memcontrol.c 142.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147 148
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158 159 160
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

181 182 183 184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
186
/* For threshold */
187 188
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
189
	int current_threshold;
190 191 192 193 194
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
195 196 197 198 199 200 201 202 203 204 205 206

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
207 208 209 210 211
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
212

213 214
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215

B
Balbir Singh 已提交
216 217 218 219 220 221 222
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 224 225
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
226 227 228 229 230 231 232
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
233 234 235 236
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
237 238 239 240
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
241
	struct mem_cgroup_lru_info info;
242 243 244
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
245 246
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
247
#endif
248 249 250 251
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
252 253 254 255

	bool		oom_lock;
	atomic_t	under_oom;

256
	atomic_t	refcnt;
257

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282
	/*
283
	 * percpu counter.
284
	 */
285
	struct mem_cgroup_stat_cpu *stat;
286 287 288 289 290 291
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
292 293 294 295

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
296 297
};

298 299 300 301 302 303
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
304
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 307 308
	NR_MOVE_TYPE,
};

309 310
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
311
	spinlock_t	  lock; /* for from, to */
312 313 314
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
315
	unsigned long moved_charge;
316
	unsigned long moved_swap;
317 318 319
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
320
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 322
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
323

D
Daisuke Nishimura 已提交
324 325 326 327 328 329
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

330 331 332 333 334 335
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

336 337 338 339 340 341 342
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

343 344 345
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
349
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 351 352
	NR_CHARGE_TYPE,
};

353
/* for encoding cft->private value on file */
354 355 356
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
357 358 359
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
360 361
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
362

363 364 365 366 367 368 369 370
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

371 372
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
373 374 375 376

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
377
#include <net/ip.h>
G
Glauber Costa 已提交
378 379 380 381

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
382
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
383 384 385 386
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

387 388 389 390 391 392 393 394 395 396 397 398 399 400
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
414
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
415 416 417 418 419 420
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
421

422
#ifdef CONFIG_INET
G
Glauber Costa 已提交
423 424 425 426 427 428 429 430
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
431 432 433
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

434
static void drain_all_stock_async(struct mem_cgroup *memcg);
435

436
static struct mem_cgroup_per_zone *
437
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438
{
439
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 441
}

442
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443
{
444
	return &memcg->css;
445 446
}

447
static struct mem_cgroup_per_zone *
448
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449
{
450 451
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
452

453
	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
472
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473
				struct mem_cgroup_per_zone *mz,
474 475
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
476 477 478 479 480 481 482 483
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

484 485 486
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
503 504 505
}

static void
506
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 508 509 510 511 512 513 514 515
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

516
static void
517
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
522
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 524 525 526
	spin_unlock(&mctz->lock);
}


527
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528
{
529
	unsigned long long excess;
530 531
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
532 533
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
534 535 536
	mctz = soft_limit_tree_from_page(page);

	/*
537 538
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
539
	 */
540 541 542
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
543 544 545 546
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
547
		if (excess || mz->on_tree) {
548 549 550
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
551
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552
			/*
553 554
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
555
			 */
556
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 558
			spin_unlock(&mctz->lock);
		}
559 560 561
	}
}

562
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 564 565 566 567
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
568
	for_each_node(node) {
569
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571
			mctz = soft_limit_tree_node_zone(node, zone);
572
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
		}
	}
}

577 578 579 580
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
581
	struct mem_cgroup_per_zone *mz;
582 583

retry:
584
	mz = NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
633
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634
				 enum mem_cgroup_stat_index idx)
635
{
636
	long val = 0;
637 638
	int cpu;

639 640
	get_online_cpus();
	for_each_online_cpu(cpu)
641
		val += per_cpu(memcg->stat->count[idx], cpu);
642
#ifdef CONFIG_HOTPLUG_CPU
643 644 645
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
646 647
#endif
	put_online_cpus();
648 649 650
	return val;
}

651
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 653 654
					 bool charge)
{
	int val = (charge) ? 1 : -1;
655
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 657
}

658
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 660 661 662 663 664
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
665
		val += per_cpu(memcg->stat->events[idx], cpu);
666
#ifdef CONFIG_HOTPLUG_CPU
667 668 669
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
670 671 672 673
#endif
	return val;
}

674
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675
					 bool file, int nr_pages)
676
{
677 678
	preempt_disable();

679
	if (file)
680 681
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
682
	else
683 684
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
685

686 687
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
688
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689
	else {
690
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 692
		nr_pages = -nr_pages; /* for event */
	}
693

694
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695

696
	preempt_enable();
697 698
}

699
unsigned long
700
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701
			unsigned int lru_mask)
702 703
{
	struct mem_cgroup_per_zone *mz;
704 705 706
	enum lru_list l;
	unsigned long ret = 0;

707
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 709 710 711 712 713 714 715 716

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
717
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 719
			int nid, unsigned int lru_mask)
{
720 721 722
	u64 total = 0;
	int zid;

723
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 725
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
726

727 728
	return total;
}
729

730
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731
			unsigned int lru_mask)
732
{
733
	int nid;
734 735
	u64 total = 0;

736
	for_each_node_state(nid, N_HIGH_MEMORY)
737
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738
	return total;
739 740
}

741 742
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
743 744 745
{
	unsigned long val, next;

746 747
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
748
	/* from time_after() in jiffies.h */
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
765
	}
766
	return false;
767 768 769 770 771 772
}

/*
 * Check events in order.
 *
 */
773
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774
{
775
	preempt_disable();
776
	/* threshold event is triggered in finer grain than soft limit */
777 778
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
779 780
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
781 782 783 784 785 786 787 788 789

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

790
		mem_cgroup_threshold(memcg);
791
		if (unlikely(do_softlimit))
792
			mem_cgroup_update_tree(memcg, page);
793
#if MAX_NUMNODES > 1
794
		if (unlikely(do_numainfo))
795
			atomic_inc(&memcg->numainfo_events);
796
#endif
797 798
	} else
		preempt_enable();
799 800
}

G
Glauber Costa 已提交
801
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
802 803 804 805 806 807
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

808
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
809
{
810 811 812 813 814 815 816 817
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

818 819 820 821
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

822
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
823
{
824
	struct mem_cgroup *memcg = NULL;
825 826 827

	if (!mm)
		return NULL;
828 829 830 831 832 833 834
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
835 836
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
837
			break;
838
	} while (!css_tryget(&memcg->css));
839
	rcu_read_unlock();
840
	return memcg;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
863
{
864 865
	struct mem_cgroup *memcg = NULL;
	int id = 0;
866

867 868 869
	if (mem_cgroup_disabled())
		return NULL;

870 871
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
872

873 874
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
875

876 877
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
878

879 880 881 882 883
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
884

885
	while (!memcg) {
886
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
887
		struct cgroup_subsys_state *css;
888

889 890 891 892 893 894 895 896 897 898 899
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
900

901 902 903 904 905 906 907 908
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
909 910
		rcu_read_unlock();

911 912 913 914 915 916 917
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
918 919 920 921 922

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
923
}
K
KAMEZAWA Hiroyuki 已提交
924

925 926 927 928 929 930 931
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
932 933 934 935 936 937
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
938

939 940 941 942 943 944
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
945
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
946
	     iter != NULL;				\
947
	     iter = mem_cgroup_iter(root, iter, NULL))
948

949
#define for_each_mem_cgroup(iter)			\
950
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
951
	     iter != NULL;				\
952
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
953

954
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
955
{
956
	return (memcg == root_mem_cgroup);
957 958
}

959 960
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
961
	struct mem_cgroup *memcg;
962 963 964 965 966

	if (!mm)
		return;

	rcu_read_lock();
967 968
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
969 970 971 972
		goto out;

	switch (idx) {
	case PGFAULT:
973 974 975 976
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
977 978 979 980 981 982 983 984 985
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1035 1036
{
	struct mem_cgroup_per_zone *mz;
1037 1038
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1039

1040
	if (mem_cgroup_disabled())
1041 1042
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1043
	pc = lookup_page_cgroup(page);
1044
	memcg = pc->mem_cgroup;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	/*
	 * Surreptitiously switch any uncharged page to root:
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
		pc->mem_cgroup = memcg = root_mem_cgroup;

1058 1059 1060 1061
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1062
}
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1073
 */
1074
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1075 1076
{
	struct mem_cgroup_per_zone *mz;
1077
	struct mem_cgroup *memcg;
1078 1079 1080 1081 1082 1083
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1084 1085
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1086 1087
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1088
	VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1089
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1090 1091
}

1092
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1093
{
1094
	mem_cgroup_lru_del_list(page, page_lru(page));
1095 1096
}

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1115
{
1116 1117 1118
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1119
}
1120

1121
/*
1122
 * Checks whether given mem is same or in the root_mem_cgroup's
1123 1124
 * hierarchy subtree
 */
1125 1126
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1127
{
1128 1129 1130
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1131 1132 1133 1134 1135
	}

	return true;
}

1136
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1137 1138
{
	int ret;
1139
	struct mem_cgroup *curr = NULL;
1140
	struct task_struct *p;
1141

1142
	p = find_lock_task_mm(task);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1158 1159
	if (!curr)
		return 0;
1160
	/*
1161
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1162
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1163 1164
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1165
	 */
1166
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1167
	css_put(&curr->css);
1168 1169 1170
	return ret;
}

1171
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1172
{
1173 1174 1175
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1176
	unsigned long inactive;
1177
	unsigned long active;
1178
	unsigned long gb;
1179

1180 1181 1182 1183
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1184

1185 1186 1187 1188 1189 1190
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1191
	return inactive * inactive_ratio < active;
1192 1193
}

1194
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1195 1196 1197
{
	unsigned long active;
	unsigned long inactive;
1198 1199
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1200

1201 1202 1203 1204
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1205 1206 1207 1208

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1209 1210 1211
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1212
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1229 1230
	if (!PageCgroupUsed(pc))
		return NULL;
1231 1232
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1233
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1234 1235 1236
	return &mz->reclaim_stat;
}

1237 1238 1239
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1240
/**
1241 1242
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1243
 *
1244
 * Returns the maximum amount of memory @mem can be charged with, in
1245
 * pages.
1246
 */
1247
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1248
{
1249 1250
	unsigned long long margin;

1251
	margin = res_counter_margin(&memcg->res);
1252
	if (do_swap_account)
1253
		margin = min(margin, res_counter_margin(&memcg->memsw));
1254
	return margin >> PAGE_SHIFT;
1255 1256
}

1257
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1258 1259 1260 1261 1262 1263 1264
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1265
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1266 1267
}

1268
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1269 1270
{
	int cpu;
1271 1272

	get_online_cpus();
1273
	spin_lock(&memcg->pcp_counter_lock);
1274
	for_each_online_cpu(cpu)
1275 1276 1277
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1278
	put_online_cpus();
1279 1280 1281 1282

	synchronize_rcu();
}

1283
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1284 1285 1286
{
	int cpu;

1287
	if (!memcg)
1288
		return;
1289
	get_online_cpus();
1290
	spin_lock(&memcg->pcp_counter_lock);
1291
	for_each_online_cpu(cpu)
1292 1293 1294
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1295
	put_online_cpus();
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1309
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1310 1311
{
	VM_BUG_ON(!rcu_read_lock_held());
1312
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1313
}
1314

1315
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1316
{
1317 1318
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1319
	bool ret = false;
1320 1321 1322 1323 1324 1325 1326 1327 1328
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1329

1330 1331
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1332 1333
unlock:
	spin_unlock(&mc.lock);
1334 1335 1336
	return ret;
}

1337
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1338 1339
{
	if (mc.moving_task && current != mc.moving_task) {
1340
		if (mem_cgroup_under_move(memcg)) {
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1353
/**
1354
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1373
	if (!memcg || !p)
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1420 1421 1422 1423
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1424
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1425 1426
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1427 1428
	struct mem_cgroup *iter;

1429
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1430
		num++;
1431 1432 1433
	return num;
}

D
David Rientjes 已提交
1434 1435 1436 1437 1438 1439 1440 1441
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1442 1443 1444
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1445 1446 1447 1448 1449 1450 1451 1452
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1499
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1500 1501
		int nid, bool noswap)
{
1502
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1503 1504 1505
		return true;
	if (noswap || !total_swap_pages)
		return false;
1506
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1507 1508 1509 1510
		return true;
	return false;

}
1511 1512 1513 1514 1515 1516 1517 1518
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1519
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1520 1521
{
	int nid;
1522 1523 1524 1525
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1526
	if (!atomic_read(&memcg->numainfo_events))
1527
		return;
1528
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1529 1530 1531
		return;

	/* make a nodemask where this memcg uses memory from */
1532
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1533 1534 1535

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1536 1537
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1538
	}
1539

1540 1541
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1556
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1557 1558 1559
{
	int node;

1560 1561
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1562

1563
	node = next_node(node, memcg->scan_nodes);
1564
	if (node == MAX_NUMNODES)
1565
		node = first_node(memcg->scan_nodes);
1566 1567 1568 1569 1570 1571 1572 1573 1574
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1575
	memcg->last_scanned_node = node;
1576 1577 1578
	return node;
}

1579 1580 1581 1582 1583 1584
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1585
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1586 1587 1588 1589 1590 1591 1592
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1593 1594
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1595
		     nid < MAX_NUMNODES;
1596
		     nid = next_node(nid, memcg->scan_nodes)) {
1597

1598
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1599 1600 1601 1602 1603 1604 1605
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1606
		if (node_isset(nid, memcg->scan_nodes))
1607
			continue;
1608
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1609 1610 1611 1612 1613
			return true;
	}
	return false;
}

1614
#else
1615
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1616 1617 1618
{
	return 0;
}
1619

1620
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1621
{
1622
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1623
}
1624 1625
#endif

1626 1627 1628 1629
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1630
{
1631
	struct mem_cgroup *victim = NULL;
1632
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1633
	int loop = 0;
1634
	unsigned long excess;
1635
	unsigned long nr_scanned;
1636 1637 1638 1639
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1640

1641
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1642

1643
	while (1) {
1644
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1645
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1646
			loop++;
1647 1648 1649 1650 1651 1652
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1653
				if (!total)
1654 1655
					break;
				/*
L
Lucas De Marchi 已提交
1656
				 * We want to do more targeted reclaim.
1657 1658 1659 1660 1661
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1662
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1663 1664
					break;
			}
1665
			continue;
1666
		}
1667
		if (!mem_cgroup_reclaimable(victim, false))
1668
			continue;
1669 1670 1671 1672
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1673
			break;
1674
	}
1675
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1676
	return total;
1677 1678
}

K
KAMEZAWA Hiroyuki 已提交
1679 1680 1681
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1682
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1683
 */
1684
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1685
{
1686
	struct mem_cgroup *iter, *failed = NULL;
1687

1688
	for_each_mem_cgroup_tree(iter, memcg) {
1689
		if (iter->oom_lock) {
1690 1691 1692 1693 1694
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1695 1696
			mem_cgroup_iter_break(memcg, iter);
			break;
1697 1698
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1699
	}
K
KAMEZAWA Hiroyuki 已提交
1700

1701
	if (!failed)
1702
		return true;
1703 1704 1705 1706 1707

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1708
	for_each_mem_cgroup_tree(iter, memcg) {
1709
		if (iter == failed) {
1710 1711
			mem_cgroup_iter_break(memcg, iter);
			break;
1712 1713 1714
		}
		iter->oom_lock = false;
	}
1715
	return false;
1716
}
1717

1718
/*
1719
 * Has to be called with memcg_oom_lock
1720
 */
1721
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1722
{
K
KAMEZAWA Hiroyuki 已提交
1723 1724
	struct mem_cgroup *iter;

1725
	for_each_mem_cgroup_tree(iter, memcg)
1726 1727 1728 1729
		iter->oom_lock = false;
	return 0;
}

1730
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1731 1732 1733
{
	struct mem_cgroup *iter;

1734
	for_each_mem_cgroup_tree(iter, memcg)
1735 1736 1737
		atomic_inc(&iter->under_oom);
}

1738
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1739 1740 1741
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1742 1743 1744 1745 1746
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1747
	for_each_mem_cgroup_tree(iter, memcg)
1748
		atomic_add_unless(&iter->under_oom, -1, 0);
1749 1750
}

1751
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1752 1753
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1754 1755 1756 1757 1758 1759 1760 1761
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1762 1763
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1764 1765 1766
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1767
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1768 1769 1770 1771 1772

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1773 1774
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1775 1776 1777 1778
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1779
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1780
{
1781 1782
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1783 1784
}

1785
static void memcg_oom_recover(struct mem_cgroup *memcg)
1786
{
1787 1788
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1789 1790
}

K
KAMEZAWA Hiroyuki 已提交
1791 1792 1793
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1794
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1795
{
K
KAMEZAWA Hiroyuki 已提交
1796
	struct oom_wait_info owait;
1797
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1798

1799
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1800 1801 1802 1803
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1804
	need_to_kill = true;
1805
	mem_cgroup_mark_under_oom(memcg);
1806

1807
	/* At first, try to OOM lock hierarchy under memcg.*/
1808
	spin_lock(&memcg_oom_lock);
1809
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1810 1811 1812 1813 1814
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1815
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1816
	if (!locked || memcg->oom_kill_disable)
1817 1818
		need_to_kill = false;
	if (locked)
1819
		mem_cgroup_oom_notify(memcg);
1820
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1821

1822 1823
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1824
		mem_cgroup_out_of_memory(memcg, mask);
1825
	} else {
K
KAMEZAWA Hiroyuki 已提交
1826
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1827
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1828
	}
1829
	spin_lock(&memcg_oom_lock);
1830
	if (locked)
1831 1832
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1833
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1834

1835
	mem_cgroup_unmark_under_oom(memcg);
1836

K
KAMEZAWA Hiroyuki 已提交
1837 1838 1839
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1840
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1841
	return true;
1842 1843
}

1844 1845 1846
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1866
 */
1867

1868 1869
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1870
{
1871
	struct mem_cgroup *memcg;
1872 1873
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1874
	unsigned long uninitialized_var(flags);
1875

1876
	if (mem_cgroup_disabled())
1877 1878
		return;

1879
	rcu_read_lock();
1880 1881
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1882 1883
		goto out;
	/* pc->mem_cgroup is unstable ? */
1884
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1885
		/* take a lock against to access pc->mem_cgroup */
1886
		move_lock_page_cgroup(pc, &flags);
1887
		need_unlock = true;
1888 1889
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1890 1891
			goto out;
	}
1892 1893

	switch (idx) {
1894
	case MEMCG_NR_FILE_MAPPED:
1895 1896 1897
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1898
			ClearPageCgroupFileMapped(pc);
1899
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1900 1901 1902
		break;
	default:
		BUG();
1903
	}
1904

1905
	this_cpu_add(memcg->stat->count[idx], val);
1906

1907 1908
out:
	if (unlikely(need_unlock))
1909
		move_unlock_page_cgroup(pc, &flags);
1910 1911
	rcu_read_unlock();
	return;
1912
}
1913
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1914

1915 1916 1917 1918
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1919
#define CHARGE_BATCH	32U
1920 1921
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1922
	unsigned int nr_pages;
1923
	struct work_struct work;
1924 1925
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1926 1927
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1928
static DEFINE_MUTEX(percpu_charge_mutex);
1929 1930

/*
1931
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1932 1933 1934 1935
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1936
static bool consume_stock(struct mem_cgroup *memcg)
1937 1938 1939 1940 1941
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1942
	if (memcg == stock->cached && stock->nr_pages)
1943
		stock->nr_pages--;
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1957 1958 1959 1960
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1961
		if (do_swap_account)
1962 1963
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
1976
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1977 1978 1979 1980
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1981
 * This will be consumed by consume_stock() function, later.
1982
 */
1983
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1984 1985 1986
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1987
	if (stock->cached != memcg) { /* reset if necessary */
1988
		drain_stock(stock);
1989
		stock->cached = memcg;
1990
	}
1991
	stock->nr_pages += nr_pages;
1992 1993 1994 1995
	put_cpu_var(memcg_stock);
}

/*
1996
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1997 1998
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
1999
 */
2000
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2001
{
2002
	int cpu, curcpu;
2003

2004 2005
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2006
	curcpu = get_cpu();
2007 2008
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2009
		struct mem_cgroup *memcg;
2010

2011 2012
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2013
			continue;
2014
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2015
			continue;
2016 2017 2018 2019 2020 2021
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2022
	}
2023
	put_cpu();
2024 2025 2026 2027 2028 2029

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2030
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2031 2032 2033
			flush_work(&stock->work);
	}
out:
2034
 	put_online_cpus();
2035 2036 2037 2038 2039 2040 2041 2042
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2043
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2044
{
2045 2046 2047 2048 2049
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2050
	drain_all_stock(root_memcg, false);
2051
	mutex_unlock(&percpu_charge_mutex);
2052 2053 2054
}

/* This is a synchronous drain interface. */
2055
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2056 2057
{
	/* called when force_empty is called */
2058
	mutex_lock(&percpu_charge_mutex);
2059
	drain_all_stock(root_memcg, true);
2060
	mutex_unlock(&percpu_charge_mutex);
2061 2062
}

2063 2064 2065 2066
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2067
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2068 2069 2070
{
	int i;

2071
	spin_lock(&memcg->pcp_counter_lock);
2072
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2073
		long x = per_cpu(memcg->stat->count[i], cpu);
2074

2075 2076
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2077
	}
2078
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2079
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2080

2081 2082
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2083
	}
2084
	/* need to clear ON_MOVE value, works as a kind of lock. */
2085 2086
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2087 2088
}

2089
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2090 2091 2092
{
	int idx = MEM_CGROUP_ON_MOVE;

2093 2094 2095
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2096 2097 2098
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2099 2100 2101 2102 2103
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2104
	struct mem_cgroup *iter;
2105

2106
	if ((action == CPU_ONLINE)) {
2107
		for_each_mem_cgroup(iter)
2108 2109 2110 2111
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2112
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2113
		return NOTIFY_OK;
2114

2115
	for_each_mem_cgroup(iter)
2116 2117
		mem_cgroup_drain_pcp_counter(iter, cpu);

2118 2119 2120 2121 2122
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2133
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2134
				unsigned int nr_pages, bool oom_check)
2135
{
2136
	unsigned long csize = nr_pages * PAGE_SIZE;
2137 2138 2139 2140 2141
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2142
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2143 2144 2145 2146

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2147
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2148 2149 2150
		if (likely(!ret))
			return CHARGE_OK;

2151
		res_counter_uncharge(&memcg->res, csize);
2152 2153 2154 2155
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2156
	/*
2157 2158
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2159 2160 2161 2162
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2163
	if (nr_pages == CHARGE_BATCH)
2164 2165 2166 2167 2168
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2169
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2170
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2171
		return CHARGE_RETRY;
2172
	/*
2173 2174 2175 2176 2177 2178 2179
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2180
	 */
2181
	if (nr_pages == 1 && ret)
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2201
/*
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2221
 */
2222
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2223
				   gfp_t gfp_mask,
2224
				   unsigned int nr_pages,
2225
				   struct mem_cgroup **ptr,
2226
				   bool oom)
2227
{
2228
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2229
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2230
	struct mem_cgroup *memcg = NULL;
2231
	int ret;
2232

K
KAMEZAWA Hiroyuki 已提交
2233 2234 2235 2236 2237 2238 2239 2240
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2241

2242
	/*
2243 2244
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2245 2246 2247
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2248
	if (!*ptr && !mm)
2249
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2250
again:
2251 2252 2253 2254
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2255
			goto done;
2256
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2257
			goto done;
2258
		css_get(&memcg->css);
2259
	} else {
K
KAMEZAWA Hiroyuki 已提交
2260
		struct task_struct *p;
2261

K
KAMEZAWA Hiroyuki 已提交
2262 2263 2264
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2265
		 * Because we don't have task_lock(), "p" can exit.
2266
		 * In that case, "memcg" can point to root or p can be NULL with
2267 2268 2269 2270 2271 2272
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2273
		 */
2274
		memcg = mem_cgroup_from_task(p);
2275 2276 2277
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2278 2279 2280
			rcu_read_unlock();
			goto done;
		}
2281
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2294
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2295 2296 2297 2298 2299
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2300

2301 2302
	do {
		bool oom_check;
2303

2304
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2305
		if (fatal_signal_pending(current)) {
2306
			css_put(&memcg->css);
2307
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2308
		}
2309

2310 2311 2312 2313
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2314
		}
2315

2316
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2317 2318 2319 2320
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2321
			batch = nr_pages;
2322 2323
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2324
			goto again;
2325
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2326
			css_put(&memcg->css);
2327 2328
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2329
			if (!oom) {
2330
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2331
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2332
			}
2333 2334 2335 2336
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2337
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2338
			goto bypass;
2339
		}
2340 2341
	} while (ret != CHARGE_OK);

2342
	if (batch > nr_pages)
2343 2344
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2345
done:
2346
	*ptr = memcg;
2347 2348
	return 0;
nomem:
2349
	*ptr = NULL;
2350
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2351
bypass:
2352 2353
	*ptr = root_mem_cgroup;
	return -EINTR;
2354
}
2355

2356 2357 2358 2359 2360
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2361
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2362
				       unsigned int nr_pages)
2363
{
2364
	if (!mem_cgroup_is_root(memcg)) {
2365 2366
		unsigned long bytes = nr_pages * PAGE_SIZE;

2367
		res_counter_uncharge(&memcg->res, bytes);
2368
		if (do_swap_account)
2369
			res_counter_uncharge(&memcg->memsw, bytes);
2370
	}
2371 2372
}

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2392
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2393
{
2394
	struct mem_cgroup *memcg = NULL;
2395
	struct page_cgroup *pc;
2396
	unsigned short id;
2397 2398
	swp_entry_t ent;

2399 2400 2401
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2402
	lock_page_cgroup(pc);
2403
	if (PageCgroupUsed(pc)) {
2404 2405 2406
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2407
	} else if (PageSwapCache(page)) {
2408
		ent.val = page_private(page);
2409
		id = lookup_swap_cgroup_id(ent);
2410
		rcu_read_lock();
2411 2412 2413
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2414
		rcu_read_unlock();
2415
	}
2416
	unlock_page_cgroup(pc);
2417
	return memcg;
2418 2419
}

2420
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2421
				       struct page *page,
2422
				       unsigned int nr_pages,
2423
				       struct page_cgroup *pc,
2424 2425
				       enum charge_type ctype,
				       bool lrucare)
2426
{
2427 2428 2429
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;

2430 2431 2432
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2433
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2434 2435 2436 2437 2438 2439
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2455
	pc->mem_cgroup = memcg;
2456 2457 2458 2459 2460 2461 2462
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2463
	smp_wmb();
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2477

2478 2479 2480 2481 2482 2483 2484 2485 2486
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2487
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2488
	unlock_page_cgroup(pc);
2489

2490 2491 2492 2493 2494
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2495
	memcg_check_events(memcg, page);
2496
}
2497

2498 2499 2500
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2501
			(1 << PCG_MIGRATION))
2502 2503
/*
 * Because tail pages are not marked as "used", set it. We're under
2504 2505 2506
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2507
 */
2508
void mem_cgroup_split_huge_fixup(struct page *head)
2509 2510
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2511 2512
	struct page_cgroup *pc;
	int i;
2513

2514 2515
	if (mem_cgroup_disabled())
		return;
2516 2517 2518 2519 2520 2521
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2522
}
2523
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2524

2525
/**
2526
 * mem_cgroup_move_account - move account of the page
2527
 * @page: the page
2528
 * @nr_pages: number of regular pages (>1 for huge pages)
2529 2530 2531
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2532
 * @uncharge: whether we should call uncharge and css_put against @from.
2533 2534
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2535
 * - page is not on LRU (isolate_page() is useful.)
2536
 * - compound_lock is held when nr_pages > 1
2537
 *
2538
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2539
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2540 2541
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2542
 */
2543 2544 2545 2546 2547 2548
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2549
{
2550 2551
	unsigned long flags;
	int ret;
2552

2553
	VM_BUG_ON(from == to);
2554
	VM_BUG_ON(PageLRU(page));
2555 2556 2557 2558 2559 2560 2561
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2562
	if (nr_pages > 1 && !PageTransHuge(page))
2563 2564 2565 2566 2567 2568 2569 2570 2571
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2572

2573
	if (PageCgroupFileMapped(pc)) {
2574 2575 2576 2577 2578
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2579
	}
2580
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2581 2582
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2583
		__mem_cgroup_cancel_charge(from, nr_pages);
2584

2585
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2586
	pc->mem_cgroup = to;
2587
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2588 2589 2590
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2591
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2592
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2593
	 * status here.
2594
	 */
2595 2596 2597
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2598
	unlock_page_cgroup(pc);
2599 2600 2601
	/*
	 * check events
	 */
2602 2603
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2604
out:
2605 2606 2607 2608 2609 2610 2611
	return ret;
}

/*
 * move charges to its parent.
 */

2612 2613
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2614 2615 2616 2617 2618 2619
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2620
	unsigned int nr_pages;
2621
	unsigned long uninitialized_var(flags);
2622 2623 2624 2625 2626 2627
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2628 2629 2630 2631 2632
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2633

2634
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2635

2636
	parent = mem_cgroup_from_cont(pcg);
2637
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2638
	if (ret)
2639
		goto put_back;
2640

2641
	if (nr_pages > 1)
2642 2643
		flags = compound_lock_irqsave(page);

2644
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2645
	if (ret)
2646
		__mem_cgroup_cancel_charge(parent, nr_pages);
2647

2648
	if (nr_pages > 1)
2649
		compound_unlock_irqrestore(page, flags);
2650
put_back:
K
KAMEZAWA Hiroyuki 已提交
2651
	putback_lru_page(page);
2652
put:
2653
	put_page(page);
2654
out:
2655 2656 2657
	return ret;
}

2658 2659 2660 2661 2662 2663 2664
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2665
				gfp_t gfp_mask, enum charge_type ctype)
2666
{
2667
	struct mem_cgroup *memcg = NULL;
2668
	unsigned int nr_pages = 1;
2669
	struct page_cgroup *pc;
2670
	bool oom = true;
2671
	int ret;
A
Andrea Arcangeli 已提交
2672

A
Andrea Arcangeli 已提交
2673
	if (PageTransHuge(page)) {
2674
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2675
		VM_BUG_ON(!PageTransHuge(page));
2676 2677 2678 2679 2680
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2681
	}
2682 2683

	pc = lookup_page_cgroup(page);
2684
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2685
	if (ret == -ENOMEM)
2686
		return ret;
2687
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2688 2689 2690
	return 0;
}

2691 2692
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2693
{
2694
	if (mem_cgroup_disabled())
2695
		return 0;
2696 2697 2698
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2699
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2700
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2701 2702
}

D
Daisuke Nishimura 已提交
2703 2704 2705 2706
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2707 2708
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2709
{
2710
	struct mem_cgroup *memcg = NULL;
2711
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2712 2713
	int ret;

2714
	if (mem_cgroup_disabled())
2715
		return 0;
2716 2717
	if (PageCompound(page))
		return 0;
2718

2719
	if (unlikely(!mm))
2720
		mm = &init_mm;
2721 2722
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2723

2724
	if (!PageSwapCache(page))
2725
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2726
	else { /* page is swapcache/shmem */
2727
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2728
		if (!ret)
2729 2730
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2731
	return ret;
2732 2733
}

2734 2735 2736
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2737
 * struct page_cgroup is acquired. This refcnt will be consumed by
2738 2739
 * "commit()" or removed by "cancel()"
 */
2740 2741
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2742
				 gfp_t mask, struct mem_cgroup **memcgp)
2743
{
2744
	struct mem_cgroup *memcg;
2745
	int ret;
2746

2747
	*memcgp = NULL;
2748

2749
	if (mem_cgroup_disabled())
2750 2751 2752 2753 2754 2755
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2756 2757 2758
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2759 2760
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2761
		goto charge_cur_mm;
2762 2763
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2764
		goto charge_cur_mm;
2765 2766
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2767
	css_put(&memcg->css);
2768 2769
	if (ret == -EINTR)
		ret = 0;
2770
	return ret;
2771 2772 2773
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2774 2775 2776 2777
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2778 2779
}

D
Daisuke Nishimura 已提交
2780
static void
2781
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2782
					enum charge_type ctype)
2783
{
2784 2785
	struct page_cgroup *pc;

2786
	if (mem_cgroup_disabled())
2787
		return;
2788
	if (!memcg)
2789
		return;
2790
	cgroup_exclude_rmdir(&memcg->css);
2791

2792 2793
	pc = lookup_page_cgroup(page);
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2794 2795 2796
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2797 2798 2799
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2800
	 */
2801
	if (do_swap_account && PageSwapCache(page)) {
2802
		swp_entry_t ent = {.val = page_private(page)};
2803
		struct mem_cgroup *swap_memcg;
2804 2805 2806 2807
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2808 2809
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2810 2811 2812 2813
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2814 2815 2816 2817 2818
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2819
		}
2820
		rcu_read_unlock();
2821
	}
2822 2823 2824 2825 2826
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2827
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2828 2829
}

2830 2831
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2832
{
2833 2834
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2835 2836
}

2837
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2838
{
2839
	if (mem_cgroup_disabled())
2840
		return;
2841
	if (!memcg)
2842
		return;
2843
	__mem_cgroup_cancel_charge(memcg, 1);
2844 2845
}

2846
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2847 2848
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2849 2850 2851
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2852

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2864
		batch->memcg = memcg;
2865 2866
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2867
	 * In those cases, all pages freed continuously can be expected to be in
2868 2869 2870 2871 2872 2873 2874 2875
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2876
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2877 2878
		goto direct_uncharge;

2879 2880 2881 2882 2883
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2884
	if (batch->memcg != memcg)
2885 2886
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2887
	batch->nr_pages++;
2888
	if (uncharge_memsw)
2889
		batch->memsw_nr_pages++;
2890 2891
	return;
direct_uncharge:
2892
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2893
	if (uncharge_memsw)
2894 2895 2896
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2897 2898
	return;
}
2899

2900
/*
2901
 * uncharge if !page_mapped(page)
2902
 */
2903
static struct mem_cgroup *
2904
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2905
{
2906
	struct mem_cgroup *memcg = NULL;
2907 2908
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2909

2910
	if (mem_cgroup_disabled())
2911
		return NULL;
2912

K
KAMEZAWA Hiroyuki 已提交
2913
	if (PageSwapCache(page))
2914
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2915

A
Andrea Arcangeli 已提交
2916
	if (PageTransHuge(page)) {
2917
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2918 2919
		VM_BUG_ON(!PageTransHuge(page));
	}
2920
	/*
2921
	 * Check if our page_cgroup is valid
2922
	 */
2923
	pc = lookup_page_cgroup(page);
2924
	if (unlikely(!PageCgroupUsed(pc)))
2925
		return NULL;
2926

2927
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2928

2929
	memcg = pc->mem_cgroup;
2930

K
KAMEZAWA Hiroyuki 已提交
2931 2932 2933 2934 2935
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2936
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2937 2938
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2950
	}
K
KAMEZAWA Hiroyuki 已提交
2951

2952
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2953

2954
	ClearPageCgroupUsed(pc);
2955 2956 2957 2958 2959 2960
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2961

2962
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2963
	/*
2964
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2965 2966
	 * will never be freed.
	 */
2967
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2968
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2969 2970
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2971
	}
2972 2973
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2974

2975
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2976 2977 2978

unlock_out:
	unlock_page_cgroup(pc);
2979
	return NULL;
2980 2981
}

2982 2983
void mem_cgroup_uncharge_page(struct page *page)
{
2984 2985 2986
	/* early check. */
	if (page_mapped(page))
		return;
2987
	VM_BUG_ON(page->mapping && !PageAnon(page));
2988 2989 2990 2991 2992 2993
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2994
	VM_BUG_ON(page->mapping);
2995 2996 2997
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3012 3013
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3034 3035 3036 3037 3038 3039
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3040
	memcg_oom_recover(batch->memcg);
3041 3042 3043 3044
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3045
#ifdef CONFIG_SWAP
3046
/*
3047
 * called after __delete_from_swap_cache() and drop "page" account.
3048 3049
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3050 3051
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3052 3053
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3054 3055 3056 3057 3058 3059
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3060

K
KAMEZAWA Hiroyuki 已提交
3061 3062 3063 3064 3065
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3066
		swap_cgroup_record(ent, css_id(&memcg->css));
3067
}
3068
#endif
3069 3070 3071 3072 3073 3074 3075

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3076
{
3077
	struct mem_cgroup *memcg;
3078
	unsigned short id;
3079 3080 3081 3082

	if (!do_swap_account)
		return;

3083 3084 3085
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3086
	if (memcg) {
3087 3088 3089 3090
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3091
		if (!mem_cgroup_is_root(memcg))
3092
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3093
		mem_cgroup_swap_statistics(memcg, false);
3094 3095
		mem_cgroup_put(memcg);
	}
3096
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3097
}
3098 3099 3100 3101 3102 3103

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3104
 * @need_fixup: whether we should fixup res_counters and refcounts.
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3115
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3116 3117 3118 3119 3120 3121 3122 3123
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3124
		mem_cgroup_swap_statistics(to, true);
3125
		/*
3126 3127 3128 3129 3130 3131
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3132 3133
		 */
		mem_cgroup_get(to);
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3145 3146 3147 3148 3149 3150
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3151
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3152 3153 3154
{
	return -EINVAL;
}
3155
#endif
K
KAMEZAWA Hiroyuki 已提交
3156

3157
/*
3158 3159
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3160
 */
3161
int mem_cgroup_prepare_migration(struct page *page,
3162
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3163
{
3164
	struct mem_cgroup *memcg = NULL;
3165
	struct page_cgroup *pc;
3166
	enum charge_type ctype;
3167
	int ret = 0;
3168

3169
	*memcgp = NULL;
3170

A
Andrea Arcangeli 已提交
3171
	VM_BUG_ON(PageTransHuge(page));
3172
	if (mem_cgroup_disabled())
3173 3174
		return 0;

3175 3176 3177
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3178 3179
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3211
	}
3212
	unlock_page_cgroup(pc);
3213 3214 3215 3216
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3217
	if (!memcg)
3218
		return 0;
3219

3220 3221
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3222
	css_put(&memcg->css);/* drop extra refcnt */
3223
	if (ret) {
3224 3225 3226 3227 3228 3229 3230 3231 3232
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3233
		/* we'll need to revisit this error code (we have -EINTR) */
3234
		return -ENOMEM;
3235
	}
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3249
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3250
	return ret;
3251
}
3252

3253
/* remove redundant charge if migration failed*/
3254
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3255
	struct page *oldpage, struct page *newpage, bool migration_ok)
3256
{
3257
	struct page *used, *unused;
3258 3259
	struct page_cgroup *pc;

3260
	if (!memcg)
3261
		return;
3262
	/* blocks rmdir() */
3263
	cgroup_exclude_rmdir(&memcg->css);
3264
	if (!migration_ok) {
3265 3266
		used = oldpage;
		unused = newpage;
3267
	} else {
3268
		used = newpage;
3269 3270
		unused = oldpage;
	}
3271
	/*
3272 3273 3274
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3275
	 */
3276 3277 3278 3279
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3280

3281 3282
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3283
	/*
3284 3285 3286 3287 3288 3289
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3290
	 */
3291 3292
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3293
	/*
3294 3295
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3296 3297 3298
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3299
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3300
}
3301

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3333
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3334 3335
}

3336 3337 3338 3339 3340 3341
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3342 3343 3344 3345 3346
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3366
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3367 3368 3369 3370 3371
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3372 3373
static DEFINE_MUTEX(set_limit_mutex);

3374
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3375
				unsigned long long val)
3376
{
3377
	int retry_count;
3378
	u64 memswlimit, memlimit;
3379
	int ret = 0;
3380 3381
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3382
	int enlarge;
3383 3384 3385 3386 3387 3388 3389 3390 3391

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3392

3393
	enlarge = 0;
3394
	while (retry_count) {
3395 3396 3397 3398
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3399 3400 3401
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3402
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3403 3404 3405 3406 3407 3408
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3409 3410
			break;
		}
3411 3412 3413 3414 3415

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3416
		ret = res_counter_set_limit(&memcg->res, val);
3417 3418 3419 3420 3421 3422
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3423 3424 3425 3426 3427
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3428 3429
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3430 3431 3432 3433 3434 3435
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3436
	}
3437 3438
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3439

3440 3441 3442
	return ret;
}

L
Li Zefan 已提交
3443 3444
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3445
{
3446
	int retry_count;
3447
	u64 memlimit, memswlimit, oldusage, curusage;
3448 3449
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3450
	int enlarge = 0;
3451

3452 3453 3454
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3455 3456 3457 3458 3459 3460 3461 3462
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3463
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3464 3465 3466 3467 3468 3469 3470 3471
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3472 3473 3474
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3475
		ret = res_counter_set_limit(&memcg->memsw, val);
3476 3477 3478 3479 3480 3481
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3482 3483 3484 3485 3486
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3487 3488 3489
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3490
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3491
		/* Usage is reduced ? */
3492
		if (curusage >= oldusage)
3493
			retry_count--;
3494 3495
		else
			oldusage = curusage;
3496
	}
3497 3498
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3499 3500 3501
	return ret;
}

3502
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3503 3504
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3505 3506 3507 3508 3509 3510
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3511
	unsigned long long excess;
3512
	unsigned long nr_scanned;
3513 3514 3515 3516

	if (order > 0)
		return 0;

3517
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3531
		nr_scanned = 0;
3532 3533
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3534
		nr_reclaimed += reclaimed;
3535
		*total_scanned += nr_scanned;
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3558
				if (next_mz == mz)
3559
					css_put(&next_mz->mem->css);
3560
				else /* next_mz == NULL or other memcg */
3561 3562 3563 3564
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3565
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3566 3567 3568 3569 3570 3571 3572 3573
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3574 3575
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3594 3595 3596 3597
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3598
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3599
				int node, int zid, enum lru_list lru)
3600
{
K
KAMEZAWA Hiroyuki 已提交
3601 3602
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3603
	struct list_head *list;
3604 3605
	struct page *busy;
	struct zone *zone;
3606
	int ret = 0;
3607

K
KAMEZAWA Hiroyuki 已提交
3608
	zone = &NODE_DATA(node)->node_zones[zid];
3609
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3610
	list = &mz->lruvec.lists[lru];
3611

3612 3613 3614 3615 3616
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3617
		struct page_cgroup *pc;
3618 3619
		struct page *page;

3620
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3621
		spin_lock_irqsave(&zone->lru_lock, flags);
3622
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3623
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3624
			break;
3625
		}
3626 3627 3628
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3629
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3630
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3631 3632
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3633
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3634

3635
		pc = lookup_page_cgroup(page);
3636

3637
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3638
		if (ret == -ENOMEM || ret == -EINTR)
3639
			break;
3640 3641 3642

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3643
			busy = page;
3644 3645 3646
			cond_resched();
		} else
			busy = NULL;
3647
	}
K
KAMEZAWA Hiroyuki 已提交
3648

3649 3650 3651
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3652 3653 3654 3655 3656 3657
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3658
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3659
{
3660 3661 3662
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3663
	struct cgroup *cgrp = memcg->css.cgroup;
3664

3665
	css_get(&memcg->css);
3666 3667

	shrink = 0;
3668 3669 3670
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3671
move_account:
3672
	do {
3673
		ret = -EBUSY;
3674 3675 3676 3677
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3678
			goto out;
3679 3680
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3681
		drain_all_stock_sync(memcg);
3682
		ret = 0;
3683
		mem_cgroup_start_move(memcg);
3684
		for_each_node_state(node, N_HIGH_MEMORY) {
3685
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3686
				enum lru_list l;
3687
				for_each_lru(l) {
3688
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3689
							node, zid, l);
3690 3691 3692
					if (ret)
						break;
				}
3693
			}
3694 3695 3696
			if (ret)
				break;
		}
3697 3698
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3699 3700 3701
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3702
		cond_resched();
3703
	/* "ret" should also be checked to ensure all lists are empty. */
3704
	} while (memcg->res.usage > 0 || ret);
3705
out:
3706
	css_put(&memcg->css);
3707
	return ret;
3708 3709

try_to_free:
3710 3711
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3712 3713 3714
		ret = -EBUSY;
		goto out;
	}
3715 3716
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3717 3718
	/* try to free all pages in this cgroup */
	shrink = 1;
3719
	while (nr_retries && memcg->res.usage > 0) {
3720
		int progress;
3721 3722 3723 3724 3725

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3726
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3727
						false);
3728
		if (!progress) {
3729
			nr_retries--;
3730
			/* maybe some writeback is necessary */
3731
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3732
		}
3733 3734

	}
K
KAMEZAWA Hiroyuki 已提交
3735
	lru_add_drain();
3736
	/* try move_account...there may be some *locked* pages. */
3737
	goto move_account;
3738 3739
}

3740 3741 3742 3743 3744 3745
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3746 3747 3748 3749 3750 3751 3752 3753 3754
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3755
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3756
	struct cgroup *parent = cont->parent;
3757
	struct mem_cgroup *parent_memcg = NULL;
3758 3759

	if (parent)
3760
		parent_memcg = mem_cgroup_from_cont(parent);
3761 3762 3763

	cgroup_lock();
	/*
3764
	 * If parent's use_hierarchy is set, we can't make any modifications
3765 3766 3767 3768 3769 3770
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3771
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3772 3773
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3774
			memcg->use_hierarchy = val;
3775 3776 3777 3778 3779 3780 3781 3782 3783
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3784

3785
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3786
					       enum mem_cgroup_stat_index idx)
3787
{
K
KAMEZAWA Hiroyuki 已提交
3788
	struct mem_cgroup *iter;
3789
	long val = 0;
3790

3791
	/* Per-cpu values can be negative, use a signed accumulator */
3792
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3793 3794 3795 3796 3797
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3798 3799
}

3800
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3801
{
K
KAMEZAWA Hiroyuki 已提交
3802
	u64 val;
3803

3804
	if (!mem_cgroup_is_root(memcg)) {
3805
		if (!swap)
3806
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3807
		else
3808
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3809 3810
	}

3811 3812
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3813

K
KAMEZAWA Hiroyuki 已提交
3814
	if (swap)
3815
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3816 3817 3818 3819

	return val << PAGE_SHIFT;
}

3820
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3821
{
3822
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3823
	u64 val;
3824 3825 3826 3827 3828 3829
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3830
		if (name == RES_USAGE)
3831
			val = mem_cgroup_usage(memcg, false);
3832
		else
3833
			val = res_counter_read_u64(&memcg->res, name);
3834 3835
		break;
	case _MEMSWAP:
3836
		if (name == RES_USAGE)
3837
			val = mem_cgroup_usage(memcg, true);
3838
		else
3839
			val = res_counter_read_u64(&memcg->memsw, name);
3840 3841 3842 3843 3844 3845
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3846
}
3847 3848 3849 3850
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3851 3852
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3853
{
3854
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3855
	int type, name;
3856 3857 3858
	unsigned long long val;
	int ret;

3859 3860 3861
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3862
	case RES_LIMIT:
3863 3864 3865 3866
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3867 3868
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3869 3870 3871
		if (ret)
			break;
		if (type == _MEM)
3872
			ret = mem_cgroup_resize_limit(memcg, val);
3873 3874
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3875
		break;
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3890 3891 3892 3893 3894
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3895 3896
}

3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3925
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3926
{
3927
	struct mem_cgroup *memcg;
3928
	int type, name;
3929

3930
	memcg = mem_cgroup_from_cont(cont);
3931 3932 3933
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3934
	case RES_MAX_USAGE:
3935
		if (type == _MEM)
3936
			res_counter_reset_max(&memcg->res);
3937
		else
3938
			res_counter_reset_max(&memcg->memsw);
3939 3940
		break;
	case RES_FAILCNT:
3941
		if (type == _MEM)
3942
			res_counter_reset_failcnt(&memcg->res);
3943
		else
3944
			res_counter_reset_failcnt(&memcg->memsw);
3945 3946
		break;
	}
3947

3948
	return 0;
3949 3950
}

3951 3952 3953 3954 3955 3956
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3957
#ifdef CONFIG_MMU
3958 3959 3960
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
3961
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3962 3963 3964 3965 3966 3967 3968 3969 3970

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
3971
	memcg->move_charge_at_immigrate = val;
3972 3973 3974 3975
	cgroup_unlock();

	return 0;
}
3976 3977 3978 3979 3980 3981 3982
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3983

K
KAMEZAWA Hiroyuki 已提交
3984 3985 3986 3987 3988

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3989
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3990 3991
	MCS_PGPGIN,
	MCS_PGPGOUT,
3992
	MCS_SWAP,
3993 3994
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4005 4006
};

K
KAMEZAWA Hiroyuki 已提交
4007 4008 4009 4010 4011 4012
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4013
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4014 4015
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4016
	{"swap", "total_swap"},
4017 4018
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4019 4020 4021 4022 4023 4024 4025 4026
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4027
static void
4028
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4029 4030 4031 4032
{
	s64 val;

	/* per cpu stat */
4033
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4034
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4035
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4036
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4037
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4038
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4039
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4040
	s->stat[MCS_PGPGIN] += val;
4041
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4042
	s->stat[MCS_PGPGOUT] += val;
4043
	if (do_swap_account) {
4044
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4045 4046
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4047
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4048
	s->stat[MCS_PGFAULT] += val;
4049
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4050
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4051 4052

	/* per zone stat */
4053
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4054
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4055
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4056
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4057
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4058
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4059
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4060
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4061
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4062 4063 4064 4065
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4066
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4067
{
K
KAMEZAWA Hiroyuki 已提交
4068 4069
	struct mem_cgroup *iter;

4070
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4071
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4072 4073
}

4074 4075 4076 4077 4078 4079 4080 4081 4082
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4083
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4084 4085
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4086
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4087 4088 4089 4090
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4091
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4092 4093
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4094 4095
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4096 4097 4098 4099
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4100
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4101 4102
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4103 4104
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4105 4106 4107 4108
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4109
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4110 4111
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4112 4113
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4114 4115 4116 4117 4118 4119 4120
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4121 4122
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4123 4124
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4125
	struct mcs_total_stat mystat;
4126 4127
	int i;

K
KAMEZAWA Hiroyuki 已提交
4128 4129
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4130

4131

4132 4133 4134
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4135
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4136
	}
L
Lee Schermerhorn 已提交
4137

K
KAMEZAWA Hiroyuki 已提交
4138
	/* Hierarchical information */
4139 4140 4141 4142 4143 4144 4145
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4146

K
KAMEZAWA Hiroyuki 已提交
4147 4148
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4149 4150 4151
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4152
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4153
	}
K
KAMEZAWA Hiroyuki 已提交
4154

K
KOSAKI Motohiro 已提交
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4182 4183 4184
	return 0;
}

K
KOSAKI Motohiro 已提交
4185 4186 4187 4188
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4189
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4190 4191 4192 4193 4194 4195 4196
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4197

K
KOSAKI Motohiro 已提交
4198 4199 4200 4201 4202 4203 4204
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4205 4206 4207

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4208 4209
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4210 4211
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4212
		return -EINVAL;
4213
	}
K
KOSAKI Motohiro 已提交
4214 4215 4216

	memcg->swappiness = val;

4217 4218
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4219 4220 4221
	return 0;
}

4222 4223 4224 4225 4226 4227 4228 4229
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4230
		t = rcu_dereference(memcg->thresholds.primary);
4231
	else
4232
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4244
	i = t->current_threshold;
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4268
	t->current_threshold = i - 1;
4269 4270 4271 4272 4273 4274
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4275 4276 4277 4278 4279 4280 4281
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4292
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4293 4294 4295
{
	struct mem_cgroup_eventfd_list *ev;

4296
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4297 4298 4299 4300
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4301
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4302
{
K
KAMEZAWA Hiroyuki 已提交
4303 4304
	struct mem_cgroup *iter;

4305
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4306
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4307 4308 4309 4310
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4311 4312
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4313 4314
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4315 4316
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4317
	int i, size, ret;
4318 4319 4320 4321 4322 4323

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4324

4325
	if (type == _MEM)
4326
		thresholds = &memcg->thresholds;
4327
	else if (type == _MEMSWAP)
4328
		thresholds = &memcg->memsw_thresholds;
4329 4330 4331 4332 4333 4334
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4335
	if (thresholds->primary)
4336 4337
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4338
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4339 4340

	/* Allocate memory for new array of thresholds */
4341
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4342
			GFP_KERNEL);
4343
	if (!new) {
4344 4345 4346
		ret = -ENOMEM;
		goto unlock;
	}
4347
	new->size = size;
4348 4349

	/* Copy thresholds (if any) to new array */
4350 4351
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4352
				sizeof(struct mem_cgroup_threshold));
4353 4354
	}

4355
	/* Add new threshold */
4356 4357
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4358 4359

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4360
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4361 4362 4363
			compare_thresholds, NULL);

	/* Find current threshold */
4364
	new->current_threshold = -1;
4365
	for (i = 0; i < size; i++) {
4366
		if (new->entries[i].threshold < usage) {
4367
			/*
4368 4369
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4370 4371
			 * it here.
			 */
4372
			++new->current_threshold;
4373 4374 4375
		}
	}

4376 4377 4378 4379 4380
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4381

4382
	/* To be sure that nobody uses thresholds */
4383 4384 4385 4386 4387 4388 4389 4390
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4391
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4392
	struct cftype *cft, struct eventfd_ctx *eventfd)
4393 4394
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4395 4396
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4397 4398
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4399
	int i, j, size;
4400 4401 4402

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4403
		thresholds = &memcg->thresholds;
4404
	else if (type == _MEMSWAP)
4405
		thresholds = &memcg->memsw_thresholds;
4406 4407 4408 4409 4410 4411 4412 4413 4414
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

4415 4416 4417
	if (!thresholds->primary)
		goto unlock;

4418 4419 4420 4421 4422 4423
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4424 4425 4426
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4427 4428 4429
			size++;
	}

4430
	new = thresholds->spare;
4431

4432 4433
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4434 4435
		kfree(new);
		new = NULL;
4436
		goto swap_buffers;
4437 4438
	}

4439
	new->size = size;
4440 4441

	/* Copy thresholds and find current threshold */
4442 4443 4444
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4445 4446
			continue;

4447 4448
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4449
			/*
4450
			 * new->current_threshold will not be used
4451 4452 4453
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4454
			++new->current_threshold;
4455 4456 4457 4458
		}
		j++;
	}

4459
swap_buffers:
4460 4461 4462
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4463

4464
	/* To be sure that nobody uses thresholds */
4465
	synchronize_rcu();
4466
unlock:
4467 4468
	mutex_unlock(&memcg->thresholds_lock);
}
4469

K
KAMEZAWA Hiroyuki 已提交
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4482
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4483 4484 4485 4486 4487

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4488
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4489
		eventfd_signal(eventfd, 1);
4490
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4491 4492 4493 4494

	return 0;
}

4495
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4496 4497
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4498
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4499 4500 4501 4502 4503
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4504
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4505

4506
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4507 4508 4509 4510 4511 4512
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4513
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4514 4515
}

4516 4517 4518
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4519
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4520

4521
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4522

4523
	if (atomic_read(&memcg->under_oom))
4524 4525 4526 4527 4528 4529 4530 4531 4532
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4533
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4545
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4546 4547 4548
		cgroup_unlock();
		return -EINVAL;
	}
4549
	memcg->oom_kill_disable = val;
4550
	if (!val)
4551
		memcg_oom_recover(memcg);
4552 4553 4554 4555
	cgroup_unlock();
	return 0;
}

4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4572 4573 4574
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4575 4576 4577 4578 4579 4580 4581
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4582
	return mem_cgroup_sockets_init(cont, ss);
4583 4584
};

G
Glauber Costa 已提交
4585 4586 4587 4588 4589
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4590 4591 4592 4593 4594
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4595 4596 4597 4598 4599

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4600 4601
#endif

B
Balbir Singh 已提交
4602 4603
static struct cftype mem_cgroup_files[] = {
	{
4604
		.name = "usage_in_bytes",
4605
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4606
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4607 4608
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4609
	},
4610 4611
	{
		.name = "max_usage_in_bytes",
4612
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4613
		.trigger = mem_cgroup_reset,
4614 4615
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4616
	{
4617
		.name = "limit_in_bytes",
4618
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4619
		.write_string = mem_cgroup_write,
4620
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4621
	},
4622 4623 4624 4625 4626 4627
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4628 4629
	{
		.name = "failcnt",
4630
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4631
		.trigger = mem_cgroup_reset,
4632
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4633
	},
4634 4635
	{
		.name = "stat",
4636
		.read_map = mem_control_stat_show,
4637
	},
4638 4639 4640 4641
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4642 4643 4644 4645 4646
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4647 4648 4649 4650 4651
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4652 4653 4654 4655 4656
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4657 4658
	{
		.name = "oom_control",
4659 4660
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4661 4662 4663 4664
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4665 4666 4667 4668
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4669
		.mode = S_IRUGO,
4670 4671
	},
#endif
B
Balbir Singh 已提交
4672 4673
};

4674 4675 4676 4677 4678 4679
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4680 4681
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4717
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4718 4719
{
	struct mem_cgroup_per_node *pn;
4720
	struct mem_cgroup_per_zone *mz;
4721
	enum lru_list l;
4722
	int zone, tmp = node;
4723 4724 4725 4726 4727 4728 4729 4730
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4731 4732
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4733
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4734 4735
	if (!pn)
		return 1;
4736 4737 4738

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4739
		for_each_lru(l)
4740
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4741
		mz->usage_in_excess = 0;
4742
		mz->on_tree = false;
4743
		mz->mem = memcg;
4744
	}
4745
	memcg->info.nodeinfo[node] = pn;
4746 4747 4748
	return 0;
}

4749
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4750
{
4751
	kfree(memcg->info.nodeinfo[node]);
4752 4753
}

4754 4755 4756
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4757
	int size = sizeof(struct mem_cgroup);
4758

4759
	/* Can be very big if MAX_NUMNODES is very big */
4760
	if (size < PAGE_SIZE)
4761
		mem = kzalloc(size, GFP_KERNEL);
4762
	else
4763
		mem = vzalloc(size);
4764

4765 4766 4767
	if (!mem)
		return NULL;

4768
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4769 4770
	if (!mem->stat)
		goto out_free;
4771
	spin_lock_init(&mem->pcp_counter_lock);
4772
	return mem;
4773 4774 4775 4776 4777 4778 4779

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4780 4781
}

4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4793
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4794
{
K
KAMEZAWA Hiroyuki 已提交
4795 4796
	int node;

4797 4798
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4799

B
Bob Liu 已提交
4800
	for_each_node(node)
4801
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4802

4803
	free_percpu(memcg->stat);
4804
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4805
		kfree(memcg);
4806
	else
4807
		vfree(memcg);
4808 4809
}

4810
static void mem_cgroup_get(struct mem_cgroup *memcg)
4811
{
4812
	atomic_inc(&memcg->refcnt);
4813 4814
}

4815
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4816
{
4817 4818 4819
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4820 4821 4822
		if (parent)
			mem_cgroup_put(parent);
	}
4823 4824
}

4825
static void mem_cgroup_put(struct mem_cgroup *memcg)
4826
{
4827
	__mem_cgroup_put(memcg, 1);
4828 4829
}

4830 4831 4832
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4833
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4834
{
4835
	if (!memcg->res.parent)
4836
		return NULL;
4837
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4838
}
G
Glauber Costa 已提交
4839
EXPORT_SYMBOL(parent_mem_cgroup);
4840

4841 4842 4843
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4844
	if (!mem_cgroup_disabled() && really_do_swap_account)
4845 4846 4847 4848 4849 4850 4851 4852
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4853 4854 4855 4856 4857 4858
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4859
	for_each_node(node) {
4860 4861 4862 4863 4864
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4865
			goto err_cleanup;
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4876 4877

err_cleanup:
B
Bob Liu 已提交
4878
	for_each_node(node) {
4879 4880 4881 4882 4883 4884 4885
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4886 4887
}

L
Li Zefan 已提交
4888
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4889 4890
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4891
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4892
	long error = -ENOMEM;
4893
	int node;
B
Balbir Singh 已提交
4894

4895 4896
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4897
		return ERR_PTR(error);
4898

B
Bob Liu 已提交
4899
	for_each_node(node)
4900
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4901
			goto free_out;
4902

4903
	/* root ? */
4904
	if (cont->parent == NULL) {
4905
		int cpu;
4906
		enable_swap_cgroup();
4907
		parent = NULL;
4908 4909
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4910
		root_mem_cgroup = memcg;
4911 4912 4913 4914 4915
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4916
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4917
	} else {
4918
		parent = mem_cgroup_from_cont(cont->parent);
4919 4920
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4921
	}
4922

4923
	if (parent && parent->use_hierarchy) {
4924 4925
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4926 4927 4928 4929 4930 4931 4932
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4933
	} else {
4934 4935
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4936
	}
4937 4938
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4939

K
KOSAKI Motohiro 已提交
4940
	if (parent)
4941 4942 4943 4944 4945
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
4946
free_out:
4947
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4948
	return ERR_PTR(error);
B
Balbir Singh 已提交
4949 4950
}

4951
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4952 4953
					struct cgroup *cont)
{
4954
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4955

4956
	return mem_cgroup_force_empty(memcg, false);
4957 4958
}

B
Balbir Singh 已提交
4959 4960 4961
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4962
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4963

G
Glauber Costa 已提交
4964 4965
	kmem_cgroup_destroy(ss, cont);

4966
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4967 4968 4969 4970 4971
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4972 4973 4974 4975 4976 4977 4978
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
4979 4980 4981 4982

	if (!ret)
		ret = register_kmem_files(cont, ss);

4983
	return ret;
B
Balbir Singh 已提交
4984 4985
}

4986
#ifdef CONFIG_MMU
4987
/* Handlers for move charge at task migration. */
4988 4989
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4990
{
4991 4992
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4993
	struct mem_cgroup *memcg = mc.to;
4994

4995
	if (mem_cgroup_is_root(memcg)) {
4996 4997 4998 4999 5000 5001 5002 5003
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5004
		 * "memcg" cannot be under rmdir() because we've already checked
5005 5006 5007 5008
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5009
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5010
			goto one_by_one;
5011
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5012
						PAGE_SIZE * count, &dummy)) {
5013
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5030 5031
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5032
		if (ret)
5033
			/* mem_cgroup_clear_mc() will do uncharge later */
5034
			return ret;
5035 5036
		mc.precharge++;
	}
5037 5038 5039 5040 5041 5042 5043 5044
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5045
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5046 5047 5048 5049 5050 5051
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5052 5053 5054
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5055 5056 5057 5058 5059
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5060
	swp_entry_t	ent;
5061 5062 5063 5064 5065
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5066
	MC_TARGET_SWAP,
5067 5068
};

D
Daisuke Nishimura 已提交
5069 5070
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5071
{
D
Daisuke Nishimura 已提交
5072
	struct page *page = vm_normal_page(vma, addr, ptent);
5073

D
Daisuke Nishimura 已提交
5074 5075 5076 5077
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5078
		if (!move_anon() || page_mapcount(page) > 1)
D
Daisuke Nishimura 已提交
5079
			return NULL;
5080 5081
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5100 5101
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5102
		return NULL;
5103
	}
D
Daisuke Nishimura 已提交
5104 5105 5106 5107 5108 5109
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5131 5132 5133 5134 5135 5136
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5137
		if (do_swap_account)
5138 5139
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5140
	}
5141
#endif
5142 5143 5144
	return page;
}

D
Daisuke Nishimura 已提交
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5157 5158
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5159 5160 5161

	if (!page && !ent.val)
		return 0;
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5177 5178
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5179
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5180 5181 5182
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5195 5196
	split_huge_page_pmd(walk->mm, pmd);

5197 5198 5199 5200 5201 5202 5203
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5204 5205 5206
	return 0;
}

5207 5208 5209 5210 5211
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5212
	down_read(&mm->mmap_sem);
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5224
	up_read(&mm->mmap_sem);
5225 5226 5227 5228 5229 5230 5231 5232 5233

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5234 5235 5236 5237 5238
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5239 5240
}

5241 5242
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5243
{
5244 5245 5246
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5247
	/* we must uncharge all the leftover precharges from mc.to */
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5259
	}
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5294
	spin_lock(&mc.lock);
5295 5296
	mc.from = NULL;
	mc.to = NULL;
5297
	spin_unlock(&mc.lock);
5298
	mem_cgroup_end_move(from);
5299 5300
}

5301 5302
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5303
				struct cgroup_taskset *tset)
5304
{
5305
	struct task_struct *p = cgroup_taskset_first(tset);
5306
	int ret = 0;
5307
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5308

5309
	if (memcg->move_charge_at_immigrate) {
5310 5311 5312
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5313
		VM_BUG_ON(from == memcg);
5314 5315 5316 5317 5318

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5319 5320 5321 5322
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5323
			VM_BUG_ON(mc.moved_charge);
5324
			VM_BUG_ON(mc.moved_swap);
5325
			mem_cgroup_start_move(from);
5326
			spin_lock(&mc.lock);
5327
			mc.from = from;
5328
			mc.to = memcg;
5329
			spin_unlock(&mc.lock);
5330
			/* We set mc.moving_task later */
5331 5332 5333 5334

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5335 5336
		}
		mmput(mm);
5337 5338 5339 5340 5341 5342
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5343
				struct cgroup_taskset *tset)
5344
{
5345
	mem_cgroup_clear_mc();
5346 5347
}

5348 5349 5350
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5351
{
5352 5353 5354 5355 5356
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5357
	split_huge_page_pmd(walk->mm, pmd);
5358 5359 5360 5361 5362 5363 5364 5365
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5366
		swp_entry_t ent;
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5378 5379
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5380
				mc.precharge--;
5381 5382
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5383 5384 5385 5386 5387
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5388 5389
		case MC_TARGET_SWAP:
			ent = target.ent;
5390 5391
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5392
				mc.precharge--;
5393 5394 5395
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5396
			break;
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5411
		ret = mem_cgroup_do_precharge(1);
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5455
	up_read(&mm->mmap_sem);
5456 5457
}

B
Balbir Singh 已提交
5458 5459
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5460
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5461
{
5462
	struct task_struct *p = cgroup_taskset_first(tset);
5463
	struct mm_struct *mm = get_task_mm(p);
5464 5465

	if (mm) {
5466 5467 5468
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5469 5470
		mmput(mm);
	}
5471 5472
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5473
}
5474 5475 5476
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5477
				struct cgroup_taskset *tset)
5478 5479 5480 5481 5482
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5483
				struct cgroup_taskset *tset)
5484 5485 5486 5487
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5488
				struct cgroup_taskset *tset)
5489 5490 5491
{
}
#endif
B
Balbir Singh 已提交
5492

B
Balbir Singh 已提交
5493 5494 5495 5496
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5497
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5498 5499
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5500 5501
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5502
	.attach = mem_cgroup_move_task,
5503
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5504
	.use_id = 1,
B
Balbir Singh 已提交
5505
};
5506 5507

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5508 5509 5510
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5511
	if (!strcmp(s, "1"))
5512
		really_do_swap_account = 1;
5513
	else if (!strcmp(s, "0"))
5514 5515 5516
		really_do_swap_account = 0;
	return 1;
}
5517
__setup("swapaccount=", enable_swap_account);
5518 5519

#endif