memcontrol.c 143.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
148
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

179 180 181 182 183
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
184
/* For threshold */
185 186
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
187
	int current_threshold;
188 189 190 191 192
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
193 194 195 196 197 198 199 200 201 202 203 204

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
205 206 207 208 209
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
210

211 212
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
213

B
Balbir Singh 已提交
214 215 216 217 218 219 220
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
221 222 223
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
224 225 226 227 228 229 230
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
		 * But when using vfree(), that cannot be done at
		 * interrupt time, so we must then queue the work.
		 */
		struct work_struct work_freeing;
	};

255 256 257 258
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
259
	struct mem_cgroup_lru_info info;
260 261 262
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
263 264
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
265
#endif
266 267 268 269
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
270 271 272 273

	bool		oom_lock;
	atomic_t	under_oom;

274
	atomic_t	refcnt;
275

276
	int	swappiness;
277 278
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
279

280 281 282
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

283 284 285 286
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
287
	struct mem_cgroup_thresholds thresholds;
288

289
	/* thresholds for mem+swap usage. RCU-protected */
290
	struct mem_cgroup_thresholds memsw_thresholds;
291

K
KAMEZAWA Hiroyuki 已提交
292 293
	/* For oom notifier event fd */
	struct list_head oom_notify;
294

295 296 297 298 299
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
300
	/*
301
	 * percpu counter.
302
	 */
303
	struct mem_cgroup_stat_cpu *stat;
304 305 306 307 308 309
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
310 311 312 313

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
314 315
};

316 317 318 319 320 321
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
322
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
323
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
324 325 326
	NR_MOVE_TYPE,
};

327 328
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
329
	spinlock_t	  lock; /* for from, to */
330 331 332
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
333
	unsigned long moved_charge;
334
	unsigned long moved_swap;
335 336 337
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
338
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
339 340
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
341

D
Daisuke Nishimura 已提交
342 343 344 345 346 347
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

348 349 350 351 352 353
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

354 355 356 357 358 359 360
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

361 362 363
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
364
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
365
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
366
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
367
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
368 369 370
	NR_CHARGE_TYPE,
};

371
/* for encoding cft->private value on file */
372 373 374
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
375 376 377
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
378 379
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
380

381 382 383 384 385 386 387 388
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

389 390
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
391 392 393 394

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
395
#include <net/ip.h>
G
Glauber Costa 已提交
396 397 398 399

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
400
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
401 402 403 404
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

405 406 407 408 409 410 411 412 413 414 415 416 417 418
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
432
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
433 434 435 436 437 438
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
439

440
#ifdef CONFIG_INET
G
Glauber Costa 已提交
441 442 443 444 445 446 447 448
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
449 450 451
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

452
static void drain_all_stock_async(struct mem_cgroup *memcg);
453

454
static struct mem_cgroup_per_zone *
455
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
456
{
457
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
458 459
}

460
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
461
{
462
	return &memcg->css;
463 464
}

465
static struct mem_cgroup_per_zone *
466
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
467
{
468 469
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
470

471
	return mem_cgroup_zoneinfo(memcg, nid, zid);
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
490
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
491
				struct mem_cgroup_per_zone *mz,
492 493
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
494 495 496 497 498 499 500 501
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

502 503 504
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
521 522 523
}

static void
524
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
525 526 527 528 529 530 531 532 533
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

534
static void
535
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
536 537 538 539
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
540
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
541 542 543 544
	spin_unlock(&mctz->lock);
}


545
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
546
{
547
	unsigned long long excess;
548 549
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
550 551
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
552 553 554
	mctz = soft_limit_tree_from_page(page);

	/*
555 556
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
557
	 */
558 559 560
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
561 562 563 564
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
565
		if (excess || mz->on_tree) {
566 567 568
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
569
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
570
			/*
571 572
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
573
			 */
574
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
575 576
			spin_unlock(&mctz->lock);
		}
577 578 579
	}
}

580
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
581 582 583 584 585
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
586
	for_each_node(node) {
587
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
588
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
589
			mctz = soft_limit_tree_node_zone(node, zone);
590
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
591 592 593 594
		}
	}
}

595 596 597 598
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
599
	struct mem_cgroup_per_zone *mz;
600 601

retry:
602
	mz = NULL;
603 604 605 606 607 608 609 610 611 612
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
613 614 615
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
651
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
652
				 enum mem_cgroup_stat_index idx)
653
{
654
	long val = 0;
655 656
	int cpu;

657 658
	get_online_cpus();
	for_each_online_cpu(cpu)
659
		val += per_cpu(memcg->stat->count[idx], cpu);
660
#ifdef CONFIG_HOTPLUG_CPU
661 662 663
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
664 665
#endif
	put_online_cpus();
666 667 668
	return val;
}

669
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
670 671 672
					 bool charge)
{
	int val = (charge) ? 1 : -1;
673
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
674 675
}

676
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
677 678 679 680 681 682
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
683
		val += per_cpu(memcg->stat->events[idx], cpu);
684
#ifdef CONFIG_HOTPLUG_CPU
685 686 687
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
688 689 690 691
#endif
	return val;
}

692
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
693
					 bool anon, int nr_pages)
694
{
695 696
	preempt_disable();

697 698 699 700 701 702
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
703
				nr_pages);
704
	else
705
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
706
				nr_pages);
707

708 709
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
710
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
711
	else {
712
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
713 714
		nr_pages = -nr_pages; /* for event */
	}
715

716
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
717

718
	preempt_enable();
719 720
}

721
unsigned long
722
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
723
			unsigned int lru_mask)
724 725
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
726
	enum lru_list lru;
727 728
	unsigned long ret = 0;

729
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
730

H
Hugh Dickins 已提交
731 732 733
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
734 735 736 737 738
	}
	return ret;
}

static unsigned long
739
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
740 741
			int nid, unsigned int lru_mask)
{
742 743 744
	u64 total = 0;
	int zid;

745
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
746 747
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
748

749 750
	return total;
}
751

752
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
753
			unsigned int lru_mask)
754
{
755
	int nid;
756 757
	u64 total = 0;

758
	for_each_node_state(nid, N_HIGH_MEMORY)
759
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
760
	return total;
761 762
}

763 764
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
765 766 767
{
	unsigned long val, next;

768 769
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
770
	/* from time_after() in jiffies.h */
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
787
	}
788
	return false;
789 790 791 792 793 794
}

/*
 * Check events in order.
 *
 */
795
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
796
{
797
	preempt_disable();
798
	/* threshold event is triggered in finer grain than soft limit */
799 800
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
801 802
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
803 804 805 806 807 808 809 810 811

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

812
		mem_cgroup_threshold(memcg);
813
		if (unlikely(do_softlimit))
814
			mem_cgroup_update_tree(memcg, page);
815
#if MAX_NUMNODES > 1
816
		if (unlikely(do_numainfo))
817
			atomic_inc(&memcg->numainfo_events);
818
#endif
819 820
	} else
		preempt_enable();
821 822
}

G
Glauber Costa 已提交
823
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
824 825 826 827 828 829
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

830
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
831
{
832 833 834 835 836 837 838 839
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

840 841 842 843
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

844
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
845
{
846
	struct mem_cgroup *memcg = NULL;
847 848 849

	if (!mm)
		return NULL;
850 851 852 853 854 855 856
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
857 858
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
859
			break;
860
	} while (!css_tryget(&memcg->css));
861
	rcu_read_unlock();
862
	return memcg;
863 864
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
885
{
886 887
	struct mem_cgroup *memcg = NULL;
	int id = 0;
888

889 890 891
	if (mem_cgroup_disabled())
		return NULL;

892 893
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
894

895 896
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
897

898 899
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
900

901 902 903 904 905
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
906

907
	while (!memcg) {
908
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
909
		struct cgroup_subsys_state *css;
910

911 912 913 914 915 916 917 918 919 920 921
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
922

923 924 925 926 927 928 929 930
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
931 932
		rcu_read_unlock();

933 934 935 936 937 938 939
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
940 941 942 943 944

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
945
}
K
KAMEZAWA Hiroyuki 已提交
946

947 948 949 950 951 952 953
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
954 955 956 957 958 959
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
960

961 962 963 964 965 966
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
967
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
968
	     iter != NULL;				\
969
	     iter = mem_cgroup_iter(root, iter, NULL))
970

971
#define for_each_mem_cgroup(iter)			\
972
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
973
	     iter != NULL;				\
974
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
975

976
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
977
{
978
	return (memcg == root_mem_cgroup);
979 980
}

981 982
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
983
	struct mem_cgroup *memcg;
984 985 986 987 988

	if (!mm)
		return;

	rcu_read_lock();
989 990
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
991 992 993 994
		goto out;

	switch (idx) {
	case PGFAULT:
995 996 997 998
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
999 1000 1001 1002 1003 1004 1005 1006 1007
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1057 1058
{
	struct mem_cgroup_per_zone *mz;
1059 1060
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1061

1062
	if (mem_cgroup_disabled())
1063 1064
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1065
	pc = lookup_page_cgroup(page);
1066
	memcg = pc->mem_cgroup;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	/*
	 * Surreptitiously switch any uncharged page to root:
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
		pc->mem_cgroup = memcg = root_mem_cgroup;

1080 1081
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
1082
	mz->lru_size[lru] += 1 << compound_order(page);
1083
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1084
}
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1095
 */
1096
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1097 1098
{
	struct mem_cgroup_per_zone *mz;
1099
	struct mem_cgroup *memcg;
1100 1101 1102 1103 1104 1105
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1106 1107
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1108 1109
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1110 1111
	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
	mz->lru_size[lru] -= 1 << compound_order(page);
1112 1113
}

1114
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1115
{
1116
	mem_cgroup_lru_del_list(page, page_lru(page));
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1137
{
1138 1139 1140
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1141
}
1142

1143
/*
1144
 * Checks whether given mem is same or in the root_mem_cgroup's
1145 1146
 * hierarchy subtree
 */
1147 1148
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1149
{
1150 1151 1152
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1153 1154 1155 1156 1157
	}

	return true;
}

1158
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1159 1160
{
	int ret;
1161
	struct mem_cgroup *curr = NULL;
1162
	struct task_struct *p;
1163

1164
	p = find_lock_task_mm(task);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1180 1181
	if (!curr)
		return 0;
1182
	/*
1183
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1184
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1185 1186
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1187
	 */
1188
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1189
	css_put(&curr->css);
1190 1191 1192
	return ret;
}

1193
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1194
{
1195 1196 1197
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1198
	unsigned long inactive;
1199
	unsigned long active;
1200
	unsigned long gb;
1201

1202 1203 1204 1205
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1206

1207 1208 1209 1210 1211 1212
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1213
	return inactive * inactive_ratio < active;
1214 1215
}

1216
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1217 1218 1219
{
	unsigned long active;
	unsigned long inactive;
1220 1221
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1222

1223 1224 1225 1226
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1227 1228 1229 1230

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1231 1232 1233
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1234
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1251 1252
	if (!PageCgroupUsed(pc))
		return NULL;
1253 1254
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1255
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1256 1257 1258
	return &mz->reclaim_stat;
}

1259 1260 1261
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1262
/**
1263 1264
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1265
 *
1266
 * Returns the maximum amount of memory @mem can be charged with, in
1267
 * pages.
1268
 */
1269
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1270
{
1271 1272
	unsigned long long margin;

1273
	margin = res_counter_margin(&memcg->res);
1274
	if (do_swap_account)
1275
		margin = min(margin, res_counter_margin(&memcg->memsw));
1276
	return margin >> PAGE_SHIFT;
1277 1278
}

1279
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1280 1281 1282 1283 1284 1285 1286
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1287
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1288 1289
}

1290
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1291 1292
{
	int cpu;
1293 1294

	get_online_cpus();
1295
	spin_lock(&memcg->pcp_counter_lock);
1296
	for_each_online_cpu(cpu)
1297 1298 1299
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1300
	put_online_cpus();
1301 1302 1303 1304

	synchronize_rcu();
}

1305
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1306 1307 1308
{
	int cpu;

1309
	if (!memcg)
1310
		return;
1311
	get_online_cpus();
1312
	spin_lock(&memcg->pcp_counter_lock);
1313
	for_each_online_cpu(cpu)
1314 1315 1316
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1317
	put_online_cpus();
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1331
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1332 1333
{
	VM_BUG_ON(!rcu_read_lock_held());
1334
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1335
}
1336

1337
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1338
{
1339 1340
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1341
	bool ret = false;
1342 1343 1344 1345 1346 1347 1348 1349 1350
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1351

1352 1353
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1354 1355
unlock:
	spin_unlock(&mc.lock);
1356 1357 1358
	return ret;
}

1359
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1360 1361
{
	if (mc.moving_task && current != mc.moving_task) {
1362
		if (mem_cgroup_under_move(memcg)) {
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1375
/**
1376
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1395
	if (!memcg || !p)
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1441 1442 1443 1444
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1445
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1446 1447
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1448 1449
	struct mem_cgroup *iter;

1450
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1451
		num++;
1452 1453 1454
	return num;
}

D
David Rientjes 已提交
1455 1456 1457 1458 1459 1460 1461 1462
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1463 1464 1465
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1466 1467 1468 1469 1470 1471 1472 1473
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1520
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1521 1522
		int nid, bool noswap)
{
1523
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1524 1525 1526
		return true;
	if (noswap || !total_swap_pages)
		return false;
1527
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1528 1529 1530 1531
		return true;
	return false;

}
1532 1533 1534 1535 1536 1537 1538 1539
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1540
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1541 1542
{
	int nid;
1543 1544 1545 1546
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1547
	if (!atomic_read(&memcg->numainfo_events))
1548
		return;
1549
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1550 1551 1552
		return;

	/* make a nodemask where this memcg uses memory from */
1553
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1554 1555 1556

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1557 1558
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1559
	}
1560

1561 1562
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1577
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1578 1579 1580
{
	int node;

1581 1582
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1583

1584
	node = next_node(node, memcg->scan_nodes);
1585
	if (node == MAX_NUMNODES)
1586
		node = first_node(memcg->scan_nodes);
1587 1588 1589 1590 1591 1592 1593 1594 1595
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1596
	memcg->last_scanned_node = node;
1597 1598 1599
	return node;
}

1600 1601 1602 1603 1604 1605
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1606
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1607 1608 1609 1610 1611 1612 1613
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1614 1615
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1616
		     nid < MAX_NUMNODES;
1617
		     nid = next_node(nid, memcg->scan_nodes)) {
1618

1619
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1620 1621 1622 1623 1624 1625 1626
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1627
		if (node_isset(nid, memcg->scan_nodes))
1628
			continue;
1629
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1630 1631 1632 1633 1634
			return true;
	}
	return false;
}

1635
#else
1636
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1637 1638 1639
{
	return 0;
}
1640

1641
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1642
{
1643
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1644
}
1645 1646
#endif

1647 1648 1649 1650
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1651
{
1652
	struct mem_cgroup *victim = NULL;
1653
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1654
	int loop = 0;
1655
	unsigned long excess;
1656
	unsigned long nr_scanned;
1657 1658 1659 1660
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1661

1662
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1663

1664
	while (1) {
1665
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1666
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1667
			loop++;
1668 1669 1670 1671 1672 1673
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1674
				if (!total)
1675 1676
					break;
				/*
L
Lucas De Marchi 已提交
1677
				 * We want to do more targeted reclaim.
1678 1679 1680 1681 1682
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1683
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1684 1685
					break;
			}
1686
			continue;
1687
		}
1688
		if (!mem_cgroup_reclaimable(victim, false))
1689
			continue;
1690 1691 1692 1693
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1694
			break;
1695
	}
1696
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1697
	return total;
1698 1699
}

K
KAMEZAWA Hiroyuki 已提交
1700 1701 1702
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1703
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1704
 */
1705
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1706
{
1707
	struct mem_cgroup *iter, *failed = NULL;
1708

1709
	for_each_mem_cgroup_tree(iter, memcg) {
1710
		if (iter->oom_lock) {
1711 1712 1713 1714 1715
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1716 1717
			mem_cgroup_iter_break(memcg, iter);
			break;
1718 1719
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1720
	}
K
KAMEZAWA Hiroyuki 已提交
1721

1722
	if (!failed)
1723
		return true;
1724 1725 1726 1727 1728

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1729
	for_each_mem_cgroup_tree(iter, memcg) {
1730
		if (iter == failed) {
1731 1732
			mem_cgroup_iter_break(memcg, iter);
			break;
1733 1734 1735
		}
		iter->oom_lock = false;
	}
1736
	return false;
1737
}
1738

1739
/*
1740
 * Has to be called with memcg_oom_lock
1741
 */
1742
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1743
{
K
KAMEZAWA Hiroyuki 已提交
1744 1745
	struct mem_cgroup *iter;

1746
	for_each_mem_cgroup_tree(iter, memcg)
1747 1748 1749 1750
		iter->oom_lock = false;
	return 0;
}

1751
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1752 1753 1754
{
	struct mem_cgroup *iter;

1755
	for_each_mem_cgroup_tree(iter, memcg)
1756 1757 1758
		atomic_inc(&iter->under_oom);
}

1759
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1760 1761 1762
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1763 1764 1765 1766 1767
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1768
	for_each_mem_cgroup_tree(iter, memcg)
1769
		atomic_add_unless(&iter->under_oom, -1, 0);
1770 1771
}

1772
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1773 1774
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1775
struct oom_wait_info {
1776
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1777 1778 1779 1780 1781 1782
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1783 1784
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1785 1786 1787
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1788
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1789 1790

	/*
1791
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1792 1793
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1794 1795
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1796 1797 1798 1799
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1800
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1801
{
1802 1803
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1804 1805
}

1806
static void memcg_oom_recover(struct mem_cgroup *memcg)
1807
{
1808 1809
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1810 1811
}

K
KAMEZAWA Hiroyuki 已提交
1812 1813 1814
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1815
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1816
{
K
KAMEZAWA Hiroyuki 已提交
1817
	struct oom_wait_info owait;
1818
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1819

1820
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1821 1822 1823 1824
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1825
	need_to_kill = true;
1826
	mem_cgroup_mark_under_oom(memcg);
1827

1828
	/* At first, try to OOM lock hierarchy under memcg.*/
1829
	spin_lock(&memcg_oom_lock);
1830
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1831 1832 1833 1834 1835
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1836
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1837
	if (!locked || memcg->oom_kill_disable)
1838 1839
		need_to_kill = false;
	if (locked)
1840
		mem_cgroup_oom_notify(memcg);
1841
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1842

1843 1844
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1845
		mem_cgroup_out_of_memory(memcg, mask, order);
1846
	} else {
K
KAMEZAWA Hiroyuki 已提交
1847
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1848
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1849
	}
1850
	spin_lock(&memcg_oom_lock);
1851
	if (locked)
1852 1853
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1854
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1855

1856
	mem_cgroup_unmark_under_oom(memcg);
1857

K
KAMEZAWA Hiroyuki 已提交
1858 1859 1860
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1861
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1862
	return true;
1863 1864
}

1865 1866 1867
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1887
 */
1888

1889 1890
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1891
{
1892
	struct mem_cgroup *memcg;
1893 1894
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1895
	unsigned long uninitialized_var(flags);
1896

1897
	if (mem_cgroup_disabled())
1898 1899
		return;

1900
	rcu_read_lock();
1901 1902
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1903 1904
		goto out;
	/* pc->mem_cgroup is unstable ? */
1905
	if (unlikely(mem_cgroup_stealed(memcg))) {
1906
		/* take a lock against to access pc->mem_cgroup */
1907
		move_lock_page_cgroup(pc, &flags);
1908
		need_unlock = true;
1909 1910
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1911 1912
			goto out;
	}
1913 1914

	switch (idx) {
1915
	case MEMCG_NR_FILE_MAPPED:
1916 1917 1918
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1919
			ClearPageCgroupFileMapped(pc);
1920
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1921 1922 1923
		break;
	default:
		BUG();
1924
	}
1925

1926
	this_cpu_add(memcg->stat->count[idx], val);
1927

1928 1929
out:
	if (unlikely(need_unlock))
1930
		move_unlock_page_cgroup(pc, &flags);
1931
	rcu_read_unlock();
1932
}
1933
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1934

1935 1936 1937 1938
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1939
#define CHARGE_BATCH	32U
1940 1941
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1942
	unsigned int nr_pages;
1943
	struct work_struct work;
1944 1945
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1946 1947
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1948
static DEFINE_MUTEX(percpu_charge_mutex);
1949 1950

/*
1951
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1952 1953 1954 1955
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1956
static bool consume_stock(struct mem_cgroup *memcg)
1957 1958 1959 1960 1961
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1962
	if (memcg == stock->cached && stock->nr_pages)
1963
		stock->nr_pages--;
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1977 1978 1979 1980
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1981
		if (do_swap_account)
1982 1983
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
1996
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1997 1998 1999 2000
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2001
 * This will be consumed by consume_stock() function, later.
2002
 */
2003
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2004 2005 2006
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2007
	if (stock->cached != memcg) { /* reset if necessary */
2008
		drain_stock(stock);
2009
		stock->cached = memcg;
2010
	}
2011
	stock->nr_pages += nr_pages;
2012 2013 2014 2015
	put_cpu_var(memcg_stock);
}

/*
2016
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2017 2018
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2019
 */
2020
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2021
{
2022
	int cpu, curcpu;
2023

2024 2025
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2026
	curcpu = get_cpu();
2027 2028
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2029
		struct mem_cgroup *memcg;
2030

2031 2032
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2033
			continue;
2034
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2035
			continue;
2036 2037 2038 2039 2040 2041
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2042
	}
2043
	put_cpu();
2044 2045 2046 2047 2048 2049

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2050
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2051 2052 2053
			flush_work(&stock->work);
	}
out:
2054
 	put_online_cpus();
2055 2056 2057 2058 2059 2060 2061 2062
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2063
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2064
{
2065 2066 2067 2068 2069
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2070
	drain_all_stock(root_memcg, false);
2071
	mutex_unlock(&percpu_charge_mutex);
2072 2073 2074
}

/* This is a synchronous drain interface. */
2075
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2076 2077
{
	/* called when force_empty is called */
2078
	mutex_lock(&percpu_charge_mutex);
2079
	drain_all_stock(root_memcg, true);
2080
	mutex_unlock(&percpu_charge_mutex);
2081 2082
}

2083 2084 2085 2086
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2087
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2088 2089 2090
{
	int i;

2091
	spin_lock(&memcg->pcp_counter_lock);
2092
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2093
		long x = per_cpu(memcg->stat->count[i], cpu);
2094

2095 2096
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2097
	}
2098
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2099
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2100

2101 2102
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2103
	}
2104
	/* need to clear ON_MOVE value, works as a kind of lock. */
2105 2106
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2107 2108
}

2109
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2110 2111 2112
{
	int idx = MEM_CGROUP_ON_MOVE;

2113 2114 2115
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2116 2117 2118
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2119 2120 2121 2122 2123
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2124
	struct mem_cgroup *iter;
2125

2126
	if ((action == CPU_ONLINE)) {
2127
		for_each_mem_cgroup(iter)
2128 2129 2130 2131
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2132
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2133
		return NOTIFY_OK;
2134

2135
	for_each_mem_cgroup(iter)
2136 2137
		mem_cgroup_drain_pcp_counter(iter, cpu);

2138 2139 2140 2141 2142
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2153
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2154
				unsigned int nr_pages, bool oom_check)
2155
{
2156
	unsigned long csize = nr_pages * PAGE_SIZE;
2157 2158 2159 2160 2161
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2162
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2163 2164 2165 2166

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2167
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2168 2169 2170
		if (likely(!ret))
			return CHARGE_OK;

2171
		res_counter_uncharge(&memcg->res, csize);
2172 2173 2174 2175
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2176
	/*
2177 2178
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2179 2180 2181 2182
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2183
	if (nr_pages == CHARGE_BATCH)
2184 2185 2186 2187 2188
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2189
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2190
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2191
		return CHARGE_RETRY;
2192
	/*
2193 2194 2195 2196 2197 2198 2199
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2200
	 */
2201
	if (nr_pages == 1 && ret)
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2215
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2216 2217 2218 2219 2220
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2221
/*
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2241
 */
2242
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2243
				   gfp_t gfp_mask,
2244
				   unsigned int nr_pages,
2245
				   struct mem_cgroup **ptr,
2246
				   bool oom)
2247
{
2248
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2249
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2250
	struct mem_cgroup *memcg = NULL;
2251
	int ret;
2252

K
KAMEZAWA Hiroyuki 已提交
2253 2254 2255 2256 2257 2258 2259 2260
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2261

2262
	/*
2263 2264
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2265 2266 2267
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2268
	if (!*ptr && !mm)
2269
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2270
again:
2271 2272 2273 2274
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2275
			goto done;
2276
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2277
			goto done;
2278
		css_get(&memcg->css);
2279
	} else {
K
KAMEZAWA Hiroyuki 已提交
2280
		struct task_struct *p;
2281

K
KAMEZAWA Hiroyuki 已提交
2282 2283 2284
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2285
		 * Because we don't have task_lock(), "p" can exit.
2286
		 * In that case, "memcg" can point to root or p can be NULL with
2287 2288 2289 2290 2291 2292
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2293
		 */
2294
		memcg = mem_cgroup_from_task(p);
2295 2296 2297
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2298 2299 2300
			rcu_read_unlock();
			goto done;
		}
2301
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2314
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2315 2316 2317 2318 2319
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2320

2321 2322
	do {
		bool oom_check;
2323

2324
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2325
		if (fatal_signal_pending(current)) {
2326
			css_put(&memcg->css);
2327
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2328
		}
2329

2330 2331 2332 2333
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2334
		}
2335

2336
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2337 2338 2339 2340
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2341
			batch = nr_pages;
2342 2343
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2344
			goto again;
2345
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2346
			css_put(&memcg->css);
2347 2348
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2349
			if (!oom) {
2350
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2351
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2352
			}
2353 2354 2355 2356
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2357
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2358
			goto bypass;
2359
		}
2360 2361
	} while (ret != CHARGE_OK);

2362
	if (batch > nr_pages)
2363 2364
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2365
done:
2366
	*ptr = memcg;
2367 2368
	return 0;
nomem:
2369
	*ptr = NULL;
2370
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2371
bypass:
2372 2373
	*ptr = root_mem_cgroup;
	return -EINTR;
2374
}
2375

2376 2377 2378 2379 2380
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2381
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2382
				       unsigned int nr_pages)
2383
{
2384
	if (!mem_cgroup_is_root(memcg)) {
2385 2386
		unsigned long bytes = nr_pages * PAGE_SIZE;

2387
		res_counter_uncharge(&memcg->res, bytes);
2388
		if (do_swap_account)
2389
			res_counter_uncharge(&memcg->memsw, bytes);
2390
	}
2391 2392
}

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2412
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2413
{
2414
	struct mem_cgroup *memcg = NULL;
2415
	struct page_cgroup *pc;
2416
	unsigned short id;
2417 2418
	swp_entry_t ent;

2419 2420 2421
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2422
	lock_page_cgroup(pc);
2423
	if (PageCgroupUsed(pc)) {
2424 2425 2426
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2427
	} else if (PageSwapCache(page)) {
2428
		ent.val = page_private(page);
2429
		id = lookup_swap_cgroup_id(ent);
2430
		rcu_read_lock();
2431 2432 2433
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2434
		rcu_read_unlock();
2435
	}
2436
	unlock_page_cgroup(pc);
2437
	return memcg;
2438 2439
}

2440
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2441
				       struct page *page,
2442
				       unsigned int nr_pages,
2443
				       struct page_cgroup *pc,
2444 2445
				       enum charge_type ctype,
				       bool lrucare)
2446
{
2447 2448
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;
2449
	bool anon;
2450

2451 2452 2453
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2454
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2455 2456 2457 2458 2459 2460
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2476
	pc->mem_cgroup = memcg;
2477 2478 2479 2480 2481 2482 2483
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2484
	smp_wmb();
2485
	SetPageCgroupUsed(pc);
2486

2487 2488 2489 2490 2491 2492 2493 2494 2495
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2496 2497 2498 2499 2500 2501
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2502
	unlock_page_cgroup(pc);
2503

2504 2505 2506 2507 2508
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2509
	memcg_check_events(memcg, page);
2510
}
2511

2512 2513 2514
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2515
			(1 << PCG_MIGRATION))
2516 2517
/*
 * Because tail pages are not marked as "used", set it. We're under
2518 2519 2520
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2521
 */
2522
void mem_cgroup_split_huge_fixup(struct page *head)
2523 2524
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2525 2526
	struct page_cgroup *pc;
	int i;
2527

2528 2529
	if (mem_cgroup_disabled())
		return;
2530 2531 2532 2533 2534 2535
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2536
}
2537
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2538

2539
/**
2540
 * mem_cgroup_move_account - move account of the page
2541
 * @page: the page
2542
 * @nr_pages: number of regular pages (>1 for huge pages)
2543 2544 2545
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2546
 * @uncharge: whether we should call uncharge and css_put against @from.
2547 2548
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2549
 * - page is not on LRU (isolate_page() is useful.)
2550
 * - compound_lock is held when nr_pages > 1
2551
 *
2552
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2553
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2554 2555
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2556
 */
2557 2558 2559 2560 2561 2562
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2563
{
2564 2565
	unsigned long flags;
	int ret;
2566
	bool anon = PageAnon(page);
2567

2568
	VM_BUG_ON(from == to);
2569
	VM_BUG_ON(PageLRU(page));
2570 2571 2572 2573 2574 2575 2576
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2577
	if (nr_pages > 1 && !PageTransHuge(page))
2578 2579 2580 2581 2582 2583 2584 2585 2586
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2587

2588
	if (PageCgroupFileMapped(pc)) {
2589 2590 2591 2592 2593
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2594
	}
2595
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2596 2597
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2598
		__mem_cgroup_cancel_charge(from, nr_pages);
2599

2600
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2601
	pc->mem_cgroup = to;
2602
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2603 2604 2605
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2606
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2607
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2608
	 * status here.
2609
	 */
2610 2611 2612
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2613
	unlock_page_cgroup(pc);
2614 2615 2616
	/*
	 * check events
	 */
2617 2618
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2619
out:
2620 2621 2622 2623 2624 2625 2626
	return ret;
}

/*
 * move charges to its parent.
 */

2627 2628
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2629 2630 2631 2632 2633 2634
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2635
	unsigned int nr_pages;
2636
	unsigned long uninitialized_var(flags);
2637 2638 2639 2640 2641 2642
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2643 2644 2645 2646 2647
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2648

2649
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2650

2651
	parent = mem_cgroup_from_cont(pcg);
2652
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2653
	if (ret)
2654
		goto put_back;
2655

2656
	if (nr_pages > 1)
2657 2658
		flags = compound_lock_irqsave(page);

2659
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2660
	if (ret)
2661
		__mem_cgroup_cancel_charge(parent, nr_pages);
2662

2663
	if (nr_pages > 1)
2664
		compound_unlock_irqrestore(page, flags);
2665
put_back:
K
KAMEZAWA Hiroyuki 已提交
2666
	putback_lru_page(page);
2667
put:
2668
	put_page(page);
2669
out:
2670 2671 2672
	return ret;
}

2673 2674 2675 2676 2677 2678 2679
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2680
				gfp_t gfp_mask, enum charge_type ctype)
2681
{
2682
	struct mem_cgroup *memcg = NULL;
2683
	unsigned int nr_pages = 1;
2684
	struct page_cgroup *pc;
2685
	bool oom = true;
2686
	int ret;
A
Andrea Arcangeli 已提交
2687

A
Andrea Arcangeli 已提交
2688
	if (PageTransHuge(page)) {
2689
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2690
		VM_BUG_ON(!PageTransHuge(page));
2691 2692 2693 2694 2695
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2696
	}
2697 2698

	pc = lookup_page_cgroup(page);
2699
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2700
	if (ret == -ENOMEM)
2701
		return ret;
2702
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2703 2704 2705
	return 0;
}

2706 2707
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2708
{
2709
	if (mem_cgroup_disabled())
2710
		return 0;
2711 2712 2713
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2714
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2715
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2716 2717
}

D
Daisuke Nishimura 已提交
2718 2719 2720 2721
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2722 2723
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2724
{
2725
	struct mem_cgroup *memcg = NULL;
2726
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2727 2728
	int ret;

2729
	if (mem_cgroup_disabled())
2730
		return 0;
2731 2732
	if (PageCompound(page))
		return 0;
2733

2734
	if (unlikely(!mm))
2735
		mm = &init_mm;
2736 2737
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2738

2739
	if (!PageSwapCache(page))
2740
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2741
	else { /* page is swapcache/shmem */
2742
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2743
		if (!ret)
2744 2745
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2746
	return ret;
2747 2748
}

2749 2750 2751
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2752
 * struct page_cgroup is acquired. This refcnt will be consumed by
2753 2754
 * "commit()" or removed by "cancel()"
 */
2755 2756
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2757
				 gfp_t mask, struct mem_cgroup **memcgp)
2758
{
2759
	struct mem_cgroup *memcg;
2760
	int ret;
2761

2762
	*memcgp = NULL;
2763

2764
	if (mem_cgroup_disabled())
2765 2766 2767 2768 2769 2770
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2771 2772 2773
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2774 2775
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2776
		goto charge_cur_mm;
2777 2778
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2779
		goto charge_cur_mm;
2780 2781
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2782
	css_put(&memcg->css);
2783 2784
	if (ret == -EINTR)
		ret = 0;
2785
	return ret;
2786 2787 2788
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2789 2790 2791 2792
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2793 2794
}

D
Daisuke Nishimura 已提交
2795
static void
2796
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2797
					enum charge_type ctype)
2798
{
2799 2800
	struct page_cgroup *pc;

2801
	if (mem_cgroup_disabled())
2802
		return;
2803
	if (!memcg)
2804
		return;
2805
	cgroup_exclude_rmdir(&memcg->css);
2806

2807 2808
	pc = lookup_page_cgroup(page);
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2809 2810 2811
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2812 2813 2814
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2815
	 */
2816
	if (do_swap_account && PageSwapCache(page)) {
2817
		swp_entry_t ent = {.val = page_private(page)};
2818
		struct mem_cgroup *swap_memcg;
2819 2820 2821 2822
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2823 2824
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2825 2826 2827 2828
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2829 2830 2831 2832 2833
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2834
		}
2835
		rcu_read_unlock();
2836
	}
2837 2838 2839 2840 2841
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2842
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2843 2844
}

2845 2846
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2847
{
2848 2849
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2850 2851
}

2852
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2853
{
2854
	if (mem_cgroup_disabled())
2855
		return;
2856
	if (!memcg)
2857
		return;
2858
	__mem_cgroup_cancel_charge(memcg, 1);
2859 2860
}

2861
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2862 2863
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2864 2865 2866
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2867

2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2879
		batch->memcg = memcg;
2880 2881
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2882
	 * In those cases, all pages freed continuously can be expected to be in
2883 2884 2885 2886 2887 2888 2889 2890
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2891
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2892 2893
		goto direct_uncharge;

2894 2895 2896 2897 2898
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2899
	if (batch->memcg != memcg)
2900 2901
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2902
	batch->nr_pages++;
2903
	if (uncharge_memsw)
2904
		batch->memsw_nr_pages++;
2905 2906
	return;
direct_uncharge:
2907
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2908
	if (uncharge_memsw)
2909 2910 2911
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2912
}
2913

2914
/*
2915
 * uncharge if !page_mapped(page)
2916
 */
2917
static struct mem_cgroup *
2918
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2919
{
2920
	struct mem_cgroup *memcg = NULL;
2921 2922
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2923
	bool anon;
2924

2925
	if (mem_cgroup_disabled())
2926
		return NULL;
2927

K
KAMEZAWA Hiroyuki 已提交
2928
	if (PageSwapCache(page))
2929
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2930

A
Andrea Arcangeli 已提交
2931
	if (PageTransHuge(page)) {
2932
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2933 2934
		VM_BUG_ON(!PageTransHuge(page));
	}
2935
	/*
2936
	 * Check if our page_cgroup is valid
2937
	 */
2938
	pc = lookup_page_cgroup(page);
2939
	if (unlikely(!PageCgroupUsed(pc)))
2940
		return NULL;
2941

2942
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2943

2944
	memcg = pc->mem_cgroup;
2945

K
KAMEZAWA Hiroyuki 已提交
2946 2947 2948
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2949 2950
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2951 2952
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2953 2954
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2955
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2956 2957
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2969
	}
K
KAMEZAWA Hiroyuki 已提交
2970

2971
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2972

2973
	ClearPageCgroupUsed(pc);
2974 2975 2976 2977 2978 2979
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2980

2981
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2982
	/*
2983
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2984 2985
	 * will never be freed.
	 */
2986
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2987
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2988 2989
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2990
	}
2991 2992
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2993

2994
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2995 2996 2997

unlock_out:
	unlock_page_cgroup(pc);
2998
	return NULL;
2999 3000
}

3001 3002
void mem_cgroup_uncharge_page(struct page *page)
{
3003 3004 3005
	/* early check. */
	if (page_mapped(page))
		return;
3006
	VM_BUG_ON(page->mapping && !PageAnon(page));
3007 3008 3009 3010 3011 3012
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3013
	VM_BUG_ON(page->mapping);
3014 3015 3016
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3031 3032
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3053 3054 3055 3056 3057 3058
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3059
	memcg_oom_recover(batch->memcg);
3060 3061 3062 3063
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3064
#ifdef CONFIG_SWAP
3065
/*
3066
 * called after __delete_from_swap_cache() and drop "page" account.
3067 3068
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3069 3070
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3071 3072
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3073 3074 3075 3076 3077 3078
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3079

K
KAMEZAWA Hiroyuki 已提交
3080 3081 3082 3083 3084
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3085
		swap_cgroup_record(ent, css_id(&memcg->css));
3086
}
3087
#endif
3088 3089 3090 3091 3092 3093 3094

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3095
{
3096
	struct mem_cgroup *memcg;
3097
	unsigned short id;
3098 3099 3100 3101

	if (!do_swap_account)
		return;

3102 3103 3104
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3105
	if (memcg) {
3106 3107 3108 3109
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3110
		if (!mem_cgroup_is_root(memcg))
3111
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3112
		mem_cgroup_swap_statistics(memcg, false);
3113 3114
		mem_cgroup_put(memcg);
	}
3115
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3116
}
3117 3118 3119 3120 3121 3122

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3123
 * @need_fixup: whether we should fixup res_counters and refcounts.
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3134
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3135 3136 3137 3138 3139 3140 3141 3142
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3143
		mem_cgroup_swap_statistics(to, true);
3144
		/*
3145 3146 3147 3148 3149 3150
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3151 3152
		 */
		mem_cgroup_get(to);
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3164 3165 3166 3167 3168 3169
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3170
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3171 3172 3173
{
	return -EINVAL;
}
3174
#endif
K
KAMEZAWA Hiroyuki 已提交
3175

3176
/*
3177 3178
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3179
 */
3180
int mem_cgroup_prepare_migration(struct page *page,
3181
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3182
{
3183
	struct mem_cgroup *memcg = NULL;
3184
	struct page_cgroup *pc;
3185
	enum charge_type ctype;
3186
	int ret = 0;
3187

3188
	*memcgp = NULL;
3189

A
Andrea Arcangeli 已提交
3190
	VM_BUG_ON(PageTransHuge(page));
3191
	if (mem_cgroup_disabled())
3192 3193
		return 0;

3194 3195 3196
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3197 3198
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3230
	}
3231
	unlock_page_cgroup(pc);
3232 3233 3234 3235
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3236
	if (!memcg)
3237
		return 0;
3238

3239 3240
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3241
	css_put(&memcg->css);/* drop extra refcnt */
3242
	if (ret) {
3243 3244 3245 3246 3247 3248 3249 3250 3251
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3252
		/* we'll need to revisit this error code (we have -EINTR) */
3253
		return -ENOMEM;
3254
	}
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3268
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3269
	return ret;
3270
}
3271

3272
/* remove redundant charge if migration failed*/
3273
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3274
	struct page *oldpage, struct page *newpage, bool migration_ok)
3275
{
3276
	struct page *used, *unused;
3277
	struct page_cgroup *pc;
3278
	bool anon;
3279

3280
	if (!memcg)
3281
		return;
3282
	/* blocks rmdir() */
3283
	cgroup_exclude_rmdir(&memcg->css);
3284
	if (!migration_ok) {
3285 3286
		used = oldpage;
		unused = newpage;
3287
	} else {
3288
		used = newpage;
3289 3290
		unused = oldpage;
	}
3291
	/*
3292 3293 3294
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3295
	 */
3296 3297 3298 3299
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3300 3301 3302 3303
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3304

3305
	/*
3306 3307 3308 3309 3310 3311
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3312
	 */
3313
	if (anon)
3314
		mem_cgroup_uncharge_page(used);
3315
	/*
3316 3317
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3318 3319 3320
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3321
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3322
}
3323

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
3343
	mem_cgroup_charge_statistics(memcg, false, -1);
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3355
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3356 3357
}

3358 3359 3360 3361 3362 3363
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3364 3365 3366 3367 3368
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3388
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3389 3390 3391 3392 3393
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3394 3395
static DEFINE_MUTEX(set_limit_mutex);

3396
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3397
				unsigned long long val)
3398
{
3399
	int retry_count;
3400
	u64 memswlimit, memlimit;
3401
	int ret = 0;
3402 3403
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3404
	int enlarge;
3405 3406 3407 3408 3409 3410 3411 3412 3413

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3414

3415
	enlarge = 0;
3416
	while (retry_count) {
3417 3418 3419 3420
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3421 3422 3423
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3424
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3425 3426 3427 3428 3429 3430
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3431 3432
			break;
		}
3433 3434 3435 3436 3437

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3438
		ret = res_counter_set_limit(&memcg->res, val);
3439 3440 3441 3442 3443 3444
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3445 3446 3447 3448 3449
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3450 3451
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3452 3453 3454 3455 3456 3457
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3458
	}
3459 3460
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3461

3462 3463 3464
	return ret;
}

L
Li Zefan 已提交
3465 3466
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3467
{
3468
	int retry_count;
3469
	u64 memlimit, memswlimit, oldusage, curusage;
3470 3471
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3472
	int enlarge = 0;
3473

3474 3475 3476
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3477 3478 3479 3480 3481 3482 3483 3484
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3485
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3486 3487 3488 3489 3490 3491 3492 3493
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3494 3495 3496
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3497
		ret = res_counter_set_limit(&memcg->memsw, val);
3498 3499 3500 3501 3502 3503
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3504 3505 3506 3507 3508
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3509 3510 3511
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3512
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3513
		/* Usage is reduced ? */
3514
		if (curusage >= oldusage)
3515
			retry_count--;
3516 3517
		else
			oldusage = curusage;
3518
	}
3519 3520
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3521 3522 3523
	return ret;
}

3524
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3525 3526
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3527 3528 3529 3530 3531 3532
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3533
	unsigned long long excess;
3534
	unsigned long nr_scanned;
3535 3536 3537 3538

	if (order > 0)
		return 0;

3539
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3553
		nr_scanned = 0;
3554
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3555
						    gfp_mask, &nr_scanned);
3556
		nr_reclaimed += reclaimed;
3557
		*total_scanned += nr_scanned;
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3580
				if (next_mz == mz)
3581
					css_put(&next_mz->memcg->css);
3582
				else /* next_mz == NULL or other memcg */
3583 3584 3585
					break;
			} while (1);
		}
3586 3587
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3588 3589 3590 3591 3592 3593 3594 3595
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3596
		/* If excess == 0, no tree ops */
3597
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3598
		spin_unlock(&mctz->lock);
3599
		css_put(&mz->memcg->css);
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3612
		css_put(&next_mz->memcg->css);
3613 3614 3615
	return nr_reclaimed;
}

3616 3617 3618 3619
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3620
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3621
				int node, int zid, enum lru_list lru)
3622
{
K
KAMEZAWA Hiroyuki 已提交
3623 3624
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3625
	struct list_head *list;
3626 3627
	struct page *busy;
	struct zone *zone;
3628
	int ret = 0;
3629

K
KAMEZAWA Hiroyuki 已提交
3630
	zone = &NODE_DATA(node)->node_zones[zid];
3631
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3632
	list = &mz->lruvec.lists[lru];
3633

3634
	loop = mz->lru_size[lru];
3635 3636 3637 3638
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3639
		struct page_cgroup *pc;
3640 3641
		struct page *page;

3642
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3643
		spin_lock_irqsave(&zone->lru_lock, flags);
3644
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3645
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3646
			break;
3647
		}
3648 3649 3650
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3651
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3652
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3653 3654
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3655
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3656

3657
		pc = lookup_page_cgroup(page);
3658

3659
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3660
		if (ret == -ENOMEM || ret == -EINTR)
3661
			break;
3662 3663 3664

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3665
			busy = page;
3666 3667 3668
			cond_resched();
		} else
			busy = NULL;
3669
	}
K
KAMEZAWA Hiroyuki 已提交
3670

3671 3672 3673
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3674 3675 3676 3677 3678 3679
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3680
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3681
{
3682 3683 3684
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3685
	struct cgroup *cgrp = memcg->css.cgroup;
3686

3687
	css_get(&memcg->css);
3688 3689

	shrink = 0;
3690 3691 3692
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3693
move_account:
3694
	do {
3695
		ret = -EBUSY;
3696 3697 3698 3699
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3700
			goto out;
3701 3702
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3703
		drain_all_stock_sync(memcg);
3704
		ret = 0;
3705
		mem_cgroup_start_move(memcg);
3706
		for_each_node_state(node, N_HIGH_MEMORY) {
3707
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3708 3709
				enum lru_list lru;
				for_each_lru(lru) {
3710
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3711
							node, zid, lru);
3712 3713 3714
					if (ret)
						break;
				}
3715
			}
3716 3717 3718
			if (ret)
				break;
		}
3719 3720
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3721 3722 3723
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3724
		cond_resched();
3725
	/* "ret" should also be checked to ensure all lists are empty. */
3726
	} while (memcg->res.usage > 0 || ret);
3727
out:
3728
	css_put(&memcg->css);
3729
	return ret;
3730 3731

try_to_free:
3732 3733
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3734 3735 3736
		ret = -EBUSY;
		goto out;
	}
3737 3738
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3739 3740
	/* try to free all pages in this cgroup */
	shrink = 1;
3741
	while (nr_retries && memcg->res.usage > 0) {
3742
		int progress;
3743 3744 3745 3746 3747

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3748
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3749
						false);
3750
		if (!progress) {
3751
			nr_retries--;
3752
			/* maybe some writeback is necessary */
3753
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3754
		}
3755 3756

	}
K
KAMEZAWA Hiroyuki 已提交
3757
	lru_add_drain();
3758
	/* try move_account...there may be some *locked* pages. */
3759
	goto move_account;
3760 3761
}

3762 3763 3764 3765 3766 3767
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3768 3769 3770 3771 3772 3773 3774 3775 3776
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3777
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3778
	struct cgroup *parent = cont->parent;
3779
	struct mem_cgroup *parent_memcg = NULL;
3780 3781

	if (parent)
3782
		parent_memcg = mem_cgroup_from_cont(parent);
3783 3784 3785

	cgroup_lock();
	/*
3786
	 * If parent's use_hierarchy is set, we can't make any modifications
3787 3788 3789 3790 3791 3792
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3793
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3794 3795
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3796
			memcg->use_hierarchy = val;
3797 3798 3799 3800 3801 3802 3803 3804 3805
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3806

3807
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3808
					       enum mem_cgroup_stat_index idx)
3809
{
K
KAMEZAWA Hiroyuki 已提交
3810
	struct mem_cgroup *iter;
3811
	long val = 0;
3812

3813
	/* Per-cpu values can be negative, use a signed accumulator */
3814
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3815 3816 3817 3818 3819
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3820 3821
}

3822
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3823
{
K
KAMEZAWA Hiroyuki 已提交
3824
	u64 val;
3825

3826
	if (!mem_cgroup_is_root(memcg)) {
3827
		if (!swap)
3828
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3829
		else
3830
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3831 3832
	}

3833 3834
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3835

K
KAMEZAWA Hiroyuki 已提交
3836
	if (swap)
3837
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3838 3839 3840 3841

	return val << PAGE_SHIFT;
}

3842
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3843
{
3844
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3845
	u64 val;
3846 3847 3848 3849 3850 3851
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3852
		if (name == RES_USAGE)
3853
			val = mem_cgroup_usage(memcg, false);
3854
		else
3855
			val = res_counter_read_u64(&memcg->res, name);
3856 3857
		break;
	case _MEMSWAP:
3858
		if (name == RES_USAGE)
3859
			val = mem_cgroup_usage(memcg, true);
3860
		else
3861
			val = res_counter_read_u64(&memcg->memsw, name);
3862 3863 3864 3865 3866 3867
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3868
}
3869 3870 3871 3872
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3873 3874
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3875
{
3876
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3877
	int type, name;
3878 3879 3880
	unsigned long long val;
	int ret;

3881 3882 3883
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3884
	case RES_LIMIT:
3885 3886 3887 3888
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3889 3890
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3891 3892 3893
		if (ret)
			break;
		if (type == _MEM)
3894
			ret = mem_cgroup_resize_limit(memcg, val);
3895 3896
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3897
		break;
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3912 3913 3914 3915 3916
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3917 3918
}

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3946
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3947
{
3948
	struct mem_cgroup *memcg;
3949
	int type, name;
3950

3951
	memcg = mem_cgroup_from_cont(cont);
3952 3953 3954
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3955
	case RES_MAX_USAGE:
3956
		if (type == _MEM)
3957
			res_counter_reset_max(&memcg->res);
3958
		else
3959
			res_counter_reset_max(&memcg->memsw);
3960 3961
		break;
	case RES_FAILCNT:
3962
		if (type == _MEM)
3963
			res_counter_reset_failcnt(&memcg->res);
3964
		else
3965
			res_counter_reset_failcnt(&memcg->memsw);
3966 3967
		break;
	}
3968

3969
	return 0;
3970 3971
}

3972 3973 3974 3975 3976 3977
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3978
#ifdef CONFIG_MMU
3979 3980 3981
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
3982
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3983 3984 3985 3986 3987 3988 3989 3990 3991

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
3992
	memcg->move_charge_at_immigrate = val;
3993 3994 3995 3996
	cgroup_unlock();

	return 0;
}
3997 3998 3999 4000 4001 4002 4003
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4004

K
KAMEZAWA Hiroyuki 已提交
4005 4006 4007 4008 4009

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4010
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4011 4012
	MCS_PGPGIN,
	MCS_PGPGOUT,
4013
	MCS_SWAP,
4014 4015
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4026 4027
};

K
KAMEZAWA Hiroyuki 已提交
4028 4029 4030 4031 4032 4033
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4034
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4035 4036
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4037
	{"swap", "total_swap"},
4038 4039
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4040 4041 4042 4043 4044 4045 4046 4047
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4048
static void
4049
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4050 4051 4052 4053
{
	s64 val;

	/* per cpu stat */
4054
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4055
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4056
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4057
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4058
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4059
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4060
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4061
	s->stat[MCS_PGPGIN] += val;
4062
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4063
	s->stat[MCS_PGPGOUT] += val;
4064
	if (do_swap_account) {
4065
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4066 4067
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4068
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4069
	s->stat[MCS_PGFAULT] += val;
4070
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4071
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4072 4073

	/* per zone stat */
4074
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4075
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4076
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4077
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4078
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4079
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4080
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4081
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4082
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4083 4084 4085 4086
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4087
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4088
{
K
KAMEZAWA Hiroyuki 已提交
4089 4090
	struct mem_cgroup *iter;

4091
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4092
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4093 4094
}

4095 4096 4097 4098 4099 4100 4101
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
4102
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4103

4104
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4105 4106
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4107
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4108 4109 4110 4111
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4112
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4113 4114
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4115
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4116
				LRU_ALL_FILE);
4117 4118 4119 4120
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4121
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4122 4123
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4124
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4125
				LRU_ALL_ANON);
4126 4127 4128 4129
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4130
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4131 4132
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4133
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4134
				BIT(LRU_UNEVICTABLE));
4135 4136 4137 4138 4139 4140 4141
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4142 4143
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4144
{
4145
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4146
	struct mcs_total_stat mystat;
4147 4148
	int i;

K
KAMEZAWA Hiroyuki 已提交
4149
	memset(&mystat, 0, sizeof(mystat));
4150
	mem_cgroup_get_local_stat(memcg, &mystat);
4151

4152

4153 4154 4155
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4156
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4157
	}
L
Lee Schermerhorn 已提交
4158

K
KAMEZAWA Hiroyuki 已提交
4159
	/* Hierarchical information */
4160 4161
	{
		unsigned long long limit, memsw_limit;
4162
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4163 4164 4165 4166
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4167

K
KAMEZAWA Hiroyuki 已提交
4168
	memset(&mystat, 0, sizeof(mystat));
4169
	mem_cgroup_get_total_stat(memcg, &mystat);
4170 4171 4172
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4173
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4174
	}
K
KAMEZAWA Hiroyuki 已提交
4175

K
KOSAKI Motohiro 已提交
4176 4177 4178 4179 4180 4181 4182 4183 4184
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4185
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
K
KOSAKI Motohiro 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4203 4204 4205
	return 0;
}

K
KOSAKI Motohiro 已提交
4206 4207 4208 4209
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4210
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4211 4212 4213 4214 4215 4216 4217
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4218

K
KOSAKI Motohiro 已提交
4219 4220 4221 4222 4223 4224 4225
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4226 4227 4228

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4229 4230
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4231 4232
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4233
		return -EINVAL;
4234
	}
K
KOSAKI Motohiro 已提交
4235 4236 4237

	memcg->swappiness = val;

4238 4239
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4240 4241 4242
	return 0;
}

4243 4244 4245 4246 4247 4248 4249 4250
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4251
		t = rcu_dereference(memcg->thresholds.primary);
4252
	else
4253
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4265
	i = t->current_threshold;
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4289
	t->current_threshold = i - 1;
4290 4291 4292 4293 4294 4295
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4296 4297 4298 4299 4300 4301 4302
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4313
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4314 4315 4316
{
	struct mem_cgroup_eventfd_list *ev;

4317
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4318 4319 4320 4321
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4322
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4323
{
K
KAMEZAWA Hiroyuki 已提交
4324 4325
	struct mem_cgroup *iter;

4326
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4327
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4328 4329 4330 4331
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4332 4333
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4334 4335
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4336 4337
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4338
	int i, size, ret;
4339 4340 4341 4342 4343 4344

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4345

4346
	if (type == _MEM)
4347
		thresholds = &memcg->thresholds;
4348
	else if (type == _MEMSWAP)
4349
		thresholds = &memcg->memsw_thresholds;
4350 4351 4352 4353 4354 4355
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4356
	if (thresholds->primary)
4357 4358
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4359
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4360 4361

	/* Allocate memory for new array of thresholds */
4362
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4363
			GFP_KERNEL);
4364
	if (!new) {
4365 4366 4367
		ret = -ENOMEM;
		goto unlock;
	}
4368
	new->size = size;
4369 4370

	/* Copy thresholds (if any) to new array */
4371 4372
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4373
				sizeof(struct mem_cgroup_threshold));
4374 4375
	}

4376
	/* Add new threshold */
4377 4378
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4379 4380

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4381
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4382 4383 4384
			compare_thresholds, NULL);

	/* Find current threshold */
4385
	new->current_threshold = -1;
4386
	for (i = 0; i < size; i++) {
4387
		if (new->entries[i].threshold < usage) {
4388
			/*
4389 4390
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4391 4392
			 * it here.
			 */
4393
			++new->current_threshold;
4394 4395 4396
		}
	}

4397 4398 4399 4400 4401
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4402

4403
	/* To be sure that nobody uses thresholds */
4404 4405 4406 4407 4408 4409 4410 4411
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4412
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4413
	struct cftype *cft, struct eventfd_ctx *eventfd)
4414 4415
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4416 4417
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4418 4419
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4420
	int i, j, size;
4421 4422 4423

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4424
		thresholds = &memcg->thresholds;
4425
	else if (type == _MEMSWAP)
4426
		thresholds = &memcg->memsw_thresholds;
4427 4428 4429 4430 4431 4432 4433 4434 4435
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

4436 4437 4438
	if (!thresholds->primary)
		goto unlock;

4439 4440 4441 4442 4443 4444
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4445 4446 4447
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4448 4449 4450
			size++;
	}

4451
	new = thresholds->spare;
4452

4453 4454
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4455 4456
		kfree(new);
		new = NULL;
4457
		goto swap_buffers;
4458 4459
	}

4460
	new->size = size;
4461 4462

	/* Copy thresholds and find current threshold */
4463 4464 4465
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4466 4467
			continue;

4468 4469
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4470
			/*
4471
			 * new->current_threshold will not be used
4472 4473 4474
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4475
			++new->current_threshold;
4476 4477 4478 4479
		}
		j++;
	}

4480
swap_buffers:
4481 4482 4483
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4484

4485
	/* To be sure that nobody uses thresholds */
4486
	synchronize_rcu();
4487
unlock:
4488 4489
	mutex_unlock(&memcg->thresholds_lock);
}
4490

K
KAMEZAWA Hiroyuki 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4503
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4504 4505 4506 4507 4508

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4509
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4510
		eventfd_signal(eventfd, 1);
4511
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4512 4513 4514 4515

	return 0;
}

4516
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4517 4518
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4519
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4520 4521 4522 4523 4524
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4525
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4526

4527
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4528 4529 4530 4531 4532 4533
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4534
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4535 4536
}

4537 4538 4539
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4540
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4541

4542
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4543

4544
	if (atomic_read(&memcg->under_oom))
4545 4546 4547 4548 4549 4550 4551 4552 4553
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4554
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4566
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4567 4568 4569
		cgroup_unlock();
		return -EINVAL;
	}
4570
	memcg->oom_kill_disable = val;
4571
	if (!val)
4572
		memcg_oom_recover(memcg);
4573 4574 4575 4576
	cgroup_unlock();
	return 0;
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4593 4594 4595
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4596 4597 4598 4599 4600 4601 4602
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4603
	return mem_cgroup_sockets_init(cont, ss);
4604 4605
};

4606
static void kmem_cgroup_destroy(struct cgroup *cont)
G
Glauber Costa 已提交
4607
{
4608
	mem_cgroup_sockets_destroy(cont);
G
Glauber Costa 已提交
4609
}
4610 4611 4612 4613 4614
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4615

4616
static void kmem_cgroup_destroy(struct cgroup *cont)
G
Glauber Costa 已提交
4617 4618
{
}
4619 4620
#endif

B
Balbir Singh 已提交
4621 4622
static struct cftype mem_cgroup_files[] = {
	{
4623
		.name = "usage_in_bytes",
4624
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4625
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4626 4627
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4628
	},
4629 4630
	{
		.name = "max_usage_in_bytes",
4631
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4632
		.trigger = mem_cgroup_reset,
4633 4634
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4635
	{
4636
		.name = "limit_in_bytes",
4637
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4638
		.write_string = mem_cgroup_write,
4639
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4640
	},
4641 4642 4643 4644 4645 4646
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4647 4648
	{
		.name = "failcnt",
4649
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4650
		.trigger = mem_cgroup_reset,
4651
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4652
	},
4653 4654
	{
		.name = "stat",
4655
		.read_map = mem_control_stat_show,
4656
	},
4657 4658 4659 4660
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4661 4662 4663 4664 4665
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4666 4667 4668 4669 4670
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4671 4672 4673 4674 4675
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4676 4677
	{
		.name = "oom_control",
4678 4679
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4680 4681 4682 4683
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4684 4685 4686 4687
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4688
		.mode = S_IRUGO,
4689 4690
	},
#endif
B
Balbir Singh 已提交
4691 4692
};

4693 4694 4695 4696 4697 4698
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4699 4700
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4736
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4737 4738
{
	struct mem_cgroup_per_node *pn;
4739
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
4740
	enum lru_list lru;
4741
	int zone, tmp = node;
4742 4743 4744 4745 4746 4747 4748 4749
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4750 4751
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4752
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4753 4754
	if (!pn)
		return 1;
4755 4756 4757

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
H
Hugh Dickins 已提交
4758 4759
		for_each_lru(lru)
			INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4760
		mz->usage_in_excess = 0;
4761
		mz->on_tree = false;
4762
		mz->memcg = memcg;
4763
	}
4764
	memcg->info.nodeinfo[node] = pn;
4765 4766 4767
	return 0;
}

4768
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4769
{
4770
	kfree(memcg->info.nodeinfo[node]);
4771 4772
}

4773 4774
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4775
	struct mem_cgroup *memcg;
4776
	int size = sizeof(struct mem_cgroup);
4777

4778
	/* Can be very big if MAX_NUMNODES is very big */
4779
	if (size < PAGE_SIZE)
4780
		memcg = kzalloc(size, GFP_KERNEL);
4781
	else
4782
		memcg = vzalloc(size);
4783

4784
	if (!memcg)
4785 4786
		return NULL;

4787 4788
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4789
		goto out_free;
4790 4791
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4792 4793 4794

out_free:
	if (size < PAGE_SIZE)
4795
		kfree(memcg);
4796
	else
4797
		vfree(memcg);
4798
	return NULL;
4799 4800
}

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
/*
 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
static void vfree_work(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, work_freeing);
	vfree(memcg);
}
static void vfree_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, vfree_work);
	schedule_work(&memcg->work_freeing);
}

4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4833
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4834
{
K
KAMEZAWA Hiroyuki 已提交
4835 4836
	int node;

4837 4838
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4839

B
Bob Liu 已提交
4840
	for_each_node(node)
4841
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4842

4843
	free_percpu(memcg->stat);
4844
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4845
		kfree_rcu(memcg, rcu_freeing);
4846
	else
4847
		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4848 4849
}

4850
static void mem_cgroup_get(struct mem_cgroup *memcg)
4851
{
4852
	atomic_inc(&memcg->refcnt);
4853 4854
}

4855
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4856
{
4857 4858 4859
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4860 4861 4862
		if (parent)
			mem_cgroup_put(parent);
	}
4863 4864
}

4865
static void mem_cgroup_put(struct mem_cgroup *memcg)
4866
{
4867
	__mem_cgroup_put(memcg, 1);
4868 4869
}

4870 4871 4872
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4873
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4874
{
4875
	if (!memcg->res.parent)
4876
		return NULL;
4877
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4878
}
G
Glauber Costa 已提交
4879
EXPORT_SYMBOL(parent_mem_cgroup);
4880

4881 4882 4883
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4884
	if (!mem_cgroup_disabled() && really_do_swap_account)
4885 4886 4887 4888 4889 4890 4891 4892
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4893 4894 4895 4896 4897 4898
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4899
	for_each_node(node) {
4900 4901 4902 4903 4904
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4905
			goto err_cleanup;
4906 4907 4908 4909 4910 4911 4912 4913 4914 4915

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4916 4917

err_cleanup:
B
Bob Liu 已提交
4918
	for_each_node(node) {
4919 4920 4921 4922 4923 4924 4925
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4926 4927
}

L
Li Zefan 已提交
4928
static struct cgroup_subsys_state * __ref
4929
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4930
{
4931
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4932
	long error = -ENOMEM;
4933
	int node;
B
Balbir Singh 已提交
4934

4935 4936
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4937
		return ERR_PTR(error);
4938

B
Bob Liu 已提交
4939
	for_each_node(node)
4940
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4941
			goto free_out;
4942

4943
	/* root ? */
4944
	if (cont->parent == NULL) {
4945
		int cpu;
4946
		enable_swap_cgroup();
4947
		parent = NULL;
4948 4949
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4950
		root_mem_cgroup = memcg;
4951 4952 4953 4954 4955
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4956
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4957
	} else {
4958
		parent = mem_cgroup_from_cont(cont->parent);
4959 4960
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4961
	}
4962

4963
	if (parent && parent->use_hierarchy) {
4964 4965
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4966 4967 4968 4969 4970 4971 4972
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4973
	} else {
4974 4975
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4976
	}
4977 4978
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4979

K
KOSAKI Motohiro 已提交
4980
	if (parent)
4981 4982 4983 4984 4985
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
4986
free_out:
4987
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4988
	return ERR_PTR(error);
B
Balbir Singh 已提交
4989 4990
}

4991
static int mem_cgroup_pre_destroy(struct cgroup *cont)
4992
{
4993
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4994

4995
	return mem_cgroup_force_empty(memcg, false);
4996 4997
}

4998
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
4999
{
5000
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5001

5002
	kmem_cgroup_destroy(cont);
G
Glauber Costa 已提交
5003

5004
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5005 5006 5007 5008 5009
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5010 5011 5012 5013 5014 5015 5016
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5017 5018 5019 5020

	if (!ret)
		ret = register_kmem_files(cont, ss);

5021
	return ret;
B
Balbir Singh 已提交
5022 5023
}

5024
#ifdef CONFIG_MMU
5025
/* Handlers for move charge at task migration. */
5026 5027
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5028
{
5029 5030
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5031
	struct mem_cgroup *memcg = mc.to;
5032

5033
	if (mem_cgroup_is_root(memcg)) {
5034 5035 5036 5037 5038 5039 5040 5041
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5042
		 * "memcg" cannot be under rmdir() because we've already checked
5043 5044 5045 5046
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5047
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5048
			goto one_by_one;
5049
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5050
						PAGE_SIZE * count, &dummy)) {
5051
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5068 5069
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5070
		if (ret)
5071
			/* mem_cgroup_clear_mc() will do uncharge later */
5072
			return ret;
5073 5074
		mc.precharge++;
	}
5075 5076 5077 5078 5079 5080 5081 5082
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5083
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5084 5085 5086 5087 5088 5089
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5090 5091 5092
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5093 5094 5095 5096 5097
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5098
	swp_entry_t	ent;
5099 5100 5101 5102 5103
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5104
	MC_TARGET_SWAP,
5105 5106
};

D
Daisuke Nishimura 已提交
5107 5108
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5109
{
D
Daisuke Nishimura 已提交
5110
	struct page *page = vm_normal_page(vma, addr, ptent);
5111

D
Daisuke Nishimura 已提交
5112 5113 5114 5115
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5116
		if (!move_anon() || page_mapcount(page) > 2)
D
Daisuke Nishimura 已提交
5117
			return NULL;
5118 5119
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5138 5139
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5140
		return NULL;
5141
	}
D
Daisuke Nishimura 已提交
5142 5143 5144 5145 5146 5147
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5169 5170 5171 5172 5173 5174
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5175
		if (do_swap_account)
5176 5177
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5178
	}
5179
#endif
5180 5181 5182
	return page;
}

D
Daisuke Nishimura 已提交
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5195 5196
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5197 5198 5199

	if (!page && !ent.val)
		return 0;
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5215 5216
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5217
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5218 5219 5220
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5233
	split_huge_page_pmd(walk->mm, pmd);
5234 5235
	if (pmd_trans_unstable(pmd))
		return 0;
5236

5237 5238 5239 5240 5241 5242 5243
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5244 5245 5246
	return 0;
}

5247 5248 5249 5250 5251
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5252
	down_read(&mm->mmap_sem);
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5264
	up_read(&mm->mmap_sem);
5265 5266 5267 5268 5269 5270 5271 5272 5273

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5274 5275 5276 5277 5278
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5279 5280
}

5281 5282
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5283
{
5284 5285 5286
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5287
	/* we must uncharge all the leftover precharges from mc.to */
5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5299
	}
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5334
	spin_lock(&mc.lock);
5335 5336
	mc.from = NULL;
	mc.to = NULL;
5337
	spin_unlock(&mc.lock);
5338
	mem_cgroup_end_move(from);
5339 5340
}

5341 5342
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5343
{
5344
	struct task_struct *p = cgroup_taskset_first(tset);
5345
	int ret = 0;
5346
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5347

5348
	if (memcg->move_charge_at_immigrate) {
5349 5350 5351
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5352
		VM_BUG_ON(from == memcg);
5353 5354 5355 5356 5357

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5358 5359 5360 5361
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5362
			VM_BUG_ON(mc.moved_charge);
5363
			VM_BUG_ON(mc.moved_swap);
5364
			mem_cgroup_start_move(from);
5365
			spin_lock(&mc.lock);
5366
			mc.from = from;
5367
			mc.to = memcg;
5368
			spin_unlock(&mc.lock);
5369
			/* We set mc.moving_task later */
5370 5371 5372 5373

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5374 5375
		}
		mmput(mm);
5376 5377 5378 5379
	}
	return ret;
}

5380 5381
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5382
{
5383
	mem_cgroup_clear_mc();
5384 5385
}

5386 5387 5388
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5389
{
5390 5391 5392 5393 5394
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5395
	split_huge_page_pmd(walk->mm, pmd);
5396 5397
	if (pmd_trans_unstable(pmd))
		return 0;
5398 5399 5400 5401 5402 5403 5404 5405
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5406
		swp_entry_t ent;
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5418 5419
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5420
				mc.precharge--;
5421 5422
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5423 5424 5425 5426 5427
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5428 5429
		case MC_TARGET_SWAP:
			ent = target.ent;
5430 5431
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5432
				mc.precharge--;
5433 5434 5435
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5436
			break;
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5451
		ret = mem_cgroup_do_precharge(1);
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5495
	up_read(&mm->mmap_sem);
5496 5497
}

5498 5499
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5500
{
5501
	struct task_struct *p = cgroup_taskset_first(tset);
5502
	struct mm_struct *mm = get_task_mm(p);
5503 5504

	if (mm) {
5505 5506 5507
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5508 5509
		mmput(mm);
	}
5510 5511
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5512
}
5513
#else	/* !CONFIG_MMU */
5514 5515
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5516 5517 5518
{
	return 0;
}
5519 5520
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5521 5522
{
}
5523 5524
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5525 5526 5527
{
}
#endif
B
Balbir Singh 已提交
5528

B
Balbir Singh 已提交
5529 5530 5531 5532
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5533
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5534 5535
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5536 5537
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5538
	.attach = mem_cgroup_move_task,
5539
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5540
	.use_id = 1,
B
Balbir Singh 已提交
5541
};
5542 5543

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5544 5545 5546
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5547
	if (!strcmp(s, "1"))
5548
		really_do_swap_account = 1;
5549
	else if (!strcmp(s, "0"))
5550 5551 5552
		really_do_swap_account = 0;
	return 1;
}
5553
__setup("swapaccount=", enable_swap_account);
5554 5555

#endif