sched.c 164.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
L
Linus Torvalds 已提交
64

65
#include <asm/tlb.h>
L
Linus Torvalds 已提交
66

67 68 69 70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
101 102 103
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
104 105 106 107 108 109 110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
135 136 137
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

138
/*
I
Ingo Molnar 已提交
139
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 141
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
142
static unsigned int static_prio_timeslice(int static_prio)
143
{
I
Ingo Molnar 已提交
144 145 146 147 148 149 150
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
165
/*
I
Ingo Molnar 已提交
166
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
167
 */
I
Ingo Molnar 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct load_stat {
	struct load_weight load;
	u64 load_update_start, load_update_last;
	unsigned long delta_fair, delta_exec, delta_stat;
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
	s64 wait_runtime;
	u64 sleeper_bonus;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
210

I
Ingo Molnar 已提交
211 212 213 214 215 216 217
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
218 219 220 221 222 223 224
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
225
struct rq {
I
Ingo Molnar 已提交
226
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
227 228 229 230 231 232

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
233 234
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235
	unsigned char idle_at_tick;
236 237 238
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
I
Ingo Molnar 已提交
239 240 241 242 243 244 245
	struct load_stat ls;	/* capture load from *all* tasks on this cpu */
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
246
#endif
I
Ingo Molnar 已提交
247
	struct rt_rq  rt;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

257
	struct task_struct *curr, *idle;
258
	unsigned long next_balance;
L
Linus Torvalds 已提交
259
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
260 261 262 263 264 265 266

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
	unsigned int clock_unstable_events;

L
Linus Torvalds 已提交
267 268 269 270 271 272 273 274
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
275
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
276

277
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
300
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
301 302
};

303
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
305

I
Ingo Molnar 已提交
306 307 308 309 310
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

311 312 313 314 315 316 317 318 319
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
320
/*
I
Ingo Molnar 已提交
321 322
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
323
 */
I
Ingo Molnar 已提交
324
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
325 326 327 328 329 330
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
331 332 333
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
		if (unlikely(delta > 2*TICK_NSEC)) {
			clock++;
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
356
}
I
Ingo Molnar 已提交
357

I
Ingo Molnar 已提交
358 359 360 361
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
362 363
}

I
Ingo Molnar 已提交
364
static u64 __rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
365
{
I
Ingo Molnar 已提交
366
	__update_rq_clock(rq);
I
Ingo Molnar 已提交
367

I
Ingo Molnar 已提交
368 369
	return rq->clock;
}
I
Ingo Molnar 已提交
370

N
Nick Piggin 已提交
371 372
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
373
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
374 375 376 377
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
378 379
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
380 381 382 383 384 385

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

386 387 388 389 390 391 392 393
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
394
	struct rq *rq;
395

396
	local_irq_save(flags);
I
Ingo Molnar 已提交
397 398 399
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
400
	local_irq_restore(flags);
401 402 403 404

	return now;
}

I
Ingo Molnar 已提交
405 406 407 408 409 410 411 412 413 414 415 416
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
417
#ifndef prepare_arch_switch
418 419 420 421 422 423 424
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
425
static inline int task_running(struct rq *rq, struct task_struct *p)
426 427 428 429
{
	return rq->curr == p;
}

430
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
431 432 433
{
}

434
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
435
{
436 437 438 439
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
440 441 442 443 444 445 446
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

447 448 449 450
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
451
static inline int task_running(struct rq *rq, struct task_struct *p)
452 453 454 455 456 457 458 459
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

460
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

477
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
478 479 480 481 482 483 484 485 486 487 488 489
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
490
#endif
491 492
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
493

494 495 496 497
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
498
static inline struct rq *__task_rq_lock(struct task_struct *p)
499 500
	__acquires(rq->lock)
{
501
	struct rq *rq;
502 503 504 505 506 507 508 509 510 511 512

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
513 514 515 516 517
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
518
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
519 520
	__acquires(rq->lock)
{
521
	struct rq *rq;
L
Linus Torvalds 已提交
522 523 524 525 526 527 528 529 530 531 532 533

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

534
static inline void __task_rq_unlock(struct rq *rq)
535 536 537 538 539
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

540
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
541 542 543 544 545 546
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
547
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
548
 */
549
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
550 551
	__acquires(rq->lock)
{
552
	struct rq *rq;
L
Linus Torvalds 已提交
553 554 555 556 557 558 559 560

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574
/*
 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
 */
void sched_clock_unstable_event(void)
{
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(current, &flags);
	rq->prev_clock_raw = sched_clock();
	rq->clock_unstable_events++;
	task_rq_unlock(rq, &flags);
}

I
Ingo Molnar 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static u64 div64_likely32(u64 divident, unsigned long divisor)
{
#if BITS_PER_LONG == 32
	if (likely(divident <= 0xffffffffULL))
		return (u32)divident / divisor;
	do_div(divident, divisor);

	return divident;
#else
	return divident / divisor;
#endif
}

#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

648
static unsigned long
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
		lw->inv_weight = WMULT_CONST / lw->weight;

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
	if (unlikely(tmp > WMULT_CONST)) {
		tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
				>> (WMULT_SHIFT/2);
	} else {
		tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
	}

668
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

static void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

689 690 691 692 693 694 695 696 697
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
698 699 700 701 702 703 704 705 706 707 708
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
709 710 711
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
712 713 714 715 716 717 718 719 720
 */
static const int prio_to_weight[40] = {
/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
/* -10 */  9537,  7629,  6103,  4883,  3906,  3125,  2500,  2000,  1600,  1280,
/*   0 */  NICE_0_LOAD /* 1024 */,
/*   1 */          819,   655,   524,   419,   336,   268,   215,   172,   137,
/*  10 */   110,    87,    70,    56,    45,    36,    29,    23,    18,    15,
};

721 722 723 724 725 726 727
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
728
static const u32 prio_to_wmult[40] = {
729 730 731 732 733 734 735 736
/* -20 */     48356,     60446,     75558,     94446,    118058,
/* -15 */    147573,    184467,    230589,    288233,    360285,
/* -10 */    450347,    562979,    703746,    879575,   1099582,
/*  -5 */   1374389,   1717986,   2147483,   2684354,   3355443,
/*   0 */   4194304,   5244160,   6557201,   8196502,  10250518,
/*   5 */  12782640,  16025997,  19976592,  24970740,  31350126,
/*  10 */  39045157,  49367440,  61356675,  76695844,  95443717,
/*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
737
};
738

I
Ingo Molnar 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
756
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
757 758 759 760 761 762 763 764 765 766 767

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
static void __update_curr_load(struct rq *rq, struct load_stat *ls)
{
	if (rq->curr != rq->idle && ls->load.weight) {
		ls->delta_exec += ls->delta_stat;
		ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
		ls->delta_stat = 0;
	}
}

/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
 * total load (rq->ls.load.weight) on the runqueue, while
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
 * This function is called /before/ updating rq->ls.load
 * and when switching tasks.
 */
static void update_curr_load(struct rq *rq, u64 now)
{
	struct load_stat *ls = &rq->ls;
	u64 start;

	start = ls->load_update_start;
	ls->load_update_start = now;
	ls->delta_stat += now - start;
	/*
	 * Stagger updates to ls->delta_fair. Very frequent updates
	 * can be expensive.
	 */
	if (ls->delta_stat >= sysctl_sched_stat_granularity)
		__update_curr_load(rq, ls);
}

static inline void
inc_load(struct rq *rq, const struct task_struct *p, u64 now)
{
	update_curr_load(rq, now);
	update_load_add(&rq->ls.load, p->se.load.weight);
}

static inline void
dec_load(struct rq *rq, const struct task_struct *p, u64 now)
{
	update_curr_load(rq, now);
	update_load_sub(&rq->ls.load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
{
	rq->nr_running++;
	inc_load(rq, p, now);
}

static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
{
	rq->nr_running--;
	dec_load(rq, p, now);
}

834 835
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
836 837 838
	task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
	p->se.wait_runtime = 0;

839
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
840 841 842 843
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
844

I
Ingo Molnar 已提交
845 846 847 848 849 850 851 852
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
853

I
Ingo Molnar 已提交
854 855
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
856 857
}

I
Ingo Molnar 已提交
858 859
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
860
{
I
Ingo Molnar 已提交
861 862 863
	sched_info_queued(p);
	p->sched_class->enqueue_task(rq, p, wakeup, now);
	p->se.on_rq = 1;
864 865
}

I
Ingo Molnar 已提交
866 867
static void
dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
868
{
I
Ingo Molnar 已提交
869 870
	p->sched_class->dequeue_task(rq, p, sleep, now);
	p->se.on_rq = 0;
871 872
}

873
/*
I
Ingo Molnar 已提交
874
 * __normal_prio - return the priority that is based on the static prio
875 876 877
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
878
	return p->static_prio;
879 880
}

881 882 883 884 885 886 887
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
888
static inline int normal_prio(struct task_struct *p)
889 890 891
{
	int prio;

