sched.c 223.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78 79 80 81 82 83
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
84
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
85 86
}

L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
106
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
107
 */
108
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
109

I
Ingo Molnar 已提交
110 111 112
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
113 114 115
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
116
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
117 118 119
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
120

121 122 123 124 125
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148 149 150 151 152 153 154 155 156 157 158
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

245 246 247 248 249 250
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

251
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
252

253 254
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
255 256
struct cfs_rq;

P
Peter Zijlstra 已提交
257 258
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
259
/* task group related information */
260
struct task_group {
261
#ifdef CONFIG_CGROUP_SCHED
262 263
	struct cgroup_subsys_state css;
#endif
264 265

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
266 267 268 269 270
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
271 272 273 274 275 276
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

277
	struct rt_bandwidth rt_bandwidth;
278
#endif
279

280
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
281
	struct list_head list;
P
Peter Zijlstra 已提交
282 283 284 285

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
286 287
};

D
Dhaval Giani 已提交
288
#ifdef CONFIG_USER_SCHED
289 290 291 292 293 294 295 296

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

297
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
298 299 300 301
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
302 303 304 305 306 307
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif
308 309
#else
#define root_task_group init_task_group
D
Dhaval Giani 已提交
310
#endif
P
Peter Zijlstra 已提交
311

312
/* task_group_lock serializes add/remove of task groups and also changes to
313 314
 * a task group's cpu shares.
 */
315
static DEFINE_SPINLOCK(task_group_lock);
316

317 318 319 320 321 322 323
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

324 325 326 327 328
/*
 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
329
#define MIN_SHARES	2
330
#define MAX_SHARES	(ULONG_MAX - 1)
331

332 333 334
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
335
/* Default task group.
I
Ingo Molnar 已提交
336
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
337
 */
338
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
339 340

/* return group to which a task belongs */
341
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
342
{
343
	struct task_group *tg;
344

345
#ifdef CONFIG_USER_SCHED
346
	tg = p->user->tg;
347
#elif defined(CONFIG_CGROUP_SCHED)
348 349
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
350
#else
I
Ingo Molnar 已提交
351
	tg = &init_task_group;
352
#endif
353
	return tg;
S
Srivatsa Vaddagiri 已提交
354 355 356
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
357
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
358
{
359
#ifdef CONFIG_FAIR_GROUP_SCHED
360 361
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
362
#endif
P
Peter Zijlstra 已提交
363

364
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
365 366
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
367
#endif
S
Srivatsa Vaddagiri 已提交
368 369 370 371
}

#else

P
Peter Zijlstra 已提交
372
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
373

374
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
375

I
Ingo Molnar 已提交
376 377 378 379 380 381
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
382
	u64 min_vruntime;
I
Ingo Molnar 已提交
383 384 385

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
386 387 388 389 390 391

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
392 393
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
394
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
395 396 397

	unsigned long nr_spread_over;

398
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
399 400
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
401 402
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
403 404 405 406 407 408
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
409 410
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

#ifdef CONFIG_SMP
	unsigned long task_weight;
	unsigned long shares;
	/*
	 * We need space to build a sched_domain wide view of the full task
	 * group tree, in order to avoid depending on dynamic memory allocation
	 * during the load balancing we place this in the per cpu task group
	 * hierarchy. This limits the load balancing to one instance per cpu,
	 * but more should not be needed anyway.
	 */
	struct aggregate_struct {
		/*
		 *   load = weight(cpus) * f(tg)
		 *
		 * Where f(tg) is the recursive weight fraction assigned to
		 * this group.
		 */
		unsigned long load;

		/*
		 * part of the group weight distributed to this span.
		 */
		unsigned long shares;

		/*
		 * The sum of all runqueue weights within this span.
		 */
		unsigned long rq_weight;

		/*
		 * Weight contributed by tasks; this is the part we can
		 * influence by moving tasks around.
		 */
		unsigned long task_weight;
	} aggregate;
#endif
I
Ingo Molnar 已提交
448 449
#endif
};
L
Linus Torvalds 已提交
450

I
Ingo Molnar 已提交
451 452 453
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
454
	unsigned long rt_nr_running;
455
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
456 457
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
458
#ifdef CONFIG_SMP
459
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
460
	int overloaded;
P
Peter Zijlstra 已提交
461
#endif
P
Peter Zijlstra 已提交
462
	int rt_throttled;
P
Peter Zijlstra 已提交
463
	u64 rt_time;
P
Peter Zijlstra 已提交
464
	u64 rt_runtime;
I
Ingo Molnar 已提交
465
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
466
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
467

468
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
469 470
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
471 472 473 474 475
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
476 477
};

G
Gregory Haskins 已提交
478 479 480 481
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
482 483
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
484 485 486 487 488 489 490 491
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
492

I
Ingo Molnar 已提交
493
	/*
494 495 496 497
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
498
	atomic_t rto_count;
G
Gregory Haskins 已提交
499 500
};

501 502 503 504
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
505 506 507 508
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
509 510 511 512 513 514 515
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
516
struct rq {
517 518
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
519 520 521 522 523 524

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
525 526
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
527
	unsigned char idle_at_tick;
528
#ifdef CONFIG_NO_HZ
529
	unsigned long last_tick_seen;
530 531
	unsigned char in_nohz_recently;
#endif
532 533
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
534 535 536 537
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
538 539
	struct rt_rq rt;

I
Ingo Molnar 已提交
540
#ifdef CONFIG_FAIR_GROUP_SCHED
541 542
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
543 544
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
545
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
546 547 548 549 550 551 552 553 554 555
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

556
	struct task_struct *curr, *idle;
557
	unsigned long next_balance;
L
Linus Torvalds 已提交
558
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
559 560 561 562

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

563
	unsigned int clock_warps, clock_overflows, clock_underflows;
564 565
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
566
	u64 tick_timestamp;
I
Ingo Molnar 已提交
567

L
Linus Torvalds 已提交
568 569 570
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
571
	struct root_domain *rd;
L
Linus Torvalds 已提交
572 573 574 575 576
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
577 578
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
579

580
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
581 582 583
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
584 585 586 587 588 589
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
590 591 592 593 594
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
595 596 597 598
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
599 600

	/* schedule() stats */
601 602 603
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
604 605

	/* try_to_wake_up() stats */
606 607
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
608 609

	/* BKL stats */
610
	unsigned int bkl_count;
L
Linus Torvalds 已提交
611
#endif
612
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
613 614
};

615
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
616

I
Ingo Molnar 已提交
617 618 619 620 621
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

622 623 624 625 626 627 628 629 630
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
#ifdef CONFIG_NO_HZ
static inline bool nohz_on(int cpu)
{
	return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
}

static inline u64 max_skipped_ticks(struct rq *rq)
{
	return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
	rq->last_tick_seen = jiffies;
}
#else
static inline u64 max_skipped_ticks(struct rq *rq)
{
	return 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
}
#endif

I
Ingo Molnar 已提交
657
/*
I
Ingo Molnar 已提交
658 659
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
660
 */
I
Ingo Molnar 已提交
661
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
662 663 664 665 666 667
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
668 669 670
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
671 672 673 674 675 676 677 678 679 680
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
681 682 683 684 685 686
		u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
		u64 max_time = rq->tick_timestamp + max_jump;

		if (unlikely(clock + delta > max_time)) {
			if (clock < max_time)
				clock = max_time;
687 688
			else
				clock++;
I
Ingo Molnar 已提交
689 690 691 692 693 694 695 696 697 698
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
699
}
I
Ingo Molnar 已提交
700

I
Ingo Molnar 已提交
701 702 703 704
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
705 706
}

N
Nick Piggin 已提交
707 708
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
709
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
710 711 712 713
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
714 715
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
716 717 718 719 720 721

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
722 723 724 725 726 727 728 729 730 731 732 733
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
734 735 736 737

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
738
enum {
P
Peter Zijlstra 已提交
739
#include "sched_features.h"
I
Ingo Molnar 已提交
740 741
};

P
Peter Zijlstra 已提交
742 743 744 745 746
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
747
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
748 749 750 751 752 753 754 755 756
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

757
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
758 759 760 761 762 763
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

764
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
792
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
822
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
865

866 867 868 869 870 871
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
872
/*
P
Peter Zijlstra 已提交
873
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
874 875
 * default: 1s
 */
P
Peter Zijlstra 已提交
876
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
877

878 879
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
880 881 882 883 884
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
885

886 887 888 889 890 891 892 893 894 895 896 897
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
898

899
unsigned long long time_sync_thresh = 100000;
900 901 902 903

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

904
/*
905 906 907 908
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
909
 */
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
{
	unsigned long flags;

	spin_lock_irqsave(&time_sync_lock, flags);

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

	spin_unlock_irqrestore(&time_sync_lock, flags);

	return time;
}

static unsigned long long __cpu_clock(int cpu)
932 933 934
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
935
	struct rq *rq;
936

937 938 939 940
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
941 942 943 944 945 946
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
947
	now = rq->clock;
948
	local_irq_restore(flags);
949 950 951

	return now;
}
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;

	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

	if (unlikely(delta_time > time_sync_thresh))
		time = __sync_cpu_clock(time, cpu);

	return time;
}
P
Paul E. McKenney 已提交
970
EXPORT_SYMBOL_GPL(cpu_clock);
971

L
Linus Torvalds 已提交
972
#ifndef prepare_arch_switch
973 974 975 976 977 978
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

979 980 981 982 983
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

984
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
985
static inline int task_running(struct rq *rq, struct task_struct *p)
986
{
987
	return task_current(rq, p);
988 989
}

990
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
991 992 993
{
}

994
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
995
{
996 997 998 999
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
1000 1001 1002 1003 1004 1005 1006
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

1007 1008 1009 1010
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1011
static inline int task_running(struct rq *rq, struct task_struct *p)
1012 1013 1014 1015
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
1016
	return task_current(rq, p);
1017 1018 1019
#endif
}

1020
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

1037
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
1050
#endif
1051 1052
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
1053

1054 1055 1056 1057
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
1058
static inline struct rq *__task_rq_lock(struct task_struct *p)
1059 1060
	__acquires(rq->lock)
{
1061 1062 1063 1064 1065
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
1066 1067 1068 1069
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
1070 1071
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
1072
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
1073 1074
 * explicitly disabling preemption.
 */
1075
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
1076 1077
	__acquires(rq->lock)
{
1078
	struct rq *rq;
L
Linus Torvalds 已提交
1079

1080 1081 1082 1083 1084 1085
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1086 1087 1088 1089
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
1090
static void __task_rq_unlock(struct rq *rq)
1091 1092 1093 1094 1095
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1096
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1097 1098 1099 1100 1101 1102
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1103
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1104
 */
A
Alexey Dobriyan 已提交
1105
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1106 1107
	__acquires(rq->lock)
{
1108
	struct rq *rq;
L
Linus Torvalds 已提交
1109 1110 1111 1112 1113 1114 1115 1116

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

1117
/*
1118
 * We are going deep-idle (irqs are disabled):
1119
 */
1120
void sched_clock_idle_sleep_event(void)
1121
{
1122 1123
	struct rq *rq = cpu_rq(smp_processor_id());

1124
	WARN_ON(!irqs_disabled());
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
1139

1140
	WARN_ON(!irqs_disabled());
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
1152
	touch_softlockup_watchdog();
1153
}
1154
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1155

P
Peter Zijlstra 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1191
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1203 1204
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1380 1381 1382 1383

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1384 1385
#endif

I
Ingo Molnar 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1399
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1400 1401 1402 1403 1404
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1405
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1406 1407
		return;

P
Peter Zijlstra 已提交
1408
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1473
#else
P
Peter Zijlstra 已提交
1474
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1475 1476
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1477
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1478 1479 1480
}
#endif

1481 1482 1483 1484 1485 1486 1487 1488
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1489 1490 1491
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1492
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1493

1494 1495 1496
/*
 * delta *= weight / lw
 */
1497
static unsigned long
1498 1499 1500 1501 1502
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1503 1504
	if (!lw->inv_weight)
		lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1505 1506 1507 1508 1509

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1510
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1511
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1512 1513
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1514
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1515

1516
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1517 1518
}

1519
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1520 1521
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1522
	lw->inv_weight = 0;
1523 1524
}

1525
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1526 1527
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1528
	lw->inv_weight = 0;
1529 1530
}

1531 1532 1533 1534
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1535
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1536 1537 1538 1539
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1551 1552 1553
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1554 1555
 */
static const int prio_to_weight[40] = {
1556 1557 1558 1559 1560 1561 1562 1563
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1564 1565
};

1566 1567 1568 1569 1570 1571 1572
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1573
static const u32 prio_to_wmult[40] = {
1574 1575 1576 1577 1578 1579 1580 1581
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1582
};
1583

I
Ingo Molnar 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1609

1610 1611 1612 1613 1614 1615
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1626 1627 1628 1629 1630
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

#ifdef CONFIG_FAIR_GROUP_SCHED

/*
 * Group load balancing.
 *
 * We calculate a few balance domain wide aggregate numbers; load and weight.
 * Given the pictures below, and assuming each item has equal weight:
 *
 *         root          1 - thread
 *         / | \         A - group
 *        A  1  B
 *       /|\   / \
 *      C 2 D 3   4
 *      |   |
 *      5   6
 *
 * load:
 *    A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
 *    which equals 1/9-th of the total load.
 *
 * shares:
 *    The weight of this group on the selected cpus.
 *
 * rq_weight:
 *    Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
 *    B would get 2.
 *
 * task_weight:
 *    Part of the rq_weight contributed by tasks; all groups except B would
 *    get 1, B gets 2.
 */

static inline struct aggregate_struct *
aggregate(struct task_group *tg, struct sched_domain *sd)
{
	return &tg->cfs_rq[sd->first_cpu]->aggregate;
}

typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
static
void aggregate_walk_tree(aggregate_func down, aggregate_func up,
			 struct sched_domain *sd)
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
	(*down)(parent, sd);
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
	(*up)(parent, sd);

