slab.c 110.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
L
Linus Torvalds 已提交
119

120 121
#include	<net/sock.h>

L
Linus Torvalds 已提交
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

L
Linus Torvalds 已提交
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165
/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
 */
static bool pfmemalloc_active __read_mostly;

L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
183
	spinlock_t lock;
184
	void *entry[];	/*
A
Andrew Morton 已提交
185 186 187
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
188 189 190 191
			 *
			 * Entries should not be directly dereferenced as
			 * entries belonging to slabs marked pfmemalloc will
			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
A
Andrew Morton 已提交
192
			 */
L
Linus Torvalds 已提交
193 194
};

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#define SLAB_OBJ_PFMEMALLOC	1
static inline bool is_obj_pfmemalloc(void *objp)
{
	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
}

static inline void set_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
	return;
}

static inline void clear_obj_pfmemalloc(void **objp)
{
	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
}

A
Andrew Morton 已提交
212 213 214
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
215 216 217 218
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
219
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
220 221
};

222 223 224
/*
 * Need this for bootstrapping a per node allocator.
 */
225
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
226
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
227
#define	CACHE_CACHE 0
228
#define	SIZE_AC MAX_NUMNODES
229
#define	SIZE_NODE (2 * MAX_NUMNODES)
230

231
static int drain_freelist(struct kmem_cache *cache,
232
			struct kmem_cache_node *n, int tofree);
233 234
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
235
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
236
static void cache_reap(struct work_struct *unused);
237

238 239
static int slab_early_init = 1;

240
#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
241
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
L
Linus Torvalds 已提交
242

243
static void kmem_cache_node_init(struct kmem_cache_node *parent)
244 245 246 247 248 249
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
250
	parent->colour_next = 0;
251 252 253 254 255
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
256 257 258
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
259
		list_splice(&(cachep->node[nodeid]->slab), listp);	\
260 261
	} while (0)

A
Andrew Morton 已提交
262 263
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
264 265 266 267
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
268 269 270 271 272

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
273 274 275
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
276
 *
A
Adrian Bunk 已提交
277
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
278 279 280 281 282 283 284 285 286 287
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
288
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
289 290 291 292 293
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
294 295
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
296
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
297
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
298 299 300 301 302
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
303 304 305 306 307 308 309 310 311
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
312
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
313 314 315
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
316
#define	STATS_INC_NODEFREES(x)	do { } while (0)
317
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
318
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
319 320 321 322 323 324 325 326
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
327 328
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
329
 * 0		: objp
330
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
331 332
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
333
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
334
 * 		redzone word.
335
 * cachep->obj_offset: The real object.
336 337
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
A
Andrew Morton 已提交
338
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
339
 */
340
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
341
{
342
	return cachep->obj_offset;
L
Linus Torvalds 已提交
343 344
}

345
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
346 347
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
348 349
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
350 351
}

352
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
353 354 355
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
356
		return (unsigned long long *)(objp + cachep->size -
357
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
358
					      REDZONE_ALIGN);
359
	return (unsigned long long *) (objp + cachep->size -
360
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
361 362
}

363
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
364 365
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
366
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
367 368 369 370
}

#else

371
#define obj_offset(x)			0
372 373
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
374 375 376 377 378
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
379 380
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
L
Linus Torvalds 已提交
381
 */
382 383 384
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
385
static bool slab_max_order_set __initdata;
L
Linus Torvalds 已提交
386

387 388
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
389
	struct page *page = virt_to_head_page(obj);
C
Christoph Lameter 已提交
390
	return page->slab_cache;
391 392
}

393
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
394 395
				 unsigned int idx)
{
396
	return page->s_mem + cache->size * idx;
397 398
}

399
/*
400 401 402
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
403 404 405
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
406
					const struct page *page, void *obj)
407
{
408
	u32 offset = (obj - page->s_mem);
409
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
410 411
}

L
Linus Torvalds 已提交
412
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
413
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
414 415

/* internal cache of cache description objs */
416
static struct kmem_cache kmem_cache_boot = {
P
Pekka Enberg 已提交
417 418 419
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
420
	.size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
421
	.name = "kmem_cache",
L
Linus Torvalds 已提交
422 423
};

424 425
#define BAD_ALIEN_MAGIC 0x01020304ul

426 427 428 429 430 431 432 433
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
434 435 436 437
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
438
 */
439 440 441
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

442 443 444 445 446 447 448 449
static struct lock_class_key debugobj_l3_key;
static struct lock_class_key debugobj_alc_key;

static void slab_set_lock_classes(struct kmem_cache *cachep,
		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
		int q)
{
	struct array_cache **alc;
450
	struct kmem_cache_node *n;
451 452
	int r;

453 454
	n = cachep->node[q];
	if (!n)
455 456
		return;

457 458
	lockdep_set_class(&n->list_lock, l3_key);
	alc = n->alien;
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	/*
	 * FIXME: This check for BAD_ALIEN_MAGIC
	 * should go away when common slab code is taught to
	 * work even without alien caches.
	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
	 * for alloc_alien_cache,
	 */
	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
		return;
	for_each_node(r) {
		if (alc[r])
			lockdep_set_class(&alc[r]->lock, alc_key);
	}
}

static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
	int node;

	for_each_online_node(node)
		slab_set_debugobj_lock_classes_node(cachep, node);
}

487
static void init_node_lock_keys(int q)
488
{
489
	int i;
490

491
	if (slab_state < UP)
492 493
		return;

C
Christoph Lameter 已提交
494
	for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
495
		struct kmem_cache_node *n;
496 497 498 499
		struct kmem_cache *cache = kmalloc_caches[i];

		if (!cache)
			continue;
500

501 502
		n = cache->node[q];
		if (!n || OFF_SLAB(cache))
503
			continue;
504

505
		slab_set_lock_classes(cache, &on_slab_l3_key,
506
				&on_slab_alc_key, q);
507 508
	}
}
509

510 511
static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
{
512
	if (!cachep->node[q])
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
		return;

	slab_set_lock_classes(cachep, &on_slab_l3_key,
			&on_slab_alc_key, q);
}

static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
	int node;

	VM_BUG_ON(OFF_SLAB(cachep));
	for_each_node(node)
		on_slab_lock_classes_node(cachep, node);
}

528 529 530 531 532 533 534
static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
535
#else
536 537 538 539
static void init_node_lock_keys(int q)
{
}

540
static inline void init_lock_keys(void)
541 542
{
}
543

544 545 546 547 548 549 550 551
static inline void on_slab_lock_classes(struct kmem_cache *cachep)
{
}

static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

552 553 554 555 556 557 558
static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
{
}

static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
{
}
559 560
#endif

561
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
562

563
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
564 565 566 567
{
	return cachep->array[smp_processor_id()];
}

568
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
569
{
570
	return ALIGN(nr_objs * sizeof(unsigned int), align);
571
}
L
Linus Torvalds 已提交
572

A
Andrew Morton 已提交
573 574 575
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
576 577 578 579 580 581 582
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
583

584 585 586 587 588
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
J
Joonsoo Kim 已提交
589
	 * - One unsigned int for each object
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
611
		nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int));
612 613 614 615 616 617 618 619 620 621 622 623 624

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
625 626
}

627
#if DEBUG
628
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
629

A
Andrew Morton 已提交
630 631
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
632 633
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
634
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
635
	dump_stack();
636
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
637
}
638
#endif
L
Linus Torvalds 已提交
639

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

656 657 658 659 660 661 662 663 664 665 666
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

667 668 669 670 671 672 673
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
674
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
675 676 677 678 679

static void init_reap_node(int cpu)
{
	int node;

680
	node = next_node(cpu_to_mem(cpu), node_online_map);
681
	if (node == MAX_NUMNODES)
682
		node = first_node(node_online_map);
683

684
	per_cpu(slab_reap_node, cpu) = node;
685 686 687 688
}

static void next_reap_node(void)
{
689
	int node = __this_cpu_read(slab_reap_node);
690 691 692 693

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
694
	__this_cpu_write(slab_reap_node, node);
695 696 697 698 699 700 701
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
702 703 704 705 706 707 708
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
709
static void start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
710
{
711
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
712 713 714 715 716 717

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
718
	if (keventd_up() && reap_work->work.func == NULL) {
719
		init_reap_node(cpu);
720
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
721 722
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
723 724 725
	}
}

726
static struct array_cache *alloc_arraycache(int node, int entries,
727
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
728
{
P
Pekka Enberg 已提交
729
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
730 731
	struct array_cache *nc = NULL;

732
	nc = kmalloc_node(memsize, gfp, node);
733 734
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
735
	 * However, when such objects are allocated or transferred to another
736 737 738 739 740
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
741 742 743 744 745
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
746
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
747 748 749 750
	}
	return nc;
}

751
static inline bool is_slab_pfmemalloc(struct page *page)
752
{
753
	return PageSlabPfmemalloc(page);
754 755 756 757 758 759
}

/* Clears pfmemalloc_active if no slabs have pfmalloc set */
static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
						struct array_cache *ac)
{
760
	struct kmem_cache_node *n = cachep->node[numa_mem_id()];
761
	struct page *page;
762 763 764 765 766
	unsigned long flags;

	if (!pfmemalloc_active)
		return;

767
	spin_lock_irqsave(&n->list_lock, flags);
768 769
	list_for_each_entry(page, &n->slabs_full, lru)
		if (is_slab_pfmemalloc(page))
770 771
			goto out;

772 773
	list_for_each_entry(page, &n->slabs_partial, lru)
		if (is_slab_pfmemalloc(page))
774 775
			goto out;

776 777
	list_for_each_entry(page, &n->slabs_free, lru)
		if (is_slab_pfmemalloc(page))
778 779 780 781
			goto out;

	pfmemalloc_active = false;
out:
782
	spin_unlock_irqrestore(&n->list_lock, flags);
783 784
}

785
static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
786 787 788 789 790 791 792
						gfp_t flags, bool force_refill)
{
	int i;
	void *objp = ac->entry[--ac->avail];

	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
	if (unlikely(is_obj_pfmemalloc(objp))) {
793
		struct kmem_cache_node *n;
794 795 796 797 798 799 800

		if (gfp_pfmemalloc_allowed(flags)) {
			clear_obj_pfmemalloc(&objp);
			return objp;
		}

		/* The caller cannot use PFMEMALLOC objects, find another one */
801
		for (i = 0; i < ac->avail; i++) {
802 803 804 805 806 807 808 809 810 811 812 813 814
			/* If a !PFMEMALLOC object is found, swap them */
			if (!is_obj_pfmemalloc(ac->entry[i])) {
				objp = ac->entry[i];
				ac->entry[i] = ac->entry[ac->avail];
				ac->entry[ac->avail] = objp;
				return objp;
			}
		}

		/*
		 * If there are empty slabs on the slabs_free list and we are
		 * being forced to refill the cache, mark this one !pfmemalloc.
		 */
815 816
		n = cachep->node[numa_mem_id()];
		if (!list_empty(&n->slabs_free) && force_refill) {
817
			struct page *page = virt_to_head_page(objp);
818
			ClearPageSlabPfmemalloc(page);
819 820 821 822 823 824 825 826 827 828 829 830 831
			clear_obj_pfmemalloc(&objp);
			recheck_pfmemalloc_active(cachep, ac);
			return objp;
		}

		/* No !PFMEMALLOC objects available */
		ac->avail++;
		objp = NULL;
	}

	return objp;
}

832 833 834 835 836 837 838 839 840 841 842 843 844 845
static inline void *ac_get_obj(struct kmem_cache *cachep,
			struct array_cache *ac, gfp_t flags, bool force_refill)
{
	void *objp;

	if (unlikely(sk_memalloc_socks()))
		objp = __ac_get_obj(cachep, ac, flags, force_refill);
	else
		objp = ac->entry[--ac->avail];

	return objp;
}

static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
846 847 848 849
								void *objp)
{
	if (unlikely(pfmemalloc_active)) {
		/* Some pfmemalloc slabs exist, check if this is one */
850
		struct page *page = virt_to_head_page(objp);
851
		if (PageSlabPfmemalloc(page))
852 853 854
			set_obj_pfmemalloc(&objp);
	}

855 856 857 858 859 860 861 862 863
	return objp;
}

static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
								void *objp)
{
	if (unlikely(sk_memalloc_socks()))
		objp = __ac_put_obj(cachep, ac, objp);

864 865 866
	ac->entry[ac->avail++] = objp;
}

867 868 869 870 871 872 873 874 875 876
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
877
	int nr = min3(from->avail, max, to->limit - to->avail);
878 879 880 881 882 883 884 885 886 887 888 889

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

890 891 892
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
893
#define reap_alien(cachep, n) do { } while (0)
894

895
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

915
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
916 917 918 919 920 921 922
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

923
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
924
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
925

926
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
927 928
{
	struct array_cache **ac_ptr;
929
	int memsize = sizeof(void *) * nr_node_ids;
930 931 932 933
	int i;

	if (limit > 1)
		limit = 12;
934
	ac_ptr = kzalloc_node(memsize, gfp, node);
935 936
	if (ac_ptr) {
		for_each_node(i) {
937
			if (i == node || !node_online(i))
938
				continue;
939
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
940
			if (!ac_ptr[i]) {
941
				for (i--; i >= 0; i--)
942 943 944 945 946 947 948 949 950
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
951
static void free_alien_cache(struct array_cache **ac_ptr)
952 953 954 955 956 957
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
958
	    kfree(ac_ptr[i]);
959 960 961
	kfree(ac_ptr);
}

962
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
963
				struct array_cache *ac, int node)
964
{
965
	struct kmem_cache_node *n = cachep->node[node];
966 967

	if (ac->avail) {
968
		spin_lock(&n->list_lock);
969 970 971 972 973
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
974 975
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
976

977
		free_block(cachep, ac->entry, ac->avail, node);
978
		ac->avail = 0;
979
		spin_unlock(&n->list_lock);
980 981 982
	}
}

983 984 985
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
986
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
987
{
988
	int node = __this_cpu_read(slab_reap_node);
989

990 991
	if (n->alien) {
		struct array_cache *ac = n->alien[node];
992 993

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
994 995 996 997 998 999
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1000 1001
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1002
{
P
Pekka Enberg 已提交
1003
	int i = 0;
1004 1005 1006 1007
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1008
		ac = alien[i];
1009 1010 1011 1012 1013 1014 1015
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1016

1017
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1018
{
J
Joonsoo Kim 已提交
1019
	int nodeid = page_to_nid(virt_to_page(objp));
1020
	struct kmem_cache_node *n;
1021
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1022 1023
	int node;

1024
	node = numa_mem_id();
1025 1026 1027 1028 1029

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
J
Joonsoo Kim 已提交
1030
	if (likely(nodeid == node))
1031 1032
		return 0;

1033
	n = cachep->node[node];
1034
	STATS_INC_NODEFREES(cachep);
1035 1036
	if (n->alien && n->alien[nodeid]) {
		alien = n->alien[nodeid];
1037
		spin_lock(&alien->lock);
1038 1039 1040 1041
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
1042
		ac_put_obj(cachep, alien, objp);
1043 1044
		spin_unlock(&alien->lock);
	} else {
1045
		spin_lock(&(cachep->node[nodeid])->list_lock);
1046
		free_block(cachep, &objp, 1, nodeid);
1047
		spin_unlock(&(cachep->node[nodeid])->list_lock);
1048 1049 1050
	}
	return 1;
}
1051 1052
#endif

1053
/*
1054
 * Allocates and initializes node for a node on each slab cache, used for
1055
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1056
 * will be allocated off-node since memory is not yet online for the new node.
1057
 * When hotplugging memory or a cpu, existing node are not replaced if
1058 1059
 * already in use.
 *
1060
 * Must hold slab_mutex.
1061
 */
1062
static int init_cache_node_node(int node)
1063 1064
{
	struct kmem_cache *cachep;
1065
	struct kmem_cache_node *n;
1066
	const int memsize = sizeof(struct kmem_cache_node);
1067

1068
	list_for_each_entry(cachep, &slab_caches, list) {
1069 1070 1071 1072 1073
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
1074
		if (!cachep->node[node]) {
1075 1076
			n = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!n)
1077
				return -ENOMEM;
1078 1079
			kmem_cache_node_init(n);
			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1080 1081 1082 1083
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
1084
			 * go.  slab_mutex is sufficient
1085 1086
			 * protection here.
			 */
1087
			cachep->node[node] = n;
1088 1089
		}

1090 1091
		spin_lock_irq(&cachep->node[node]->list_lock);
		cachep->node[node]->free_limit =
1092 1093
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
1094
		spin_unlock_irq(&cachep->node[node]->list_lock);
1095 1096 1097 1098
	}
	return 0;
}

1099 1100 1101 1102 1103 1104
static inline int slabs_tofree(struct kmem_cache *cachep,
						struct kmem_cache_node *n)
{
	return (n->free_objects + cachep->num - 1) / cachep->num;
}

1105
static void cpuup_canceled(long cpu)
1106 1107
{
	struct kmem_cache *cachep;
1108
	struct kmem_cache_node *n = NULL;
1109
	int node = cpu_to_mem(cpu);
1110
	const struct cpumask *mask = cpumask_of_node(node);
1111

1112
	list_for_each_entry(cachep, &slab_caches, list) {
1113 1114 1115 1116 1117 1118 1119
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
1120
		n = cachep->node[node];
1121

1122
		if (!n)
1123 1124
			goto free_array_cache;

1125
		spin_lock_irq(&n->list_lock);
1126

1127 1128
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1129 1130 1131
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1132
		if (!cpumask_empty(mask)) {
1133
			spin_unlock_irq(&n->list_lock);
1134 1135 1136
			goto free_array_cache;
		}

1137
		shared = n->shared;
1138 1139 1140
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
1141
			n->shared = NULL;
1142 1143
		}

1144 1145
		alien = n->alien;
		n->alien = NULL;
1146

1147
		spin_unlock_irq(&n->list_lock);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1162
	list_for_each_entry(cachep, &slab_caches, list) {
1163 1164
		n = cachep->node[node];
		if (!n)
1165
			continue;
1166
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1167 1168 1169
	}
}

1170
static int cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1171
{
1172
	struct kmem_cache *cachep;
1173
	struct kmem_cache_node *n = NULL;
1174
	int node = cpu_to_mem(cpu);
1175
	int err;
L
Linus Torvalds 已提交
1176

1177 1178 1179 1180
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1181
	 * kmem_cache_node and not this cpu's kmem_cache_node
1182
	 */
1183
	err = init_cache_node_node(node);
1184 1185
	if (err < 0)
		goto bad;
1186 1187 1188 1189 1190

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1191
	list_for_each_entry(cachep, &slab_caches, list) {
1192 1193 1194 1195 1196
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1197
					cachep->batchcount, GFP_KERNEL);
1198 1199 1200 1201 1202
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1203
				0xbaadf00d, GFP_KERNEL);
1204 1205
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1206
				goto bad;
1207
			}
1208 1209
		}
		if (use_alien_caches) {
1210
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1211 1212 1213
			if (!alien) {
				kfree(shared);
				kfree(nc);
1214
				goto bad;
1215
			}
1216 1217
		}
		cachep->array[cpu] = nc;
1218 1219
		n = cachep->node[node];
		BUG_ON(!n);
1220

1221 1222
		spin_lock_irq(&n->list_lock);
		if (!n->shared) {
1223 1224 1225 1226
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
1227
			n->shared = shared;
1228 1229
			shared = NULL;
		}
1230
#ifdef CONFIG_NUMA
1231 1232
		if (!n->alien) {
			n->alien = alien;
1233
			alien = NULL;
L
Linus Torvalds 已提交
1234
		}
1235
#endif
1236
		spin_unlock_irq(&n->list_lock);
1237 1238
		kfree(shared);
		free_alien_cache(alien);
1239 1240
		if (cachep->flags & SLAB_DEBUG_OBJECTS)
			slab_set_debugobj_lock_classes_node(cachep, node);
1241 1242 1243
		else if (!OFF_SLAB(cachep) &&
			 !(cachep->flags & SLAB_DESTROY_BY_RCU))
			on_slab_lock_classes_node(cachep, node);
1244
	}
1245 1246
	init_node_lock_keys(node);

1247 1248
	return 0;
bad:
1249
	cpuup_canceled(cpu);
1250 1251 1252
	return -ENOMEM;
}

1253
static int cpuup_callback(struct notifier_block *nfb,
1254 1255 1256 1257 1258 1259 1260 1261
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1262
		mutex_lock(&slab_mutex);
1263
		err = cpuup_prepare(cpu);
1264
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1265 1266
		break;
	case CPU_ONLINE:
1267
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1268 1269 1270
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1271
  	case CPU_DOWN_PREPARE:
1272
  	case CPU_DOWN_PREPARE_FROZEN:
1273
		/*
1274
		 * Shutdown cache reaper. Note that the slab_mutex is
1275 1276 1277 1278
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1279
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1280
		/* Now the cache_reaper is guaranteed to be not running. */
1281
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1282 1283
  		break;
  	case CPU_DOWN_FAILED:
1284
  	case CPU_DOWN_FAILED_FROZEN:
1285 1286
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1287
	case CPU_DEAD:
1288
	case CPU_DEAD_FROZEN:
1289 1290
		/*
		 * Even if all the cpus of a node are down, we don't free the
1291
		 * kmem_cache_node of any cache. This to avoid a race between
1292
		 * cpu_down, and a kmalloc allocation from another cpu for
1293
		 * memory from the node of the cpu going down.  The node
1294 1295 1296
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1297
		/* fall through */
1298
#endif
L
Linus Torvalds 已提交
1299
	case CPU_UP_CANCELED:
1300
	case CPU_UP_CANCELED_FROZEN:
1301
		mutex_lock(&slab_mutex);
1302
		cpuup_canceled(cpu);
1303
		mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
1304 1305
		break;
	}
1306
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1307 1308
}

1309
static struct notifier_block cpucache_notifier = {
1310 1311
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1312

1313 1314 1315 1316 1317 1318
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1319
 * Must hold slab_mutex.
1320
 */
1321
static int __meminit drain_cache_node_node(int node)
1322 1323 1324 1325
{
	struct kmem_cache *cachep;
	int ret = 0;

1326
	list_for_each_entry(cachep, &slab_caches, list) {
1327
		struct kmem_cache_node *n;
1328

1329 1330
		n = cachep->node[node];
		if (!n)
1331 1332
			continue;

1333
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1334

1335 1336
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1357
		mutex_lock(&slab_mutex);
1358
		ret = init_cache_node_node(nid);
1359
		mutex_unlock(&slab_mutex);
1360 1361
		break;
	case MEM_GOING_OFFLINE:
1362
		mutex_lock(&slab_mutex);
1363
		ret = drain_cache_node_node(nid);
1364
		mutex_unlock(&slab_mutex);
1365 1366 1367 1368 1369 1370 1371 1372
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1373
	return notifier_from_errno(ret);
1374 1375 1376
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1377
/*
1378
 * swap the static kmem_cache_node with kmalloced memory
1379
 */
1380
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1381
				int nodeid)
1382
{
1383
	struct kmem_cache_node *ptr;
1384

1385
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1386 1387
	BUG_ON(!ptr);

1388
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1389 1390 1391 1392 1393
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1394
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1395
	cachep->node[nodeid] = ptr;
1396 1397
}

1398
/*
1399 1400
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1401
 */
1402
static void __init set_up_node(struct kmem_cache *cachep, int index)
1403 1404 1405 1406
{
	int node;

	for_each_online_node(node) {
1407
		cachep->node[node] = &init_kmem_cache_node[index + node];
1408
		cachep->node[node]->next_reap = jiffies +
1409 1410 1411 1412 1413
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

C
Christoph Lameter 已提交
1414 1415
/*
 * The memory after the last cpu cache pointer is used for the
1416
 * the node pointer.
C
Christoph Lameter 已提交
1417
 */
1418
static void setup_node_pointer(struct kmem_cache *cachep)
C
Christoph Lameter 已提交
1419
{
1420
	cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
C
Christoph Lameter 已提交
1421 1422
}

A
Andrew Morton 已提交
1423 1424 1425
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1426 1427 1428
 */
void __init kmem_cache_init(void)
{
1429 1430
	int i;

1431 1432
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1433
	kmem_cache = &kmem_cache_boot;
1434
	setup_node_pointer(kmem_cache);
1435

1436
	if (num_possible_nodes() == 1)
1437 1438
		use_alien_caches = 0;

C
Christoph Lameter 已提交
1439
	for (i = 0; i < NUM_INIT_LISTS; i++)
1440
		kmem_cache_node_init(&init_kmem_cache_node[i]);
C
Christoph Lameter 已提交
1441

1442
	set_up_node(kmem_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1443 1444 1445

	/*
	 * Fragmentation resistance on low memory - only use bigger
1446 1447
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
L
Linus Torvalds 已提交
1448
	 */
1449
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1450
		slab_max_order = SLAB_MAX_ORDER_HI;
L
Linus Torvalds 已提交
1451 1452 1453

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1454 1455 1456
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1457
	 *    Initially an __init data area is used for the head array and the
1458
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1459
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1460
	 * 2) Create the first kmalloc cache.
1461
	 *    The struct kmem_cache for the new cache is allocated normally.
1462 1463 1464
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1465
	 * 4) Replace the __init data head arrays for kmem_cache and the first
L
Linus Torvalds 已提交
1466
	 *    kmalloc cache with kmalloc allocated arrays.
1467
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1468 1469
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1470 1471
	 */

1472
	/* 1) create the kmem_cache */
L
Linus Torvalds 已提交
1473

E
Eric Dumazet 已提交
1474
	/*
1475
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
E
Eric Dumazet 已提交
1476
	 */
1477 1478
	create_boot_cache(kmem_cache, "kmem_cache",
		offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1479
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1480 1481
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
L
Linus Torvalds 已提交
1482 1483 1484

	/* 2+3) create the kmalloc caches */

A
Andrew Morton 已提交
1485 1486
	/*
	 * Initialize the caches that provide memory for the array cache and the
1487
	 * kmem_cache_node structures first.  Without this, further allocations will
A
Andrew Morton 已提交
1488
	 * bug.
1489 1490
	 */

1491 1492
	kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
					kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1493

1494 1495 1496 1497
	if (INDEX_AC != INDEX_NODE)
		kmalloc_caches[INDEX_NODE] =
			create_kmalloc_cache("kmalloc-node",
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1498

1499 1500
	slab_early_init = 0;

L
Linus Torvalds 已提交
1501 1502
	/* 4) Replace the bootstrap head arrays */
	{
1503
		struct array_cache *ptr;
1504

1505
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1506

1507
		memcpy(ptr, cpu_cache_get(kmem_cache),
P
Pekka Enberg 已提交
1508
		       sizeof(struct arraycache_init));
1509 1510 1511 1512 1513
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1514
		kmem_cache->array[smp_processor_id()] = ptr;
1515

1516
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1517

1518
		BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
P
Pekka Enberg 已提交
1519
		       != &initarray_generic.cache);
1520
		memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
P
Pekka Enberg 已提交
1521
		       sizeof(struct arraycache_init));
1522 1523 1524 1525 1526
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1527
		kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
L
Linus Torvalds 已提交
1528
	}
1529
	/* 5) Replace the bootstrap kmem_cache_node */
1530
	{
P
Pekka Enberg 已提交
1531 1532
		int nid;

1533
		for_each_online_node(nid) {
1534
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1535

1536
			init_list(kmalloc_caches[INDEX_AC],
1537
				  &init_kmem_cache_node[SIZE_AC + nid], nid);
1538

1539 1540 1541
			if (INDEX_AC != INDEX_NODE) {
				init_list(kmalloc_caches[INDEX_NODE],
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1542 1543 1544
			}
		}
	}
L
Linus Torvalds 已提交
1545

1546
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1547 1548 1549 1550 1551 1552
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1553
	slab_state = UP;
P
Peter Zijlstra 已提交
1554

1555
	/* 6) resize the head arrays to their final sizes */
1556 1557
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1558 1559
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1560
	mutex_unlock(&slab_mutex);
1561

1562 1563 1564
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

1565 1566 1567
	/* Done! */
	slab_state = FULL;

A
Andrew Morton 已提交
1568 1569 1570
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1571 1572 1573
	 */
	register_cpu_notifier(&cpucache_notifier);

1574 1575 1576
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1577
	 * node.
1578 1579 1580 1581
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1582 1583 1584
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1585 1586 1587 1588 1589 1590 1591
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1592 1593
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1594
	 */
1595
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1596
		start_cpu_timer(cpu);
1597 1598

	/* Done! */
1599
	slab_state = FULL;
L
Linus Torvalds 已提交
1600 1601 1602 1603
	return 0;
}
__initcall(cpucache_init);

1604 1605 1606
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1607
	struct kmem_cache_node *n;
1608
	struct page *page;
1609 1610 1611 1612 1613 1614 1615
	unsigned long flags;
	int node;

	printk(KERN_WARNING
		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nodeid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1616
		cachep->name, cachep->size, cachep->gfporder);
1617 1618 1619 1620 1621

	for_each_online_node(node) {
		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
		unsigned long active_slabs = 0, num_slabs = 0;

1622 1623
		n = cachep->node[node];
		if (!n)
1624 1625
			continue;

1626
		spin_lock_irqsave(&n->list_lock, flags);
1627
		list_for_each_entry(page, &n->slabs_full, lru) {
1628 1629 1630
			active_objs += cachep->num;
			active_slabs++;
		}
1631 1632
		list_for_each_entry(page, &n->slabs_partial, lru) {
			active_objs += page->active;
1633 1634
			active_slabs++;
		}
1635
		list_for_each_entry(page, &n->slabs_free, lru)
1636 1637
			num_slabs++;

1638 1639
		free_objects += n->free_objects;
		spin_unlock_irqrestore(&n->list_lock, flags);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

		num_slabs += active_slabs;
		num_objs = num_slabs * cachep->num;
		printk(KERN_WARNING
			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
			node, active_slabs, num_slabs, active_objs, num_objs,
			free_objects);
	}
}

L
Linus Torvalds 已提交
1650 1651 1652 1653 1654 1655 1656
/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1657 1658
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
L
Linus Torvalds 已提交
1659 1660
{
	struct page *page;
1661
	int nr_pages;
1662

1663
	flags |= cachep->allocflags;
1664 1665
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1666

L
Linus Torvalds 已提交
1667
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1668 1669 1670
	if (!page) {
		if (!(flags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(cachep, flags, nodeid);
L
Linus Torvalds 已提交
1671
		return NULL;
1672
	}
L
Linus Torvalds 已提交
1673

1674
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1675 1676 1677
	if (unlikely(page->pfmemalloc))
		pfmemalloc_active = true;

1678
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1679
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1680 1681 1682 1683 1684
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1685 1686 1687
	__SetPageSlab(page);
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
G
Glauber Costa 已提交
1688
	memcg_bind_pages(cachep, cachep->gfporder);
1689

1690 1691 1692 1693 1694 1695 1696 1697
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1698

1699
	return page;
L
Linus Torvalds 已提交
1700 1701 1702 1703 1704
}

/*
 * Interface to system's page release.
 */
1705
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
L
Linus Torvalds 已提交
1706
{
1707
	const unsigned long nr_freed = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1708

1709
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1710

1711 1712 1713 1714 1715 1716
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
J
Joonsoo Kim 已提交
1717

1718
	BUG_ON(!PageSlab(page));
J
Joonsoo Kim 已提交
1719
	__ClearPageSlabPfmemalloc(page);
1720
	__ClearPageSlab(page);
1721 1722
	page_mapcount_reset(page);
	page->mapping = NULL;
G
Glauber Costa 已提交
1723 1724

	memcg_release_pages(cachep, cachep->gfporder);
L
Linus Torvalds 已提交
1725 1726
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1727
	__free_memcg_kmem_pages(page, cachep->gfporder);
L
Linus Torvalds 已提交
1728 1729 1730 1731
}

static void kmem_rcu_free(struct rcu_head *head)
{
1732 1733
	struct kmem_cache *cachep;
	struct page *page;
L
Linus Torvalds 已提交
1734

1735 1736 1737 1738
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1739 1740 1741 1742 1743
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1744
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1745
			    unsigned long caller)
L
Linus Torvalds 已提交
1746
{
1747
	int size = cachep->object_size;
L
Linus Torvalds 已提交
1748

1749
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1750

P
Pekka Enberg 已提交
1751
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1752 1753
		return;

P
Pekka Enberg 已提交
1754 1755 1756 1757
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1758 1759 1760 1761 1762 1763 1764
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1765
				*addr++ = svalue;
L
Linus Torvalds 已提交
1766 1767 1768 1769 1770 1771 1772
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1773
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1774 1775 1776
}
#endif

1777
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1778
{
1779
	int size = cachep->object_size;
1780
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1781 1782

	memset(addr, val, size);
P
Pekka Enberg 已提交
1783
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1789 1790 1791
	unsigned char error = 0;
	int bad_count = 0;

1792
	printk(KERN_ERR "%03x: ", offset);
D
Dave Jones 已提交
1793 1794 1795 1796 1797 1798
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1799 1800
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
D
Dave Jones 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819
}
#endif

#if DEBUG

1820
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1821 1822 1823 1824 1825
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1826
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1827 1828
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1829 1830 1831
	}

	if (cachep->flags & SLAB_STORE_USER) {
J
Joe Perches 已提交
1832 1833 1834
		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1835
	}
1836
	realobj = (char *)objp + obj_offset(cachep);
1837
	size = cachep->object_size;
P
Pekka Enberg 已提交
1838
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1839 1840
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1841 1842
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1843 1844 1845 1846
		dump_line(realobj, i, limit);
	}
}

1847
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852
{
	char *realobj;
	int size, i;
	int lines = 0;

1853
	realobj = (char *)objp + obj_offset(cachep);
1854
	size = cachep->object_size;
L
Linus Torvalds 已提交
1855

P
Pekka Enberg 已提交
1856
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1857
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1858
		if (i == size - 1)
L
Linus Torvalds 已提交
1859 1860 1861 1862 1863 1864
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1865
				printk(KERN_ERR
1866 1867
					"Slab corruption (%s): %s start=%p, len=%d\n",
					print_tainted(), cachep->name, realobj, size);
L
Linus Torvalds 已提交
1868 1869 1870
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1871
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1872
			limit = 16;
P
Pekka Enberg 已提交
1873 1874
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1887
		struct page *page = virt_to_head_page(objp);
1888
		unsigned int objnr;
L
Linus Torvalds 已提交
1889

1890
		objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
1891
		if (objnr) {
1892
			objp = index_to_obj(cachep, page, objnr - 1);
1893
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1894
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1895
			       realobj, size);
L
Linus Torvalds 已提交
1896 1897
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1898
		if (objnr + 1 < cachep->num) {
1899
			objp = index_to_obj(cachep, page, objnr + 1);
1900
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1901
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1902
			       realobj, size);
L
Linus Torvalds 已提交
1903 1904 1905 1906 1907 1908
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1909
#if DEBUG
1910 1911
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
L
Linus Torvalds 已提交
1912 1913 1914
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1915
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
1916 1917 1918

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1919
			if (cachep->size % PAGE_SIZE == 0 &&
A
Andrew Morton 已提交
1920
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1921
				kernel_map_pages(virt_to_page(objp),
1922
					cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1932
					   "was overwritten");
L
Linus Torvalds 已提交
1933 1934
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1935
					   "was overwritten");
L
Linus Torvalds 已提交
1936 1937
		}
	}
1938
}
L
Linus Torvalds 已提交
1939
#else
1940 1941
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1942 1943
{
}
L
Linus Torvalds 已提交
1944 1945
#endif

1946 1947 1948 1949 1950
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1951
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1952 1953
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1954
 */
1955
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1956
{
1957
	struct freelist *freelist;
1958

1959 1960
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
L
Linus Torvalds 已提交
1961
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		struct rcu_head *head;

		/*
		 * RCU free overloads the RCU head over the LRU.
		 * slab_page has been overloeaded over the LRU,
		 * however it is not used from now on so that
		 * we can use it safely.
		 */
		head = (void *)&page->rcu_head;
		call_rcu(head, kmem_rcu_free);
L
Linus Torvalds 已提交
1972 1973

	} else {
1974
		kmem_freepages(cachep, page);
L
Linus Torvalds 已提交
1975
	}
1976 1977

	/*
1978
	 * From now on, we don't use freelist
1979 1980 1981
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1982
		kmem_cache_free(cachep->freelist_cache, freelist);
L
Linus Torvalds 已提交
1983 1984
}

1985
/**
1986 1987 1988 1989 1990 1991 1992
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1993 1994 1995 1996 1997
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1998
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1999
			size_t size, size_t align, unsigned long flags)
2000
{
2001
	unsigned long offslab_limit;
2002
	size_t left_over = 0;
2003
	int gfporder;
2004

2005
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2006 2007 2008
		unsigned int num;
		size_t remainder;

2009
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2010 2011
		if (!num)
			continue;
2012

2013 2014 2015 2016 2017 2018
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
2019
			offslab_limit = size;
J
Joonsoo Kim 已提交
2020
			offslab_limit /= sizeof(unsigned int);
2021 2022 2023 2024

 			if (num > offslab_limit)
				break;
		}
2025

2026
		/* Found something acceptable - save it away */
2027
		cachep->num = num;
2028
		cachep->gfporder = gfporder;
2029 2030
		left_over = remainder;

2031 2032 2033 2034 2035 2036 2037 2038
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2039 2040 2041 2042
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2043
		if (gfporder >= slab_max_order)
2044 2045
			break;

2046 2047 2048
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2049
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2050 2051 2052 2053 2054
			break;
	}
	return left_over;
}

2055
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2056
{
2057
	if (slab_state >= FULL)
2058
		return enable_cpucache(cachep, gfp);
2059

2060
	if (slab_state == DOWN) {
2061
		/*
2062
		 * Note: Creation of first cache (kmem_cache).
2063
		 * The setup_node is taken care
2064 2065 2066 2067 2068 2069 2070
		 * of by the caller of __kmem_cache_create
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;
		slab_state = PARTIAL;
	} else if (slab_state == PARTIAL) {
		/*
		 * Note: the second kmem_cache_create must create the cache
2071 2072 2073 2074 2075 2076
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
2077 2078
		 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
		 * the second cache, then we need to set up all its node/,
2079 2080
		 * otherwise the creation of further caches will BUG().
		 */
2081 2082 2083
		set_up_node(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_NODE)
			slab_state = PARTIAL_NODE;
2084
		else
2085
			slab_state = PARTIAL_ARRAYCACHE;
2086
	} else {
2087
		/* Remaining boot caches */
2088
		cachep->array[smp_processor_id()] =
2089
			kmalloc(sizeof(struct arraycache_init), gfp);
2090

2091
		if (slab_state == PARTIAL_ARRAYCACHE) {
2092 2093
			set_up_node(cachep, SIZE_NODE);
			slab_state = PARTIAL_NODE;
2094 2095
		} else {
			int node;
2096
			for_each_online_node(node) {
2097
				cachep->node[node] =
2098
				    kmalloc_node(sizeof(struct kmem_cache_node),
2099
						gfp, node);
2100
				BUG_ON(!cachep->node[node]);
2101
				kmem_cache_node_init(cachep->node[node]);
2102 2103 2104
			}
		}
	}
2105
	cachep->node[numa_mem_id()]->next_reap =
2106 2107 2108 2109 2110 2111 2112 2113 2114
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2115
	return 0;
2116 2117
}

L
Linus Torvalds 已提交
2118
/**
2119
 * __kmem_cache_create - Create a cache.
R
Randy Dunlap 已提交
2120
 * @cachep: cache management descriptor
L
Linus Torvalds 已提交
2121 2122 2123 2124
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2125
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2139
int
2140
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
L
Linus Torvalds 已提交
2141
{
2142
	size_t left_over, freelist_size, ralign;
2143
	gfp_t gfp;
2144
	int err;
2145
	size_t size = cachep->size;
L
Linus Torvalds 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2155 2156
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2157
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2158 2159 2160 2161 2162 2163 2164
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif

A
Andrew Morton 已提交
2165 2166
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2167 2168 2169
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2170 2171 2172
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2173 2174
	}

2175
	/*
D
David Woodhouse 已提交
2176 2177 2178
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2179
	 */
D
David Woodhouse 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2190

2191
	/* 3) caller mandated alignment */
2192 2193
	if (ralign < cachep->align) {
		ralign = cachep->align;
L
Linus Torvalds 已提交
2194
	}
2195 2196
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2197
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2198
	/*
2199
	 * 4) Store it.
L
Linus Torvalds 已提交
2200
	 */
2201
	cachep->align = ralign;
L
Linus Torvalds 已提交
2202

2203 2204 2205 2206 2207
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

2208
	setup_node_pointer(cachep);
L
Linus Torvalds 已提交
2209 2210
#if DEBUG

2211 2212 2213 2214
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2215 2216
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2217 2218
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2219 2220
	}
	if (flags & SLAB_STORE_USER) {
2221
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2222 2223
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2224
		 */
D
David Woodhouse 已提交
2225 2226 2227 2228
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2229 2230
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2231
	if (size >= kmalloc_size(INDEX_NODE + 1)
2232 2233 2234
	    && cachep->object_size > cache_line_size()
	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239
		size = PAGE_SIZE;
	}
#endif
#endif

2240 2241 2242
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2243 2244
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2245
	 */
2246 2247
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2248 2249 2250 2251 2252 2253
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

2254
	size = ALIGN(size, cachep->align);
L
Linus Torvalds 已提交
2255

2256
	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
L
Linus Torvalds 已提交
2257

2258
	if (!cachep->num)
2259
		return -E2BIG;
L
Linus Torvalds 已提交
2260

2261 2262
	freelist_size =
		ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
L
Linus Torvalds 已提交
2263 2264 2265 2266 2267

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
2268
	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
L
Linus Torvalds 已提交
2269
		flags &= ~CFLGS_OFF_SLAB;
2270
		left_over -= freelist_size;
L
Linus Torvalds 已提交
2271 2272 2273 2274
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
2275
		freelist_size = cachep->num * sizeof(unsigned int);
2276 2277 2278 2279 2280 2281 2282 2283 2284

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2285 2286 2287 2288
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
2289 2290
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
P
Pekka Enberg 已提交
2291
	cachep->colour = left_over / cachep->colour_off;
2292
	cachep->freelist_size = freelist_size;
L
Linus Torvalds 已提交
2293
	cachep->flags = flags;
2294
	cachep->allocflags = __GFP_COMP;
2295
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2296
		cachep->allocflags |= GFP_DMA;
2297
	cachep->size = size;
2298
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2299

2300
	if (flags & CFLGS_OFF_SLAB) {
2301
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2302 2303 2304 2305 2306 2307 2308
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2309
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2310
	}
L
Linus Torvalds 已提交
2311

2312 2313
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2314
		__kmem_cache_shutdown(cachep);
2315
		return err;
2316
	}
L
Linus Torvalds 已提交
2317

2318 2319 2320 2321 2322 2323 2324 2325
	if (flags & SLAB_DEBUG_OBJECTS) {
		/*
		 * Would deadlock through slab_destroy()->call_rcu()->
		 * debug_object_activate()->kmem_cache_alloc().
		 */
		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);

		slab_set_debugobj_lock_classes(cachep);
2326 2327
	} else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
		on_slab_lock_classes(cachep);
2328

2329
	return 0;
L
Linus Torvalds 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2343
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2344 2345 2346
{
#ifdef CONFIG_SMP
	check_irq_off();
2347
	assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2348 2349
#endif
}
2350

2351
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2352 2353 2354
{
#ifdef CONFIG_SMP
	check_irq_off();
2355
	assert_spin_locked(&cachep->node[node]->list_lock);
2356 2357 2358
#endif
}

L
Linus Torvalds 已提交
2359 2360 2361 2362
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2363
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2364 2365
#endif

2366
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2367 2368 2369
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2370 2371
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2372
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2373
	struct array_cache *ac;
2374
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2375 2376

	check_irq_off();
2377
	ac = cpu_cache_get(cachep);
2378
	spin_lock(&cachep->node[node]->list_lock);
2379
	free_block(cachep, ac->entry, ac->avail, node);
2380
	spin_unlock(&cachep->node[node]->list_lock);
L
Linus Torvalds 已提交
2381 2382 2383
	ac->avail = 0;
}

2384
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2385
{
2386
	struct kmem_cache_node *n;
2387 2388
	int node;

2389
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2390
	check_irq_on();
P
Pekka Enberg 已提交
2391
	for_each_online_node(node) {
2392 2393 2394
		n = cachep->node[node];
		if (n && n->alien)
			drain_alien_cache(cachep, n->alien);
2395 2396 2397
	}

	for_each_online_node(node) {
2398 2399 2400
		n = cachep->node[node];
		if (n)
			drain_array(cachep, n, n->shared, 1, node);
2401
	}
L
Linus Torvalds 已提交
2402 2403
}

2404 2405 2406 2407 2408 2409 2410
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2411
			struct kmem_cache_node *n, int tofree)
L
Linus Torvalds 已提交
2412
{
2413 2414
	struct list_head *p;
	int nr_freed;
2415
	struct page *page;
L
Linus Torvalds 已提交
2416

2417
	nr_freed = 0;
2418
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
L
Linus Torvalds 已提交
2419

2420 2421 2422 2423
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2424 2425
			goto out;
		}
L
Linus Torvalds 已提交
2426

2427
		page = list_entry(p, struct page, lru);
L
Linus Torvalds 已提交
2428
#if DEBUG
2429
		BUG_ON(page->active);
L
Linus Torvalds 已提交
2430
#endif
2431
		list_del(&page->lru);
2432 2433 2434 2435
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2436 2437
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2438
		slab_destroy(cache, page);
2439
		nr_freed++;
L
Linus Torvalds 已提交
2440
	}
2441 2442
out:
	return nr_freed;
L
Linus Torvalds 已提交
2443 2444
}

2445
/* Called with slab_mutex held to protect against cpu hotplug */
2446
static int __cache_shrink(struct kmem_cache *cachep)
2447 2448
{
	int ret = 0, i = 0;
2449
	struct kmem_cache_node *n;
2450 2451 2452 2453 2454

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
2455 2456
		n = cachep->node[i];
		if (!n)
2457 2458
			continue;

2459
		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2460

2461 2462
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2463 2464 2465 2466
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2467 2468 2469 2470 2471 2472 2473
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2474
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2475
{
2476
	int ret;
2477
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2478

2479
	get_online_cpus();
2480
	mutex_lock(&slab_mutex);
2481
	ret = __cache_shrink(cachep);
2482
	mutex_unlock(&slab_mutex);
2483
	put_online_cpus();
2484
	return ret;
L
Linus Torvalds 已提交
2485 2486 2487
}
EXPORT_SYMBOL(kmem_cache_shrink);

2488
int __kmem_cache_shutdown(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2489
{
2490
	int i;
2491
	struct kmem_cache_node *n;
2492
	int rc = __cache_shrink(cachep);
L
Linus Torvalds 已提交
2493

2494 2495
	if (rc)
		return rc;
L
Linus Torvalds 已提交
2496

2497 2498
	for_each_online_cpu(i)
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2499

2500
	/* NUMA: free the node structures */
2501
	for_each_online_node(i) {
2502 2503 2504 2505 2506
		n = cachep->node[i];
		if (n) {
			kfree(n->shared);
			free_alien_cache(n->alien);
			kfree(n);
2507 2508 2509
		}
	}
	return 0;
L
Linus Torvalds 已提交
2510 2511
}

2512 2513 2514 2515 2516 2517 2518 2519 2520
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
2521
 * Hence we cannot have freelist_cache same as the original cache.
2522
 */
2523
static struct freelist *alloc_slabmgmt(struct kmem_cache *cachep,
2524 2525
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
L
Linus Torvalds 已提交
2526
{
2527
	struct freelist *freelist;
2528
	void *addr = page_address(page);
P
Pekka Enberg 已提交
2529

L
Linus Torvalds 已提交
2530 2531
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2532
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2533
					      local_flags, nodeid);
2534 2535 2536 2537 2538 2539
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2540
		kmemleak_scan_area(&page->lru, sizeof(struct list_head),
2541
				   local_flags);
2542
		if (!freelist)
L
Linus Torvalds 已提交
2543 2544
			return NULL;
	} else {
2545 2546
		freelist = addr + colour_off;
		colour_off += cachep->freelist_size;
L
Linus Torvalds 已提交
2547
	}
2548 2549 2550
	page->active = 0;
	page->s_mem = addr + colour_off;
	return freelist;
L
Linus Torvalds 已提交
2551 2552
}

2553
static inline unsigned int *slab_bufctl(struct page *page)
L
Linus Torvalds 已提交
2554
{
2555
	return (unsigned int *)(page->freelist);
L
Linus Torvalds 已提交
2556 2557
}

2558
static void cache_init_objs(struct kmem_cache *cachep,
2559
			    struct page *page)
L
Linus Torvalds 已提交
2560 2561 2562 2563
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2564
		void *objp = index_to_obj(cachep, page, i);
L
Linus Torvalds 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2577 2578 2579
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2580 2581
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2582
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2583 2584 2585 2586

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2587
					   " end of an object");
L
Linus Torvalds 已提交
2588 2589
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2590
					   " start of an object");
L
Linus Torvalds 已提交
2591
		}
2592
		if ((cachep->size % PAGE_SIZE) == 0 &&
A
Andrew Morton 已提交
2593
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2594
			kernel_map_pages(virt_to_page(objp),
2595
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2596 2597
#else
		if (cachep->ctor)
2598
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2599
#endif
2600
		slab_bufctl(page)[i] = i;
L
Linus Torvalds 已提交
2601 2602 2603
	}
}

2604
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2605
{
2606 2607
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
2608
			BUG_ON(!(cachep->allocflags & GFP_DMA));
2609
		else
2610
			BUG_ON(cachep->allocflags & GFP_DMA);
2611
	}
L
Linus Torvalds 已提交
2612 2613
}

2614
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2615
				int nodeid)
2616
{
2617
	void *objp;
2618

2619 2620
	objp = index_to_obj(cachep, page, slab_bufctl(page)[page->active]);
	page->active++;
2621
#if DEBUG
J
Joonsoo Kim 已提交
2622
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2623 2624 2625 2626 2627
#endif

	return objp;
}

2628
static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
A
Andrew Morton 已提交
2629
				void *objp, int nodeid)
2630
{
2631
	unsigned int objnr = obj_to_index(cachep, page, objp);
2632
#if DEBUG
J
Joonsoo Kim 已提交
2633
	unsigned int i;
2634

2635
	/* Verify that the slab belongs to the intended node */
J
Joonsoo Kim 已提交
2636
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2637

2638
	/* Verify double free bug */
2639 2640
	for (i = page->active; i < cachep->num; i++) {
		if (slab_bufctl(page)[i] == objnr) {
2641 2642 2643 2644
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
		}
2645 2646
	}
#endif
2647 2648
	page->active--;
	slab_bufctl(page)[page->active] = objnr;
2649 2650
}

2651 2652 2653
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2654
 * virtual address for kfree, ksize, and slab debugging.
2655
 */
2656 2657
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
			   struct freelist *freelist)
L
Linus Torvalds 已提交
2658
{
2659
	page->slab_cache = cache;
2660
	page->freelist = freelist;
L
Linus Torvalds 已提交
2661 2662 2663 2664 2665 2666
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2667
static int cache_grow(struct kmem_cache *cachep,
2668
		gfp_t flags, int nodeid, struct page *page)
L
Linus Torvalds 已提交
2669
{
2670
	struct freelist *freelist;
P
Pekka Enberg 已提交
2671 2672
	size_t offset;
	gfp_t local_flags;
2673
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2674

A
Andrew Morton 已提交
2675 2676 2677
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2678
	 */
C
Christoph Lameter 已提交
2679 2680
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2681

2682
	/* Take the node list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2683
	check_irq_off();
2684 2685
	n = cachep->node[nodeid];
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2686 2687

	/* Get colour for the slab, and cal the next value. */
2688 2689 2690 2691 2692
	offset = n->colour_next;
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2693

2694
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2707 2708 2709
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2710
	 */
2711 2712 2713
	if (!page)
		page = kmem_getpages(cachep, local_flags, nodeid);
	if (!page)
L
Linus Torvalds 已提交
2714 2715 2716
		goto failed;

	/* Get slab management. */
2717
	freelist = alloc_slabmgmt(cachep, page, offset,
C
Christoph Lameter 已提交
2718
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2719
	if (!freelist)
L
Linus Torvalds 已提交
2720 2721
		goto opps1;

2722
	slab_map_pages(cachep, page, freelist);
L
Linus Torvalds 已提交
2723

2724
	cache_init_objs(cachep, page);
L
Linus Torvalds 已提交
2725 2726 2727 2728

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2729
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2730 2731

	/* Make slab active. */
2732
	list_add_tail(&page->lru, &(n->slabs_free));
L
Linus Torvalds 已提交
2733
	STATS_INC_GROWN(cachep);
2734 2735
	n->free_objects += cachep->num;
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2736
	return 1;
A
Andrew Morton 已提交
2737
opps1:
2738
	kmem_freepages(cachep, page);
A
Andrew Morton 已提交
2739
failed:
L
Linus Torvalds 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2756 2757
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2758 2759 2760
	}
}

2761 2762
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2763
	unsigned long long redzone1, redzone2;
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2779
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2780 2781 2782
			obj, redzone1, redzone2);
}

2783
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2784
				   unsigned long caller)
L
Linus Torvalds 已提交
2785 2786
{
	unsigned int objnr;
2787
	struct page *page;
L
Linus Torvalds 已提交
2788

2789 2790
	BUG_ON(virt_to_cache(objp) != cachep);

2791
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2792
	kfree_debugcheck(objp);
2793
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2794 2795

	if (cachep->flags & SLAB_RED_ZONE) {
2796
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2797 2798 2799 2800
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
2801
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2802

2803
	objnr = obj_to_index(cachep, page, objp);
L
Linus Torvalds 已提交
2804 2805

	BUG_ON(objnr >= cachep->num);
2806
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
L
Linus Torvalds 已提交
2807 2808 2809

	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2810
		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2811
			store_stackinfo(cachep, objp, caller);
P
Pekka Enberg 已提交
2812
			kernel_map_pages(virt_to_page(objp),
2813
					 cachep->size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2829 2830
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
							bool force_refill)
L
Linus Torvalds 已提交
2831 2832
{
	int batchcount;
2833
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
2834
	struct array_cache *ac;
P
Pekka Enberg 已提交
2835 2836
	int node;

L
Linus Torvalds 已提交
2837
	check_irq_off();
2838
	node = numa_mem_id();
2839 2840 2841
	if (unlikely(force_refill))
		goto force_grow;
retry:
2842
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2843 2844
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2845 2846 2847 2848
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2849 2850 2851
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2852
	n = cachep->node[node];
2853

2854 2855
	BUG_ON(ac->avail > 0 || !n);
	spin_lock(&n->list_lock);
L
Linus Torvalds 已提交
2856

2857
	/* See if we can refill from the shared array */
2858 2859
	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
		n->shared->touched = 1;
2860
		goto alloc_done;
2861
	}
2862

L
Linus Torvalds 已提交
2863 2864
	while (batchcount > 0) {
		struct list_head *entry;
2865
		struct page *page;
L
Linus Torvalds 已提交
2866
		/* Get slab alloc is to come from. */
2867 2868 2869 2870 2871
		entry = n->slabs_partial.next;
		if (entry == &n->slabs_partial) {
			n->free_touched = 1;
			entry = n->slabs_free.next;
			if (entry == &n->slabs_free)
L
Linus Torvalds 已提交
2872 2873 2874
				goto must_grow;
		}

2875
		page = list_entry(entry, struct page, lru);
L
Linus Torvalds 已提交
2876
		check_spinlock_acquired(cachep);
2877 2878 2879 2880 2881 2882

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2883
		BUG_ON(page->active >= cachep->num);
2884

2885
		while (page->active < cachep->num && batchcount--) {
L
Linus Torvalds 已提交
2886 2887 2888 2889
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2890
			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2891
									node));
L
Linus Torvalds 已提交
2892 2893 2894
		}

		/* move slabp to correct slabp list: */
2895 2896 2897
		list_del(&page->lru);
		if (page->active == cachep->num)
			list_add(&page->list, &n->slabs_full);
L
Linus Torvalds 已提交
2898
		else
2899
			list_add(&page->list, &n->slabs_partial);
L
Linus Torvalds 已提交
2900 2901
	}

A
Andrew Morton 已提交
2902
must_grow:
2903
	n->free_objects -= ac->avail;
A
Andrew Morton 已提交
2904
alloc_done:
2905
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
2906 2907 2908

	if (unlikely(!ac->avail)) {
		int x;
2909
force_grow:
2910
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2911

A
Andrew Morton 已提交
2912
		/* cache_grow can reenable interrupts, then ac could change. */
2913
		ac = cpu_cache_get(cachep);
2914
		node = numa_mem_id();
2915 2916 2917

		/* no objects in sight? abort */
		if (!x && (ac->avail == 0 || force_refill))
L
Linus Torvalds 已提交
2918 2919
			return NULL;

A
Andrew Morton 已提交
2920
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2921 2922 2923
			goto retry;
	}
	ac->touched = 1;
2924 2925

	return ac_get_obj(cachep, ac, flags, force_refill);
L
Linus Torvalds 已提交
2926 2927
}

A
Andrew Morton 已提交
2928 2929
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2930 2931 2932 2933 2934 2935 2936 2937
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2938
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2939
				gfp_t flags, void *objp, unsigned long caller)
L
Linus Torvalds 已提交
2940
{
P
Pekka Enberg 已提交
2941
	if (!objp)
L
Linus Torvalds 已提交
2942
		return objp;
P
Pekka Enberg 已提交
2943
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2944
#ifdef CONFIG_DEBUG_PAGEALLOC
2945
		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2946
			kernel_map_pages(virt_to_page(objp),
2947
					 cachep->size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2948 2949 2950 2951 2952 2953 2954 2955
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
2956
		*dbg_userword(cachep, objp) = (void *)caller;
L
Linus Torvalds 已提交
2957 2958

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2959 2960 2961 2962
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2963
			printk(KERN_ERR
2964
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
2965 2966
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2967 2968 2969 2970
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2971
	objp += obj_offset(cachep);
2972
	if (cachep->ctor && cachep->flags & SLAB_POISON)
2973
		cachep->ctor(objp);
T
Tetsuo Handa 已提交
2974 2975
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2976
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
H
Hugh Dickins 已提交
2977
		       objp, (int)ARCH_SLAB_MINALIGN);
2978
	}
L
Linus Torvalds 已提交
2979 2980 2981 2982 2983 2984
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
2985
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2986
{
2987
	if (cachep == kmem_cache)
A
Akinobu Mita 已提交
2988
		return false;
2989

2990
	return should_failslab(cachep->object_size, flags, cachep->flags);
2991 2992
}

2993
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2994
{
P
Pekka Enberg 已提交
2995
	void *objp;
L
Linus Torvalds 已提交
2996
	struct array_cache *ac;
2997
	bool force_refill = false;
L
Linus Torvalds 已提交
2998

2999
	check_irq_off();
3000

3001
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3002 3003
	if (likely(ac->avail)) {
		ac->touched = 1;
3004 3005
		objp = ac_get_obj(cachep, ac, flags, false);

3006
		/*
3007 3008
		 * Allow for the possibility all avail objects are not allowed
		 * by the current flags
3009
		 */
3010 3011 3012 3013 3014
		if (objp) {
			STATS_INC_ALLOCHIT(cachep);
			goto out;
		}
		force_refill = true;
L
Linus Torvalds 已提交
3015
	}
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025

	STATS_INC_ALLOCMISS(cachep);
	objp = cache_alloc_refill(cachep, flags, force_refill);
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3026 3027 3028 3029 3030
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3031 3032
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3033 3034 3035
	return objp;
}

3036
#ifdef CONFIG_NUMA
3037
/*
3038
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3039 3040 3041 3042 3043 3044 3045 3046
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3047
	if (in_interrupt() || (flags & __GFP_THISNODE))
3048
		return NULL;
3049
	nid_alloc = nid_here = numa_mem_id();
3050
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3051
		nid_alloc = cpuset_slab_spread_node();
3052
	else if (current->mempolicy)
3053
		nid_alloc = slab_node();
3054
	if (nid_alloc != nid_here)
3055
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3056 3057 3058
	return NULL;
}

3059 3060
/*
 * Fallback function if there was no memory available and no objects on a
3061
 * certain node and fall back is permitted. First we scan all the
3062
 * available node for available objects. If that fails then we
3063 3064 3065
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3066
 */
3067
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3068
{
3069 3070
	struct zonelist *zonelist;
	gfp_t local_flags;
3071
	struct zoneref *z;
3072 3073
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3074
	void *obj = NULL;
3075
	int nid;
3076
	unsigned int cpuset_mems_cookie;
3077 3078 3079 3080

	if (flags & __GFP_THISNODE)
		return NULL;

C
Christoph Lameter 已提交
3081
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3082

3083 3084
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
3085
	zonelist = node_zonelist(slab_node(), flags);
3086

3087 3088 3089 3090 3091
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3092 3093
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3094

3095
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3096 3097
			cache->node[nid] &&
			cache->node[nid]->free_objects) {
3098 3099
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3100 3101 3102
				if (obj)
					break;
		}
3103 3104
	}

3105
	if (!obj) {
3106 3107 3108 3109 3110 3111
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3112 3113
		struct page *page;

3114 3115 3116
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3117
		page = kmem_getpages(cache, local_flags, numa_mem_id());
3118 3119
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3120
		if (page) {
3121 3122 3123
			/*
			 * Insert into the appropriate per node queues
			 */
3124 3125
			nid = page_to_nid(page);
			if (cache_grow(cache, flags, nid, page)) {
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3136
				/* cache_grow already freed obj */
3137 3138 3139
				obj = NULL;
			}
		}
3140
	}
3141 3142 3143

	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
		goto retry_cpuset;
3144 3145 3146
	return obj;
}

3147 3148
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3149
 */
3150
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3151
				int nodeid)
3152 3153
{
	struct list_head *entry;
3154
	struct page *page;
3155
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
3156 3157 3158
	void *obj;
	int x;

3159
	VM_BUG_ON(nodeid > num_online_nodes());
3160 3161
	n = cachep->node[nodeid];
	BUG_ON(!n);
P
Pekka Enberg 已提交
3162

A
Andrew Morton 已提交
3163
retry:
3164
	check_irq_off();
3165 3166 3167 3168 3169 3170
	spin_lock(&n->list_lock);
	entry = n->slabs_partial.next;
	if (entry == &n->slabs_partial) {
		n->free_touched = 1;
		entry = n->slabs_free.next;
		if (entry == &n->slabs_free)
P
Pekka Enberg 已提交
3171 3172 3173
			goto must_grow;
	}

3174
	page = list_entry(entry, struct page, lru);
P
Pekka Enberg 已提交
3175 3176 3177 3178 3179 3180
	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3181
	BUG_ON(page->active == cachep->num);
P
Pekka Enberg 已提交
3182

3183
	obj = slab_get_obj(cachep, page, nodeid);
3184
	n->free_objects--;
P
Pekka Enberg 已提交
3185
	/* move slabp to correct slabp list: */
3186
	list_del(&page->lru);
P
Pekka Enberg 已提交
3187

3188 3189
	if (page->active == cachep->num)
		list_add(&page->lru, &n->slabs_full);
A
Andrew Morton 已提交
3190
	else
3191
		list_add(&page->lru, &n->slabs_partial);
3192

3193
	spin_unlock(&n->list_lock);
P
Pekka Enberg 已提交
3194
	goto done;
3195

A
Andrew Morton 已提交
3196
must_grow:
3197
	spin_unlock(&n->list_lock);
3198
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3199 3200
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3201

3202
	return fallback_alloc(cachep, flags);
3203

A
Andrew Morton 已提交
3204
done:
P
Pekka Enberg 已提交
3205
	return obj;
3206
}
3207 3208

static __always_inline void *
3209
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3210
		   unsigned long caller)
3211 3212 3213
{
	unsigned long save_flags;
	void *ptr;
3214
	int slab_node = numa_mem_id();
3215

3216
	flags &= gfp_allowed_mask;
3217

3218 3219
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3220
	if (slab_should_failslab(cachep, flags))
3221 3222
		return NULL;

3223 3224
	cachep = memcg_kmem_get_cache(cachep, flags);

3225 3226 3227
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

A
Andrew Morton 已提交
3228
	if (nodeid == NUMA_NO_NODE)
3229
		nodeid = slab_node;
3230

3231
	if (unlikely(!cachep->node[nodeid])) {
3232 3233 3234 3235 3236
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3237
	if (nodeid == slab_node) {
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3253
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3254
				 flags);
3255

P
Pekka Enberg 已提交
3256
	if (likely(ptr))
3257
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
P
Pekka Enberg 已提交
3258

3259
	if (unlikely((flags & __GFP_ZERO) && ptr))
3260
		memset(ptr, 0, cachep->object_size);
3261

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3281 3282
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3298
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3299 3300 3301 3302
{
	unsigned long save_flags;
	void *objp;

3303
	flags &= gfp_allowed_mask;
3304

3305 3306
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3307
	if (slab_should_failslab(cachep, flags))
3308 3309
		return NULL;

3310 3311
	cachep = memcg_kmem_get_cache(cachep, flags);

3312 3313 3314 3315 3316
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3317
	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3318
				 flags);
3319 3320
	prefetchw(objp);

P
Pekka Enberg 已提交
3321
	if (likely(objp))
3322
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
P
Pekka Enberg 已提交
3323

3324
	if (unlikely((flags & __GFP_ZERO) && objp))
3325
		memset(objp, 0, cachep->object_size);
3326

3327 3328
	return objp;
}
3329 3330 3331 3332

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3333
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3334
		       int node)
L
Linus Torvalds 已提交
3335 3336
{
	int i;
3337
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
3338 3339

	for (i = 0; i < nr_objects; i++) {
3340
		void *objp;
3341
		struct page *page;
L
Linus Torvalds 已提交
3342

3343 3344 3345
		clear_obj_pfmemalloc(&objpp[i]);
		objp = objpp[i];

3346
		page = virt_to_head_page(objp);
3347
		n = cachep->node[node];
3348
		list_del(&page->lru);
3349
		check_spinlock_acquired_node(cachep, node);
3350
		slab_put_obj(cachep, page, objp, node);
L
Linus Torvalds 已提交
3351
		STATS_DEC_ACTIVE(cachep);
3352
		n->free_objects++;
L
Linus Torvalds 已提交
3353 3354

		/* fixup slab chains */
3355
		if (page->active == 0) {
3356 3357
			if (n->free_objects > n->free_limit) {
				n->free_objects -= cachep->num;
3358 3359 3360 3361 3362 3363
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
3364
				slab_destroy(cachep, page);
L
Linus Torvalds 已提交
3365
			} else {
3366
				list_add(&page->lru, &n->slabs_free);
L
Linus Torvalds 已提交
3367 3368 3369 3370 3371 3372
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3373
			list_add_tail(&page->lru, &n->slabs_partial);
L
Linus Torvalds 已提交
3374 3375 3376 3377
		}
	}
}

3378
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3379 3380
{
	int batchcount;
3381
	struct kmem_cache_node *n;
3382
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3383 3384 3385 3386 3387 3388

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3389 3390 3391 3392
	n = cachep->node[node];
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
P
Pekka Enberg 已提交
3393
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3394 3395 3396
		if (max) {
			if (batchcount > max)
				batchcount = max;
3397
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3398
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3399 3400 3401 3402 3403
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3404
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3405
free_done:
L
Linus Torvalds 已提交
3406 3407 3408 3409 3410
#if STATS
	{
		int i = 0;
		struct list_head *p;

3411 3412
		p = n->slabs_free.next;
		while (p != &(n->slabs_free)) {
3413
			struct page *page;
L
Linus Torvalds 已提交
3414

3415 3416
			page = list_entry(p, struct page, lru);
			BUG_ON(page->active);
L
Linus Torvalds 已提交
3417 3418 3419 3420 3421 3422 3423

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3424
	spin_unlock(&n->list_lock);
L
Linus Torvalds 已提交
3425
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3426
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3427 3428 3429
}

/*
A
Andrew Morton 已提交
3430 3431
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3432
 */
3433
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3434
				unsigned long caller)
L
Linus Torvalds 已提交
3435
{
3436
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3437 3438

	check_irq_off();
3439
	kmemleak_free_recursive(objp, cachep->flags);
3440
	objp = cache_free_debugcheck(cachep, objp, caller);
L
Linus Torvalds 已提交
3441

3442
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
P
Pekka Enberg 已提交
3443

3444 3445 3446 3447 3448 3449 3450
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3451
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3452 3453
		return;

L
Linus Torvalds 已提交
3454 3455 3456 3457 3458 3459
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
Z
Zhao Jin 已提交
3460

3461
	ac_put_obj(cachep, ac, objp);
L
Linus Torvalds 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3472
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3473
{
3474
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3475

3476
	trace_kmem_cache_alloc(_RET_IP_, ret,
3477
			       cachep->object_size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3478 3479

	return ret;
L
Linus Torvalds 已提交
3480 3481 3482
}
EXPORT_SYMBOL(kmem_cache_alloc);

3483
#ifdef CONFIG_TRACING
3484
void *
3485
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
E
Eduard - Gabriel Munteanu 已提交
3486
{
3487 3488
	void *ret;

3489
	ret = slab_alloc(cachep, flags, _RET_IP_);
3490 3491

	trace_kmalloc(_RET_IP_, ret,
3492
		      size, cachep->size, flags);
3493
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3494
}
3495
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3496 3497
#endif

L
Linus Torvalds 已提交
3498
#ifdef CONFIG_NUMA
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3510 3511
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3512
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3513

3514
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3515
				    cachep->object_size, cachep->size,
3516
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3517 3518

	return ret;
3519
}
L
Linus Torvalds 已提交
3520 3521
EXPORT_SYMBOL(kmem_cache_alloc_node);

3522
#ifdef CONFIG_TRACING
3523
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3524
				  gfp_t flags,
3525 3526
				  int nodeid,
				  size_t size)
E
Eduard - Gabriel Munteanu 已提交
3527
{
3528 3529
	void *ret;

3530
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3531

3532
	trace_kmalloc_node(_RET_IP_, ret,
3533
			   size, cachep->size,
3534 3535
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3536
}
3537
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3538 3539
#endif

3540
static __always_inline void *
3541
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3542
{
3543
	struct kmem_cache *cachep;
3544

3545
	cachep = kmalloc_slab(size, flags);
3546 3547
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3548
	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3549
}
3550

3551
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3552 3553
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3554
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3555
}
3556
EXPORT_SYMBOL(__kmalloc_node);
3557 3558

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3559
		int node, unsigned long caller)
3560
{
3561
	return __do_kmalloc_node(size, flags, node, caller);
3562 3563 3564 3565 3566
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3567
	return __do_kmalloc_node(size, flags, node, 0);
3568 3569
}
EXPORT_SYMBOL(__kmalloc_node);
3570
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3571
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3572 3573

/**
3574
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3575
 * @size: how many bytes of memory are required.
3576
 * @flags: the type of memory to allocate (see kmalloc).
3577
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3578
 */
3579
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3580
					  unsigned long caller)
L
Linus Torvalds 已提交
3581
{
3582
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3583
	void *ret;
L
Linus Torvalds 已提交
3584

3585 3586 3587 3588 3589
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
3590
	cachep = kmalloc_slab(size, flags);
3591 3592
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3593
	ret = slab_alloc(cachep, flags, caller);
E
Eduard - Gabriel Munteanu 已提交
3594

3595
	trace_kmalloc(caller, ret,
3596
		      size, cachep->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3597 3598

	return ret;
3599 3600 3601
}


3602
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3603 3604
void *__kmalloc(size_t size, gfp_t flags)
{
3605
	return __do_kmalloc(size, flags, _RET_IP_);
L
Linus Torvalds 已提交
3606 3607 3608
}
EXPORT_SYMBOL(__kmalloc);

3609
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3610
{
3611
	return __do_kmalloc(size, flags, caller);
3612 3613
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3614 3615 3616 3617

#else
void *__kmalloc(size_t size, gfp_t flags)
{
3618
	return __do_kmalloc(size, flags, 0);
3619 3620
}
EXPORT_SYMBOL(__kmalloc);
3621 3622
#endif

L
Linus Torvalds 已提交
3623 3624 3625 3626 3627 3628 3629 3630
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3631
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3632 3633
{
	unsigned long flags;
3634 3635 3636
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
L
Linus Torvalds 已提交
3637 3638

	local_irq_save(flags);
3639
	debug_check_no_locks_freed(objp, cachep->object_size);
3640
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3641
		debug_check_no_obj_freed(objp, cachep->object_size);
3642
	__cache_free(cachep, objp, _RET_IP_);
L
Linus Torvalds 已提交
3643
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3644

3645
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3646 3647 3648 3649 3650 3651 3652
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3653 3654
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3655 3656 3657 3658 3659
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3660
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3661 3662
	unsigned long flags;

3663 3664
	trace_kfree(_RET_IP_, objp);

3665
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3666 3667 3668
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3669
	c = virt_to_cache(objp);
3670 3671 3672
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3673
	__cache_free(c, (void *)objp, _RET_IP_);
L
Linus Torvalds 已提交
3674 3675 3676 3677
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3678
/*
3679
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3680
 */
3681
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3682 3683
{
	int node;
3684
	struct kmem_cache_node *n;
3685
	struct array_cache *new_shared;
3686
	struct array_cache **new_alien = NULL;
3687

3688
	for_each_online_node(node) {
3689

3690
                if (use_alien_caches) {
3691
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3692 3693 3694
                        if (!new_alien)
                                goto fail;
                }
3695

3696 3697 3698
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3699
				cachep->shared*cachep->batchcount,
3700
					0xbaadf00d, gfp);
3701 3702 3703 3704
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3705
		}
3706

3707 3708 3709
		n = cachep->node[node];
		if (n) {
			struct array_cache *shared = n->shared;
3710

3711
			spin_lock_irq(&n->list_lock);
3712

3713
			if (shared)
3714 3715
				free_block(cachep, shared->entry,
						shared->avail, node);
3716

3717 3718 3719
			n->shared = new_shared;
			if (!n->alien) {
				n->alien = new_alien;
3720 3721
				new_alien = NULL;
			}
3722
			n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3723
					cachep->batchcount + cachep->num;
3724
			spin_unlock_irq(&n->list_lock);
3725
			kfree(shared);
3726 3727 3728
			free_alien_cache(new_alien);
			continue;
		}
3729 3730
		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
		if (!n) {
3731 3732
			free_alien_cache(new_alien);
			kfree(new_shared);
3733
			goto fail;
3734
		}
3735

3736 3737
		kmem_cache_node_init(n);
		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3738
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3739 3740 3741
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3742
					cachep->batchcount + cachep->num;
3743
		cachep->node[node] = n;
3744
	}
3745
	return 0;
3746

A
Andrew Morton 已提交
3747
fail:
3748
	if (!cachep->list.next) {
3749 3750 3751
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3752
			if (cachep->node[node]) {
3753
				n = cachep->node[node];
3754

3755 3756 3757
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3758
				cachep->node[node] = NULL;
3759 3760 3761 3762
			}
			node--;
		}
	}
3763
	return -ENOMEM;
3764 3765
}

L
Linus Torvalds 已提交
3766
struct ccupdate_struct {
3767
	struct kmem_cache *cachep;
3768
	struct array_cache *new[0];
L
Linus Torvalds 已提交
3769 3770 3771 3772
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3773
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3774 3775 3776
	struct array_cache *old;

	check_irq_off();
3777
	old = cpu_cache_get(new->cachep);
3778

L
Linus Torvalds 已提交
3779 3780 3781 3782
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3783
/* Always called with the slab_mutex held */
G
Glauber Costa 已提交
3784
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3785
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3786
{
3787
	struct ccupdate_struct *new;
3788
	int i;
L
Linus Torvalds 已提交
3789

3790 3791
	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
		      gfp);
3792 3793 3794
	if (!new)
		return -ENOMEM;

3795
	for_each_online_cpu(i) {
3796
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3797
						batchcount, gfp);
3798
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3799
			for (i--; i >= 0; i--)
3800 3801
				kfree(new->new[i]);
			kfree(new);
3802
			return -ENOMEM;
L
Linus Torvalds 已提交
3803 3804
		}
	}
3805
	new->cachep = cachep;
L
Linus Torvalds 已提交
3806

3807
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3808

L
Linus Torvalds 已提交
3809 3810 3811
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3812
	cachep->shared = shared;
L
Linus Torvalds 已提交
3813

3814
	for_each_online_cpu(i) {
3815
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3816 3817
		if (!ccold)
			continue;
3818
		spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3819
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3820
		spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3821 3822
		kfree(ccold);
	}
3823
	kfree(new);
3824
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3825 3826
}

G
Glauber Costa 已提交
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
	struct kmem_cache *c = NULL;
	int i = 0;

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3842
	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
G
Glauber Costa 已提交
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg(cachep, i);
		if (c)
			/* return value determined by the parent cache only */
			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
	}

	return ret;
}

3853
/* Called with slab_mutex held always */
3854
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3855 3856
{
	int err;
G
Glauber Costa 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
L
Linus Torvalds 已提交
3867

G
Glauber Costa 已提交
3868 3869
	if (limit && shared && batchcount)
		goto skip_setup;
A
Andrew Morton 已提交
3870 3871
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3872 3873
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3874
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3875 3876 3877 3878
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3879
	if (cachep->size > 131072)
L
Linus Torvalds 已提交
3880
		limit = 1;
3881
	else if (cachep->size > PAGE_SIZE)
L
Linus Torvalds 已提交
3882
		limit = 8;
3883
	else if (cachep->size > 1024)
L
Linus Torvalds 已提交
3884
		limit = 24;
3885
	else if (cachep->size > 256)
L
Linus Torvalds 已提交
3886 3887 3888 3889
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3890 3891
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3892 3893 3894 3895 3896 3897 3898 3899
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3900
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3901 3902 3903
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3904 3905 3906
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3907 3908 3909 3910
	 */
	if (limit > 32)
		limit = 32;
#endif
G
Glauber Costa 已提交
3911 3912 3913
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
L
Linus Torvalds 已提交
3914 3915
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3916
		       cachep->name, -err);
3917
	return err;
L
Linus Torvalds 已提交
3918 3919
}

3920
/*
3921 3922
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
3923
 * if drain_array() is used on the shared array.
3924
 */
3925
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3926
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3927 3928 3929
{
	int tofree;

3930 3931
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3932 3933
	if (ac->touched && !force) {
		ac->touched = 0;
3934
	} else {
3935
		spin_lock_irq(&n->list_lock);
3936 3937 3938 3939 3940 3941 3942 3943 3944
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3945
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
3946 3947 3948 3949 3950
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3951
 * @w: work descriptor
L
Linus Torvalds 已提交
3952 3953 3954 3955 3956 3957
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3958 3959
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3960
 */
3961
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
3962
{
3963
	struct kmem_cache *searchp;
3964
	struct kmem_cache_node *n;
3965
	int node = numa_mem_id();
3966
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
3967

3968
	if (!mutex_trylock(&slab_mutex))
L
Linus Torvalds 已提交
3969
		/* Give up. Setup the next iteration. */
3970
		goto out;
L
Linus Torvalds 已提交
3971

3972
	list_for_each_entry(searchp, &slab_caches, list) {
L
Linus Torvalds 已提交
3973 3974
		check_irq_on();

3975
		/*
3976
		 * We only take the node lock if absolutely necessary and we
3977 3978 3979
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3980
		n = searchp->node[node];
3981

3982
		reap_alien(searchp, n);
L
Linus Torvalds 已提交
3983

3984
		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3985

3986 3987 3988 3989
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3990
		if (time_after(n->next_reap, jiffies))
3991
			goto next;
L
Linus Torvalds 已提交
3992

3993
		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3994

3995
		drain_array(searchp, n, n->shared, 0, node);
L
Linus Torvalds 已提交
3996

3997 3998
		if (n->free_touched)
			n->free_touched = 0;
3999 4000
		else {
			int freed;
L
Linus Torvalds 已提交
4001

4002
			freed = drain_freelist(searchp, n, (n->free_limit +
4003 4004 4005
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4006
next:
L
Linus Torvalds 已提交
4007 4008 4009
		cond_resched();
	}
	check_irq_on();
4010
	mutex_unlock(&slab_mutex);
4011
	next_reap_node();
4012
out:
A
Andrew Morton 已提交
4013
	/* Set up the next iteration */
4014
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4015 4016
}

4017
#ifdef CONFIG_SLABINFO
4018
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
L
Linus Torvalds 已提交
4019
{
4020
	struct page *page;
P
Pekka Enberg 已提交
4021 4022 4023 4024
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4025
	const char *name;
L
Linus Torvalds 已提交
4026
	char *error = NULL;
4027
	int node;
4028
	struct kmem_cache_node *n;
L
Linus Torvalds 已提交
4029 4030 4031

	active_objs = 0;
	num_slabs = 0;
4032
	for_each_online_node(node) {
4033 4034
		n = cachep->node[node];
		if (!n)
4035 4036
			continue;

4037
		check_irq_on();
4038
		spin_lock_irq(&n->list_lock);
4039

4040 4041
		list_for_each_entry(page, &n->slabs_full, lru) {
			if (page->active != cachep->num && !error)
4042 4043 4044 4045
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4046 4047
		list_for_each_entry(page, &n->slabs_partial, lru) {
			if (page->active == cachep->num && !error)
4048
				error = "slabs_partial accounting error";
4049
			if (!page->active && !error)
4050
				error = "slabs_partial accounting error";
4051
			active_objs += page->active;
4052 4053
			active_slabs++;
		}
4054 4055
		list_for_each_entry(page, &n->slabs_free, lru) {
			if (page->active && !error)
4056
				error = "slabs_free accounting error";
4057 4058
			num_slabs++;
		}
4059 4060 4061
		free_objects += n->free_objects;
		if (n->shared)
			shared_avail += n->shared->avail;
4062

4063
		spin_unlock_irq(&n->list_lock);
L
Linus Torvalds 已提交
4064
	}
P
Pekka Enberg 已提交
4065 4066
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4067
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4068 4069
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4070
	name = cachep->name;
L
Linus Torvalds 已提交
4071 4072 4073
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
	sinfo->num_slabs = num_slabs;
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
L
Linus Torvalds 已提交
4088
#if STATS
4089
	{			/* node stats */
L
Linus Torvalds 已提交
4090 4091 4092 4093 4094 4095 4096
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4097
		unsigned long node_frees = cachep->node_frees;
4098
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4099

J
Joe Perches 已提交
4100 4101 4102 4103 4104
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4105 4106 4107 4108 4109 4110 4111 4112 4113
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4114
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4127
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4128
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4129
{
P
Pekka Enberg 已提交
4130
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4131
	int limit, batchcount, shared, res;
4132
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4133

L
Linus Torvalds 已提交
4134 4135 4136 4137
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4138
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4149
	mutex_lock(&slab_mutex);
L
Linus Torvalds 已提交
4150
	res = -EINVAL;
4151
	list_for_each_entry(cachep, &slab_caches, list) {
L
Linus Torvalds 已提交
4152
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4153 4154
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4155
				res = 0;
L
Linus Torvalds 已提交
4156
			} else {
4157
				res = do_tune_cpucache(cachep, limit,
4158 4159
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4160 4161 4162 4163
			}
			break;
		}
	}
4164
	mutex_unlock(&slab_mutex);
L
Linus Torvalds 已提交
4165 4166 4167 4168
	if (res >= 0)
		res = count;
	return res;
}
4169 4170 4171 4172 4173

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
4174 4175
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_caches, *pos);
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4208 4209
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4210 4211
{
	void *p;
4212 4213
	int i, j;

4214 4215
	if (n[0] == n[1])
		return;
4216
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4217 4218
		bool active = true;

4219
		for (j = page->active; j < c->num; j++) {
4220
			/* Skip freed item */
4221
			if (slab_bufctl(page)[j] == i) {
4222 4223 4224 4225 4226
				active = false;
				break;
			}
		}
		if (!active)
4227
			continue;
4228

4229 4230 4231 4232 4233 4234 4235 4236 4237
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4238
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4239

4240
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4241
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4242
		if (modname[0])
4243 4244 4245 4246 4247 4248 4249 4250 4251
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4252
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4253
	struct page *page;
4254
	struct kmem_cache_node *n;
4255
	const char *name;
4256
	unsigned long *x = m->private;
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

4267
	x[1] = 0;
4268 4269

	for_each_online_node(node) {
4270 4271
		n = cachep->node[node];
		if (!n)
4272 4273 4274
			continue;

		check_irq_on();
4275
		spin_lock_irq(&n->list_lock);
4276

4277 4278 4279 4280
		list_for_each_entry(page, &n->slabs_full, lru)
			handle_slab(x, cachep, page);
		list_for_each_entry(page, &n->slabs_partial, lru)
			handle_slab(x, cachep, page);
4281
		spin_unlock_irq(&n->list_lock);
4282 4283
	}
	name = cachep->name;
4284
	if (x[0] == x[1]) {
4285
		/* Increase the buffer size */
4286
		mutex_unlock(&slab_mutex);
4287
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4288 4289
		if (!m->private) {
			/* Too bad, we are really out */
4290
			m->private = x;
4291
			mutex_lock(&slab_mutex);
4292 4293
			return -ENOMEM;
		}
4294 4295
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4296
		mutex_lock(&slab_mutex);
4297 4298 4299 4300
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4301 4302 4303
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4304 4305
		seq_putc(m, '\n');
	}
4306

4307 4308 4309
	return 0;
}

4310
static const struct seq_operations slabstats_op = {
4311
	.start = leaks_start,
4312 4313
	.next = slab_next,
	.stop = slab_stop,
4314 4315
	.show = leaks_show,
};
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4346
#endif
4347 4348 4349
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4350 4351
#endif

4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4364
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4365
{
4366 4367
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4368
		return 0;
L
Linus Torvalds 已提交
4369

4370
	return virt_to_cache(objp)->object_size;
L
Linus Torvalds 已提交
4371
}
K
Kirill A. Shutemov 已提交
4372
EXPORT_SYMBOL(ksize);