892
	if (task_has_rt_policy(p))
893 894 895 896 897 898 899 900 901 902 903 904 905
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
906
static int effective_prio(struct task_struct *p)
907 908 909 910 911 912 913 914 915 916 917 918
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
919
/*
I
Ingo Molnar 已提交
920
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
921
 */
I
Ingo Molnar 已提交
922
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
923
{
I
Ingo Molnar 已提交
924 925 926 927
	u64 now;

	update_rq_clock(rq);
	now = rq->clock;
928

I
Ingo Molnar 已提交
929 930
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
931

I
Ingo Molnar 已提交
932 933
	enqueue_task(rq, p, wakeup, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
934 935 936
}

/*
I
Ingo Molnar 已提交
937
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
938
 */
I
Ingo Molnar 已提交
939
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
940
{
I
Ingo Molnar 已提交
941 942 943 944
	u64 now;

	update_rq_clock(rq);
	now = rq->clock;
L
Linus Torvalds 已提交
945

I
Ingo Molnar 已提交
946 947
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
948

I
Ingo Molnar 已提交
949 950
	enqueue_task(rq, p, 0, now);
	inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
951 952 953 954 955
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
I
Ingo Molnar 已提交
956 957
static void
deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
L
Linus Torvalds 已提交
958
{
I
Ingo Molnar 已提交
959 960 961 962 963
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep, now);
	dec_nr_running(p, rq, now);
L
Linus Torvalds 已提交
964 965 966 967 968 969
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
970
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
971 972 973 974
{
	return cpu_curr(task_cpu(p)) == p;
}

975 976 977
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
I
Ingo Molnar 已提交
978 979 980 981 982 983 984 985 986
	return cpu_rq(cpu)->ls.load.weight;
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
987 988
}

L
Linus Torvalds 已提交
989
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
990

I
Ingo Molnar 已提交
991
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
992
{
I
Ingo Molnar 已提交
993 994 995 996 997
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
998 999
	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;

I
Ingo Molnar 已提交
1000 1001
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
I
Ingo Molnar 已提交
1002 1003 1004 1005 1006 1007
	if (p->se.sleep_start_fair)
		p->se.sleep_start_fair -= fair_clock_offset;

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1008 1009 1010 1011
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1012
#endif
I
Ingo Molnar 已提交
1013 1014

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1015 1016
}

1017
struct migration_req {
L
Linus Torvalds 已提交
1018 1019
	struct list_head list;

1020
	struct task_struct *task;
L
Linus Torvalds 已提交
1021 1022 1023
	int dest_cpu;

	struct completion done;
1024
};
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1030
static int
1031
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1032
{
1033
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1034 1035 1036 1037 1038

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1039
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1040 1041 1042 1043 1044 1045 1046 1047
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1048

L
Linus Torvalds 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1061
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1062 1063
{
	unsigned long flags;
I
Ingo Molnar 已提交
1064
	int running, on_rq;
1065
	struct rq *rq;
L
Linus Torvalds 已提交
1066 1067

repeat:
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1095
	rq = task_rq_lock(p, &flags);
1096
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1097
	on_rq = p->se.on_rq;
1098 1099 1100 1101 1102 1103 1104 1105 1106
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1107 1108 1109
		cpu_relax();
		goto repeat;
	}
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1120
	if (unlikely(on_rq)) {
1121 1122 1123 1124 1125 1126 1127 1128 1129
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1145
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1157 1158
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1159 1160 1161 1162
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1163
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1164
{
1165
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1166
	unsigned long total = weighted_cpuload(cpu);
1167

1168
	if (type == 0)
I
Ingo Molnar 已提交
1169
		return total;
1170

I
Ingo Molnar 已提交
1171
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1172 1173 1174
}

/*
1175 1176
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1177
 */
N
Nick Piggin 已提交
1178
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1179
{
1180
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1181
	unsigned long total = weighted_cpuload(cpu);
1182

N
Nick Piggin 已提交
1183
	if (type == 0)
I
Ingo Molnar 已提交
1184
		return total;
1185

I
Ingo Molnar 已提交
1186
	return max(rq->cpu_load[type-1], total);
1187 1188 1189 1190 1191 1192 1193
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1194
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1195
	unsigned long total = weighted_cpuload(cpu);
1196 1197
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1198
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1199 1200
}

N
Nick Piggin 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1218 1219 1220 1221
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1238 1239
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1240 1241 1242 1243 1244 1245 1246 1247

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1248
nextgroup:
N
Nick Piggin 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1258
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1259
 */
I
Ingo Molnar 已提交
1260 1261
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1262
{
1263
	cpumask_t tmp;
N
Nick Piggin 已提交
1264 1265 1266 1267
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1268 1269 1270 1271
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1272
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1298

1299
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1300 1301 1302
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1303 1304
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1305 1306
		if (tmp->flags & flag)
			sd = tmp;
1307
	}
N
Nick Piggin 已提交
1308 1309 1310 1311

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1312 1313 1314 1315 1316 1317
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1318 1319 1320

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1321 1322 1323 1324
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1325

1326
		new_cpu = find_idlest_cpu(group, t, cpu);
1327 1328 1329 1330 1331
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1332

1333
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1360
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1361 1362 1363 1364 1365
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1376 1377 1378 1379
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1380
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1381 1382 1383 1384
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1385
		} else {
N
Nick Piggin 已提交
1386
			break;
I
Ingo Molnar 已提交
1387
		}
L
Linus Torvalds 已提交
1388 1389 1390 1391
	}
	return cpu;
}
#else
1392
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1412
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1413 1414 1415 1416
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1417
	struct rq *rq;
L
Linus Torvalds 已提交
1418
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1419
	struct sched_domain *sd, *this_sd = NULL;
1420
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1421 1422 1423 1424 1425 1426 1427 1428
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1429
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1439 1440
	new_cpu = cpu;

L
Linus Torvalds 已提交
1441 1442 1443
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1444 1445 1446 1447 1448 1449 1450 1451
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1452 1453 1454
		}
	}

N
Nick Piggin 已提交
1455
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1456 1457 1458
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1459
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1460
	 */
N
Nick Piggin 已提交
1461 1462 1463
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1464

1465 1466
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1467 1468
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1469

N
Nick Piggin 已提交
1470 1471
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1472 1473
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1474 1475 1476
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1477

L
Linus Torvalds 已提交
1478
			/*
1479 1480 1481
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1482
			 */
1483
			if (sync)
I
Ingo Molnar 已提交
1484
				tl -= current->se.load.weight;
1485 1486

			if ((tl <= load &&
1487
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1488
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1522
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1523 1524 1525 1526 1527 1528 1529 1530
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1531
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1532 1533 1534 1535 1536 1537 1538 1539
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1540 1541
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1552
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1553 1554 1555 1556 1557 1558
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1559
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1560 1561 1562 1563 1564 1565 1566
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
	p->se.delta_exec		= 0;
	p->se.delta_fair_run		= 0;
	p->se.delta_fair_sleep		= 0;
	p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
1579 1580 1581 1582
	p->se.sleep_start_fair		= 0;

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
I
Ingo Molnar 已提交
1593
#endif
N
Nick Piggin 已提交
1594

I
Ingo Molnar 已提交
1595 1596
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1597

1598 1599 1600 1601
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607 1608
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1624 1625 1626 1627 1628 1629

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1630
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1631
	if (likely(sched_info_on()))
1632
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1633
#endif
1634
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1635 1636
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1637
#ifdef CONFIG_PREEMPT
1638
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1639
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1640
#endif
N
Nick Piggin 已提交
1641
	put_cpu();
L
Linus Torvalds 已提交
1642 1643
}

I
Ingo Molnar 已提交
1644 1645 1646 1647 1648 1649
/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
unsigned int __read_mostly sysctl_sched_child_runs_first = 1;

L
Linus Torvalds 已提交
1650 1651 1652 1653 1654 1655 1656
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1657
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1658 1659
{
	unsigned long flags;
I
Ingo Molnar 已提交
1660 1661
	struct rq *rq;
	int this_cpu;
I
Ingo Molnar 已提交
1662
	u64 now;
L
Linus Torvalds 已提交
1663 1664

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1665
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1666
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1667 1668
	update_rq_clock(rq);
	now = rq->clock;
L
Linus Torvalds 已提交
1669 1670 1671

	p->prio = effective_prio(p);

I
Ingo Molnar 已提交
1672 1673 1674 1675
	if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
			(clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
			!current->se.on_rq) {

I
Ingo Molnar 已提交
1676
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1677 1678
	} else {
		/*
I
Ingo Molnar 已提交
1679 1680
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1681
		 */
I
Ingo Molnar 已提交
1682 1683
		p->sched_class->task_new(rq, p, now);
		inc_nr_running(p, rq, now);
L
Linus Torvalds 已提交
1684
	}
I
Ingo Molnar 已提交
1685 1686
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1687 1688
}

1689 1690 1691
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1692 1693
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1694 1695 1696 1697 1698 1699 1700 1701 1702
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1703
 * @notifier: notifier struct to unregister
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1747 1748 1749
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1750
 * @prev: the current task that is being switched out
1751 1752 1753 1754 1755 1756 1757 1758 1759
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1760 1761 1762
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1763
{
1764
	fire_sched_out_preempt_notifiers(prev, next);
1765 1766 1767 1768
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1769 1770
/**
 * finish_task_switch - clean up after a task-switch
1771
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1772 1773
 * @prev: the thread we just switched away from.
 *
1774 1775 1776 1777
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1778 1779 1780 1781 1782 1783
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1784
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1785 1786 1787
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1788
	long prev_state;
L
Linus Torvalds 已提交
1789 1790 1791 1792 1793

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1794
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1795 1796
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1797
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1803
	prev_state = prev->state;
1804 1805
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1806
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1807 1808
	if (mm)
		mmdrop(mm);
1809
	if (unlikely(prev_state == TASK_DEAD)) {
1810 1811 1812
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1813
		 */
1814
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1815
		put_task_struct(prev);
1816
	}
L
Linus Torvalds 已提交
1817 1818 1819 1820 1821 1822
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1823
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1824 1825
	__releases(rq->lock)
{
1826 1827
	struct rq *rq = this_rq();

1828 1829 1830 1831 1832
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1833 1834 1835 1836 1837 1838 1839 1840
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1841
static inline void
1842
context_switch(struct rq *rq, struct task_struct *prev,
1843
	       struct task_struct *next)
L
Linus Torvalds 已提交
1844
{
I
Ingo Molnar 已提交
1845
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1846

1847
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1848 1849
	mm = next->mm;
	oldmm = prev->active_mm;
1850 1851 1852 1853 1854 1855 1856
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1857
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862 1863
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1864
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1865 1866 1867
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1868 1869 1870 1871 1872 1873 1874
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1875
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1876
#endif
L
Linus Torvalds 已提交
1877 1878 1879 1880

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1881 1882 1883 1884 1885 1886 1887
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1911
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1926 1927
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1928

1929
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1939
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1940 1941 1942 1943 1944
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1960
/*
I
Ingo Molnar 已提交
1961 1962
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1963
 */
I
Ingo Molnar 已提交
1964
static void update_cpu_load(struct rq *this_rq)
1965
{
I
Ingo Molnar 已提交
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
	unsigned long total_load = this_rq->ls.load.weight;
	unsigned long this_load =  total_load;
	struct load_stat *ls = &this_rq->ls;
	u64 now = __rq_clock(this_rq);
	int i, scale;

	this_rq->nr_load_updates++;
	if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
		goto do_avg;

	/* Update delta_fair/delta_exec fields first */
	update_curr_load(this_rq, now);

	fair_delta64 = ls->delta_fair + 1;
	ls->delta_fair = 0;

	exec_delta64 = ls->delta_exec + 1;
	ls->delta_exec = 0;

	sample_interval64 = now - ls->load_update_last;
	ls->load_update_last = now;

	if ((s64)sample_interval64 < (s64)TICK_NSEC)
		sample_interval64 = TICK_NSEC;

	if (exec_delta64 > sample_interval64)
		exec_delta64 = sample_interval64;

	idle_delta64 = sample_interval64 - exec_delta64;

	tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
	tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);

	this_load = (unsigned long)tmp64;

do_avg:

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;

		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2015 2016
}

I
Ingo Molnar 已提交
2017 2018
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2019 2020 2021 2022 2023 2024
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2025
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2026 2027 2028
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2029
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2030 2031 2032 2033
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2034
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2050
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2064
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2065 2066 2067 2068
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2069 2070 2071 2072 2073
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2074
	if (unlikely(!spin_trylock(&busiest->lock))) {
2075
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2090
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2091
{
2092
	struct migration_req req;
L
Linus Torvalds 已提交
2093
	unsigned long flags;
2094
	struct rq *rq;
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2105

L
Linus Torvalds 已提交
2106 2107 2108 2109 2110
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2111

L
Linus Torvalds 已提交
2112 2113 2114 2115 2116 2117 2118
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2119 2120
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2121 2122 2123 2124
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2125
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2126
	put_cpu();
N
Nick Piggin 已提交
2127 2128
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2129 2130 2131 2132 2133 2134
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2135 2136
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2137
{
I
Ingo Molnar 已提交
2138 2139
	update_rq_clock(src_rq);
	deactivate_task(src_rq, p, 0, src_rq->clock);
L
Linus Torvalds 已提交
2140
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2141
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2142 2143 2144 2145
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2146
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2147 2148 2149 2150 2151
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2152
static
2153
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2154
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2155
		     int *all_pinned)
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2165 2166 2167 2168
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2169 2170

	/*
I
Ingo Molnar 已提交
2171
	 * Aggressive migration if too many balance attempts have failed:
L
Linus Torvalds 已提交
2172
	 */
I
Ingo Molnar 已提交
2173
	if (sd->nr_balance_failed > sd->cache_nice_tries)
L
Linus Torvalds 已提交
2174 2175 2176 2177 2178
		return 1;

	return 1;
}

I
Ingo Molnar 已提交
2179
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2180
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2181
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2182
		      int *all_pinned, unsigned long *load_moved,
2183
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2184
{
I
Ingo Molnar 已提交
2185 2186 2187
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2188

2189
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2190 2191
		goto out;

2192 2193
	pinned = 1;

L
Linus Torvalds 已提交
2194
	/*
I
Ingo Molnar 已提交
2195
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2196
	 */
I
Ingo Molnar 已提交
2197 2198 2199
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2200
		goto out;
2201 2202 2203 2204 2205
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2206 2207
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2208
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2209 2210 2211
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2212 2213
	}

I
Ingo Molnar 已提交
2214
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2215
	pulled++;
I
Ingo Molnar 已提交
2216
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2217

2218 2219 2220 2221 2222
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2223 2224
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2225 2226
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2227 2228 2229 2230 2231 2232 2233 2234
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2235 2236 2237

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2238
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2239 2240 2241
	return pulled;
}

I
Ingo Molnar 已提交
2242
/*
P
Peter Williams 已提交
2243 2244 2245
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2246 2247 2248 2249
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2250
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2251 2252 2253 2254
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2255
	unsigned long total_load_moved = 0;
2256
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2257 2258

	do {
P
Peter Williams 已提交
2259 2260 2261
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2262
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2263
		class = class->next;
P
Peter Williams 已提交
2264
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2265

P
Peter Williams 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2280
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2281 2282 2283

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2284 2285
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2286 2287 2288
			return 1;

	return 0;
I
Ingo Molnar 已提交
2289 2290
}

L
Linus Torvalds 已提交
2291 2292
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2293 2294
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2295 2296 2297
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2298 2299
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2300 2301 2302
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2303
	unsigned long max_pull;
2304 2305
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2306
	int load_idx;
2307 2308 2309 2310 2311 2312
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2313 2314

	max_load = this_load = total_load = total_pwr = 0;
2315 2316
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2317
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2318
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2319
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2320 2321 2322
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2323 2324

	do {
2325
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2326 2327
		int local_group;
		int i;
2328
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2329
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2330 2331 2332

		local_group = cpu_isset(this_cpu, group->cpumask);

2333 2334 2335
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2336
		/* Tally up the load of all CPUs in the group */
2337
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2338 2339

		for_each_cpu_mask(i, group->cpumask) {
2340 2341 2342 2343 2344 2345
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2346

2347
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2348 2349
				*sd_idle = 0;

L
Linus Torvalds 已提交
2350
			/* Bias balancing toward cpus of our domain */
2351 2352 2353 2354 2355 2356
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2357
				load = target_load(i, load_idx);
2358
			} else
N
Nick Piggin 已提交
2359
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2360 2361

			avg_load += load;
2362
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2363
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2364 2365
		}

2366 2367 2368
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2369 2370
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2371
		 */
2372 2373
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2374 2375 2376 2377
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2378
		total_load += avg_load;
2379
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2380 2381

		/* Adjust by relative CPU power of the group */
2382 2383
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2384

2385
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2386

L
Linus Torvalds 已提交
2387 2388 2389
		if (local_group) {
			this_load = avg_load;
			this = group;
2390 2391 2392
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2393
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2394 2395
			max_load = avg_load;
			busiest = group;
2396 2397
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2398
		}
2399 2400 2401 2402 2403 2404

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2405 2406 2407
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2408 2409 2410 2411 2412 2413 2414 2415 2416

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2417
		/*
2418 2419
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2420 2421
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2422
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2423
			goto group_next;
2424

I
Ingo Molnar 已提交
2425
		/*
2426
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2427 2428 2429 2430 2431
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2432 2433
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2434 2435
			group_min = group;
			min_nr_running = sum_nr_running;
2436 2437
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2438
		}
2439

I
Ingo Molnar 已提交
2440
		/*
2441
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2453
		}
2454 2455
group_next:
#endif
L
Linus Torvalds 已提交
2456 2457 2458
		group = group->next;
	} while (group != sd->groups);

2459
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2460 2461 2462 2463 2464 2465 2466 2467
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2468
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2492 2493

	/* Don't want to pull so many tasks that a group would go idle */
2494
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2495

L
Linus Torvalds 已提交
2496
	/* How much load to actually move to equalise the imbalance */
2497 2498
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2499 2500
			/ SCHED_LOAD_SCALE;

2501 2502 2503 2504 2505 2506
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
I
Ingo Molnar 已提交
2507
	if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2508
		unsigned long tmp, pwr_now, pwr_move;
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2520

I
Ingo Molnar 已提交
2521 2522
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2523
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2533 2534 2535 2536
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2537 2538 2539
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2540 2541
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2542
		if (max_load > tmp)
2543
			pwr_move += busiest->__cpu_power *
2544
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2545 2546

		/* Amount of load we'd add */
2547
		if (max_load * busiest->__cpu_power <
2548
				busiest_load_per_task * SCHED_LOAD_SCALE)
2549 2550
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2551
		else
2552 2553 2554 2555
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2556 2557 2558 2559 2560 2561
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
		if (pwr_move <= pwr_now)
			goto out_balanced;

2562
		*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2563 2564 2565 2566 2567
	}

	return busiest;

out_balanced:
2568
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2569
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2570
		goto ret;
L
Linus Torvalds 已提交
2571

2572 2573 2574 2575 2576
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2577
ret:
L
Linus Torvalds 已提交
2578 2579 2580 2581 2582 2583 2584
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2585
static struct rq *
I
Ingo Molnar 已提交
2586
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2587
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2588
{
2589
	struct rq *busiest = NULL, *rq;
2590
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2591 2592 2593
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2594
		unsigned long wl;
2595 2596 2597 2598

		if (!cpu_isset(i, *cpus))
			continue;

2599
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2600
		wl = weighted_cpuload(i);
2601

I
Ingo Molnar 已提交
2602
		if (rq->nr_running == 1 && wl > imbalance)
2603
			continue;
L
Linus Torvalds 已提交
2604

I
Ingo Molnar 已提交
2605 2606
		if (wl > max_load) {
			max_load = wl;
2607
			busiest = rq;
L
Linus Torvalds 已提交
2608 2609 2610 2611 2612 2613
		}
	}

	return busiest;
}

2614 2615 2616 2617 2618 2619
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2620 2621 2622 2623
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2624
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2625
			struct sched_domain *sd, enum cpu_idle_type idle,
2626
			int *balance)
L
Linus Torvalds 已提交
2627
{
P
Peter Williams 已提交
2628
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2629 2630
	struct sched_group *group;
	unsigned long imbalance;
2631
	struct rq *busiest;
2632
	cpumask_t cpus = CPU_MASK_ALL;
2633
	unsigned long flags;
N
Nick Piggin 已提交
2634

2635 2636 2637
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2638
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2639
	 * portraying it as CPU_NOT_IDLE.
2640
	 */
I
Ingo Molnar 已提交
2641
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2642
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2643
		sd_idle = 1;
L
Linus Torvalds 已提交
2644 2645 2646

	schedstat_inc(sd, lb_cnt[idle]);

2647 2648
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2649 2650
				   &cpus, balance);

2651
	if (*balance == 0)
2652 2653
		goto out_balanced;

L
Linus Torvalds 已提交
2654 2655 2656 2657 2658
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2659
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2660 2661 2662 2663 2664
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2665
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2666 2667 2668

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2669
	ld_moved = 0;
L
Linus Torvalds 已提交
2670 2671 2672 2673
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2674
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2675 2676
		 * correctly treated as an imbalance.
		 */
2677
		local_irq_save(flags);
N
Nick Piggin 已提交
2678
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2679
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2680
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2681
		double_rq_unlock(this_rq, busiest);
2682
		local_irq_restore(flags);
2683

2684 2685 2686
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2687
		if (ld_moved && this_cpu != smp_processor_id())
2688 2689
			resched_cpu(this_cpu);

2690
		/* All tasks on this runqueue were pinned by CPU affinity */
2691 2692 2693 2694
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2695
			goto out_balanced;
2696
		}
L
Linus Torvalds 已提交
2697
	}
2698

P
Peter Williams 已提交
2699
	if (!ld_moved) {
L
Linus Torvalds 已提交
2700 2701 2702 2703 2704
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2705
			spin_lock_irqsave(&busiest->lock, flags);
2706 2707 2708 2709 2710

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2711
				spin_unlock_irqrestore(&busiest->lock, flags);
2712 2713 2714 2715
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2716 2717 2718
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2719
				active_balance = 1;
L
Linus Torvalds 已提交
2720
			}
2721
			spin_unlock_irqrestore(&busiest->lock, flags);
2722
			if (active_balance)
L
Linus Torvalds 已提交
2723 2724 2725 2726 2727 2728
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2729
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2730
		}
2731
	} else
L
Linus Torvalds 已提交
2732 2733
		sd->nr_balance_failed = 0;

2734
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2735 2736
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2737 2738 2739 2740 2741 2742 2743 2744 2745
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2746 2747
	}

P
Peter Williams 已提交
2748
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2749
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2750
		return -1;
P
Peter Williams 已提交
2751
	return ld_moved;
L
Linus Torvalds 已提交
2752 2753 2754 2755

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2756
	sd->nr_balance_failed = 0;
2757 2758

out_one_pinned:
L
Linus Torvalds 已提交
2759
	/* tune up the balancing interval */
2760 2761
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2762 2763
		sd->balance_interval *= 2;

2764
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2765
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2766
		return -1;
L
Linus Torvalds 已提交
2767 2768 2769 2770 2771 2772 2773
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2774
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2775 2776
 * this_rq is locked.
 */
2777
static int
2778
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2779 2780
{
	struct sched_group *group;
2781
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2782
	unsigned long imbalance;
P
Peter Williams 已提交
2783
	int ld_moved = 0;
N
Nick Piggin 已提交
2784
	int sd_idle = 0;
2785
	int all_pinned = 0;
2786
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2787

2788 2789 2790 2791
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2792
	 * portraying it as CPU_NOT_IDLE.
2793 2794 2795
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2796
		sd_idle = 1;
L
Linus Torvalds 已提交
2797

I
Ingo Molnar 已提交
2798
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2799
redo:
I
Ingo Molnar 已提交
2800
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2801
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2802
	if (!group) {
I
Ingo Molnar 已提交
2803
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2804
		goto out_balanced;
L
Linus Torvalds 已提交
2805 2806
	}

I
Ingo Molnar 已提交
2807
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2808
				&cpus);
N
Nick Piggin 已提交
2809
	if (!busiest) {
I
Ingo Molnar 已提交
2810
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2811
		goto out_balanced;
L
Linus Torvalds 已提交
2812 2813
	}

N
Nick Piggin 已提交
2814 2815
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2816
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2817

P
Peter Williams 已提交
2818
	ld_moved = 0;
2819 2820 2821
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
P
Peter Williams 已提交
2822
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2823 2824
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2825
		spin_unlock(&busiest->lock);
2826

2827
		if (unlikely(all_pinned)) {
2828 2829 2830 2831
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2832 2833
	}

P
Peter Williams 已提交
2834
	if (!ld_moved) {
I
Ingo Molnar 已提交
2835
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2836 2837
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2838 2839
			return -1;
	} else
2840
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2841

P
Peter Williams 已提交
2842
	return ld_moved;
2843 2844

out_balanced:
I
Ingo Molnar 已提交
2845
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2846
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2847
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2848
		return -1;
2849
	sd->nr_balance_failed = 0;
2850

2851
	return 0;
L
Linus Torvalds 已提交
2852 2853 2854 2855 2856 2857
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2858
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2859 2860
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2861 2862
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2863 2864

	for_each_domain(this_cpu, sd) {
2865 2866 2867 2868 2869 2870
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2871
			/* If we've pulled tasks over stop searching: */
2872
			pulled_task = load_balance_newidle(this_cpu,
2873 2874 2875 2876 2877 2878 2879
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2880
	}
I
Ingo Molnar 已提交
2881
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2882 2883 2884 2885 2886
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2887
	}
L
Linus Torvalds 已提交
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2898
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2899
{
2900
	int target_cpu = busiest_rq->push_cpu;
2901 2902
	struct sched_domain *sd;
	struct rq *target_rq;
2903

2904
	/* Is there any task to move? */
2905 2906 2907 2908
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2909 2910

	/*
2911 2912 2913
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2914
	 */
2915
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2916

2917 2918 2919 2920
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
2921
	for_each_domain(target_cpu, sd) {
2922
		if ((sd->flags & SD_LOAD_BALANCE) &&
2923
		    cpu_isset(busiest_cpu, sd->span))
2924
				break;
2925
	}
2926

2927 2928
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2929

P
Peter Williams 已提交
2930 2931
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2932 2933 2934 2935
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2936
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2937 2938
}

2939 2940 2941 2942 2943 2944 2945 2946 2947
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2948
/*
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2959
 *
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3016 3017 3018 3019 3020
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
3021
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3022
{
3023 3024
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3025 3026
	unsigned long interval;
	struct sched_domain *sd;
3027
	/* Earliest time when we have to do rebalance again */
3028
	unsigned long next_balance = jiffies + 60*HZ;
L
Linus Torvalds 已提交
3029

3030
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3031 3032 3033 3034
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3035
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3036 3037 3038 3039 3040 3041
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3042 3043 3044
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3045

3046 3047 3048 3049 3050
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3051
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3052
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3053 3054
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3055 3056 3057
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3058
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3059
			}
3060
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3061
		}
3062 3063 3064
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3065 3066
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
3067 3068 3069 3070 3071 3072 3073 3074

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3075
	}
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
	rq->next_balance = next_balance;
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3086 3087 3088 3089
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3090

I
Ingo Molnar 已提交
3091
	rebalance_domains(this_cpu, idle);
3092 3093 3094 3095 3096 3097 3098

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3099 3100
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3101 3102 3103 3104
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3105
		cpu_clear(this_cpu, cpus);
3106 3107 3108 3109 3110 3111 3112 3113 3114
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

I
Ingo Molnar 已提交
3115
			rebalance_domains(balance_cpu, SCHED_IDLE);
3116 3117

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3118 3119
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3132
static inline void trigger_load_balance(struct rq *rq, int cpu)
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3184
}
I
Ingo Molnar 已提交
3185 3186 3187

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3188 3189 3190
/*
 * on UP we do not need to balance between CPUs:
 */
3191
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3192 3193
{
}
I
Ingo Molnar 已提交
3194 3195 3196 3197 3198 3199

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3200
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3201 3202 3203 3204 3205 3206
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3207 3208 3209 3210 3211 3212 3213
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3214 3215
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3216
 */
3217
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3218 3219
{
	unsigned long flags;
3220 3221
	u64 ns, delta_exec;
	struct rq *rq;
3222

3223 3224 3225
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3226 3227
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3228 3229 3230 3231
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3232

L
Linus Torvalds 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3267
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3297
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3320 3321 3322
	struct task_struct *curr = rq->curr;

	spin_lock(&rq->lock);
3323
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3324 3325 3326
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3327

3328
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3329 3330
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3331
#endif
L
Linus Torvalds 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3341 3342
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3343 3344 3345 3346
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3347 3348
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3349 3350 3351 3352 3353 3354 3355 3356
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3357 3358
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3359 3360 3361
	/*
	 * Is the spinlock portion underflowing?
	 */
3362 3363 3364 3365
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3366 3367 3368 3369 3370 3371 3372
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3373
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3374
 */
I
Ingo Molnar 已提交
3375
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3376
{
I
Ingo Molnar 已提交
3377 3378 3379 3380 3381 3382 3383
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3384

I
Ingo Molnar 已提交
3385 3386 3387 3388 3389
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3390 3391 3392 3393 3394
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3395 3396 3397
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3398 3399
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3411 3412

	/*
I
Ingo Molnar 已提交
3413 3414
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3415
	 */
I
Ingo Molnar 已提交
3416 3417 3418 3419
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
		p = fair_sched_class.pick_next_task(rq, now);
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3420 3421
	}

I
Ingo Molnar 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	class = sched_class_highest;
	for ( ; ; ) {
		p = class->pick_next_task(rq, now);
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3434

I
Ingo Molnar 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	u64 now;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3458 3459

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3460
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3461
	now = __rq_clock(rq);
L
Linus Torvalds 已提交
3462 3463 3464

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3465
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3466
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3467
		} else {
I
Ingo Molnar 已提交
3468
			deactivate_task(rq, prev, 1, now);
L
Linus Torvalds 已提交
3469
		}
I
Ingo Molnar 已提交
3470
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3471 3472
	}

I
Ingo Molnar 已提交
3473
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3474 3475
		idle_balance(cpu, rq);

I
Ingo Molnar 已提交
3476 3477
	prev->sched_class->put_prev_task(rq, prev, now);
	next = pick_next_task(rq, prev, now);
L
Linus Torvalds 已提交
3478 3479

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3480

L
Linus Torvalds 已提交
3481 3482 3483 3484 3485
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3486
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3487 3488 3489
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3490 3491 3492
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3493
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3494
	}
L
Linus Torvalds 已提交
3495 3496 3497 3498 3499 3500 3501 3502
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3503
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3518
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3546
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3558
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3588 3589
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3590
{
3591
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
	struct list_head *tmp, *next;

	list_for_each_safe(tmp, next, &q->task_list) {
3610 3611 3612
		wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3613
		if (curr->func(curr, mode, sync, key) &&
3614
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3624
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3625 3626
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3627
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3646
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3658 3659
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3703

L
Linus Torvalds 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3822 3823 3824 3825 3826
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3827
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3828
}
L
Linus Torvalds 已提交
3829

I
Ingo Molnar 已提交
3830 3831 3832 3833 3834 3835 3836
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3837

I
Ingo Molnar 已提交
3838
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3839
{
I
Ingo Molnar 已提交
3840 3841 3842 3843
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3844 3845 3846

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3847
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3848
	schedule();
I
Ingo Molnar 已提交
3849
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3850 3851 3852
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3853
long __sched
I
Ingo Molnar 已提交
3854
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3855
{
I
Ingo Molnar 已提交
3856 3857 3858 3859
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3860 3861 3862

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3863
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3864
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3865
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3866 3867 3868 3869 3870

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3871
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3872
{
I
Ingo Molnar 已提交
3873 3874 3875 3876
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3877 3878 3879

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3880
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3881
	schedule();
I
Ingo Molnar 已提交
3882
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3883 3884 3885
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3886
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3887
{
I
Ingo Molnar 已提交
3888 3889 3890 3891
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3892 3893 3894

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3895
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3896
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3897
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3898 3899 3900 3901 3902

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3915
void rt_mutex_setprio(struct task_struct *p, int prio)
3916 3917
{
	unsigned long flags;
I
Ingo Molnar 已提交
3918
	int oldprio, on_rq;
3919
	struct rq *rq;
I
Ingo Molnar 已提交
3920
	u64 now;
3921 3922 3923 3924

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3925 3926
	update_rq_clock(rq);
	now = rq->clock;
3927

3928
	oldprio = p->prio;
I
Ingo Molnar 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937
	on_rq = p->se.on_rq;
	if (on_rq)
		dequeue_task(rq, p, 0, now);

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3938 3939
	p->prio = prio;

I
Ingo Molnar 已提交
3940 3941
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
3942 3943
		/*
		 * Reschedule if we are currently running on this runqueue and
3944 3945
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3946
		 */
3947 3948 3949
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3950 3951 3952
		} else {
			check_preempt_curr(rq, p);
		}
3953 3954 3955 3956 3957 3958
	}
	task_rq_unlock(rq, &flags);
}

#endif

3959
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3960
{
I
Ingo Molnar 已提交
3961
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3962
	unsigned long flags;
3963
	struct rq *rq;
I
Ingo Molnar 已提交
3964
	u64 now;
L
Linus Torvalds 已提交
3965 3966 3967 3968 3969 3970 3971 3972

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3973 3974
	update_rq_clock(rq);
	now = rq->clock;
L
Linus Torvalds 已提交
3975 3976 3977 3978
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3979
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3980
	 */
3981
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3982 3983 3984
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3985 3986 3987 3988
	on_rq = p->se.on_rq;
	if (on_rq) {
		dequeue_task(rq, p, 0, now);
		dec_load(rq, p, now);
3989
	}
L
Linus Torvalds 已提交
3990 3991

	p->static_prio = NICE_TO_PRIO(nice);
3992
	set_load_weight(p);
3993 3994 3995
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3996

I
Ingo Molnar 已提交
3997 3998 3999
	if (on_rq) {
		enqueue_task(rq, p, 0, now);
		inc_load(rq, p, now);
L
Linus Torvalds 已提交
4000
		/*
4001 4002
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4003
		 */
4004
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4005 4006 4007 4008 4009 4010 4011
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4012 4013 4014 4015 4016
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4017
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4018
{
4019 4020
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4021

M
Matt Mackall 已提交
4022 4023 4024 4025
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4037
	long nice, retval;
L
Linus Torvalds 已提交
4038 4039 4040 4041 4042 4043

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4044 4045
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4046 4047 4048 4049 4050 4051 4052 4053 4054
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4055 4056 4057
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4076
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4077 4078 4079 4080 4081 4082 4083 4084
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4085
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4104
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4105 4106 4107 4108 4109 4110 4111 4112
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4113
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4114 4115 4116 4117 4118
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4119 4120
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4121
{
I
Ingo Molnar 已提交
4122
	BUG_ON(p->se.on_rq);
4123

L
Linus Torvalds 已提交
4124
	p->policy = policy;
I
Ingo Molnar 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4137
	p->rt_priority = prio;
4138 4139 4140
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4141
	set_load_weight(p);
L
Linus Torvalds 已提交
4142 4143 4144
}

/**
4145
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4146 4147 4148
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4149
 *
4150
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4151
 */
I
Ingo Molnar 已提交
4152 4153
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4154
{
I
Ingo Molnar 已提交
4155
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4156
	unsigned long flags;
4157
	struct rq *rq;
L
Linus Torvalds 已提交
4158

4159 4160
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4161 4162 4163 4164 4165
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4166 4167
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4168
		return -EINVAL;
L
Linus Torvalds 已提交
4169 4170
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4171 4172
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4173 4174
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4175
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4176
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4177
		return -EINVAL;
4178
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4179 4180
		return -EINVAL;

4181 4182 4183 4184
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4185
		if (rt_policy(policy)) {
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4202 4203 4204 4205 4206 4207
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4208

4209 4210 4211 4212 4213
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4214 4215 4216 4217

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4218 4219 4220 4221 4222
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4223 4224 4225 4226
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4227
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4228 4229 4230
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4231 4232
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4233 4234
		goto recheck;
	}
I
Ingo Molnar 已提交
4235
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4236 4237 4238 4239
	if (on_rq) {
		update_rq_clock(rq);
		deactivate_task(rq, p, 0, rq->clock);
	}
L
Linus Torvalds 已提交
4240
	oldprio = p->prio;
I
Ingo Molnar 已提交
4241 4242 4243
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4244 4245
		/*
		 * Reschedule if we are currently running on this runqueue and
4246 4247
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4248
		 */
4249 4250 4251
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4252 4253 4254
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4255
	}
4256 4257 4258
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4259 4260
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4261 4262 4263 4264
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4265 4266
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4267 4268 4269
{
	struct sched_param lparam;
	struct task_struct *p;
4270
	int retval;
L
Linus Torvalds 已提交
4271 4272 4273 4274 4275

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4276 4277 4278

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4279
	p = find_process_by_pid(pid);
4280 4281 4282
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4283

L
Linus Torvalds 已提交
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4296 4297 4298 4299
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4319
	struct task_struct *p;
L
Linus Torvalds 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4347
	struct task_struct *p;
L
Linus Torvalds 已提交
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4382 4383
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4384

4385
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4386 4387 4388 4389 4390
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4391
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4408 4409 4410 4411
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4412 4413 4414 4415 4416 4417
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4418
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4459
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4460 4461 4462
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4463
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4464 4465
EXPORT_SYMBOL(cpu_online_map);

4466
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4467
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4468 4469 4470 4471
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4472
	struct task_struct *p;
L
Linus Torvalds 已提交
4473 4474
	int retval;

4475
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4476 4477 4478 4479 4480 4481 4482
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4483 4484 4485 4486
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4487
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4488 4489 4490

out_unlock:
	read_unlock(&tasklist_lock);
4491
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4492

4493
	return retval;
L
Linus Torvalds 已提交
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4524 4525
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4526 4527 4528
 */
asmlinkage long sys_sched_yield(void)
{
4529
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4530 4531

	schedstat_inc(rq, yld_cnt);
I
Ingo Molnar 已提交
4532
	if (unlikely(rq->nr_running == 1))
L
Linus Torvalds 已提交
4533
		schedstat_inc(rq, yld_act_empty);
I
Ingo Molnar 已提交
4534 4535
	else
		current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4536 4537 4538 4539 4540 4541

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4542
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4543 4544 4545 4546 4547 4548 4549 4550
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4551
static void __cond_resched(void)
L
Linus Torvalds 已提交
4552
{
4553 4554 4555
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4556 4557 4558 4559 4560
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4561 4562 4563 4564 4565 4566 4567 4568 4569
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4570 4571
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4587
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4588
{
J
Jan Kara 已提交
4589 4590
	int ret = 0;

L
Linus Torvalds 已提交
4591 4592 4593
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4594
		ret = 1;
L
Linus Torvalds 已提交
4595 4596
		spin_lock(lock);
	}
4597
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4598
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4599 4600 4601
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4602
		ret = 1;
L
Linus Torvalds 已提交
4603 4604
		spin_lock(lock);
	}
J
Jan Kara 已提交
4605
	return ret;
L
Linus Torvalds 已提交
4606 4607 4608 4609 4610 4611 4612
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4613
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4614
		local_bh_enable();
L
Linus Torvalds 已提交
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4626
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4645
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4646

4647
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4648 4649 4650
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4651
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4652 4653 4654 4655 4656
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4657
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4658 4659
	long ret;

4660
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4661 4662 4663
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4664
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4685
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4686
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4710
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4711
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4728
	struct task_struct *p;
L
Linus Torvalds 已提交
4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4745
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4746
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4747 4748 4749 4750 4751 4752 4753 4754 4755
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4756
static const char stat_nam[] = "RSDTtZX";
4757 4758

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4759 4760
{
	unsigned long free = 0;
4761
	unsigned state;
L
Linus Torvalds 已提交
4762 4763

	state = p->state ? __ffs(p->state) + 1 : 0;
4764 4765
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4766
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4767
	if (state == TASK_RUNNING)
4768
		printk(" running  ");
L
Linus Torvalds 已提交
4769
	else
4770
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4771 4772
#else
	if (state == TASK_RUNNING)
4773
		printk("  running task    ");
L
Linus Torvalds 已提交
4774 4775 4776 4777 4778
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4779
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4780 4781
		while (!*n)
			n++;
4782
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4783 4784
	}
#endif
4785
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4786 4787 4788 4789 4790

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4791
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4792
{
4793
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4794

4795 4796 4797
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4798
#else
4799 4800
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4801 4802 4803 4804 4805 4806 4807 4808
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4809
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4810
			show_task(p);
L
Linus Torvalds 已提交
4811 4812
	} while_each_thread(g, p);

4813 4814
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4815 4816 4817
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4818
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4819 4820 4821 4822 4823
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4824 4825
}

I
Ingo Molnar 已提交
4826 4827
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4828
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4829 4830
}

4831 4832 4833 4834 4835 4836 4837 4838
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4839
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4840
{
4841
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4842 4843
	unsigned long flags;

I
Ingo Molnar 已提交
4844 4845 4846
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4847
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4848
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4849
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4850 4851 4852

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4853 4854 4855
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4856 4857 4858 4859
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4860
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4861
#else
A
Al Viro 已提交
4862
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4863
#endif
I
Ingo Molnar 已提交
4864 4865 4866 4867
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
4891
	const unsigned long gran_limit = 100000000;
I
Ingo Molnar 已提交
4892 4893 4894 4895 4896 4897 4898 4899 4900

	sysctl_sched_granularity *= factor;
	if (sysctl_sched_granularity > gran_limit)
		sysctl_sched_granularity = gran_limit;

	sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
	sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
}

L
Linus Torvalds 已提交
4901 4902 4903 4904
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4905
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4927
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4928
{
4929
	struct migration_req req;
L
Linus Torvalds 已提交
4930
	unsigned long flags;
4931
	struct rq *rq;
4932
	int ret = 0;
L
Linus Torvalds 已提交
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4955

L
Linus Torvalds 已提交
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4968 4969
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4970
 */
4971
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4972
{
4973
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4974
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4975 4976

	if (unlikely(cpu_is_offline(dest_cpu)))
4977
		return ret;
L
Linus Torvalds 已提交
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4990
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4991 4992 4993 4994
	if (on_rq) {
		update_rq_clock(rq_src);
		deactivate_task(rq_src, p, 0, rq_src->clock);
	}
L
Linus Torvalds 已提交
4995
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4996 4997 4998
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4999
	}
5000
	ret = 1;
L
Linus Torvalds 已提交
5001 5002
out:
	double_rq_unlock(rq_src, rq_dest);
5003
	return ret;
L
Linus Torvalds 已提交
5004 5005 5006 5007 5008 5009 5010
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5011
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5012 5013
{
	int cpu = (long)data;
5014
	struct rq *rq;
L
Linus Torvalds 已提交
5015 5016 5017 5018 5019 5020

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5021
		struct migration_req *req;
L
Linus Torvalds 已提交
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5044
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5045 5046
		list_del_init(head->next);

N
Nick Piggin 已提交
5047 5048 5049
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5068 5069 5070 5071
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5072
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5073
{
5074
	unsigned long flags;
L
Linus Torvalds 已提交
5075
	cpumask_t mask;
5076 5077
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5078

5079
restart:
L
Linus Torvalds 已提交
5080 5081
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5082
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5083 5084 5085 5086
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5087
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5088 5089 5090

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5091 5092 5093
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5094
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5095 5096 5097 5098 5099 5100

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5101
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5102 5103
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5104
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5105
	}
5106
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5107
		goto restart;
L
Linus Torvalds 已提交
5108 5109 5110 5111 5112 5113 5114 5115 5116
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5117
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5118
{
5119
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5133
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5134 5135 5136

	write_lock_irq(&tasklist_lock);

5137 5138
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5139 5140
			continue;

5141 5142 5143
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5144 5145 5146 5147

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5148 5149
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5150
 * It does so by boosting its priority to highest possible and adding it to
5151
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5152 5153 5154
 */
void sched_idle_next(void)
{
5155
	int this_cpu = smp_processor_id();
5156
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5157 5158 5159 5160
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5161
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5162

5163 5164 5165
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5166 5167 5168
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5169
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5170 5171

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5172
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5173 5174 5175 5176

	spin_unlock_irqrestore(&rq->lock, flags);
}

5177 5178
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5192
/* called under rq->lock with disabled interrupts */
5193
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5194
{
5195
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5196 5197

	/* Must be exiting, otherwise would be on tasklist. */
5198
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5199 5200

	/* Cannot have done final schedule yet: would have vanished. */
5201
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5202

5203
	get_task_struct(p);
L
Linus Torvalds 已提交
5204 5205 5206 5207 5208

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5209
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5210
	 */
5211
	spin_unlock(&rq->lock);
5212
	move_task_off_dead_cpu(dead_cpu, p);
5213
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5214

5215
	put_task_struct(p);
L
Linus Torvalds 已提交
5216 5217 5218 5219 5220
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5221
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5222
	struct task_struct *next;
5223

I
Ingo Molnar 已提交
5224 5225 5226
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5227 5228
		update_rq_clock(rq);
		next = pick_next_task(rq, rq->curr, rq->clock);
I
Ingo Molnar 已提交
5229 5230 5231
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5232

L
Linus Torvalds 已提交
5233 5234 5235 5236
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5237 5238 5239
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5240 5241 5242 5243
	{
		.procname	= "sched_domain",
		.mode		= 0755,
	},
5244 5245 5246 5247
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5248 5249 5250 5251 5252
	{
		.procname	= "kernel",
		.mode		= 0755,
		.child		= sd_ctl_dir,
	},
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5268
set_table_entry(struct ctl_table *entry,
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5284
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5285
		sizeof(long), 0644, proc_doulongvec_minmax);
5286
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5287
		sizeof(long), 0644, proc_doulongvec_minmax);
5288
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5289
		sizeof(int), 0644, proc_dointvec_minmax);
5290
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5291
		sizeof(int), 0644, proc_dointvec_minmax);
5292
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5293
		sizeof(int), 0644, proc_dointvec_minmax);
5294
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5295
		sizeof(int), 0644, proc_dointvec_minmax);
5296
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5297
		sizeof(int), 0644, proc_dointvec_minmax);
5298
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5299
		sizeof(int), 0644, proc_dointvec_minmax);
5300
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5301
		sizeof(int), 0644, proc_dointvec_minmax);
5302
	set_table_entry(&table[10], "cache_nice_tries",
5303 5304
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5305
	set_table_entry(&table[12], "flags", &sd->flags,
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
		entry->mode = 0755;
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5357 5358 5359 5360
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5361 5362
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5363 5364
{
	struct task_struct *p;
5365
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5366
	unsigned long flags;
5367
	struct rq *rq;
L
Linus Torvalds 已提交
5368 5369

	switch (action) {
5370 5371 5372 5373
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5374
	case CPU_UP_PREPARE:
5375
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5376
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5377 5378 5379 5380 5381
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5382
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5383 5384 5385
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5386

L
Linus Torvalds 已提交
5387
	case CPU_ONLINE:
5388
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5389 5390 5391
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5392

L
Linus Torvalds 已提交
5393 5394
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5395
	case CPU_UP_CANCELED_FROZEN:
5396 5397
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5398
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5399 5400
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5401 5402 5403
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5404

L
Linus Torvalds 已提交
5405
	case CPU_DEAD:
5406
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5407 5408 5409 5410 5411 5412
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5413 5414
		update_rq_clock(rq);
		deactivate_task(rq, rq->idle, 0, rq->clock);
L
Linus Torvalds 已提交
5415
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5416 5417
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5418 5419 5420 5421 5422 5423
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5424
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5425 5426 5427
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5428 5429
			struct migration_req *req;

L
Linus Torvalds 已提交
5430
			req = list_entry(rq->migration_queue.next,
5431
					 struct migration_req, list);
L
Linus Torvalds 已提交
5432 5433 5434 5435 5436 5437
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5438 5439 5440
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5441 5442 5443 5444 5445 5446 5447
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5448
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5449 5450 5451 5452 5453 5454 5455
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5456
	int err;
5457 5458

	/* Start one for the boot CPU: */
5459 5460
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5461 5462
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5463

L
Linus Torvalds 已提交
5464 5465 5466 5467 5468
	return 0;
}
#endif

#ifdef CONFIG_SMP
5469 5470 5471 5472 5473

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5474
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5475 5476 5477 5478 5479
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5480 5481 5482 5483 5484
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5504 5505
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5506 5507 5508 5509 5510 5511
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5512 5513
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5514
		if (!cpu_isset(cpu, group->cpumask))
5515 5516
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5529
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5530
				printk("\n");
5531 5532
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5555 5556
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5557 5558 5559

		level++;
		sd = sd->parent;
5560 5561
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5562

5563 5564 5565
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5566 5567 5568 5569

	} while (sd);
}
#else
5570
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5571 5572
#endif

5573
static int sd_degenerate(struct sched_domain *sd)
5574 5575 5576 5577 5578 5579 5580 5581
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5582 5583 5584
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5598 5599
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5618 5619 5620
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5621 5622 5623 5624 5625 5626 5627
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5628 5629 5630 5631
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5632
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5633
{
5634
	struct rq *rq = cpu_rq(cpu);
5635 5636 5637 5638 5639 5640 5641
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5642
		if (sd_parent_degenerate(tmp, parent)) {
5643
			tmp->parent = parent->parent;
5644 5645 5646
			if (parent->parent)
				parent->parent->child = tmp;
		}
5647 5648
	}

5649
	if (sd && sd_degenerate(sd)) {
5650
		sd = sd->parent;
5651 5652 5653
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5654 5655 5656

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5657
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5658 5659 5660
}

/* cpus with isolated domains */
5661
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5679 5680 5681 5682
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5683 5684 5685 5686 5687
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5688
static void
5689 5690 5691
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5692 5693 5694 5695 5696 5697
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5698 5699
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5700 5701 5702 5703 5704 5705
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5706
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5707 5708

		for_each_cpu_mask(j, span) {
5709
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5724
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5725

5726
#ifdef CONFIG_NUMA
5727

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5780 5781
	cpumask_t span, nodemask;
	int i;
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5792

5793 5794 5795 5796 5797 5798 5799 5800
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5801
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5802

5803
/*
5804
 * SMT sched-domains:
5805
 */
L
Linus Torvalds 已提交
5806 5807
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5808
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5809

5810 5811
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5812
{
5813 5814
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5815 5816 5817 5818
	return cpu;
}
#endif

5819 5820 5821
/*
 * multi-core sched-domains:
 */
5822 5823
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5824
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5825 5826 5827
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5828 5829
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5830
{
5831
	int group;
5832 5833
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5834 5835 5836 5837
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5838 5839
}
#elif defined(CONFIG_SCHED_MC)
5840 5841
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5842
{
5843 5844
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5845 5846 5847 5848
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5849
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5850
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5851

5852 5853
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5854
{
5855
	int group;
5856
#ifdef CONFIG_SCHED_MC
5857
	cpumask_t mask = cpu_coregroup_map(cpu);
5858
	cpus_and(mask, mask, *cpu_map);
5859
	group = first_cpu(mask);
5860
#elif defined(CONFIG_SCHED_SMT)
5861 5862
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5863
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5864
#else
5865
	group = cpu;
L
Linus Torvalds 已提交
5866
#endif
5867 5868 5869
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5870 5871 5872 5873
}

#ifdef CONFIG_NUMA
/*
5874 5875 5876
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5877
 */
5878
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5879
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5880

5881
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5882
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5883

5884 5885
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5886
{
5887 5888 5889 5890 5891 5892 5893 5894 5895
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5896
}
5897

5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5918
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5919 5920 5921 5922 5923
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5924 5925
#endif

5926
#ifdef CONFIG_NUMA
5927 5928 5929
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5930
	int cpu, i;
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5961 5962 5963 5964 5965
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5966

5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5993 5994
	sd->groups->__cpu_power = 0;

5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6005
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6006 6007 6008 6009 6010 6011 6012 6013
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6014
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6015 6016 6017 6018
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6019
/*
6020 6021
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6022
 */
6023
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6024 6025
{
	int i;
6026 6027
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6028
	int sd_allnodes = 0;
6029 6030 6031 6032

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6033
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6034
					   GFP_KERNEL);
6035 6036
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6037
		return -ENOMEM;
6038 6039 6040
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6041 6042

	/*
6043
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6044
	 */
6045
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6046 6047 6048
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6049
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6050 6051

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6052 6053
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6054 6055 6056
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6057
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6058
			p = sd;
6059
			sd_allnodes = 1;
6060 6061 6062
		} else
			p = NULL;

L
Linus Torvalds 已提交
6063 6064
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6065 6066
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6067 6068
		if (p)
			p->child = sd;
6069
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6070 6071 6072 6073 6074 6075 6076
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6077 6078
		if (p)
			p->child = sd;
6079
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6080

6081 6082 6083 6084 6085 6086 6087
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6088
		p->child = sd;
6089
		cpu_to_core_group(i, cpu_map, &sd->groups);
6090 6091
#endif

L
Linus Torvalds 已提交
6092 6093 6094 6095 6096
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6097
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6098
		sd->parent = p;
6099
		p->child = sd;
6100
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6101 6102 6103 6104 6105
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6106
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6107
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6108
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6109 6110 6111
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6112 6113
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6114 6115 6116
	}
#endif

6117 6118 6119 6120 6121 6122 6123
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6124 6125
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6126 6127 6128
	}
#endif

L
Linus Torvalds 已提交
6129 6130 6131 6132
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6133
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6134 6135 6136
		if (cpus_empty(nodemask))
			continue;

6137
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6138 6139 6140 6141
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6142
	if (sd_allnodes)
I
Ingo Molnar 已提交
6143 6144
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6155 6156
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6157
			continue;
6158
		}
6159 6160 6161 6162

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6163
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6164 6165 6166 6167 6168
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6169 6170 6171
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6172

6173 6174 6175
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6176
		sg->__cpu_power = 0;
6177
		sg->cpumask = nodemask;
6178
		sg->next = sg;
6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6197 6198
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6199 6200 6201
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6202
				goto error;
6203
			}
6204
			sg->__cpu_power = 0;
6205
			sg->cpumask = tmp;
6206
			sg->next = prev->next;
6207 6208 6209 6210 6211
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6212 6213 6214
#endif

	/* Calculate CPU power for physical packages and nodes */
6215
#ifdef CONFIG_SCHED_SMT
6216
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6217 6218
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6219
		init_sched_groups_power(i, sd);
6220
	}
L
Linus Torvalds 已提交
6221
#endif
6222
#ifdef CONFIG_SCHED_MC
6223
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6224 6225
		struct sched_domain *sd = &per_cpu(core_domains, i);

6226
		init_sched_groups_power(i, sd);
6227 6228
	}
#endif
6229

6230
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6231 6232
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6233
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6234 6235
	}

6236
#ifdef CONFIG_NUMA
6237 6238
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6239

6240 6241
	if (sd_allnodes) {
		struct sched_group *sg;
6242

6243
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6244 6245
		init_numa_sched_groups_power(sg);
	}
6246 6247
#endif

L
Linus Torvalds 已提交
6248
	/* Attach the domains */
6249
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6250 6251 6252
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6253 6254
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6255 6256 6257 6258 6259
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6260 6261 6262

	return 0;

6263
#ifdef CONFIG_NUMA
6264 6265 6266
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6267
#endif
L
Linus Torvalds 已提交
6268
}
6269 6270 6271
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6272
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6273 6274
{
	cpumask_t cpu_default_map;
6275
	int err;
L
Linus Torvalds 已提交
6276

6277 6278 6279 6280 6281 6282 6283
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6284 6285 6286
	err = build_sched_domains(&cpu_default_map);

	return err;
6287 6288 6289
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6290
{
6291
	free_sched_groups(cpu_map);
6292
}
L
Linus Torvalds 已提交
6293

6294 6295 6296 6297
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6298
static void detach_destroy_domains(const cpumask_t *cpu_map)
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6316
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6317 6318
{
	cpumask_t change_map;
6319
	int err = 0;
6320 6321 6322 6323 6324 6325 6326 6327

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6328 6329 6330 6331 6332
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6333 6334
}

6335 6336 6337 6338 6339
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int arch_reinit_sched_domains(void)
{
	int err;

6340
	mutex_lock(&sched_hotcpu_mutex);
6341 6342
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6343
	mutex_unlock(&sched_hotcpu_mutex);
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;
6368

6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
#endif

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6388 6389
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
{
	return sched_power_savings_store(buf, count, 0);
}
SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
	    sched_mc_power_savings_store);
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6402 6403
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6404 6405 6406 6407 6408 6409 6410
{
	return sched_power_savings_store(buf, count, 1);
}
SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
	    sched_smt_power_savings_store);
#endif

L
Linus Torvalds 已提交
6411 6412 6413
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6414
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6415 6416 6417 6418 6419 6420 6421
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6422
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6423
	case CPU_DOWN_PREPARE:
6424
	case CPU_DOWN_PREPARE_FROZEN:
6425
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6426 6427 6428
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6429
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6430
	case CPU_DOWN_FAILED:
6431
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6432
	case CPU_ONLINE:
6433
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6434
	case CPU_DEAD:
6435
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6436 6437 6438 6439 6440 6441 6442 6443 6444
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6445
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6446 6447 6448 6449 6450 6451

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6452 6453
	cpumask_t non_isolated_cpus;

6454
	mutex_lock(&sched_hotcpu_mutex);
6455
	arch_init_sched_domains(&cpu_online_map);
6456
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6457 6458
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6459
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6460 6461
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6462

6463 6464
	init_sched_domain_sysctl();

6465 6466 6467
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6468
	sched_init_granularity();
L
Linus Torvalds 已提交
6469 6470 6471 6472
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6473
	sched_init_granularity();
L
Linus Torvalds 已提交
6474 6475 6476 6477 6478 6479 6480
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6481

L
Linus Torvalds 已提交
6482 6483 6484 6485 6486
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6487 6488 6489 6490 6491 6492 6493 6494 6495
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6496 6497
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6498
	u64 now = sched_clock();
6499
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6500 6501 6502 6503 6504 6505 6506 6507
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6508

6509
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6510
		struct rt_prio_array *array;
6511
		struct rq *rq;
L
Linus Torvalds 已提交
6512 6513 6514

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6515
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6516
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6517 6518 6519 6520 6521 6522 6523 6524
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
		rq->ls.load_update_last = now;
		rq->ls.load_update_start = now;
L
Linus Torvalds 已提交
6525

I
Ingo Molnar 已提交
6526 6527
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6528
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6529
		rq->sd = NULL;
L
Linus Torvalds 已提交
6530
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6531
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6532
		rq->push_cpu = 0;
6533
		rq->cpu = i;
L
Linus Torvalds 已提交
6534 6535 6536 6537 6538
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6539 6540 6541 6542
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6543
		}
6544
		highest_cpu = i;
I
Ingo Molnar 已提交
6545 6546
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6547 6548
	}

6549
	set_load_weight(&init_task);
6550

6551 6552 6553 6554
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6555
#ifdef CONFIG_SMP
6556
	nr_cpu_ids = highest_cpu + 1;
6557 6558 6559
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6560 6561 6562 6563
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6577 6578 6579 6580
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6581 6582 6583 6584 6585
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6586
#ifdef in_atomic
L
Linus Torvalds 已提交
6587 6588 6589 6590 6591 6592 6593
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6594
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6595 6596 6597
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6598
		debug_show_held_locks(current);
6599 6600
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6611
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6612
	unsigned long flags;
6613
	struct rq *rq;
I
Ingo Molnar 已提交
6614
	int on_rq;
L
Linus Torvalds 已提交
6615 6616

	read_lock_irq(&tasklist_lock);
6617
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6618 6619
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
6620
		p->se.exec_start		= 0;
I
Ingo Molnar 已提交
6621
		p->se.wait_start_fair		= 0;
I
Ingo Molnar 已提交
6622 6623
		p->se.sleep_start_fair		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6624 6625 6626
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6627
#endif
I
Ingo Molnar 已提交
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6638
			continue;
I
Ingo Molnar 已提交
6639
		}
L
Linus Torvalds 已提交
6640

6641 6642
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6643 6644 6645 6646 6647 6648 6649
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6650

I
Ingo Molnar 已提交
6651
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6652 6653 6654 6655
		if (on_rq) {
			update_rq_clock(task_rq(p));
			deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
		}
I
Ingo Molnar 已提交
6656 6657 6658
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
			activate_task(task_rq(p), p, 0);
L
Linus Torvalds 已提交
6659 6660
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6661 6662 6663
#ifdef CONFIG_SMP
 out_unlock:
#endif
6664 6665
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6666 6667
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6668 6669 6670 6671
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6690
struct task_struct *curr_task(int cpu)
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6710
void set_curr_task(int cpu, struct task_struct *p)
6711 6712 6713 6714 6715
{
	cpu_curr(cpu) = p;
}

#endif