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

/*
 * Calculate the aggregate runqueue weight.
 */
static
void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long rq_weight = 0;
	unsigned long task_weight = 0;
	int i;

	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		task_weight += tg->cfs_rq[i]->task_weight;
	}

	aggregate(tg, sd)->rq_weight = rq_weight;
	aggregate(tg, sd)->task_weight = task_weight;
}

/*
 * Compute the weight of this group on the given cpus.
 */
static
void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = 0;
	int i;

	for_each_cpu_mask(i, sd->span)
		shares += tg->cfs_rq[i]->shares;

1733 1734
	if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
		shares = tg->shares;
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

	aggregate(tg, sd)->shares = shares;
}

/*
 * Compute the load fraction assigned to this group, relies on the aggregate
 * weight and this group's parent's load, i.e. top-down.
 */
static
void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long load;

	if (!tg->parent) {
		int i;

		load = 0;
		for_each_cpu_mask(i, sd->span)
			load += cpu_rq(i)->load.weight;

	} else {
		load = aggregate(tg->parent, sd)->load;

		/*
		 * shares is our weight in the parent's rq so
		 * shares/parent->rq_weight gives our fraction of the load
		 */
		load *= aggregate(tg, sd)->shares;
		load /= aggregate(tg->parent, sd)->rq_weight + 1;
	}

	aggregate(tg, sd)->load = load;
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
			  int tcpu)
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

	if (!tg->se[tcpu])
		return;

	rq_weight = tg->cfs_rq[tcpu]->load.weight;

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
	shares = aggregate(tg, sd)->shares * rq_weight;
	shares /= aggregate(tg, sd)->rq_weight + 1;

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
	tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
1813 1814
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

	__set_se_shares(tg->se[tcpu], shares);
}

/*
 * Re-adjust the weights on the cpu the task came from and on the cpu the
 * task went to.
 */
static void
__move_group_shares(struct task_group *tg, struct sched_domain *sd,
		    int scpu, int dcpu)
{
	unsigned long shares;

	shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;

	__update_group_shares_cpu(tg, sd, scpu);
	__update_group_shares_cpu(tg, sd, dcpu);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
	if (shares)
		tg->cfs_rq[dcpu]->shares += shares;
}

/*
 * Because changing a group's shares changes the weight of the super-group
 * we need to walk up the tree and change all shares until we hit the root.
 */
static void
move_group_shares(struct task_group *tg, struct sched_domain *sd,
		  int scpu, int dcpu)
{
	while (tg) {
		__move_group_shares(tg, sd, scpu, dcpu);
		tg = tg->parent;
	}
}

static
void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
{
	unsigned long shares = aggregate(tg, sd)->shares;
	int i;

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		__update_group_shares_cpu(tg, sd, i);
		spin_unlock_irqrestore(&rq->lock, flags);
	}

	aggregate_group_shares(tg, sd);

	/*
	 * ensure we never loose shares due to rounding errors in the
	 * above redistribution.
	 */
	shares -= aggregate(tg, sd)->shares;
	if (shares) {
		tg->cfs_rq[sd->first_cpu]->shares += shares;
		aggregate(tg, sd)->shares += shares;
	}
}

/*
 * Calculate the accumulative weight and recursive load of each task group
 * while walking down the tree.
 */
static
void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_weight(tg, sd);
	aggregate_group_shares(tg, sd);
	aggregate_group_load(tg, sd);
}

/*
 * Rebalance the cpu shares while walking back up the tree.
 */
static
void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
{
	aggregate_group_set_shares(tg, sd);
}

static DEFINE_PER_CPU(spinlock_t, aggregate_lock);

static void __init init_aggregate(void)
{
	int i;

	for_each_possible_cpu(i)
		spin_lock_init(&per_cpu(aggregate_lock, i));
}

static int get_aggregate(struct sched_domain *sd)
{
	if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
		return 0;

	aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
	return 1;
}

static void put_aggregate(struct sched_domain *sd)
{
	spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

static inline void init_aggregate(void)
{
}

static inline int get_aggregate(struct sched_domain *sd)
{
	return 0;
}

static inline void put_aggregate(struct sched_domain *sd)
{
}
#endif

#else /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
}
#endif

1959 1960
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1961 1962
#include "sched_stats.h"
#include "sched_idletask.c"
1963 1964
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1965 1966 1967 1968 1969 1970
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1971
static void inc_nr_running(struct rq *rq)
1972 1973 1974 1975
{
	rq->nr_running++;
}

1976
static void dec_nr_running(struct rq *rq)
1977 1978 1979 1980
{
	rq->nr_running--;
}

1981 1982 1983
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1984 1985 1986 1987
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1988

I
Ingo Molnar 已提交
1989 1990 1991 1992 1993 1994 1995 1996
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1997

I
Ingo Molnar 已提交
1998 1999
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
2000 2001
}

2002
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
2003
{
I
Ingo Molnar 已提交
2004
	sched_info_queued(p);
2005
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
2006
	p->se.on_rq = 1;
2007 2008
}

2009
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
2010
{
2011
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
2012
	p->se.on_rq = 0;
2013 2014
}

2015
/*
I
Ingo Molnar 已提交
2016
 * __normal_prio - return the priority that is based on the static prio
2017 2018 2019
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
2020
	return p->static_prio;
2021 2022
}

2023 2024 2025 2026 2027 2028 2029
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
2030
static inline int normal_prio(struct task_struct *p)
2031 2032 2033
{
	int prio;

2034
	if (task_has_rt_policy(p))
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
2048
static int effective_prio(struct task_struct *p)
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
2061
/*
I
Ingo Molnar 已提交
2062
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
2063
 */
I
Ingo Molnar 已提交
2064
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
2065
{
2066
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
2067
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
2068

2069
	enqueue_task(rq, p, wakeup);
2070
	inc_nr_running(rq);
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
2076
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
2077
{
2078
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
2079 2080
		rq->nr_uninterruptible++;

2081
	dequeue_task(rq, p, sleep);
2082
	dec_nr_running(rq);
L
Linus Torvalds 已提交
2083 2084 2085 2086 2087 2088
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
2089
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
2090 2091 2092 2093
{
	return cpu_curr(task_cpu(p)) == p;
}

2094 2095 2096
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
2097
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
2098 2099 2100 2101
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
2102
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
2103
#ifdef CONFIG_SMP
2104 2105 2106 2107 2108 2109
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
2110 2111
	task_thread_info(p)->cpu = cpu;
#endif
2112 2113
}

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2126
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
2127

2128 2129 2130
/*
 * Is this task likely cache-hot:
 */
2131
static int
2132 2133 2134 2135
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2136 2137 2138
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
2139
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
2140 2141
		return 1;

2142 2143 2144
	if (p->sched_class != &fair_sched_class)
		return 0;

2145 2146 2147 2148 2149
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2150 2151 2152 2153 2154 2155
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2156
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2157
{
I
Ingo Molnar 已提交
2158 2159
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2160 2161
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2162
	u64 clock_offset;
I
Ingo Molnar 已提交
2163 2164

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2165 2166 2167 2168

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2169 2170 2171 2172
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2173 2174 2175 2176 2177
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
2178
#endif
2179 2180
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2181 2182

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2183 2184
}

2185
struct migration_req {
L
Linus Torvalds 已提交
2186 2187
	struct list_head list;

2188
	struct task_struct *task;
L
Linus Torvalds 已提交
2189 2190 2191
	int dest_cpu;

	struct completion done;
2192
};
L
Linus Torvalds 已提交
2193 2194 2195 2196 2197

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2198
static int
2199
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2200
{
2201
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2202 2203 2204 2205 2206

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2207
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2208 2209 2210 2211 2212 2213 2214 2215
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2216

L
Linus Torvalds 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
2229
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
2230 2231
{
	unsigned long flags;
I
Ingo Molnar 已提交
2232
	int running, on_rq;
2233
	struct rq *rq;
L
Linus Torvalds 已提交
2234

2235 2236 2237 2238 2239 2240 2241 2242
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2243

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
2257

2258 2259 2260 2261 2262 2263 2264 2265 2266
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
2267

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2278

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2292

2293 2294 2295 2296 2297 2298 2299
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2315
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2327 2328
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2329 2330 2331 2332
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2333
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2334
{
2335
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2336
	unsigned long total = weighted_cpuload(cpu);
2337

2338
	if (type == 0)
I
Ingo Molnar 已提交
2339
		return total;
2340

I
Ingo Molnar 已提交
2341
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2342 2343 2344
}

/*
2345 2346
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2347
 */
A
Alexey Dobriyan 已提交
2348
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2349
{
2350
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2351
	unsigned long total = weighted_cpuload(cpu);
2352

N
Nick Piggin 已提交
2353
	if (type == 0)
I
Ingo Molnar 已提交
2354
		return total;
2355

I
Ingo Molnar 已提交
2356
	return max(rq->cpu_load[type-1], total);
2357 2358 2359 2360 2361
}

/*
 * Return the average load per task on the cpu's run queue
 */
2362
static unsigned long cpu_avg_load_per_task(int cpu)
2363
{
2364
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2365
	unsigned long total = weighted_cpuload(cpu);
2366 2367
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
2368
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2369 2370
}

N
Nick Piggin 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2388 2389
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2390
			continue;
2391

N
Nick Piggin 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2408 2409
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2410 2411 2412 2413 2414 2415 2416 2417

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2418
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2419 2420 2421 2422 2423 2424 2425

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2426
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2427
 */
I
Ingo Molnar 已提交
2428
static int
2429 2430
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2431 2432 2433 2434 2435
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2436
	/* Traverse only the allowed CPUs */
2437
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2438

2439
	for_each_cpu_mask(i, *tmp) {
2440
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2466

2467
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2468 2469 2470
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2471 2472
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2473 2474
		if (tmp->flags & flag)
			sd = tmp;
2475
	}
N
Nick Piggin 已提交
2476 2477

	while (sd) {
2478
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2479
		struct sched_group *group;
2480 2481 2482 2483 2484 2485
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2486 2487 2488

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2489 2490 2491 2492
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2493

2494
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2495 2496 2497 2498 2499
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2500

2501
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2533
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2534
{
2535
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2536 2537
	unsigned long flags;
	long old_state;
2538
	struct rq *rq;
L
Linus Torvalds 已提交
2539

2540 2541 2542
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2543
	smp_wmb();
L
Linus Torvalds 已提交
2544 2545 2546 2547 2548
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2549
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2550 2551 2552
		goto out_running;

	cpu = task_cpu(p);
2553
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2554 2555 2556 2557 2558 2559
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2560 2561 2562
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2563 2564 2565 2566 2567 2568
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2569
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2570 2571 2572 2573 2574 2575
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2591 2592
out_activate:
#endif /* CONFIG_SMP */
2593 2594 2595 2596 2597 2598 2599 2600 2601
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2602
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2603
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2604 2605 2606
	success = 1;

out_running:
I
Ingo Molnar 已提交
2607 2608
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2609
	p->state = TASK_RUNNING;
2610 2611 2612 2613
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2614 2615 2616 2617 2618 2619
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2620
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2621
{
2622
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2623 2624 2625
}
EXPORT_SYMBOL(wake_up_process);

2626
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2627 2628 2629 2630 2631 2632 2633
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2634 2635 2636 2637 2638 2639 2640
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2641
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2642 2643
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2644 2645 2646

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2647 2648 2649 2650 2651 2652
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2653
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2654
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2655
#endif
N
Nick Piggin 已提交
2656

P
Peter Zijlstra 已提交
2657
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2658
	p->se.on_rq = 0;
2659
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2660

2661 2662 2663 2664
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2665 2666 2667 2668 2669 2670 2671
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2686
	set_task_cpu(p, cpu);
2687 2688 2689 2690 2691

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2692 2693
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2694

2695
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2696
	if (likely(sched_info_on()))
2697
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2698
#endif
2699
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2700 2701
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2702
#ifdef CONFIG_PREEMPT
2703
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2704
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2705
#endif
N
Nick Piggin 已提交
2706
	put_cpu();
L
Linus Torvalds 已提交
2707 2708 2709 2710 2711 2712 2713 2714 2715
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2716
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2717 2718
{
	unsigned long flags;
I
Ingo Molnar 已提交
2719
	struct rq *rq;
L
Linus Torvalds 已提交
2720 2721

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2722
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2723
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2724 2725 2726

	p->prio = effective_prio(p);

2727
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2728
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2729 2730
	} else {
		/*
I
Ingo Molnar 已提交
2731 2732
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2733
		 */
2734
		p->sched_class->task_new(rq, p);
2735
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2736
	}
I
Ingo Molnar 已提交
2737
	check_preempt_curr(rq, p);
2738 2739 2740 2741
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2742
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2743 2744
}

2745 2746 2747
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2748 2749
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2750 2751 2752 2753 2754 2755 2756 2757 2758
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2759
 * @notifier: notifier struct to unregister
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2803 2804 2805
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2806
 * @prev: the current task that is being switched out
2807 2808 2809 2810 2811 2812 2813 2814 2815
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2816 2817 2818
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2819
{
2820
	fire_sched_out_preempt_notifiers(prev, next);
2821 2822 2823 2824
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2825 2826
/**
 * finish_task_switch - clean up after a task-switch
2827
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2828 2829
 * @prev: the thread we just switched away from.
 *
2830 2831 2832 2833
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2834 2835
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2836
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2837 2838 2839
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2840
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2841 2842 2843
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2844
	long prev_state;
L
Linus Torvalds 已提交
2845 2846 2847 2848 2849

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2850
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2851 2852
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2853
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2859
	prev_state = prev->state;
2860 2861
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2862 2863 2864 2865
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2866

2867
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2868 2869
	if (mm)
		mmdrop(mm);
2870
	if (unlikely(prev_state == TASK_DEAD)) {
2871 2872 2873
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2874
		 */
2875
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2876
		put_task_struct(prev);
2877
	}
L
Linus Torvalds 已提交
2878 2879 2880 2881 2882 2883
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2884
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2885 2886
	__releases(rq->lock)
{
2887 2888
	struct rq *rq = this_rq();

2889 2890 2891 2892 2893
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2894
	if (current->set_child_tid)
2895
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2896 2897 2898 2899 2900 2901
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2902
static inline void
2903
context_switch(struct rq *rq, struct task_struct *prev,
2904
	       struct task_struct *next)
L
Linus Torvalds 已提交
2905
{
I
Ingo Molnar 已提交
2906
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2907

2908
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2909 2910
	mm = next->mm;
	oldmm = prev->active_mm;
2911 2912 2913 2914 2915 2916 2917
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2918
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2919 2920 2921 2922 2923 2924
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2925
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2926 2927 2928
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2929 2930 2931 2932 2933 2934 2935
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2936
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2937
#endif
L
Linus Torvalds 已提交
2938 2939 2940 2941

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2942 2943 2944 2945 2946 2947 2948
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2972
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2987 2988
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2989

2990
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2991 2992 2993 2994 2995 2996 2997 2998 2999
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

3000
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3001 3002 3003 3004 3005
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

3021
/*
I
Ingo Molnar 已提交
3022 3023
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3024
 */
I
Ingo Molnar 已提交
3025
static void update_cpu_load(struct rq *this_rq)
3026
{
3027
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3040 3041 3042 3043 3044 3045 3046
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3047 3048
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3049 3050
}

I
Ingo Molnar 已提交
3051 3052
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3053 3054 3055 3056 3057 3058
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3059
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3060 3061 3062
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3063
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3064 3065 3066 3067
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3068
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3069 3070 3071 3072 3073 3074 3075
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
3076 3077
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3078 3079 3080 3081 3082 3083 3084 3085
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3086
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
3100
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
3101 3102 3103 3104
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
3105 3106
	int ret = 0;

3107 3108 3109 3110 3111
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
3112
	if (unlikely(!spin_trylock(&busiest->lock))) {
3113
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
3114 3115 3116
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
3117
			ret = 1;
L
Linus Torvalds 已提交
3118 3119 3120
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
3121
	return ret;
L
Linus Torvalds 已提交
3122 3123 3124 3125 3126
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3127
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3128 3129
 * the cpu_allowed mask is restored.
 */
3130
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3131
{
3132
	struct migration_req req;
L
Linus Torvalds 已提交
3133
	unsigned long flags;
3134
	struct rq *rq;
L
Linus Torvalds 已提交
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3145

L
Linus Torvalds 已提交
3146 3147 3148 3149 3150
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3151

L
Linus Torvalds 已提交
3152 3153 3154 3155 3156 3157 3158
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3159 3160
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3161 3162 3163 3164
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3165
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3166
	put_cpu();
N
Nick Piggin 已提交
3167 3168
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3169 3170 3171 3172 3173 3174
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3175 3176
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3177
{
3178
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3179
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3180
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3181 3182 3183 3184
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
3185
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
3186 3187 3188 3189 3190
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3191
static
3192
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3193
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3194
		     int *all_pinned)
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199 3200 3201
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3202 3203
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3204
		return 0;
3205
	}
3206 3207
	*all_pinned = 0;

3208 3209
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3210
		return 0;
3211
	}
L
Linus Torvalds 已提交
3212

3213 3214 3215 3216 3217 3218
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3219 3220
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
3221
#ifdef CONFIG_SCHEDSTATS
3222
		if (task_hot(p, rq->clock, sd)) {
3223
			schedstat_inc(sd, lb_hot_gained[idle]);
3224 3225
			schedstat_inc(p, se.nr_forced_migrations);
		}
3226 3227 3228 3229
#endif
		return 1;
	}

3230 3231
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
3232
		return 0;
3233
	}
L
Linus Torvalds 已提交
3234 3235 3236
	return 1;
}

3237 3238 3239 3240 3241
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3242
{
3243
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
3244 3245
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3246

3247
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3248 3249
		goto out;

3250 3251
	pinned = 1;

L
Linus Torvalds 已提交
3252
	/*
I
Ingo Molnar 已提交
3253
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3254
	 */
I
Ingo Molnar 已提交
3255 3256
	p = iterator->start(iterator->arg);
next:
3257
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3258
		goto out;
3259
	/*
3260
	 * To help distribute high priority tasks across CPUs we don't
3261 3262 3263
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
3264 3265
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
3266
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
3267 3268 3269
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3270 3271
	}

I
Ingo Molnar 已提交
3272
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3273
	pulled++;
I
Ingo Molnar 已提交
3274
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3275

3276
	/*
3277
	 * We only want to steal up to the prescribed amount of weighted load.
3278
	 */
3279
	if (rem_load_move > 0) {
3280 3281
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3282 3283
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3284 3285 3286
	}
out:
	/*
3287
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3288 3289 3290 3291
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3292 3293 3294

	if (all_pinned)
		*all_pinned = pinned;
3295 3296

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3297 3298
}

I
Ingo Molnar 已提交
3299
/*
P
Peter Williams 已提交
3300 3301 3302
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3303 3304 3305 3306
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3307
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3308 3309 3310
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3311
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3312
	unsigned long total_load_moved = 0;
3313
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3314 3315

	do {
P
Peter Williams 已提交
3316 3317
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3318
				max_load_move - total_load_moved,
3319
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3320
		class = class->next;
P
Peter Williams 已提交
3321
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3322

P
Peter Williams 已提交
3323 3324 3325
	return total_load_moved > 0;
}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3362
	const struct sched_class *class;
P
Peter Williams 已提交
3363 3364

	for (class = sched_class_highest; class; class = class->next)
3365
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3366 3367 3368
			return 1;

	return 0;
I
Ingo Molnar 已提交
3369 3370
}

L
Linus Torvalds 已提交
3371 3372
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3373 3374
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3375 3376 3377
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3378
		   unsigned long *imbalance, enum cpu_idle_type idle,
3379
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3380 3381 3382
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3383
	unsigned long max_pull;
3384 3385
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3386
	int load_idx, group_imb = 0;
3387 3388 3389 3390 3391 3392
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3393 3394

	max_load = this_load = total_load = total_pwr = 0;
3395 3396
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3397
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3398
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3399
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3400 3401 3402
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3403 3404

	do {
3405
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3406 3407
		int local_group;
		int i;
3408
		int __group_imb = 0;
3409
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3410
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3411 3412 3413

		local_group = cpu_isset(this_cpu, group->cpumask);

3414 3415 3416
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3417
		/* Tally up the load of all CPUs in the group */
3418
		sum_weighted_load = sum_nr_running = avg_load = 0;
3419 3420
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3421 3422

		for_each_cpu_mask(i, group->cpumask) {
3423 3424 3425 3426 3427 3428
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3429

3430
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3431 3432
				*sd_idle = 0;

L
Linus Torvalds 已提交
3433
			/* Bias balancing toward cpus of our domain */
3434 3435 3436 3437 3438 3439
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3440
				load = target_load(i, load_idx);
3441
			} else {
N
Nick Piggin 已提交
3442
				load = source_load(i, load_idx);
3443 3444 3445 3446 3447
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3448 3449

			avg_load += load;
3450
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3451
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3452 3453
		}

3454 3455 3456
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3457 3458
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3459
		 */
3460 3461
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3462 3463 3464 3465
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3466
		total_load += avg_load;
3467
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3468 3469

		/* Adjust by relative CPU power of the group */
3470 3471
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3472

3473 3474 3475
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3476
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3477

L
Linus Torvalds 已提交
3478 3479 3480
		if (local_group) {
			this_load = avg_load;
			this = group;
3481 3482 3483
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3484
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3485 3486
			max_load = avg_load;
			busiest = group;
3487 3488
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3489
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3490
		}
3491 3492 3493 3494 3495 3496

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3497 3498 3499
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3500 3501 3502 3503 3504 3505 3506 3507 3508

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3509
		/*
3510 3511
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3512 3513
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3514
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3515
			goto group_next;
3516

I
Ingo Molnar 已提交
3517
		/*
3518
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3519 3520 3521 3522 3523
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3524 3525
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3526 3527
			group_min = group;
			min_nr_running = sum_nr_running;
3528 3529
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3530
		}
3531

I
Ingo Molnar 已提交
3532
		/*
3533
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3545
		}
3546 3547
group_next:
#endif
L
Linus Torvalds 已提交
3548 3549 3550
		group = group->next;
	} while (group != sd->groups);

3551
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3552 3553 3554 3555 3556 3557 3558 3559
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3560
	busiest_load_per_task /= busiest_nr_running;
3561 3562 3563
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3564 3565 3566 3567 3568 3569 3570 3571
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3572
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3573 3574
	 * appear as very large values with unsigned longs.
	 */
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3587 3588

	/* Don't want to pull so many tasks that a group would go idle */
3589
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3590

L
Linus Torvalds 已提交
3591
	/* How much load to actually move to equalise the imbalance */
3592 3593
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3594 3595
			/ SCHED_LOAD_SCALE;

3596 3597 3598 3599 3600 3601
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3602
	if (*imbalance < busiest_load_per_task) {
3603
		unsigned long tmp, pwr_now, pwr_move;
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3615

I
Ingo Molnar 已提交
3616 3617
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3618
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3628 3629 3630 3631
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3632 3633 3634
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3635 3636
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3637
		if (max_load > tmp)
3638
			pwr_move += busiest->__cpu_power *
3639
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3640 3641

		/* Amount of load we'd add */
3642
		if (max_load * busiest->__cpu_power <
3643
				busiest_load_per_task * SCHED_LOAD_SCALE)
3644 3645
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3646
		else
3647 3648 3649 3650
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3651 3652 3653
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3654 3655
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3656 3657 3658 3659 3660
	}

	return busiest;

out_balanced:
3661
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3662
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3663
		goto ret;
L
Linus Torvalds 已提交
3664

3665 3666 3667 3668 3669
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3670
ret:
L
Linus Torvalds 已提交
3671 3672 3673 3674 3675 3676 3677
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3678
static struct rq *
I
Ingo Molnar 已提交
3679
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3680
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3681
{
3682
	struct rq *busiest = NULL, *rq;
3683
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3684 3685 3686
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3687
		unsigned long wl;
3688 3689 3690 3691

		if (!cpu_isset(i, *cpus))
			continue;

3692
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3693
		wl = weighted_cpuload(i);
3694

I
Ingo Molnar 已提交
3695
		if (rq->nr_running == 1 && wl > imbalance)
3696
			continue;
L
Linus Torvalds 已提交
3697

I
Ingo Molnar 已提交
3698 3699
		if (wl > max_load) {
			max_load = wl;
3700
			busiest = rq;
L
Linus Torvalds 已提交
3701 3702 3703 3704 3705 3706
		}
	}

	return busiest;
}

3707 3708 3709 3710 3711 3712
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3713 3714 3715 3716
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3717
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3718
			struct sched_domain *sd, enum cpu_idle_type idle,
3719
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3720
{
P
Peter Williams 已提交
3721
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3722 3723
	struct sched_group *group;
	unsigned long imbalance;
3724
	struct rq *busiest;
3725
	unsigned long flags;
3726
	int unlock_aggregate;
N
Nick Piggin 已提交
3727

3728 3729
	cpus_setall(*cpus);

3730 3731
	unlock_aggregate = get_aggregate(sd);

3732 3733 3734
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3735
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3736
	 * portraying it as CPU_NOT_IDLE.
3737
	 */
I
Ingo Molnar 已提交
3738
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3739
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3740
		sd_idle = 1;
L
Linus Torvalds 已提交
3741

3742
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3743

3744 3745
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3746
				   cpus, balance);
3747

3748
	if (*balance == 0)
3749 3750
		goto out_balanced;

L
Linus Torvalds 已提交
3751 3752 3753 3754 3755
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3756
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3757 3758 3759 3760 3761
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3762
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3763 3764 3765

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3766
	ld_moved = 0;
L
Linus Torvalds 已提交
3767 3768 3769 3770
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3771
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3772 3773
		 * correctly treated as an imbalance.
		 */
3774
		local_irq_save(flags);
N
Nick Piggin 已提交
3775
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3776
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3777
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3778
		double_rq_unlock(this_rq, busiest);
3779
		local_irq_restore(flags);
3780

3781 3782 3783
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3784
		if (ld_moved && this_cpu != smp_processor_id())
3785 3786
			resched_cpu(this_cpu);

3787
		/* All tasks on this runqueue were pinned by CPU affinity */
3788
		if (unlikely(all_pinned)) {
3789 3790
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3791
				goto redo;
3792
			goto out_balanced;
3793
		}
L
Linus Torvalds 已提交
3794
	}
3795

P
Peter Williams 已提交
3796
	if (!ld_moved) {
L
Linus Torvalds 已提交
3797 3798 3799 3800 3801
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3802
			spin_lock_irqsave(&busiest->lock, flags);
3803 3804 3805 3806 3807

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3808
				spin_unlock_irqrestore(&busiest->lock, flags);
3809 3810 3811 3812
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3813 3814 3815
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3816
				active_balance = 1;
L
Linus Torvalds 已提交
3817
			}
3818
			spin_unlock_irqrestore(&busiest->lock, flags);
3819
			if (active_balance)
L
Linus Torvalds 已提交
3820 3821 3822 3823 3824 3825
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3826
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3827
		}
3828
	} else
L
Linus Torvalds 已提交
3829 3830
		sd->nr_balance_failed = 0;

3831
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3832 3833
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3834 3835 3836 3837 3838 3839 3840 3841 3842
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3843 3844
	}

P
Peter Williams 已提交
3845
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3846
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3847 3848 3849
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3850 3851 3852 3853

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3854
	sd->nr_balance_failed = 0;
3855 3856

out_one_pinned:
L
Linus Torvalds 已提交
3857
	/* tune up the balancing interval */
3858 3859
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3860 3861
		sd->balance_interval *= 2;

3862
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3863
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3864 3865 3866 3867 3868 3869 3870
		ld_moved = -1;
	else
		ld_moved = 0;
out:
	if (unlock_aggregate)
		put_aggregate(sd);
	return ld_moved;
L
Linus Torvalds 已提交
3871 3872 3873 3874 3875 3876
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3877
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3878 3879
 * this_rq is locked.
 */
3880
static int
3881 3882
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3883 3884
{
	struct sched_group *group;
3885
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3886
	unsigned long imbalance;
P
Peter Williams 已提交
3887
	int ld_moved = 0;
N
Nick Piggin 已提交
3888
	int sd_idle = 0;
3889
	int all_pinned = 0;
3890 3891

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3892

3893 3894 3895 3896
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3897
	 * portraying it as CPU_NOT_IDLE.
3898 3899 3900
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3901
		sd_idle = 1;
L
Linus Torvalds 已提交
3902

3903
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3904
redo:
I
Ingo Molnar 已提交
3905
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3906
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3907
	if (!group) {
I
Ingo Molnar 已提交
3908
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3909
		goto out_balanced;
L
Linus Torvalds 已提交
3910 3911
	}

3912
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3913
	if (!busiest) {
I
Ingo Molnar 已提交
3914
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3915
		goto out_balanced;
L
Linus Torvalds 已提交
3916 3917
	}

N
Nick Piggin 已提交
3918 3919
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3920
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3921

P
Peter Williams 已提交
3922
	ld_moved = 0;
3923 3924 3925
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3926 3927
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3928
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3929 3930
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3931
		spin_unlock(&busiest->lock);
3932

3933
		if (unlikely(all_pinned)) {
3934 3935
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3936 3937
				goto redo;
		}
3938 3939
	}

P
Peter Williams 已提交
3940
	if (!ld_moved) {
I
Ingo Molnar 已提交
3941
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3942 3943
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3944 3945
			return -1;
	} else
3946
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3947

P
Peter Williams 已提交
3948
	return ld_moved;
3949 3950

out_balanced:
I
Ingo Molnar 已提交
3951
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3952
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3953
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3954
		return -1;
3955
	sd->nr_balance_failed = 0;
3956

3957
	return 0;
L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3964
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3965 3966
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3967 3968
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3969
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3970 3971

	for_each_domain(this_cpu, sd) {
3972 3973 3974 3975 3976 3977
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3978
			/* If we've pulled tasks over stop searching: */
3979 3980
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3981 3982 3983 3984 3985 3986

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3987
	}
I
Ingo Molnar 已提交
3988
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3989 3990 3991 3992 3993
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3994
	}
L
Linus Torvalds 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4005
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4006
{
4007
	int target_cpu = busiest_rq->push_cpu;
4008 4009
	struct sched_domain *sd;
	struct rq *target_rq;
4010

4011
	/* Is there any task to move? */
4012 4013 4014 4015
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4016 4017

	/*
4018
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4019
	 * we need to fix it. Originally reported by
4020
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4021
	 */
4022
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4023

4024 4025
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4026 4027
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4028 4029

	/* Search for an sd spanning us and the target CPU. */
4030
	for_each_domain(target_cpu, sd) {
4031
		if ((sd->flags & SD_LOAD_BALANCE) &&
4032
		    cpu_isset(busiest_cpu, sd->span))
4033
				break;
4034
	}
4035

4036
	if (likely(sd)) {
4037
		schedstat_inc(sd, alb_count);
4038

P
Peter Williams 已提交
4039 4040
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4041 4042 4043 4044
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4045
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
4046 4047
}

4048 4049 4050
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
4051
	cpumask_t cpu_mask;
4052 4053 4054 4055 4056
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

4057
/*
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4068
 *
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4125 4126 4127 4128 4129
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4130
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4131
{
4132 4133
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4134 4135
	unsigned long interval;
	struct sched_domain *sd;
4136
	/* Earliest time when we have to do rebalance again */
4137
	unsigned long next_balance = jiffies + 60*HZ;
4138
	int update_next_balance = 0;
4139
	cpumask_t tmp;
L
Linus Torvalds 已提交
4140

4141
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4142 4143 4144 4145
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4146
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4153 4154 4155
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
4156

4157 4158 4159 4160 4161
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

4162
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4163
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
4164 4165
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4166 4167 4168
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4169
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4170
			}
4171
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4172
		}
4173 4174 4175
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
4176
		if (time_after(next_balance, sd->last_balance + interval)) {
4177
			next_balance = sd->last_balance + interval;
4178 4179
			update_next_balance = 1;
		}
4180 4181 4182 4183 4184 4185 4186 4187

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4188
	}
4189 4190 4191 4192 4193 4194 4195 4196

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4197 4198 4199 4200 4201 4202 4203 4204 4205
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4206 4207 4208 4209
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4210

I
Ingo Molnar 已提交
4211
	rebalance_domains(this_cpu, idle);
4212 4213 4214 4215 4216 4217 4218

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4219 4220
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4221 4222 4223 4224
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
4225
		cpu_clear(this_cpu, cpus);
4226 4227 4228 4229 4230 4231 4232 4233 4234
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4235
			rebalance_domains(balance_cpu, CPU_IDLE);
4236 4237

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4238 4239
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4252
static inline void trigger_load_balance(struct rq *rq, int cpu)
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4279
			if (ilb < nr_cpu_ids)
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4304
}
I
Ingo Molnar 已提交
4305 4306 4307

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4308 4309 4310
/*
 * on UP we do not need to balance between CPUs:
 */
4311
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4312 4313
{
}
I
Ingo Molnar 已提交
4314

L
Linus Torvalds 已提交
4315 4316 4317 4318 4319 4320 4321
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4322 4323
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4324
 */
4325
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4326 4327
{
	unsigned long flags;
4328 4329
	u64 ns, delta_exec;
	struct rq *rq;
4330

4331 4332
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4333
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4334 4335
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4336 4337 4338 4339
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4340

L
Linus Torvalds 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4364 4365 4366 4367 4368
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4369
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4403
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4404 4405
	cputime64_t tmp;

4406 4407 4408 4409
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4410

L
Linus Torvalds 已提交
4411 4412 4413 4414 4415 4416 4417 4418
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4419
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4420
		cpustat->system = cputime64_add(cpustat->system, tmp);
4421
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4422 4423 4424 4425 4426 4427 4428
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4440 4441 4442 4443 4444 4445 4446 4447 4448
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4449
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4457
	} else
L
Linus Torvalds 已提交
4458 4459 4460
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4472
	struct task_struct *curr = rq->curr;
4473
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
4474 4475

	spin_lock(&rq->lock);
4476
	__update_rq_clock(rq);
4477 4478 4479
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
4480
	if (unlikely(rq->clock < next_tick)) {
4481
		rq->clock = next_tick;
4482 4483
		rq->clock_underflows++;
	}
4484
	rq->tick_timestamp = rq->clock;
4485
	update_last_tick_seen(rq);
4486
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4487
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4488
	spin_unlock(&rq->lock);
4489

4490
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4491 4492
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4493
#endif
L
Linus Torvalds 已提交
4494 4495 4496 4497
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4498
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4499 4500 4501 4502
{
	/*
	 * Underflow?
	 */
4503 4504
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4505 4506 4507 4508
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4509 4510
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4511 4512 4513
}
EXPORT_SYMBOL(add_preempt_count);

4514
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4515 4516 4517 4518
{
	/*
	 * Underflow?
	 */
4519 4520
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4521 4522 4523
	/*
	 * Is the spinlock portion underflowing?
	 */
4524 4525 4526 4527
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4528 4529 4530 4531 4532 4533 4534
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4535
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4536
 */
I
Ingo Molnar 已提交
4537
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4538
{
4539 4540 4541 4542 4543
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4544 4545 4546
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
4547 4548 4549 4550 4551

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4552
}
L
Linus Torvalds 已提交
4553

I
Ingo Molnar 已提交
4554 4555 4556 4557 4558
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4559
	/*
I
Ingo Molnar 已提交
4560
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4561 4562 4563
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
4564 4565 4566
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4567 4568
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4569
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4570 4571
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4572 4573
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4574 4575
	}
#endif
I
Ingo Molnar 已提交
4576 4577 4578 4579 4580 4581
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4582
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4583
{
4584
	const struct sched_class *class;
I
Ingo Molnar 已提交
4585
	struct task_struct *p;
L
Linus Torvalds 已提交
4586 4587

	/*
I
Ingo Molnar 已提交
4588 4589
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4590
	 */
I
Ingo Molnar 已提交
4591
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4592
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4593 4594
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4595 4596
	}

I
Ingo Molnar 已提交
4597 4598
	class = sched_class_highest;
	for ( ; ; ) {
4599
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4609

I
Ingo Molnar 已提交
4610 4611 4612 4613 4614 4615
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4616
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4632

P
Peter Zijlstra 已提交
4633 4634
	hrtick_clear(rq);

4635 4636 4637 4638
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
4639
	__update_rq_clock(rq);
4640 4641
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4642 4643 4644

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4645
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4646
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4647
		} else {
4648
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4649
		}
I
Ingo Molnar 已提交
4650
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4651 4652
	}

4653 4654 4655 4656
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4657

I
Ingo Molnar 已提交
4658
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4659 4660
		idle_balance(cpu, rq);

4661
	prev->sched_class->put_prev_task(rq, prev);
4662
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4663 4664

	if (likely(prev != next)) {
4665 4666
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4667 4668 4669 4670
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4671
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4672 4673 4674 4675 4676 4677
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4678 4679 4680
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4681 4682 4683
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4684
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4685

L
Linus Torvalds 已提交
4686 4687 4688 4689 4690 4691 4692 4693
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4694
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4695
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4696 4697 4698 4699 4700 4701 4702
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4703

L
Linus Torvalds 已提交
4704 4705
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4706
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4707
	 */
N
Nick Piggin 已提交
4708
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4709 4710
		return;

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4724

4725 4726 4727 4728 4729 4730
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4731 4732 4733 4734
}
EXPORT_SYMBOL(preempt_schedule);

/*
4735
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4736 4737 4738 4739 4740 4741 4742 4743 4744
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4745

4746
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4747 4748
	BUG_ON(ti->preempt_count || !irqs_disabled());

4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4764

4765 4766 4767 4768 4769 4770
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4771 4772 4773 4774
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4775 4776
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4777
{
4778
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4779 4780 4781 4782
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4783 4784
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4785 4786 4787
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4788
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4789 4790 4791 4792 4793
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4794
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4795

4796
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4797 4798
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4799
		if (curr->func(curr, mode, sync, key) &&
4800
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4810
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4811
 */
4812
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4813
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4826
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4827 4828 4829 4830 4831
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4832
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4844
void
I
Ingo Molnar 已提交
4845
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4862
void complete(struct completion *x)
L
Linus Torvalds 已提交
4863 4864 4865 4866 4867
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4868
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4869 4870 4871 4872
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4873
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4874 4875 4876 4877 4878
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4879
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4880 4881 4882 4883
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4884 4885
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4886 4887 4888 4889 4890 4891 4892
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4893 4894 4895 4896
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4897 4898 4899 4900
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4901 4902 4903 4904 4905
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4906
				return timeout;
L
Linus Torvalds 已提交
4907 4908 4909 4910 4911 4912 4913 4914
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4915 4916
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4917 4918 4919 4920
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4921
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4922
	spin_unlock_irq(&x->wait.lock);
4923 4924
	return timeout;
}
L
Linus Torvalds 已提交
4925

4926
void __sched wait_for_completion(struct completion *x)
4927 4928
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4929
}
4930
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4931

4932
unsigned long __sched
4933
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4934
{
4935
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4936
}
4937
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4938

4939
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4940
{
4941 4942 4943 4944
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4945
}
4946
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4947

4948
unsigned long __sched
4949 4950
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4951
{
4952
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4953
}
4954
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4955

M
Matthew Wilcox 已提交
4956 4957 4958 4959 4960 4961 4962 4963 4964
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4965 4966
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4967
{
I
Ingo Molnar 已提交
4968 4969 4970 4971
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4972

4973
	__set_current_state(state);
L
Linus Torvalds 已提交
4974

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4989 4990 4991
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4992
long __sched
I
Ingo Molnar 已提交
4993
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4994
{
4995
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4996 4997 4998
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4999
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5000
{
5001
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5002 5003 5004
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5005
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5006
{
5007
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5008 5009 5010
}
EXPORT_SYMBOL(sleep_on_timeout);

5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5023
void rt_mutex_setprio(struct task_struct *p, int prio)
5024 5025
{
	unsigned long flags;
5026
	int oldprio, on_rq, running;
5027
	struct rq *rq;
5028
	const struct sched_class *prev_class = p->sched_class;
5029 5030 5031 5032

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5033
	update_rq_clock(rq);
5034

5035
	oldprio = p->prio;
I
Ingo Molnar 已提交
5036
	on_rq = p->se.on_rq;
5037
	running = task_current(rq, p);
5038
	if (on_rq)
5039
		dequeue_task(rq, p, 0);
5040 5041
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5042 5043 5044 5045 5046 5047

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5048 5049
	p->prio = prio;

5050 5051
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5052
	if (on_rq) {
5053
		enqueue_task(rq, p, 0);
5054 5055

		check_class_changed(rq, p, prev_class, oldprio, running);
5056 5057 5058 5059 5060 5061
	}
	task_rq_unlock(rq, &flags);
}

#endif

5062
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5063
{
I
Ingo Molnar 已提交
5064
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5065
	unsigned long flags;
5066
	struct rq *rq;
L
Linus Torvalds 已提交
5067 5068 5069 5070 5071 5072 5073 5074

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5075
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5076 5077 5078 5079
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5080
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5081
	 */
5082
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5083 5084 5085
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5086
	on_rq = p->se.on_rq;
5087
	if (on_rq)
5088
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5089 5090

	p->static_prio = NICE_TO_PRIO(nice);
5091
	set_load_weight(p);
5092 5093 5094
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5095

I
Ingo Molnar 已提交
5096
	if (on_rq) {
5097
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5098
		/*
5099 5100
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5101
		 */
5102
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5103 5104 5105 5106 5107 5108 5109
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5110 5111 5112 5113 5114
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5115
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5116
{
5117 5118
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5119

M
Matt Mackall 已提交
5120 5121 5122 5123
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5135
	long nice, retval;
L
Linus Torvalds 已提交
5136 5137 5138 5139 5140 5141

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5142 5143
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5144 5145 5146 5147 5148 5149 5150 5151 5152
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5153 5154 5155
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5174
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5175 5176 5177 5178 5179 5180 5181 5182
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5183
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5184 5185 5186
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5187
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5202
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5203 5204 5205 5206 5207 5208 5209 5210
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5211
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5212
{
5213
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5214 5215 5216
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5217 5218
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5219
{
I
Ingo Molnar 已提交
5220
	BUG_ON(p->se.on_rq);
5221

L
Linus Torvalds 已提交
5222
	p->policy = policy;
I
Ingo Molnar 已提交
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5235
	p->rt_priority = prio;
5236 5237 5238
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5239
	set_load_weight(p);
L
Linus Torvalds 已提交
5240 5241 5242
}

/**
5243
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
5244 5245 5246
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
5247
 *
5248
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
5249
 */
I
Ingo Molnar 已提交
5250 5251
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
5252
{
5253
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5254
	unsigned long flags;
5255
	const struct sched_class *prev_class = p->sched_class;
5256
	struct rq *rq;
L
Linus Torvalds 已提交
5257

5258 5259
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5260 5261 5262 5263 5264
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5265 5266
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5267
		return -EINVAL;
L
Linus Torvalds 已提交
5268 5269
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5270 5271
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5272 5273
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5274
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5275
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5276
		return -EINVAL;
5277
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5278 5279
		return -EINVAL;

5280 5281 5282 5283
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
5284
		if (rt_policy(policy)) {
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5301 5302 5303 5304 5305 5306
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5307

5308 5309 5310 5311 5312
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5313

5314 5315 5316 5317 5318
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5319
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5320 5321 5322
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5323 5324 5325
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5326 5327 5328 5329 5330
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5331 5332 5333 5334
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5335
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5336 5337 5338
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5339 5340
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5341 5342
		goto recheck;
	}
I
Ingo Molnar 已提交
5343
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5344
	on_rq = p->se.on_rq;
5345
	running = task_current(rq, p);
5346
	if (on_rq)
5347
		deactivate_task(rq, p, 0);
5348 5349
	if (running)
		p->sched_class->put_prev_task(rq, p);
5350

L
Linus Torvalds 已提交
5351
	oldprio = p->prio;
I
Ingo Molnar 已提交
5352
	__setscheduler(rq, p, policy, param->sched_priority);
5353

5354 5355
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5356 5357
	if (on_rq) {
		activate_task(rq, p, 0);
5358 5359

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5360
	}
5361 5362 5363
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5364 5365
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5366 5367 5368 5369
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5370 5371
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5372 5373 5374
{
	struct sched_param lparam;
	struct task_struct *p;
5375
	int retval;
L
Linus Torvalds 已提交
5376 5377 5378 5379 5380

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5381 5382 5383

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5384
	p = find_process_by_pid(pid);
5385 5386 5387
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5388

L
Linus Torvalds 已提交
5389 5390 5391 5392 5393 5394 5395 5396 5397
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5398 5399
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5400
{
5401 5402 5403 5404
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5424
	struct task_struct *p;
5425
	int retval;
L
Linus Torvalds 已提交
5426 5427

	if (pid < 0)
5428
		return -EINVAL;
L
Linus Torvalds 已提交
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5450
	struct task_struct *p;
5451
	int retval;
L
Linus Torvalds 已提交
5452 5453

	if (!param || pid < 0)
5454
		return -EINVAL;
L
Linus Torvalds 已提交
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5481
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5482 5483
{
	cpumask_t cpus_allowed;
5484
	cpumask_t new_mask = *in_mask;
5485 5486
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5487

5488
	get_online_cpus();
L
Linus Torvalds 已提交
5489 5490 5491 5492 5493
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5494
		put_online_cpus();
L
Linus Torvalds 已提交
5495 5496 5497 5498 5499
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5500
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5511 5512 5513 5514
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5515
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5516
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5517
 again:
5518
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5519

P
Paul Menage 已提交
5520
	if (!retval) {
5521
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5532 5533
out_unlock:
	put_task_struct(p);
5534
	put_online_cpus();
L
Linus Torvalds 已提交
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5565
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5566 5567 5568 5569 5570 5571 5572 5573 5574
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5575
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5576 5577 5578
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5579
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5580 5581
EXPORT_SYMBOL(cpu_online_map);

5582
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5583
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5584 5585 5586 5587
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5588
	struct task_struct *p;
L
Linus Torvalds 已提交
5589 5590
	int retval;

5591
	get_online_cpus();
L
Linus Torvalds 已提交
5592 5593 5594 5595 5596 5597 5598
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5599 5600 5601 5602
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5603
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5604 5605 5606

out_unlock:
	read_unlock(&tasklist_lock);
5607
	put_online_cpus();
L
Linus Torvalds 已提交
5608

5609
	return retval;
L
Linus Torvalds 已提交
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5640 5641
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5642 5643 5644
 */
asmlinkage long sys_sched_yield(void)
{
5645
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5646

5647
	schedstat_inc(rq, yld_count);
5648
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5649 5650 5651 5652 5653 5654

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5655
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5656 5657 5658 5659 5660 5661 5662 5663
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5664
static void __cond_resched(void)
L
Linus Torvalds 已提交
5665
{
5666 5667 5668
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5669 5670 5671 5672 5673
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5674 5675 5676 5677 5678 5679 5680
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5681 5682
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5683
{
5684 5685
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5686 5687 5688 5689 5690
		__cond_resched();
		return 1;
	}
	return 0;
}
5691 5692
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
5693 5694 5695 5696 5697

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5698
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5699 5700 5701
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5702
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5703
{
N
Nick Piggin 已提交
5704
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5705 5706
	int ret = 0;

N
Nick Piggin 已提交
5707
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5708
		spin_unlock(lock);
N
Nick Piggin 已提交
5709 5710 5711 5712
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5713
		ret = 1;
L
Linus Torvalds 已提交
5714 5715
		spin_lock(lock);
	}
J
Jan Kara 已提交
5716
	return ret;
L
Linus Torvalds 已提交
5717 5718 5719 5720 5721 5722 5723
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5724
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5725
		local_bh_enable();
L
Linus Torvalds 已提交
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5737
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5748
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5749 5750 5751 5752 5753 5754 5755
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5756
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5757

5758
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5759 5760 5761
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5762
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5763 5764 5765 5766 5767
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5768
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5769 5770
	long ret;

5771
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5772 5773 5774
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5775
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5796
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5797
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5821
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5822
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5839
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5840
	unsigned int time_slice;
5841
	int retval;
L
Linus Torvalds 已提交
5842 5843 5844
	struct timespec t;

	if (pid < 0)
5845
		return -EINVAL;
L
Linus Torvalds 已提交
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5857 5858 5859 5860 5861 5862
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5863
		time_slice = DEF_TIMESLICE;
5864
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5865 5866 5867 5868 5869
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5870 5871
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5872 5873
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5874
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5875
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5876 5877
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5878

L
Linus Torvalds 已提交
5879 5880 5881 5882 5883
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5884
static const char stat_nam[] = "RSDTtZX";
5885

5886
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5887 5888
{
	unsigned long free = 0;
5889
	unsigned state;
L
Linus Torvalds 已提交
5890 5891

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5892
	printk(KERN_INFO "%-13.13s %c", p->comm,
5893
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5894
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5895
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5896
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5897
	else
I
Ingo Molnar 已提交
5898
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5899 5900
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5901
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5902
	else
I
Ingo Molnar 已提交
5903
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5904 5905 5906
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5907
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5908 5909
		while (!*n)
			n++;
5910
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5911 5912
	}
#endif
5913
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5914
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5915

5916
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5917 5918
}

I
Ingo Molnar 已提交
5919
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5920
{
5921
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5922

5923 5924 5925
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5926
#else
5927 5928
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5929 5930 5931 5932 5933 5934 5935 5936
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5937
		if (!state_filter || (p->state & state_filter))
5938
			sched_show_task(p);
L
Linus Torvalds 已提交
5939 5940
	} while_each_thread(g, p);

5941 5942
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5943 5944 5945
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5946
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5947 5948 5949 5950 5951
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5952 5953
}

I
Ingo Molnar 已提交
5954 5955
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5956
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5957 5958
}

5959 5960 5961 5962 5963 5964 5965 5966
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5967
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5968
{
5969
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5970 5971
	unsigned long flags;

I
Ingo Molnar 已提交
5972 5973 5974
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5975
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5976
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5977
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5978 5979 5980

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5981 5982 5983
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5984 5985 5986
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5987
	task_thread_info(idle)->preempt_count = 0;
5988

I
Ingo Molnar 已提交
5989 5990 5991 5992
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
6029 6030 6031 6032
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6033
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6052
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6053 6054
 * call is not atomic; no spinlocks may be held.
 */
6055
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
6056
{
6057
	struct migration_req req;
L
Linus Torvalds 已提交
6058
	unsigned long flags;
6059
	struct rq *rq;
6060
	int ret = 0;
L
Linus Torvalds 已提交
6061 6062

	rq = task_rq_lock(p, &flags);
6063
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
6064 6065 6066 6067
		ret = -EINVAL;
		goto out;
	}

6068
	if (p->sched_class->set_cpus_allowed)
6069
		p->sched_class->set_cpus_allowed(p, new_mask);
6070
	else {
6071 6072
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
6073 6074
	}

L
Linus Torvalds 已提交
6075
	/* Can the task run on the task's current CPU? If so, we're done */
6076
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
6077 6078
		goto out;

6079
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
6080 6081 6082 6083 6084 6085 6086 6087 6088
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6089

L
Linus Torvalds 已提交
6090 6091
	return ret;
}
6092
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6093 6094

/*
I
Ingo Molnar 已提交
6095
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6096 6097 6098 6099 6100 6101
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6102 6103
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6104
 */
6105
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6106
{
6107
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6108
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6109 6110

	if (unlikely(cpu_is_offline(dest_cpu)))
6111
		return ret;
L
Linus Torvalds 已提交
6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
6124
	on_rq = p->se.on_rq;
6125
	if (on_rq)
6126
		deactivate_task(rq_src, p, 0);
6127

L
Linus Torvalds 已提交
6128
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6129 6130 6131
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
6132
	}
6133
	ret = 1;
L
Linus Torvalds 已提交
6134 6135
out:
	double_rq_unlock(rq_src, rq_dest);
6136
	return ret;
L
Linus Torvalds 已提交
6137 6138 6139 6140 6141 6142 6143
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6144
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6145 6146
{
	int cpu = (long)data;
6147
	struct rq *rq;
L
Linus Torvalds 已提交
6148 6149 6150 6151 6152 6153

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6154
		struct migration_req *req;
L
Linus Torvalds 已提交
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6177
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6178 6179
		list_del_init(head->next);

N
Nick Piggin 已提交
6180 6181 6182
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6212
/*
6213
 * Figure out where task on dead CPU should go, use force if necessary.
6214 6215
 * NOTE: interrupts should be disabled by the caller
 */
6216
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6217
{
6218
	unsigned long flags;
L
Linus Torvalds 已提交
6219
	cpumask_t mask;
6220 6221
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6222

6223 6224 6225 6226 6227 6228 6229
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6230
		if (dest_cpu >= nr_cpu_ids)
6231 6232 6233
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6234
		if (dest_cpu >= nr_cpu_ids) {
6235 6236 6237
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6238 6239 6240 6241
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6242
			 * cpuset_cpus_allowed() will not block. It must be
6243 6244
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6245
			rq = task_rq_lock(p, &flags);
6246
			p->cpus_allowed = cpus_allowed;
6247 6248
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6249

6250 6251 6252 6253 6254
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6255
			if (p->mm && printk_ratelimit()) {
6256 6257
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6258 6259
					task_pid_nr(p), p->comm, dead_cpu);
			}
6260
		}
6261
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6262 6263 6264 6265 6266 6267 6268 6269 6270
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6271
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6272
{
6273
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6287
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6288

6289
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6290

6291 6292
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6293 6294
			continue;

6295 6296 6297
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6298

6299
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6300 6301
}

I
Ingo Molnar 已提交
6302 6303
/*
 * Schedules idle task to be the next runnable task on current CPU.
6304 6305
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6306 6307 6308
 */
void sched_idle_next(void)
{
6309
	int this_cpu = smp_processor_id();
6310
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6311 6312 6313 6314
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6315
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6316

6317 6318 6319
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6320 6321 6322
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6323
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6324

6325 6326
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6327 6328 6329 6330

	spin_unlock_irqrestore(&rq->lock, flags);
}

6331 6332
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6346
/* called under rq->lock with disabled interrupts */
6347
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6348
{
6349
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6350 6351

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6352
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6353 6354

	/* Cannot have done final schedule yet: would have vanished. */
6355
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6356

6357
	get_task_struct(p);
L
Linus Torvalds 已提交
6358 6359 6360

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6361
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6362 6363
	 * fine.
	 */
6364
	spin_unlock_irq(&rq->lock);
6365
	move_task_off_dead_cpu(dead_cpu, p);
6366
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6367

6368
	put_task_struct(p);
L
Linus Torvalds 已提交
6369 6370 6371 6372 6373
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6374
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6375
	struct task_struct *next;
6376

I
Ingo Molnar 已提交
6377 6378 6379
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6380
		update_rq_clock(rq);
6381
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6382 6383 6384
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6385

L
Linus Torvalds 已提交
6386 6387 6388 6389
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6390 6391 6392
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6393 6394
	{
		.procname	= "sched_domain",
6395
		.mode		= 0555,
6396
	},
I
Ingo Molnar 已提交
6397
	{0, },
6398 6399 6400
};

static struct ctl_table sd_ctl_root[] = {
6401
	{
6402
		.ctl_name	= CTL_KERN,
6403
		.procname	= "kernel",
6404
		.mode		= 0555,
6405 6406
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6407
	{0, },
6408 6409 6410 6411 6412
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6413
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6414 6415 6416 6417

	return entry;
}

6418 6419
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6420
	struct ctl_table *entry;
6421

6422 6423 6424
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6425
	 * will always be set. In the lowest directory the names are
6426 6427 6428
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6429 6430
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6431 6432 6433
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6434 6435 6436 6437 6438

	kfree(*tablep);
	*tablep = NULL;
}

6439
static void
6440
set_table_entry(struct ctl_table *entry,
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6454
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6455

6456 6457 6458
	if (table == NULL)
		return NULL;

6459
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6460
		sizeof(long), 0644, proc_doulongvec_minmax);
6461
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6462
		sizeof(long), 0644, proc_doulongvec_minmax);
6463
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6464
		sizeof(int), 0644, proc_dointvec_minmax);
6465
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6466
		sizeof(int), 0644, proc_dointvec_minmax);
6467
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6468
		sizeof(int), 0644, proc_dointvec_minmax);
6469
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6470
		sizeof(int), 0644, proc_dointvec_minmax);
6471
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6472
		sizeof(int), 0644, proc_dointvec_minmax);
6473
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6474
		sizeof(int), 0644, proc_dointvec_minmax);
6475
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6476
		sizeof(int), 0644, proc_dointvec_minmax);
6477
	set_table_entry(&table[9], "cache_nice_tries",
6478 6479
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6480
	set_table_entry(&table[10], "flags", &sd->flags,
6481
		sizeof(int), 0644, proc_dointvec_minmax);
6482
	/* &table[11] is terminator */
6483 6484 6485 6486

	return table;
}

6487
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6488 6489 6490 6491 6492 6493 6494 6495 6496
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6497 6498
	if (table == NULL)
		return NULL;
6499 6500 6501 6502 6503

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6504
		entry->mode = 0555;
6505 6506 6507 6508 6509 6510 6511 6512
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6513
static void register_sched_domain_sysctl(void)
6514 6515 6516 6517 6518
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6519 6520 6521
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6522 6523 6524
	if (entry == NULL)
		return;

6525
	for_each_online_cpu(i) {
6526 6527
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6528
		entry->mode = 0555;
6529
		entry->child = sd_alloc_ctl_cpu_table(i);
6530
		entry++;
6531
	}
6532 6533

	WARN_ON(sd_sysctl_header);
6534 6535
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6536

6537
/* may be called multiple times per register */
6538 6539
static void unregister_sched_domain_sysctl(void)
{
6540 6541
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6542
	sd_sysctl_header = NULL;
6543 6544
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6545
}
6546
#else
6547 6548 6549 6550
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6551 6552 6553 6554
{
}
#endif

L
Linus Torvalds 已提交
6555 6556 6557 6558
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6559 6560
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6561 6562
{
	struct task_struct *p;
6563
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6564
	unsigned long flags;
6565
	struct rq *rq;
L
Linus Torvalds 已提交
6566 6567

	switch (action) {
6568

L
Linus Torvalds 已提交
6569
	case CPU_UP_PREPARE:
6570
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6571
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6572 6573 6574 6575 6576
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6577
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6578 6579 6580
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6581

L
Linus Torvalds 已提交
6582
	case CPU_ONLINE:
6583
	case CPU_ONLINE_FROZEN:
6584
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6585
		wake_up_process(cpu_rq(cpu)->migration_thread);
6586 6587 6588 6589 6590 6591 6592 6593 6594

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6595
		break;
6596

L
Linus Torvalds 已提交
6597 6598
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6599
	case CPU_UP_CANCELED_FROZEN:
6600 6601
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6602
		/* Unbind it from offline cpu so it can run. Fall thru. */
6603 6604
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6605 6606 6607
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6608

L
Linus Torvalds 已提交
6609
	case CPU_DEAD:
6610
	case CPU_DEAD_FROZEN:
6611
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6612 6613 6614 6615 6616
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6617
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6618
		update_rq_clock(rq);
6619
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6620
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6621 6622
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6623
		migrate_dead_tasks(cpu);
6624
		spin_unlock_irq(&rq->lock);
6625
		cpuset_unlock();
L
Linus Torvalds 已提交
6626 6627 6628
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6629 6630 6631 6632 6633
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6634 6635
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6636 6637
			struct migration_req *req;

L
Linus Torvalds 已提交
6638
			req = list_entry(rq->migration_queue.next,
6639
					 struct migration_req, list);
L
Linus Torvalds 已提交
6640 6641 6642 6643 6644
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6645

6646 6647
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6648 6649 6650 6651 6652 6653 6654 6655 6656
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6657 6658 6659 6660 6661 6662 6663 6664
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6665
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6666 6667 6668 6669
	.notifier_call = migration_call,
	.priority = 10
};

6670
void __init migration_init(void)
L
Linus Torvalds 已提交
6671 6672
{
	void *cpu = (void *)(long)smp_processor_id();
6673
	int err;
6674 6675

	/* Start one for the boot CPU: */
6676 6677
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6678 6679 6680 6681 6682 6683
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6684

6685
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6686

6687 6688
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6689
{
I
Ingo Molnar 已提交
6690
	struct sched_group *group = sd->groups;
6691
	char str[256];
L
Linus Torvalds 已提交
6692

6693
	cpulist_scnprintf(str, sizeof(str), sd->span);
6694
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6695 6696 6697 6698 6699 6700 6701 6702 6703

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6704 6705
	}

I
Ingo Molnar 已提交
6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6716

I
Ingo Molnar 已提交
6717
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6718
	do {
I
Ingo Molnar 已提交
6719 6720 6721
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6722 6723 6724
			break;
		}

I
Ingo Molnar 已提交
6725 6726 6727 6728 6729 6730
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6731

I
Ingo Molnar 已提交
6732 6733 6734 6735 6736
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6737

6738
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6739 6740 6741 6742
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6743

6744
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6745

6746
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6747
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6748

I
Ingo Molnar 已提交
6749 6750 6751
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6752

6753
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6754
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6755

6756
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6757 6758 6759 6760
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6761

I
Ingo Molnar 已提交
6762 6763
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6764
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6765
	int level = 0;
L
Linus Torvalds 已提交
6766

I
Ingo Molnar 已提交
6767 6768 6769 6770
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6771

I
Ingo Molnar 已提交
6772 6773
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6774 6775 6776 6777 6778 6779
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6780
	for (;;) {
6781
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6782
			break;
L
Linus Torvalds 已提交
6783 6784
		level++;
		sd = sd->parent;
6785
		if (!sd)
I
Ingo Molnar 已提交
6786 6787
			break;
	}
6788
	kfree(groupmask);
L
Linus Torvalds 已提交
6789 6790
}
#else
6791
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6792 6793
#endif

6794
static int sd_degenerate(struct sched_domain *sd)
6795 6796 6797 6798 6799 6800 6801 6802
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6803 6804 6805
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6819 6820
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6839 6840 6841
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6842 6843 6844 6845 6846 6847 6848
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6859
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6860 6861
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6862
		}
G
Gregory Haskins 已提交
6863

6864 6865 6866
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6867 6868 6869 6870 6871 6872 6873
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6874
	cpu_set(rq->cpu, rd->span);
6875 6876
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6877

I
Ingo Molnar 已提交
6878
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6879 6880
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6881
	}
G
Gregory Haskins 已提交
6882 6883 6884 6885

	spin_unlock_irqrestore(&rq->lock, flags);
}

6886
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6887 6888 6889
{
	memset(rd, 0, sizeof(*rd));

6890 6891
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6892 6893 6894 6895
}

static void init_defrootdomain(void)
{
6896
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6897 6898 6899
	atomic_set(&def_root_domain.refcount, 1);
}

6900
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6901 6902 6903 6904 6905 6906 6907
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6908
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6909 6910 6911 6912

	return rd;
}

L
Linus Torvalds 已提交
6913
/*
I
Ingo Molnar 已提交
6914
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6915 6916
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6917 6918
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6919
{
6920
	struct rq *rq = cpu_rq(cpu);
6921 6922 6923 6924 6925 6926 6927
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6928
		if (sd_parent_degenerate(tmp, parent)) {
6929
			tmp->parent = parent->parent;
6930 6931 6932
			if (parent->parent)
				parent->parent->child = tmp;
		}
6933 6934
	}

6935
	if (sd && sd_degenerate(sd)) {
6936
		sd = sd->parent;
6937 6938 6939
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6940 6941 6942

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6943
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6944
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6945 6946 6947
}

/* cpus with isolated domains */
6948
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6963
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6964 6965

/*
6966 6967 6968 6969
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6970 6971 6972 6973 6974
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6975
static void
6976
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6977
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6978 6979 6980
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6981 6982 6983 6984
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6985 6986 6987
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6988
		struct sched_group *sg;
6989
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6990 6991
		int j;

6992
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6993 6994
			continue;

6995
		cpus_clear(sg->cpumask);
6996
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6997

6998 6999
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7000 7001
				continue;

7002
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7014
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7015

7016
#ifdef CONFIG_NUMA
7017

7018 7019 7020 7021 7022
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7023
 * Find the next node to include in a given scheduling domain. Simply
7024 7025 7026 7027
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7028
static int find_next_best_node(int node, nodemask_t *used_nodes)
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7042
		if (node_isset(n, *used_nodes))
7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7054
	node_set(best_node, *used_nodes);
7055 7056 7057 7058 7059 7060
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7061
 * @span: resulting cpumask
7062
 *
I
Ingo Molnar 已提交
7063
 * Given a node, construct a good cpumask for its sched_domain to span. It
7064 7065 7066
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7067
static void sched_domain_node_span(int node, cpumask_t *span)
7068
{
7069 7070
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7071
	int i;
7072

7073
	cpus_clear(*span);
7074
	nodes_clear(used_nodes);
7075

7076
	cpus_or(*span, *span, *nodemask);
7077
	node_set(node, used_nodes);
7078 7079

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7080
		int next_node = find_next_best_node(node, &used_nodes);
7081

7082
		node_to_cpumask_ptr_next(nodemask, next_node);
7083
		cpus_or(*span, *span, *nodemask);
7084 7085 7086 7087
	}
}
#endif

7088
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7089

7090
/*
7091
 * SMT sched-domains:
7092
 */
L
Linus Torvalds 已提交
7093 7094
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7095
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7096

I
Ingo Molnar 已提交
7097
static int
7098 7099
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7100
{
7101 7102
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7103 7104 7105 7106
	return cpu;
}
#endif

7107 7108 7109
/*
 * multi-core sched-domains:
 */
7110 7111
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7112
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7113 7114 7115
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7116
static int
7117 7118
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7119
{
7120
	int group;
7121 7122 7123 7124

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7125 7126 7127
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7128 7129
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7130
static int
7131 7132
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7133
{
7134 7135
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7136 7137 7138 7139
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7140
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7141
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7142

I
Ingo Molnar 已提交
7143
static int
7144 7145
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7146
{
7147
	int group;
7148
#ifdef CONFIG_SCHED_MC
7149 7150 7151
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7152
#elif defined(CONFIG_SCHED_SMT)
7153 7154 7155
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7156
#else
7157
	group = cpu;
L
Linus Torvalds 已提交
7158
#endif
7159 7160 7161
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7162 7163 7164 7165
}

#ifdef CONFIG_NUMA
/*
7166 7167 7168
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7169
 */
7170
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7171
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7172

7173
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7174
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7175

7176
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7177
				 struct sched_group **sg, cpumask_t *nodemask)
7178
{
7179 7180
	int group;

7181 7182 7183
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7184 7185 7186 7187

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7188
}
7189

7190 7191 7192 7193 7194 7195 7196
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7197 7198 7199
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
7200

7201 7202 7203 7204 7205 7206 7207 7208
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7209

7210 7211 7212 7213
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7214
}
L
Linus Torvalds 已提交
7215 7216
#endif

7217
#ifdef CONFIG_NUMA
7218
/* Free memory allocated for various sched_group structures */
7219
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7220
{
7221
	int cpu, i;
7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7233 7234 7235
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7252
#else
7253
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7254 7255 7256
{
}
#endif
7257

7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7284 7285
	sd->groups->__cpu_power = 0;

7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7296
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7297 7298 7299 7300 7301 7302 7303 7304
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7305
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7306 7307 7308 7309
		group = group->next;
	} while (group != child->groups);
}

7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7321
	sd->level = SD_LV_##type;				\
7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
	default_relax_domain_level = simple_strtoul(str, NULL, 0);
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7400
/*
7401 7402
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7403
 */
7404 7405
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7406 7407
{
	int i;
G
Gregory Haskins 已提交
7408
	struct root_domain *rd;
7409 7410
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7411 7412
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7413
	int sd_allnodes = 0;
7414 7415 7416 7417

	/*
	 * Allocate the per-node list of sched groups
	 */
7418
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7419
				    GFP_KERNEL);
7420 7421
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7422
		return -ENOMEM;
7423 7424
	}
#endif
L
Linus Torvalds 已提交
7425

7426
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7427 7428
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7429 7430 7431
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7432 7433 7434
		return -ENOMEM;
	}

7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7454
	/*
7455
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7456
	 */
7457
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7458
		struct sched_domain *sd = NULL, *p;
7459
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7460

7461 7462
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7463 7464

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7465
		if (cpus_weight(*cpu_map) >
7466
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7467
			sd = &per_cpu(allnodes_domains, i);
7468
			SD_INIT(sd, ALLNODES);
7469
			set_domain_attribute(sd, attr);
7470
			sd->span = *cpu_map;
7471
			sd->first_cpu = first_cpu(sd->span);
7472
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7473
			p = sd;
7474
			sd_allnodes = 1;
7475 7476 7477
		} else
			p = NULL;

L
Linus Torvalds 已提交
7478
		sd = &per_cpu(node_domains, i);
7479
		SD_INIT(sd, NODE);
7480
		set_domain_attribute(sd, attr);
7481
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7482
		sd->first_cpu = first_cpu(sd->span);
7483
		sd->parent = p;
7484 7485
		if (p)
			p->child = sd;
7486
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7487 7488 7489 7490
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7491
		SD_INIT(sd, CPU);
7492
		set_domain_attribute(sd, attr);
7493
		sd->span = *nodemask;
7494
		sd->first_cpu = first_cpu(sd->span);
L
Linus Torvalds 已提交
7495
		sd->parent = p;
7496 7497
		if (p)
			p->child = sd;
7498
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7499

7500 7501 7502
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7503
		SD_INIT(sd, MC);
7504
		set_domain_attribute(sd, attr);
7505
		sd->span = cpu_coregroup_map(i);
7506
		sd->first_cpu = first_cpu(sd->span);
7507 7508
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7509
		p->child = sd;
7510
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7511 7512
#endif

L
Linus Torvalds 已提交
7513 7514 7515
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7516
		SD_INIT(sd, SIBLING);
7517
		set_domain_attribute(sd, attr);
7518
		sd->span = per_cpu(cpu_sibling_map, i);
7519
		sd->first_cpu = first_cpu(sd->span);
7520
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7521
		sd->parent = p;
7522
		p->child = sd;
7523
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7524 7525 7526 7527 7528
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7529
	for_each_cpu_mask(i, *cpu_map) {
7530 7531 7532 7533 7534 7535
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7536 7537
			continue;

I
Ingo Molnar 已提交
7538
		init_sched_build_groups(this_sibling_map, cpu_map,
7539 7540
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7541 7542 7543
	}
#endif

7544 7545 7546
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7547 7548 7549 7550 7551 7552
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7553
			continue;
7554

I
Ingo Molnar 已提交
7555
		init_sched_build_groups(this_core_map, cpu_map,
7556 7557
					&cpu_to_core_group,
					send_covered, tmpmask);
7558 7559 7560
	}
#endif

L
Linus Torvalds 已提交
7561 7562
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7563 7564
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7565

7566 7567 7568
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7569 7570
			continue;

7571 7572 7573
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7574 7575 7576 7577
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7578 7579 7580 7581 7582 7583 7584
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7585 7586 7587 7588

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7589 7590 7591
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7592 7593
		int j;

7594 7595 7596 7597 7598
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7599
			sched_group_nodes[i] = NULL;
7600
			continue;
7601
		}
7602

7603
		sched_domain_node_span(i, domainspan);
7604
		cpus_and(*domainspan, *domainspan, *cpu_map);
7605

7606
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7607 7608 7609 7610 7611
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7612
		sched_group_nodes[i] = sg;
7613
		for_each_cpu_mask(j, *nodemask) {
7614
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7615

7616 7617 7618
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7619
		sg->__cpu_power = 0;
7620
		sg->cpumask = *nodemask;
7621
		sg->next = sg;
7622
		cpus_or(*covered, *covered, *nodemask);
7623 7624 7625
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7626
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7627
			int n = (i + j) % MAX_NUMNODES;
7628
			node_to_cpumask_ptr(pnodemask, n);
7629

7630 7631 7632 7633
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7634 7635
				break;

7636 7637
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7638 7639
				continue;

7640 7641
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7642 7643 7644
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7645
				goto error;
7646
			}
7647
			sg->__cpu_power = 0;
7648
			sg->cpumask = *tmpmask;
7649
			sg->next = prev->next;
7650
			cpus_or(*covered, *covered, *tmpmask);
7651 7652 7653 7654
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7655 7656 7657
#endif

	/* Calculate CPU power for physical packages and nodes */
7658
#ifdef CONFIG_SCHED_SMT
7659
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7660 7661
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7662
		init_sched_groups_power(i, sd);
7663
	}
L
Linus Torvalds 已提交
7664
#endif
7665
#ifdef CONFIG_SCHED_MC
7666
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7667 7668
		struct sched_domain *sd = &per_cpu(core_domains, i);

7669
		init_sched_groups_power(i, sd);
7670 7671
	}
#endif
7672

7673
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7674 7675
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7676
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7677 7678
	}

7679
#ifdef CONFIG_NUMA
7680 7681
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7682

7683 7684
	if (sd_allnodes) {
		struct sched_group *sg;
7685

7686 7687
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7688 7689
		init_numa_sched_groups_power(sg);
	}
7690 7691
#endif

L
Linus Torvalds 已提交
7692
	/* Attach the domains */
7693
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7694 7695 7696
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7697 7698
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7699 7700 7701
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7702
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7703
	}
7704

7705
	SCHED_CPUMASK_FREE((void *)allmasks);
7706 7707
	return 0;

7708
#ifdef CONFIG_NUMA
7709
error:
7710 7711
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7712
	return -ENOMEM;
7713
#endif
L
Linus Torvalds 已提交
7714
}
P
Paul Jackson 已提交
7715

7716 7717 7718 7719 7720
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7721 7722
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7723 7724
static struct sched_domain_attr *dattr_cur;	/* attribues of custom domains
						   in 'doms_cur' */
P
Paul Jackson 已提交
7725 7726 7727 7728 7729 7730 7731 7732

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7733 7734 7735 7736
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7737
/*
I
Ingo Molnar 已提交
7738
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7739 7740
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7741
 */
7742
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7743
{
7744 7745
	int err;

7746
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7747 7748 7749 7750 7751
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7752
	dattr_cur = NULL;
7753
	err = build_sched_domains(doms_cur);
7754
	register_sched_domain_sysctl();
7755 7756

	return err;
7757 7758
}

7759 7760
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7761
{
7762
	free_sched_groups(cpu_map, tmpmask);
7763
}
L
Linus Torvalds 已提交
7764

7765 7766 7767 7768
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7769
static void detach_destroy_domains(const cpumask_t *cpu_map)
7770
{
7771
	cpumask_t tmpmask;
7772 7773
	int i;

7774 7775
	unregister_sched_domain_sysctl();

7776
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7777
		cpu_attach_domain(NULL, &def_root_domain, i);
7778
	synchronize_sched();
7779
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7780 7781
}

7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7798 7799
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7800
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7801 7802 7803 7804
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7805 7806 7807
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7808 7809 7810
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7811 7812
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7813 7814 7815 7816 7817 7818
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7819 7820
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7821 7822 7823
{
	int i, j;

7824
	mutex_lock(&sched_domains_mutex);
7825

7826 7827 7828
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7829 7830 7831 7832
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7833
		dattr_new = NULL;
P
Paul Jackson 已提交
7834 7835 7836 7837 7838
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7839 7840
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7852 7853
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7854 7855 7856
				goto match2;
		}
		/* no match - add a new doms_new */
7857 7858
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7859 7860 7861 7862 7863 7864 7865
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7866
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7867
	doms_cur = doms_new;
7868
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7869
	ndoms_cur = ndoms_new;
7870 7871

	register_sched_domain_sysctl();
7872

7873
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7874 7875
}

7876
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7877
int arch_reinit_sched_domains(void)
7878 7879 7880
{
	int err;

7881
	get_online_cpus();
7882
	mutex_lock(&sched_domains_mutex);
7883 7884
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7885
	mutex_unlock(&sched_domains_mutex);
7886
	put_online_cpus();
7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7913 7914
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7915 7916 7917
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7918 7919
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7920 7921 7922 7923 7924 7925 7926
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7927 7928
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7929 7930 7931
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7952 7953
#endif

L
Linus Torvalds 已提交
7954
/*
I
Ingo Molnar 已提交
7955
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7956
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7957
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7958 7959 7960 7961 7962 7963 7964
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7965
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7966
	case CPU_DOWN_PREPARE:
7967
	case CPU_DOWN_PREPARE_FROZEN:
7968
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7969 7970 7971
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7972
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7973
	case CPU_DOWN_FAILED:
7974
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7975
	case CPU_ONLINE:
7976
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7977
	case CPU_DEAD:
7978
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7979 7980 7981 7982 7983 7984 7985 7986 7987
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7988
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7989 7990 7991 7992 7993 7994

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7995 7996
	cpumask_t non_isolated_cpus;

7997 7998 7999 8000 8001
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8002
	get_online_cpus();
8003
	mutex_lock(&sched_domains_mutex);
8004
	arch_init_sched_domains(&cpu_online_map);
8005
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8006 8007
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
8008
	mutex_unlock(&sched_domains_mutex);
8009
	put_online_cpus();
L
Linus Torvalds 已提交
8010 8011
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8012
	init_hrtick();
8013 8014

	/* Move init over to a non-isolated CPU */
8015
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8016
		BUG();
I
Ingo Molnar 已提交
8017
	sched_init_granularity();
L
Linus Torvalds 已提交
8018 8019 8020 8021
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8022
	sched_init_granularity();
L
Linus Torvalds 已提交
8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8033
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8034 8035
{
	cfs_rq->tasks_timeline = RB_ROOT;
8036
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8037 8038 8039
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8040
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8041 8042
}

P
Peter Zijlstra 已提交
8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8056
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8057 8058
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8059 8060 8061 8062 8063 8064 8065
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8066 8067
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8068

8069
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8070
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8071 8072
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8073 8074
}

P
Peter Zijlstra 已提交
8075
#ifdef CONFIG_FAIR_GROUP_SCHED
8076 8077 8078
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8079
{
8080
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8081 8082 8083 8084 8085 8086 8087
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8088 8089 8090 8091
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8092 8093 8094 8095 8096
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8097 8098
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8099
	se->load.inv_weight = 0;
8100
	se->parent = parent;
P
Peter Zijlstra 已提交
8101
}
8102
#endif
P
Peter Zijlstra 已提交
8103

8104
#ifdef CONFIG_RT_GROUP_SCHED
8105 8106 8107
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8108
{
8109 8110
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8111 8112 8113 8114
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8115
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8116 8117 8118 8119
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8120 8121 8122
	if (!rt_se)
		return;

8123 8124 8125 8126 8127
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8128 8129
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
8130
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8131 8132 8133 8134
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8135 8136
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8137
	int i, j;
8138 8139 8140 8141 8142 8143 8144
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8145 8146 8147
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8148 8149 8150 8151 8152 8153
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8154
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8155 8156 8157 8158 8159 8160 8161

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8162 8163 8164 8165 8166 8167 8168 8169

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8170 8171 8172 8173 8174 8175
#endif
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8176 8177 8178 8179 8180 8181 8182 8183 8184
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
8185 8186
#endif
	}
I
Ingo Molnar 已提交
8187

G
Gregory Haskins 已提交
8188
#ifdef CONFIG_SMP
8189
	init_aggregate();
G
Gregory Haskins 已提交
8190 8191 8192
	init_defrootdomain();
#endif

8193 8194 8195 8196 8197 8198
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8199 8200 8201 8202
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
#endif
8203 8204
#endif

8205
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8206
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8207 8208 8209 8210 8211 8212 8213
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
#endif
P
Peter Zijlstra 已提交
8214 8215
#endif

8216
	for_each_possible_cpu(i) {
8217
		struct rq *rq;
L
Linus Torvalds 已提交
8218 8219 8220

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
8221
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
8222
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8223
		rq->clock = 1;
8224
		update_last_tick_seen(rq);
I
Ingo Molnar 已提交
8225
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8226
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8227
#ifdef CONFIG_FAIR_GROUP_SCHED
8228
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8229
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8250
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8251
#elif defined CONFIG_USER_SCHED
8252 8253
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8265
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8266
				&per_cpu(init_cfs_rq, i),
8267 8268
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8269

8270
#endif
D
Dhaval Giani 已提交
8271 8272 8273
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8274
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8275
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8276
#ifdef CONFIG_CGROUP_SCHED
8277
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8278
#elif defined CONFIG_USER_SCHED
8279
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8280
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8281
				&per_cpu(init_rt_rq, i),
8282 8283
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8284
#endif
I
Ingo Molnar 已提交
8285
#endif
L
Linus Torvalds 已提交
8286

I
Ingo Molnar 已提交
8287 8288
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8289
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8290
		rq->sd = NULL;
G
Gregory Haskins 已提交
8291
		rq->rd = NULL;
L
Linus Torvalds 已提交
8292
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8293
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8294
		rq->push_cpu = 0;
8295
		rq->cpu = i;
L
Linus Torvalds 已提交
8296 8297
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8298
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8299
#endif
P
Peter Zijlstra 已提交
8300
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8301 8302 8303
		atomic_set(&rq->nr_iowait, 0);
	}

8304
	set_load_weight(&init_task);
8305

8306 8307 8308 8309
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8310 8311 8312 8313
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8314 8315 8316 8317
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8331 8332 8333 8334
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8335 8336

	scheduler_running = 1;
L
Linus Torvalds 已提交
8337 8338 8339 8340 8341
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8342
#ifdef in_atomic
L
Linus Torvalds 已提交
8343 8344 8345 8346 8347 8348 8349
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8350
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8351 8352 8353
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8354
		debug_show_held_locks(current);
8355 8356
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8357 8358 8359 8360 8361 8362 8363 8364
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8379 8380
void normalize_rt_tasks(void)
{
8381
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8382
	unsigned long flags;
8383
	struct rq *rq;
L
Linus Torvalds 已提交
8384

8385
	read_lock_irqsave(&tasklist_lock, flags);
8386
	do_each_thread(g, p) {
8387 8388 8389 8390 8391 8392
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8393 8394
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8395 8396 8397
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8398
#endif
I
Ingo Molnar 已提交
8399 8400 8401 8402 8403 8404 8405 8406 8407
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8408
			continue;
I
Ingo Molnar 已提交
8409
		}
L
Linus Torvalds 已提交
8410

8411
		spin_lock(&p->pi_lock);
8412
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8413

8414
		normalize_task(rq, p);
8415

8416
		__task_rq_unlock(rq);
8417
		spin_unlock(&p->pi_lock);
8418 8419
	} while_each_thread(g, p);

8420
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8421 8422 8423
}

#endif /* CONFIG_MAGIC_SYSRQ */
8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8442
struct task_struct *curr_task(int cpu)
8443 8444 8445 8446 8447 8448 8449 8450 8451 8452
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8453 8454
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8455 8456 8457 8458 8459 8460 8461
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8462
void set_curr_task(int cpu, struct task_struct *p)
8463 8464 8465 8466 8467
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8468

8469 8470
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8485 8486
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8487 8488
{
	struct cfs_rq *cfs_rq;
8489
	struct sched_entity *se, *parent_se;
8490
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8491 8492
	int i;

8493
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8494 8495
	if (!tg->cfs_rq)
		goto err;
8496
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8497 8498
	if (!tg->se)
		goto err;
8499 8500

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8501 8502

	for_each_possible_cpu(i) {
8503
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8504

P
Peter Zijlstra 已提交
8505 8506
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8507 8508 8509
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8510 8511
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8512 8513 8514
		if (!se)
			goto err;

8515 8516
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8540 8541
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8553 8554 8555
#endif

#ifdef CONFIG_RT_GROUP_SCHED
8556 8557 8558 8559
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8560 8561
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8573 8574
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8575 8576
{
	struct rt_rq *rt_rq;
8577
	struct sched_rt_entity *rt_se, *parent_se;
8578 8579 8580
	struct rq *rq;
	int i;

8581
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8582 8583
	if (!tg->rt_rq)
		goto err;
8584
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8585 8586 8587
	if (!tg->rt_se)
		goto err;

8588 8589
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8590 8591 8592 8593

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8594 8595 8596 8597
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8598

P
Peter Zijlstra 已提交
8599 8600 8601 8602
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8603

8604 8605
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8606 8607
	}

8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8629 8630
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

8644
#ifdef CONFIG_GROUP_SCHED
8645 8646 8647 8648 8649 8650 8651 8652
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8653
struct task_group *sched_create_group(struct task_group *parent)
8654 8655 8656 8657 8658 8659 8660 8661 8662
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8663
	if (!alloc_fair_sched_group(tg, parent))
8664 8665
		goto err;

8666
	if (!alloc_rt_sched_group(tg, parent))
8667 8668
		goto err;

8669
	spin_lock_irqsave(&task_group_lock, flags);
8670
	for_each_possible_cpu(i) {
8671 8672
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8673
	}
P
Peter Zijlstra 已提交
8674
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8675 8676 8677 8678 8679 8680

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8681
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8682

8683
	return tg;
S
Srivatsa Vaddagiri 已提交
8684 8685

err:
P
Peter Zijlstra 已提交
8686
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8687 8688 8689
	return ERR_PTR(-ENOMEM);
}

8690
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8691
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8692 8693
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8694
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8695 8696
}

8697
/* Destroy runqueue etc associated with a task group */
8698
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8699
{
8700
	unsigned long flags;
8701
	int i;
S
Srivatsa Vaddagiri 已提交
8702

8703
	spin_lock_irqsave(&task_group_lock, flags);
8704
	for_each_possible_cpu(i) {
8705 8706
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8707
	}
P
Peter Zijlstra 已提交
8708
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8709
	list_del_rcu(&tg->siblings);
8710
	spin_unlock_irqrestore(&task_group_lock, flags);
8711 8712

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8713
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8714 8715
}

8716
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8717 8718 8719
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8720 8721
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8722 8723 8724 8725 8726 8727 8728 8729 8730
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8731
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8732 8733
	on_rq = tsk->se.on_rq;

8734
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8735
		dequeue_task(rq, tsk, 0);
8736 8737
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8738

P
Peter Zijlstra 已提交
8739
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8740

P
Peter Zijlstra 已提交
8741 8742 8743 8744 8745
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8746 8747 8748
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8749
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8750 8751 8752

	task_rq_unlock(rq, &flags);
}
8753
#endif
S
Srivatsa Vaddagiri 已提交
8754

8755
#ifdef CONFIG_FAIR_GROUP_SCHED
8756
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8757 8758 8759 8760 8761
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8762
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8763 8764 8765
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8766
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8767

8768
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8769
		enqueue_entity(cfs_rq, se, 0);
8770
}
8771

8772 8773 8774 8775 8776 8777 8778 8779 8780
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8781 8782
}

8783 8784
static DEFINE_MUTEX(shares_mutex);

8785
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8786 8787
{
	int i;
8788
	unsigned long flags;
8789

8790 8791 8792 8793 8794 8795
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8796 8797
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8798 8799
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8800

8801
	mutex_lock(&shares_mutex);
8802
	if (tg->shares == shares)
8803
		goto done;
S
Srivatsa Vaddagiri 已提交
8804

8805
	spin_lock_irqsave(&task_group_lock, flags);
8806 8807
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8808
	list_del_rcu(&tg->siblings);
8809
	spin_unlock_irqrestore(&task_group_lock, flags);
8810 8811 8812 8813 8814 8815 8816 8817

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8818
	tg->shares = shares;
8819 8820 8821 8822 8823
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8824
		set_se_shares(tg->se[i], shares);
8825
	}
S
Srivatsa Vaddagiri 已提交
8826

8827 8828 8829 8830
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8831
	spin_lock_irqsave(&task_group_lock, flags);
8832 8833
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8834
	list_add_rcu(&tg->siblings, &tg->parent->children);
8835
	spin_unlock_irqrestore(&task_group_lock, flags);
8836
done:
8837
	mutex_unlock(&shares_mutex);
8838
	return 0;
S
Srivatsa Vaddagiri 已提交
8839 8840
}

8841 8842 8843 8844
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8845
#endif
8846

8847
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8848
/*
P
Peter Zijlstra 已提交
8849
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8850
 */
P
Peter Zijlstra 已提交
8851 8852 8853 8854 8855 8856 8857
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8858
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8859 8860
}

8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
	struct task_group *tgi, *parent = tg->parent;
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

	return total + to_ratio(period, runtime) <
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8893
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8894 8895 8896
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8897
	unsigned long global_ratio =
8898
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8899 8900

	rcu_read_lock();
P
Peter Zijlstra 已提交
8901 8902 8903
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8904

8905 8906
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8907 8908
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8909

P
Peter Zijlstra 已提交
8910
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8911
}
8912
#endif
P
Peter Zijlstra 已提交
8913

8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8925 8926
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8927
{
P
Peter Zijlstra 已提交
8928
	int i, err = 0;
P
Peter Zijlstra 已提交
8929 8930

	mutex_lock(&rt_constraints_mutex);
8931
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8932
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8933 8934 8935
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8936 8937 8938 8939
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8940 8941

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8942 8943
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8944 8945 8946 8947 8948 8949 8950 8951 8952

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8953
 unlock:
8954
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8955 8956 8957
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8958 8959
}

8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8972 8973 8974 8975
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8976
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8977 8978
		return -1;

8979
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8980 8981 8982
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9030 9031
	return 0;
}
9032
#endif
9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9063

9064
#ifdef CONFIG_CGROUP_SCHED
9065 9066

/* return corresponding task_group object of a cgroup */
9067
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9068
{
9069 9070
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9071 9072 9073
}

static struct cgroup_subsys_state *
9074
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9075
{
9076
	struct task_group *tg, *parent;
9077

9078
	if (!cgrp->parent) {
9079
		/* This is early initialization for the top cgroup */
9080
		init_task_group.css.cgroup = cgrp;
9081 9082 9083
		return &init_task_group.css;
	}

9084 9085
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9086 9087 9088 9089
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
9090
	tg->css.cgroup = cgrp;
9091 9092 9093 9094

	return &tg->css;
}

I
Ingo Molnar 已提交
9095 9096
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9097
{
9098
	struct task_group *tg = cgroup_tg(cgrp);
9099 9100 9101 9102

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9103 9104 9105
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9106
{
9107 9108
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9109
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9110 9111
		return -EINVAL;
#else
9112 9113 9114
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9115
#endif
9116 9117 9118 9119 9120

	return 0;
}

static void
9121
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9122 9123 9124 9125 9126
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9127
#ifdef CONFIG_FAIR_GROUP_SCHED
9128
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9129
				u64 shareval)
9130
{
9131
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9132 9133
}

9134
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9135
{
9136
	struct task_group *tg = cgroup_tg(cgrp);
9137 9138 9139

	return (u64) tg->shares;
}
9140
#endif
9141

9142
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9143
static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9144
				s64 val)
P
Peter Zijlstra 已提交
9145
{
9146
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9147 9148
}

9149
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9150
{
9151
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9152
}
9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9164
#endif
P
Peter Zijlstra 已提交
9165

9166
static struct cftype cpu_files[] = {
9167
#ifdef CONFIG_FAIR_GROUP_SCHED
9168 9169
	{
		.name = "shares",
9170 9171
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9172
	},
9173 9174
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9175
	{
P
Peter Zijlstra 已提交
9176
		.name = "rt_runtime_us",
9177 9178
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9179
	},
9180 9181
	{
		.name = "rt_period_us",
9182 9183
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9184
	},
9185
#endif
9186 9187 9188 9189
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9190
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9191 9192 9193
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9194 9195 9196 9197 9198 9199 9200
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9201 9202 9203
	.early_init	= 1,
};

9204
#endif	/* CONFIG_CGROUP_SCHED */
9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9225
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9226
{
9227
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9240
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9257
static void
9258
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9259
{
9260
	struct cpuacct *ca = cgroup_ca(cgrp);
9261 9262 9263 9264 9265 9266

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9267
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9268
{
9269
	struct cpuacct *ca = cgroup_ca(cgrp);
9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9311 9312 9313
static struct cftype files[] = {
	{
		.name = "usage",
9314 9315
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9316 9317 9318
	},
};

9319
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9320
{
9321
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */