6049
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6050 6051 6052 6053 6054

	kfree(*tablep);
	*tablep = NULL;
}

6055
static void
6056
set_table_entry(struct ctl_table *entry,
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6070
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6071

6072 6073 6074
	if (table == NULL)
		return NULL;

6075
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6076
		sizeof(long), 0644, proc_doulongvec_minmax);
6077
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6078
		sizeof(long), 0644, proc_doulongvec_minmax);
6079
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6080
		sizeof(int), 0644, proc_dointvec_minmax);
6081
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6082
		sizeof(int), 0644, proc_dointvec_minmax);
6083
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6084
		sizeof(int), 0644, proc_dointvec_minmax);
6085
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6086
		sizeof(int), 0644, proc_dointvec_minmax);
6087
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6088
		sizeof(int), 0644, proc_dointvec_minmax);
6089
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6090
		sizeof(int), 0644, proc_dointvec_minmax);
6091
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6092
		sizeof(int), 0644, proc_dointvec_minmax);
6093
	set_table_entry(&table[9], "cache_nice_tries",
6094 6095
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6096
	set_table_entry(&table[10], "flags", &sd->flags,
6097
		sizeof(int), 0644, proc_dointvec_minmax);
6098
	/* &table[11] is terminator */
6099 6100 6101 6102

	return table;
}

6103
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6104 6105 6106 6107 6108 6109 6110 6111 6112
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6113 6114
	if (table == NULL)
		return NULL;
6115 6116 6117 6118 6119

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6120
		entry->mode = 0555;
6121 6122 6123 6124 6125 6126 6127 6128
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6129
static void register_sched_domain_sysctl(void)
6130 6131 6132 6133 6134
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6135 6136 6137
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6138 6139 6140
	if (entry == NULL)
		return;

6141
	for_each_online_cpu(i) {
6142 6143
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6144
		entry->mode = 0555;
6145
		entry->child = sd_alloc_ctl_cpu_table(i);
6146
		entry++;
6147
	}
6148 6149

	WARN_ON(sd_sysctl_header);
6150 6151
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6152

6153
/* may be called multiple times per register */
6154 6155
static void unregister_sched_domain_sysctl(void)
{
6156 6157
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6158
	sd_sysctl_header = NULL;
6159 6160
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6161
}
6162
#else
6163 6164 6165 6166
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6167 6168 6169 6170
{
}
#endif

6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6201 6202 6203 6204
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6205 6206
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6207 6208
{
	struct task_struct *p;
6209
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6210
	unsigned long flags;
6211
	struct rq *rq;
L
Linus Torvalds 已提交
6212 6213

	switch (action) {
6214

L
Linus Torvalds 已提交
6215
	case CPU_UP_PREPARE:
6216
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6217
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6218 6219 6220 6221 6222
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6223
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6224 6225 6226
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6227

L
Linus Torvalds 已提交
6228
	case CPU_ONLINE:
6229
	case CPU_ONLINE_FROZEN:
6230
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6231
		wake_up_process(cpu_rq(cpu)->migration_thread);
6232 6233 6234 6235 6236 6237

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6238 6239

			set_rq_online(rq);
6240 6241
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6242
		break;
6243

L
Linus Torvalds 已提交
6244 6245
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6246
	case CPU_UP_CANCELED_FROZEN:
6247 6248
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6249
		/* Unbind it from offline cpu so it can run. Fall thru. */
6250 6251
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6252 6253 6254
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6255

L
Linus Torvalds 已提交
6256
	case CPU_DEAD:
6257
	case CPU_DEAD_FROZEN:
6258
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6259 6260 6261 6262 6263
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6264
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6265
		update_rq_clock(rq);
6266
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6267
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6268 6269
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6270
		migrate_dead_tasks(cpu);
6271
		spin_unlock_irq(&rq->lock);
6272
		cpuset_unlock();
L
Linus Torvalds 已提交
6273 6274 6275
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6276 6277 6278 6279 6280
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6281 6282
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6283 6284
			struct migration_req *req;

L
Linus Torvalds 已提交
6285
			req = list_entry(rq->migration_queue.next,
6286
					 struct migration_req, list);
L
Linus Torvalds 已提交
6287 6288 6289 6290 6291
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6292

6293 6294
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6295 6296 6297 6298 6299
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6300
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6301 6302 6303
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6304 6305 6306 6307 6308 6309 6310 6311
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6312
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6313 6314 6315 6316
	.notifier_call = migration_call,
	.priority = 10
};

6317
void __init migration_init(void)
L
Linus Torvalds 已提交
6318 6319
{
	void *cpu = (void *)(long)smp_processor_id();
6320
	int err;
6321 6322

	/* Start one for the boot CPU: */
6323 6324
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6325 6326 6327 6328 6329 6330
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6331

6332
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6333

6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6356 6357
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6358
{
I
Ingo Molnar 已提交
6359
	struct sched_group *group = sd->groups;
6360
	char str[256];
L
Linus Torvalds 已提交
6361

6362
	cpulist_scnprintf(str, sizeof(str), sd->span);
6363
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6364 6365 6366 6367 6368 6369 6370 6371 6372

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6373 6374
	}

6375 6376
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6377 6378 6379 6380 6381 6382 6383 6384 6385

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6386

I
Ingo Molnar 已提交
6387
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6388
	do {
I
Ingo Molnar 已提交
6389 6390 6391
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6392 6393 6394
			break;
		}

I
Ingo Molnar 已提交
6395 6396 6397 6398 6399 6400
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6401

I
Ingo Molnar 已提交
6402 6403 6404 6405 6406
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6407

6408
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6409 6410 6411 6412
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6413

6414
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6415

6416
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6417
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6418

I
Ingo Molnar 已提交
6419 6420 6421
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6422

6423
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6424
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6425

6426
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6427 6428 6429 6430
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6431

I
Ingo Molnar 已提交
6432 6433
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6434
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6435
	int level = 0;
L
Linus Torvalds 已提交
6436

I
Ingo Molnar 已提交
6437 6438 6439 6440
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6441

I
Ingo Molnar 已提交
6442 6443
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6444 6445 6446 6447 6448 6449
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6450
	for (;;) {
6451
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6452
			break;
L
Linus Torvalds 已提交
6453 6454
		level++;
		sd = sd->parent;
6455
		if (!sd)
I
Ingo Molnar 已提交
6456 6457
			break;
	}
6458
	kfree(groupmask);
L
Linus Torvalds 已提交
6459
}
6460
#else /* !CONFIG_SCHED_DEBUG */
6461
# define sched_domain_debug(sd, cpu) do { } while (0)
6462
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6463

6464
static int sd_degenerate(struct sched_domain *sd)
6465 6466 6467 6468 6469 6470 6471 6472
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6473 6474 6475
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6489 6490
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6509 6510 6511
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6512 6513 6514 6515 6516 6517 6518
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6519 6520 6521 6522 6523 6524 6525 6526 6527
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6528 6529
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6530

6531 6532
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6533 6534 6535 6536 6537 6538 6539
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6540
	cpu_set(rq->cpu, rd->span);
6541
	if (cpu_isset(rq->cpu, cpu_online_map))
6542
		set_rq_online(rq);
G
Gregory Haskins 已提交
6543 6544 6545 6546

	spin_unlock_irqrestore(&rq->lock, flags);
}

6547
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6548 6549 6550
{
	memset(rd, 0, sizeof(*rd));

6551 6552
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6553 6554

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6555 6556 6557 6558
}

static void init_defrootdomain(void)
{
6559
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6560 6561 6562
	atomic_set(&def_root_domain.refcount, 1);
}

6563
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6564 6565 6566 6567 6568 6569 6570
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6571
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6572 6573 6574 6575

	return rd;
}

L
Linus Torvalds 已提交
6576
/*
I
Ingo Molnar 已提交
6577
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6578 6579
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6580 6581
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6582
{
6583
	struct rq *rq = cpu_rq(cpu);
6584 6585 6586 6587 6588 6589 6590
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6591
		if (sd_parent_degenerate(tmp, parent)) {
6592
			tmp->parent = parent->parent;
6593 6594 6595
			if (parent->parent)
				parent->parent->child = tmp;
		}
6596 6597
	}

6598
	if (sd && sd_degenerate(sd)) {
6599
		sd = sd->parent;
6600 6601 6602
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6603 6604 6605

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6606
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6607
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6608 6609 6610
}

/* cpus with isolated domains */
6611
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6626
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6627 6628

/*
6629 6630 6631 6632
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6633 6634 6635 6636 6637
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6638
static void
6639
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6640
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6641 6642 6643
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6644 6645 6646 6647
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6648 6649 6650
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6651
		struct sched_group *sg;
6652
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6653 6654
		int j;

6655
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6656 6657
			continue;

6658
		cpus_clear(sg->cpumask);
6659
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6660

6661 6662
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6663 6664
				continue;

6665
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6677
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6678

6679
#ifdef CONFIG_NUMA
6680

6681 6682 6683 6684 6685
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6686
 * Find the next node to include in a given scheduling domain. Simply
6687 6688 6689 6690
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6691
static int find_next_best_node(int node, nodemask_t *used_nodes)
6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6705
		if (node_isset(n, *used_nodes))
6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6717
	node_set(best_node, *used_nodes);
6718 6719 6720 6721 6722 6723
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6724
 * @span: resulting cpumask
6725
 *
I
Ingo Molnar 已提交
6726
 * Given a node, construct a good cpumask for its sched_domain to span. It
6727 6728 6729
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6730
static void sched_domain_node_span(int node, cpumask_t *span)
6731
{
6732 6733
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6734
	int i;
6735

6736
	cpus_clear(*span);
6737
	nodes_clear(used_nodes);
6738

6739
	cpus_or(*span, *span, *nodemask);
6740
	node_set(node, used_nodes);
6741 6742

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6743
		int next_node = find_next_best_node(node, &used_nodes);
6744

6745
		node_to_cpumask_ptr_next(nodemask, next_node);
6746
		cpus_or(*span, *span, *nodemask);
6747 6748
	}
}
6749
#endif /* CONFIG_NUMA */
6750

6751
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6752

6753
/*
6754
 * SMT sched-domains:
6755
 */
L
Linus Torvalds 已提交
6756 6757
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6758
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6759

I
Ingo Molnar 已提交
6760
static int
6761 6762
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6763
{
6764 6765
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6766 6767
	return cpu;
}
6768
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6769

6770 6771 6772
/*
 * multi-core sched-domains:
 */
6773 6774
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6775
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6776
#endif /* CONFIG_SCHED_MC */
6777 6778

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6779
static int
6780 6781
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6782
{
6783
	int group;
6784 6785 6786 6787

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6788 6789 6790
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6791 6792
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6793
static int
6794 6795
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6796
{
6797 6798
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6799 6800 6801 6802
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6803
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6804
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6805

I
Ingo Molnar 已提交
6806
static int
6807 6808
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6809
{
6810
	int group;
6811
#ifdef CONFIG_SCHED_MC
6812 6813 6814
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6815
#elif defined(CONFIG_SCHED_SMT)
6816 6817 6818
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6819
#else
6820
	group = cpu;
L
Linus Torvalds 已提交
6821
#endif
6822 6823 6824
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6825 6826 6827 6828
}

#ifdef CONFIG_NUMA
/*
6829 6830 6831
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6832
 */
6833
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6834
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6835

6836
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6837
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6838

6839
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6840
				 struct sched_group **sg, cpumask_t *nodemask)
6841
{
6842 6843
	int group;

6844 6845 6846
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6847 6848 6849 6850

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6851
}
6852

6853 6854 6855 6856 6857 6858 6859
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6860 6861 6862
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6863

6864 6865 6866 6867 6868 6869 6870 6871
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6872

6873 6874 6875 6876
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6877
}
6878
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6879

6880
#ifdef CONFIG_NUMA
6881
/* Free memory allocated for various sched_group structures */
6882
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6883
{
6884
	int cpu, i;
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6896 6897 6898
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6915
#else /* !CONFIG_NUMA */
6916
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6917 6918
{
}
6919
#endif /* CONFIG_NUMA */
6920

6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6947 6948
	sd->groups->__cpu_power = 0;

6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6959
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6960 6961 6962 6963 6964 6965 6966 6967
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6968
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6969 6970 6971 6972
		group = group->next;
	} while (group != child->groups);
}

6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6984
	sd->level = SD_LV_##type;				\
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7033 7034 7035 7036
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7037 7038 7039 7040 7041 7042
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7068
/*
7069 7070
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7071
 */
7072 7073
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7074 7075
{
	int i;
G
Gregory Haskins 已提交
7076
	struct root_domain *rd;
7077 7078
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7079 7080
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7081
	int sd_allnodes = 0;
7082 7083 7084 7085

	/*
	 * Allocate the per-node list of sched groups
	 */
7086
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7087
				    GFP_KERNEL);
7088 7089
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7090
		return -ENOMEM;
7091 7092
	}
#endif
L
Linus Torvalds 已提交
7093

7094
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7095 7096
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7097 7098 7099
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7100 7101 7102
		return -ENOMEM;
	}

7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7122
	/*
7123
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7124
	 */
7125
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7126
		struct sched_domain *sd = NULL, *p;
7127
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7128

7129 7130
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7131 7132

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7133
		if (cpus_weight(*cpu_map) >
7134
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7135
			sd = &per_cpu(allnodes_domains, i);
7136
			SD_INIT(sd, ALLNODES);
7137
			set_domain_attribute(sd, attr);
7138
			sd->span = *cpu_map;
7139
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7140
			p = sd;
7141
			sd_allnodes = 1;
7142 7143 7144
		} else
			p = NULL;

L
Linus Torvalds 已提交
7145
		sd = &per_cpu(node_domains, i);
7146
		SD_INIT(sd, NODE);
7147
		set_domain_attribute(sd, attr);
7148
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7149
		sd->parent = p;
7150 7151
		if (p)
			p->child = sd;
7152
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7153 7154 7155 7156
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7157
		SD_INIT(sd, CPU);
7158
		set_domain_attribute(sd, attr);
7159
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7160
		sd->parent = p;
7161 7162
		if (p)
			p->child = sd;
7163
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7164

7165 7166 7167
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7168
		SD_INIT(sd, MC);
7169
		set_domain_attribute(sd, attr);
7170 7171 7172
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7173
		p->child = sd;
7174
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7175 7176
#endif

L
Linus Torvalds 已提交
7177 7178 7179
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7180
		SD_INIT(sd, SIBLING);
7181
		set_domain_attribute(sd, attr);
7182
		sd->span = per_cpu(cpu_sibling_map, i);
7183
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7184
		sd->parent = p;
7185
		p->child = sd;
7186
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7187 7188 7189 7190 7191
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7192
	for_each_cpu_mask(i, *cpu_map) {
7193 7194 7195 7196 7197 7198
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7199 7200
			continue;

I
Ingo Molnar 已提交
7201
		init_sched_build_groups(this_sibling_map, cpu_map,
7202 7203
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7204 7205 7206
	}
#endif

7207 7208 7209
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7210 7211 7212 7213 7214 7215
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7216
			continue;
7217

I
Ingo Molnar 已提交
7218
		init_sched_build_groups(this_core_map, cpu_map,
7219 7220
					&cpu_to_core_group,
					send_covered, tmpmask);
7221 7222 7223
	}
#endif

L
Linus Torvalds 已提交
7224 7225
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7226 7227
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7228

7229 7230 7231
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7232 7233
			continue;

7234 7235 7236
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7237 7238 7239 7240
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7241 7242 7243 7244 7245 7246 7247
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7248 7249 7250 7251

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7252 7253 7254
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7255 7256
		int j;

7257 7258 7259 7260 7261
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7262
			sched_group_nodes[i] = NULL;
7263
			continue;
7264
		}
7265

7266
		sched_domain_node_span(i, domainspan);
7267
		cpus_and(*domainspan, *domainspan, *cpu_map);
7268

7269
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7270 7271 7272 7273 7274
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7275
		sched_group_nodes[i] = sg;
7276
		for_each_cpu_mask(j, *nodemask) {
7277
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7278

7279 7280 7281
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7282
		sg->__cpu_power = 0;
7283
		sg->cpumask = *nodemask;
7284
		sg->next = sg;
7285
		cpus_or(*covered, *covered, *nodemask);
7286 7287 7288
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7289
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7290
			int n = (i + j) % MAX_NUMNODES;
7291
			node_to_cpumask_ptr(pnodemask, n);
7292

7293 7294 7295 7296
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7297 7298
				break;

7299 7300
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7301 7302
				continue;

7303 7304
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7305 7306 7307
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7308
				goto error;
7309
			}
7310
			sg->__cpu_power = 0;
7311
			sg->cpumask = *tmpmask;
7312
			sg->next = prev->next;
7313
			cpus_or(*covered, *covered, *tmpmask);
7314 7315 7316 7317
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7318 7319 7320
#endif

	/* Calculate CPU power for physical packages and nodes */
7321
#ifdef CONFIG_SCHED_SMT
7322
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7323 7324
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7325
		init_sched_groups_power(i, sd);
7326
	}
L
Linus Torvalds 已提交
7327
#endif
7328
#ifdef CONFIG_SCHED_MC
7329
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7330 7331
		struct sched_domain *sd = &per_cpu(core_domains, i);

7332
		init_sched_groups_power(i, sd);
7333 7334
	}
#endif
7335

7336
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7337 7338
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7339
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7340 7341
	}

7342
#ifdef CONFIG_NUMA
7343 7344
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7345

7346 7347
	if (sd_allnodes) {
		struct sched_group *sg;
7348

7349 7350
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7351 7352
		init_numa_sched_groups_power(sg);
	}
7353 7354
#endif

L
Linus Torvalds 已提交
7355
	/* Attach the domains */
7356
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7357 7358 7359
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7360 7361
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7362 7363 7364
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7365
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7366
	}
7367

7368
	SCHED_CPUMASK_FREE((void *)allmasks);
7369 7370
	return 0;

7371
#ifdef CONFIG_NUMA
7372
error:
7373 7374
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7375
	return -ENOMEM;
7376
#endif
L
Linus Torvalds 已提交
7377
}
P
Paul Jackson 已提交
7378

7379 7380 7381 7382 7383
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7384 7385
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7386 7387
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7388 7389 7390 7391 7392 7393 7394 7395

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7396 7397 7398 7399
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7412
/*
I
Ingo Molnar 已提交
7413
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7414 7415
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7416
 */
7417
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7418
{
7419 7420
	int err;

7421
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7422 7423 7424 7425 7426
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7427
	dattr_cur = NULL;
7428
	err = build_sched_domains(doms_cur);
7429
	register_sched_domain_sysctl();
7430 7431

	return err;
7432 7433
}

7434 7435
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7436
{
7437
	free_sched_groups(cpu_map, tmpmask);
7438
}
L
Linus Torvalds 已提交
7439

7440 7441 7442 7443
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7444
static void detach_destroy_domains(const cpumask_t *cpu_map)
7445
{
7446
	cpumask_t tmpmask;
7447 7448
	int i;

7449 7450
	unregister_sched_domain_sysctl();

7451
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7452
		cpu_attach_domain(NULL, &def_root_domain, i);
7453
	synchronize_sched();
7454
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7455 7456
}

7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7473 7474
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7475
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7476 7477 7478 7479
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7480 7481 7482
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7483 7484 7485
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7486 7487
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7488 7489 7490 7491 7492 7493
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7494 7495
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7496 7497 7498
{
	int i, j;

7499
	mutex_lock(&sched_domains_mutex);
7500

7501 7502 7503
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7504 7505 7506 7507
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7508
		dattr_new = NULL;
P
Paul Jackson 已提交
7509 7510 7511 7512 7513
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7514 7515
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7527 7528
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7529 7530 7531
				goto match2;
		}
		/* no match - add a new doms_new */
7532 7533
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7534 7535 7536 7537 7538 7539 7540
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7541
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7542
	doms_cur = doms_new;
7543
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7544
	ndoms_cur = ndoms_new;
7545 7546

	register_sched_domain_sysctl();
7547

7548
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7549 7550
}

7551
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7552
int arch_reinit_sched_domains(void)
7553 7554 7555
{
	int err;

7556
	get_online_cpus();
7557
	mutex_lock(&sched_domains_mutex);
7558
	detach_destroy_domains(&cpu_online_map);
7559
	free_sched_domains();
7560
	err = arch_init_sched_domains(&cpu_online_map);
7561
	mutex_unlock(&sched_domains_mutex);
7562
	put_online_cpus();
7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7589 7590
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7591 7592 7593
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7594 7595
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7596 7597 7598 7599 7600 7601 7602
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7603 7604
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7605 7606 7607
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7628
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7629

L
Linus Torvalds 已提交
7630
/*
I
Ingo Molnar 已提交
7631
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7632
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7633
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7634 7635 7636 7637 7638
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7639 7640
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7641 7642
	switch (action) {
	case CPU_DOWN_PREPARE:
7643
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7644 7645 7646 7647
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7648
		detach_destroy_domains(&cpu_online_map);
7649
		free_sched_domains();
L
Linus Torvalds 已提交
7650 7651
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7652

L
Linus Torvalds 已提交
7653
	case CPU_DOWN_FAILED:
7654
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7655
	case CPU_ONLINE:
7656
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7657 7658 7659 7660
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7661
	case CPU_DEAD:
7662
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7663 7664 7665 7666 7667 7668 7669 7670
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7671 7672 7673 7674 7675 7676 7677
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7678
	/* The hotplug lock is already held by cpu_up/cpu_down */
7679
	arch_init_sched_domains(&cpu_online_map);
7680
#endif
L
Linus Torvalds 已提交
7681 7682 7683 7684 7685 7686

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7687 7688
	cpumask_t non_isolated_cpus;

7689 7690 7691 7692 7693
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7694
	get_online_cpus();
7695
	mutex_lock(&sched_domains_mutex);
7696
	arch_init_sched_domains(&cpu_online_map);
7697
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7698 7699
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7700
	mutex_unlock(&sched_domains_mutex);
7701
	put_online_cpus();
L
Linus Torvalds 已提交
7702 7703
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7704
	init_hrtick();
7705 7706

	/* Move init over to a non-isolated CPU */
7707
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7708
		BUG();
I
Ingo Molnar 已提交
7709
	sched_init_granularity();
L
Linus Torvalds 已提交
7710 7711 7712 7713
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7714
	sched_init_granularity();
L
Linus Torvalds 已提交
7715 7716 7717 7718 7719 7720 7721 7722 7723 7724
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7725
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7726 7727
{
	cfs_rq->tasks_timeline = RB_ROOT;
7728
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7729 7730 7731
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7732
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7733 7734
}

P
Peter Zijlstra 已提交
7735 7736 7737 7738 7739 7740 7741
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7742
		INIT_LIST_HEAD(array->queue + i);
P
Peter Zijlstra 已提交
7743 7744 7745 7746 7747
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7748
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7749 7750
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7751 7752 7753 7754 7755 7756 7757
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7758 7759
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7760

7761
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7762
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7763 7764
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7765 7766
}

P
Peter Zijlstra 已提交
7767
#ifdef CONFIG_FAIR_GROUP_SCHED
7768 7769 7770
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7771
{
7772
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7773 7774 7775 7776 7777 7778 7779
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7780 7781 7782 7783
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7784 7785 7786 7787 7788
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7789 7790
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7791
	se->load.inv_weight = 0;
7792
	se->parent = parent;
P
Peter Zijlstra 已提交
7793
}
7794
#endif
P
Peter Zijlstra 已提交
7795

7796
#ifdef CONFIG_RT_GROUP_SCHED
7797 7798 7799
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7800
{
7801 7802
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7803 7804 7805 7806
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7807
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7808 7809 7810 7811
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7812 7813 7814
	if (!rt_se)
		return;

7815 7816 7817 7818 7819
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7820
	rt_se->my_q = rt_rq;
7821
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7822 7823 7824 7825
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7826 7827
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7828
	int i, j;
7829 7830 7831 7832 7833 7834 7835
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7836 7837 7838
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7839 7840 7841 7842 7843 7844
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7845
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7846 7847 7848 7849 7850 7851 7852

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7853 7854 7855 7856 7857 7858 7859

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7860 7861
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
7862 7863 7864 7865 7866
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7867 7868 7869 7870 7871 7872 7873 7874
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7875 7876
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7877
	}
I
Ingo Molnar 已提交
7878

G
Gregory Haskins 已提交
7879 7880 7881 7882
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7883 7884 7885 7886 7887 7888
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7889 7890 7891
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
7892 7893
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7894

7895
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7896
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7897 7898 7899 7900 7901 7902
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
7903 7904
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
7905

7906
	for_each_possible_cpu(i) {
7907
		struct rq *rq;
L
Linus Torvalds 已提交
7908 7909 7910

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7911
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7912
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7913
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7914
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7915
#ifdef CONFIG_FAIR_GROUP_SCHED
7916
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7917
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7938
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7939
#elif defined CONFIG_USER_SCHED
7940 7941
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
7953
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
7954
				&per_cpu(init_cfs_rq, i),
7955 7956
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
7957

7958
#endif
D
Dhaval Giani 已提交
7959 7960 7961
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7962
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7963
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7964
#ifdef CONFIG_CGROUP_SCHED
7965
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7966
#elif defined CONFIG_USER_SCHED
7967
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7968
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
7969
				&per_cpu(init_rt_rq, i),
7970 7971
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
7972
#endif
I
Ingo Molnar 已提交
7973
#endif
L
Linus Torvalds 已提交
7974

I
Ingo Molnar 已提交
7975 7976
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7977
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7978
		rq->sd = NULL;
G
Gregory Haskins 已提交
7979
		rq->rd = NULL;
L
Linus Torvalds 已提交
7980
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7981
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7982
		rq->push_cpu = 0;
7983
		rq->cpu = i;
7984
		rq->online = 0;
L
Linus Torvalds 已提交
7985 7986
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7987
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7988
#endif
P
Peter Zijlstra 已提交
7989
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7990 7991 7992
		atomic_set(&rq->nr_iowait, 0);
	}

7993
	set_load_weight(&init_task);
7994

7995 7996 7997 7998
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7999 8000 8001 8002
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8003 8004 8005 8006
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8020 8021 8022 8023
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8024 8025

	scheduler_running = 1;
L
Linus Torvalds 已提交
8026 8027 8028 8029 8030
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8031
#ifdef in_atomic
L
Linus Torvalds 已提交
8032 8033 8034 8035 8036 8037 8038
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8039
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8040 8041 8042
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8043
		debug_show_held_locks(current);
8044 8045
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8046 8047 8048 8049 8050 8051 8052 8053
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8054 8055 8056
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8057

8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8069 8070
void normalize_rt_tasks(void)
{
8071
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8072
	unsigned long flags;
8073
	struct rq *rq;
L
Linus Torvalds 已提交
8074

8075
	read_lock_irqsave(&tasklist_lock, flags);
8076
	do_each_thread(g, p) {
8077 8078 8079 8080 8081 8082
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8083 8084
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8085 8086 8087
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8088
#endif
I
Ingo Molnar 已提交
8089 8090 8091 8092 8093 8094 8095 8096

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8097
			continue;
I
Ingo Molnar 已提交
8098
		}
L
Linus Torvalds 已提交
8099

8100
		spin_lock(&p->pi_lock);
8101
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8102

8103
		normalize_task(rq, p);
8104

8105
		__task_rq_unlock(rq);
8106
		spin_unlock(&p->pi_lock);
8107 8108
	} while_each_thread(g, p);

8109
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8110 8111 8112
}

#endif /* CONFIG_MAGIC_SYSRQ */
8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8131
struct task_struct *curr_task(int cpu)
8132 8133 8134 8135 8136 8137 8138 8139 8140 8141
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8142 8143
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8144 8145 8146 8147 8148 8149 8150
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8151
void set_curr_task(int cpu, struct task_struct *p)
8152 8153 8154 8155 8156
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8157

8158 8159
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8174 8175
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8176 8177
{
	struct cfs_rq *cfs_rq;
8178
	struct sched_entity *se, *parent_se;
8179
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8180 8181
	int i;

8182
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8183 8184
	if (!tg->cfs_rq)
		goto err;
8185
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8186 8187
	if (!tg->se)
		goto err;
8188 8189

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8190 8191

	for_each_possible_cpu(i) {
8192
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8193

P
Peter Zijlstra 已提交
8194 8195
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8196 8197 8198
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8199 8200
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8201 8202 8203
		if (!se)
			goto err;

8204 8205
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8224
#else /* !CONFG_FAIR_GROUP_SCHED */
8225 8226 8227 8228
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8229 8230
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8242
#endif /* CONFIG_FAIR_GROUP_SCHED */
8243 8244

#ifdef CONFIG_RT_GROUP_SCHED
8245 8246 8247 8248
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8249 8250
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8262 8263
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8264 8265
{
	struct rt_rq *rt_rq;
8266
	struct sched_rt_entity *rt_se, *parent_se;
8267 8268 8269
	struct rq *rq;
	int i;

8270
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8271 8272
	if (!tg->rt_rq)
		goto err;
8273
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8274 8275 8276
	if (!tg->rt_se)
		goto err;

8277 8278
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8279 8280 8281 8282

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8283 8284 8285 8286
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8287

P
Peter Zijlstra 已提交
8288 8289 8290 8291
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8292

8293 8294
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8295 8296
	}

8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8313
#else /* !CONFIG_RT_GROUP_SCHED */
8314 8315 8316 8317
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8318 8319
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8331
#endif /* CONFIG_RT_GROUP_SCHED */
8332

8333
#ifdef CONFIG_GROUP_SCHED
8334 8335 8336 8337 8338 8339 8340 8341
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8342
struct task_group *sched_create_group(struct task_group *parent)
8343 8344 8345 8346 8347 8348 8349 8350 8351
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8352
	if (!alloc_fair_sched_group(tg, parent))
8353 8354
		goto err;

8355
	if (!alloc_rt_sched_group(tg, parent))
8356 8357
		goto err;

8358
	spin_lock_irqsave(&task_group_lock, flags);
8359
	for_each_possible_cpu(i) {
8360 8361
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8362
	}
P
Peter Zijlstra 已提交
8363
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8364 8365 8366 8367 8368 8369

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8370
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8371

8372
	return tg;
S
Srivatsa Vaddagiri 已提交
8373 8374

err:
P
Peter Zijlstra 已提交
8375
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8376 8377 8378
	return ERR_PTR(-ENOMEM);
}

8379
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8380
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8381 8382
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8383
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8384 8385
}

8386
/* Destroy runqueue etc associated with a task group */
8387
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8388
{
8389
	unsigned long flags;
8390
	int i;
S
Srivatsa Vaddagiri 已提交
8391

8392
	spin_lock_irqsave(&task_group_lock, flags);
8393
	for_each_possible_cpu(i) {
8394 8395
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8396
	}
P
Peter Zijlstra 已提交
8397
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8398
	list_del_rcu(&tg->siblings);
8399
	spin_unlock_irqrestore(&task_group_lock, flags);
8400 8401

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8402
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8403 8404
}

8405
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8406 8407 8408
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8409 8410
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8411 8412 8413 8414 8415 8416 8417 8418 8419
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8420
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8421 8422
	on_rq = tsk->se.on_rq;

8423
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8424
		dequeue_task(rq, tsk, 0);
8425 8426
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8427

P
Peter Zijlstra 已提交
8428
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8429

P
Peter Zijlstra 已提交
8430 8431 8432 8433 8434
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8435 8436 8437
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8438
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8439 8440 8441

	task_rq_unlock(rq, &flags);
}
8442
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8443

8444
#ifdef CONFIG_FAIR_GROUP_SCHED
8445
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8446 8447 8448 8449 8450
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8451
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8452 8453 8454
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8455
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8456

8457
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8458
		enqueue_entity(cfs_rq, se, 0);
8459
}
8460

8461 8462 8463 8464 8465 8466 8467 8468 8469
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8470 8471
}

8472 8473
static DEFINE_MUTEX(shares_mutex);

8474
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8475 8476
{
	int i;
8477
	unsigned long flags;
8478

8479 8480 8481 8482 8483 8484
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8485 8486
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8487 8488
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8489

8490
	mutex_lock(&shares_mutex);
8491
	if (tg->shares == shares)
8492
		goto done;
S
Srivatsa Vaddagiri 已提交
8493

8494
	spin_lock_irqsave(&task_group_lock, flags);
8495 8496
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8497
	list_del_rcu(&tg->siblings);
8498
	spin_unlock_irqrestore(&task_group_lock, flags);
8499 8500 8501 8502 8503 8504 8505 8506

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8507
	tg->shares = shares;
8508 8509 8510 8511 8512
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8513
		set_se_shares(tg->se[i], shares);
8514
	}
S
Srivatsa Vaddagiri 已提交
8515

8516 8517 8518 8519
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8520
	spin_lock_irqsave(&task_group_lock, flags);
8521 8522
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8523
	list_add_rcu(&tg->siblings, &tg->parent->children);
8524
	spin_unlock_irqrestore(&task_group_lock, flags);
8525
done:
8526
	mutex_unlock(&shares_mutex);
8527
	return 0;
S
Srivatsa Vaddagiri 已提交
8528 8529
}

8530 8531 8532 8533
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8534
#endif
8535

8536
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8537
/*
P
Peter Zijlstra 已提交
8538
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8539
 */
P
Peter Zijlstra 已提交
8540 8541 8542 8543 8544 8545 8546
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8547
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8548 8549
}

8550 8551 8552
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8553
	struct task_group *tgi, *parent = tg->parent;
8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8577
	return total + to_ratio(period, runtime) <=
8578 8579 8580 8581
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8582
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8583 8584 8585
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8586
	unsigned long global_ratio =
8587
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8588 8589

	rcu_read_lock();
P
Peter Zijlstra 已提交
8590 8591 8592
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8593

8594 8595
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8596 8597
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8598

P
Peter Zijlstra 已提交
8599
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8600
}
8601
#endif
P
Peter Zijlstra 已提交
8602

8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8614 8615
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8616
{
P
Peter Zijlstra 已提交
8617
	int i, err = 0;
P
Peter Zijlstra 已提交
8618 8619

	mutex_lock(&rt_constraints_mutex);
8620
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8621
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8622 8623 8624
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8625 8626 8627 8628
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8629 8630

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8631 8632
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8633 8634 8635 8636 8637 8638 8639 8640 8641

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8642
 unlock:
8643
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8644 8645 8646
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8647 8648
}

8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8661 8662 8663 8664
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8665
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8666 8667
		return -1;

8668
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8669 8670 8671
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8694 8695
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8696 8697
	int ret = 0;

8698 8699 8700
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8701
	mutex_lock(&rt_constraints_mutex);
8702
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8703 8704 8705 8706 8707
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8708
#else /* !CONFIG_RT_GROUP_SCHED */
8709 8710
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8724 8725
	return 0;
}
8726
#endif /* CONFIG_RT_GROUP_SCHED */
8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8757

8758
#ifdef CONFIG_CGROUP_SCHED
8759 8760

/* return corresponding task_group object of a cgroup */
8761
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8762
{
8763 8764
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8765 8766 8767
}

static struct cgroup_subsys_state *
8768
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8769
{
8770
	struct task_group *tg, *parent;
8771

8772
	if (!cgrp->parent) {
8773
		/* This is early initialization for the top cgroup */
8774
		init_task_group.css.cgroup = cgrp;
8775 8776 8777
		return &init_task_group.css;
	}

8778 8779
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8780 8781 8782 8783
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8784
	tg->css.cgroup = cgrp;
8785 8786 8787 8788

	return &tg->css;
}

I
Ingo Molnar 已提交
8789 8790
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8791
{
8792
	struct task_group *tg = cgroup_tg(cgrp);
8793 8794 8795 8796

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8797 8798 8799
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8800
{
8801 8802
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8803
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8804 8805
		return -EINVAL;
#else
8806 8807 8808
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8809
#endif
8810 8811 8812 8813 8814

	return 0;
}

static void
8815
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8816 8817 8818 8819 8820
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8821
#ifdef CONFIG_FAIR_GROUP_SCHED
8822
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8823
				u64 shareval)
8824
{
8825
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8826 8827
}

8828
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8829
{
8830
	struct task_group *tg = cgroup_tg(cgrp);
8831 8832 8833

	return (u64) tg->shares;
}
8834
#endif /* CONFIG_FAIR_GROUP_SCHED */
8835

8836
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8837
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8838
				s64 val)
P
Peter Zijlstra 已提交
8839
{
8840
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8841 8842
}

8843
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8844
{
8845
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8846
}
8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8858
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8859

8860
static struct cftype cpu_files[] = {
8861
#ifdef CONFIG_FAIR_GROUP_SCHED
8862 8863
	{
		.name = "shares",
8864 8865
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8866
	},
8867 8868
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8869
	{
P
Peter Zijlstra 已提交
8870
		.name = "rt_runtime_us",
8871 8872
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8873
	},
8874 8875
	{
		.name = "rt_period_us",
8876 8877
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8878
	},
8879
#endif
8880 8881 8882 8883
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8884
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8885 8886 8887
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8888 8889 8890 8891 8892 8893 8894
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8895 8896 8897
	.early_init	= 1,
};

8898
#endif	/* CONFIG_CGROUP_SCHED */
8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8919
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8920
{
8921
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8934
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8951
static void
8952
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8953
{
8954
	struct cpuacct *ca = cgroup_ca(cgrp);
8955 8956 8957 8958 8959 8960

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8961
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8962
{
8963
	struct cpuacct *ca = cgroup_ca(cgrp);
8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9005 9006 9007
static struct cftype files[] = {
	{
		.name = "usage",
9008 9009
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9010 9011 9012
	},
};

9013
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9014
{
9015
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */