raid5.c 221.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * raid5.c : Multiple Devices driver for Linux
 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
 *	   Copyright (C) 1999, 2000 Ingo Molnar
5
 *	   Copyright (C) 2002, 2003 H. Peter Anvin
L
Linus Torvalds 已提交
6
 *
7 8 9
 * RAID-4/5/6 management functions.
 * Thanks to Penguin Computing for making the RAID-6 development possible
 * by donating a test server!
L
Linus Torvalds 已提交
10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * You should have received a copy of the GNU General Public License
 * (for example /usr/src/linux/COPYING); if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

21 22 23 24 25 26 27 28 29
/*
 * BITMAP UNPLUGGING:
 *
 * The sequencing for updating the bitmap reliably is a little
 * subtle (and I got it wrong the first time) so it deserves some
 * explanation.
 *
 * We group bitmap updates into batches.  Each batch has a number.
 * We may write out several batches at once, but that isn't very important.
30 31
 * conf->seq_write is the number of the last batch successfully written.
 * conf->seq_flush is the number of the last batch that was closed to
32 33 34
 *    new additions.
 * When we discover that we will need to write to any block in a stripe
 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35
 * the number of the batch it will be in. This is seq_flush+1.
36 37 38 39 40 41 42 43 44
 * When we are ready to do a write, if that batch hasn't been written yet,
 *   we plug the array and queue the stripe for later.
 * When an unplug happens, we increment bm_flush, thus closing the current
 *   batch.
 * When we notice that bm_flush > bm_write, we write out all pending updates
 * to the bitmap, and advance bm_write to where bm_flush was.
 * This may occasionally write a bit out twice, but is sure never to
 * miss any bits.
 */
L
Linus Torvalds 已提交
45

46
#include <linux/blkdev.h>
47
#include <linux/kthread.h>
48
#include <linux/raid/pq.h>
49
#include <linux/async_tx.h>
50
#include <linux/module.h>
51
#include <linux/async.h>
52
#include <linux/seq_file.h>
53
#include <linux/cpu.h>
54
#include <linux/slab.h>
55
#include <linux/ratelimit.h>
56
#include <linux/nodemask.h>
57
#include <linux/flex_array.h>
N
NeilBrown 已提交
58 59
#include <trace/events/block.h>

60
#include "md.h"
61
#include "raid5.h"
62
#include "raid0.h"
63
#include "bitmap.h"
64

65 66 67
#define cpu_to_group(cpu) cpu_to_node(cpu)
#define ANY_GROUP NUMA_NO_NODE

68 69 70 71
static bool devices_handle_discard_safely = false;
module_param(devices_handle_discard_safely, bool, 0644);
MODULE_PARM_DESC(devices_handle_discard_safely,
		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72
static struct workqueue_struct *raid5_wq;
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81
/*
 * Stripe cache
 */

#define NR_STRIPES		256
#define STRIPE_SIZE		PAGE_SIZE
#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
#define	IO_THRESHOLD		1
82
#define BYPASS_THRESHOLD	1
83
#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
L
Linus Torvalds 已提交
84
#define HASH_MASK		(NR_HASH - 1)
85
#define MAX_STRIPE_BATCH	8
L
Linus Torvalds 已提交
86

87
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 89 90 91
{
	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
	return &conf->stripe_hashtbl[hash];
}
L
Linus Torvalds 已提交
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static inline int stripe_hash_locks_hash(sector_t sect)
{
	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
}

static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
{
	spin_lock_irq(conf->hash_locks + hash);
	spin_lock(&conf->device_lock);
}

static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
{
	spin_unlock(&conf->device_lock);
	spin_unlock_irq(conf->hash_locks + hash);
}

static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
{
	int i;
	local_irq_disable();
	spin_lock(conf->hash_locks);
	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
	spin_lock(&conf->device_lock);
}

static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
{
	int i;
	spin_unlock(&conf->device_lock);
	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
		spin_unlock(conf->hash_locks + i - 1);
	local_irq_enable();
}

L
Linus Torvalds 已提交
129 130 131 132 133 134
/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
135
 * This function is used to determine the 'next' bio in the list, given the sector
L
Linus Torvalds 已提交
136 137
 * of the current stripe+device
 */
138 139
static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
{
140
	int sectors = bio_sectors(bio);
141
	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 143 144 145
		return bio->bi_next;
	else
		return NULL;
}
L
Linus Torvalds 已提交
146

147
/*
148 149
 * We maintain a biased count of active stripes in the bottom 16 bits of
 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150
 */
151
static inline int raid5_bi_processed_stripes(struct bio *bio)
152
{
153 154
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return (atomic_read(segments) >> 16) & 0xffff;
155 156
}

157
static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158
{
159 160
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	return atomic_sub_return(1, segments) & 0xffff;
161 162
}

163
static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164
{
165 166
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_inc(segments);
167 168
}

169 170
static inline void raid5_set_bi_processed_stripes(struct bio *bio,
	unsigned int cnt)
171
{
172 173
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	int old, new;
174

175 176 177 178
	do {
		old = atomic_read(segments);
		new = (old & 0xffff) | (cnt << 16);
	} while (atomic_cmpxchg(segments, old, new) != old);
179 180
}

181
static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182
{
183 184
	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
	atomic_set(segments, cnt);
185 186
}

187 188 189
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
190 191 192 193
	if (sh->ddf_layout)
		/* ddf always start from first device */
		return 0;
	/* md starts just after Q block */
194 195 196 197 198
	if (sh->qd_idx == sh->disks - 1)
		return 0;
	else
		return sh->qd_idx + 1;
}
199 200 201 202 203
static inline int raid6_next_disk(int disk, int raid_disks)
{
	disk++;
	return (disk < raid_disks) ? disk : 0;
}
204

205 206 207 208 209
/* When walking through the disks in a raid5, starting at raid6_d0,
 * We need to map each disk to a 'slot', where the data disks are slot
 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 * is raid_disks-1.  This help does that mapping.
 */
210 211
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
			     int *count, int syndrome_disks)
212
{
213
	int slot = *count;
214

215
	if (sh->ddf_layout)
216
		(*count)++;
217
	if (idx == sh->pd_idx)
218
		return syndrome_disks;
219
	if (idx == sh->qd_idx)
220
		return syndrome_disks + 1;
221
	if (!sh->ddf_layout)
222
		(*count)++;
223 224 225
	return slot;
}

226 227 228 229 230 231 232
static void return_io(struct bio *return_bi)
{
	struct bio *bi = return_bi;
	while (bi) {

		return_bi = bi->bi_next;
		bi->bi_next = NULL;
233
		bi->bi_iter.bi_size = 0;
234 235
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
236
		bio_endio(bi, 0);
237 238 239 240
		bi = return_bi;
	}
}

241
static void print_raid5_conf (struct r5conf *conf);
L
Linus Torvalds 已提交
242

243 244 245 246 247 248 249
static int stripe_operations_active(struct stripe_head *sh)
{
	return sh->check_state || sh->reconstruct_state ||
	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}

250 251 252 253
static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
{
	struct r5conf *conf = sh->raid_conf;
	struct r5worker_group *group;
254
	int thread_cnt;
255 256 257 258 259 260 261 262 263 264 265
	int i, cpu = sh->cpu;

	if (!cpu_online(cpu)) {
		cpu = cpumask_any(cpu_online_mask);
		sh->cpu = cpu;
	}

	if (list_empty(&sh->lru)) {
		struct r5worker_group *group;
		group = conf->worker_groups + cpu_to_group(cpu);
		list_add_tail(&sh->lru, &group->handle_list);
266 267
		group->stripes_cnt++;
		sh->group = group;
268 269 270 271 272 273 274 275 276
	}

	if (conf->worker_cnt_per_group == 0) {
		md_wakeup_thread(conf->mddev->thread);
		return;
	}

	group = conf->worker_groups + cpu_to_group(sh->cpu);

277 278 279 280 281 282 283 284 285 286 287 288 289 290
	group->workers[0].working = true;
	/* at least one worker should run to avoid race */
	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);

	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
	/* wakeup more workers */
	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
		if (group->workers[i].working == false) {
			group->workers[i].working = true;
			queue_work_on(sh->cpu, raid5_wq,
				      &group->workers[i].work);
			thread_cnt--;
		}
	}
291 292
}

293 294
static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
			      struct list_head *temp_inactive_list)
L
Linus Torvalds 已提交
295
{
296 297 298 299
	BUG_ON(!list_empty(&sh->lru));
	BUG_ON(atomic_read(&conf->active_stripes)==0);
	if (test_bit(STRIPE_HANDLE, &sh->state)) {
		if (test_bit(STRIPE_DELAYED, &sh->state) &&
300
		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301
			list_add_tail(&sh->lru, &conf->delayed_list);
302
		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 304 305 306 307
			   sh->bm_seq - conf->seq_write > 0)
			list_add_tail(&sh->lru, &conf->bitmap_list);
		else {
			clear_bit(STRIPE_DELAYED, &sh->state);
			clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 309 310 311 312 313
			if (conf->worker_cnt_per_group == 0) {
				list_add_tail(&sh->lru, &conf->handle_list);
			} else {
				raid5_wakeup_stripe_thread(sh);
				return;
			}
314 315 316 317 318 319 320 321 322
		}
		md_wakeup_thread(conf->mddev->thread);
	} else {
		BUG_ON(stripe_operations_active(sh));
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			if (atomic_dec_return(&conf->preread_active_stripes)
			    < IO_THRESHOLD)
				md_wakeup_thread(conf->mddev->thread);
		atomic_dec(&conf->active_stripes);
323 324
		if (!test_bit(STRIPE_EXPANDING, &sh->state))
			list_add_tail(&sh->lru, temp_inactive_list);
L
Linus Torvalds 已提交
325 326
	}
}
327

328 329
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
			     struct list_head *temp_inactive_list)
330 331
{
	if (atomic_dec_and_test(&sh->count))
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
		do_release_stripe(conf, sh, temp_inactive_list);
}

/*
 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 *
 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 * given time. Adding stripes only takes device lock, while deleting stripes
 * only takes hash lock.
 */
static void release_inactive_stripe_list(struct r5conf *conf,
					 struct list_head *temp_inactive_list,
					 int hash)
{
	int size;
347 348
	unsigned long do_wakeup = 0;
	int i = 0;
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	unsigned long flags;

	if (hash == NR_STRIPE_HASH_LOCKS) {
		size = NR_STRIPE_HASH_LOCKS;
		hash = NR_STRIPE_HASH_LOCKS - 1;
	} else
		size = 1;
	while (size) {
		struct list_head *list = &temp_inactive_list[size - 1];

		/*
		 * We don't hold any lock here yet, get_active_stripe() might
		 * remove stripes from the list
		 */
		if (!list_empty_careful(list)) {
			spin_lock_irqsave(conf->hash_locks + hash, flags);
365 366 367
			if (list_empty(conf->inactive_list + hash) &&
			    !list_empty(list))
				atomic_dec(&conf->empty_inactive_list_nr);
368
			list_splice_tail_init(list, conf->inactive_list + hash);
369
			do_wakeup |= 1 << hash;
370 371 372 373 374 375
			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
		}
		size--;
		hash--;
	}

376 377 378 379 380
	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
		if (do_wakeup & (1 << i))
			wake_up(&conf->wait_for_stripe[i]);
	}

381
	if (do_wakeup) {
382 383
		if (atomic_read(&conf->active_stripes) == 0)
			wake_up(&conf->wait_for_quiescent);
384 385 386
		if (conf->retry_read_aligned)
			md_wakeup_thread(conf->mddev->thread);
	}
387 388
}

S
Shaohua Li 已提交
389
/* should hold conf->device_lock already */
390 391
static int release_stripe_list(struct r5conf *conf,
			       struct list_head *temp_inactive_list)
S
Shaohua Li 已提交
392 393 394 395 396 397
{
	struct stripe_head *sh;
	int count = 0;
	struct llist_node *head;

	head = llist_del_all(&conf->released_stripes);
S
Shaohua Li 已提交
398
	head = llist_reverse_order(head);
S
Shaohua Li 已提交
399
	while (head) {
400 401
		int hash;

S
Shaohua Li 已提交
402 403 404 405 406 407 408 409 410 411
		sh = llist_entry(head, struct stripe_head, release_list);
		head = llist_next(head);
		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
		smp_mb();
		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
		/*
		 * Don't worry the bit is set here, because if the bit is set
		 * again, the count is always > 1. This is true for
		 * STRIPE_ON_UNPLUG_LIST bit too.
		 */
412 413
		hash = sh->hash_lock_index;
		__release_stripe(conf, sh, &temp_inactive_list[hash]);
S
Shaohua Li 已提交
414 415 416 417 418 419
		count++;
	}

	return count;
}

L
Linus Torvalds 已提交
420 421
static void release_stripe(struct stripe_head *sh)
{
422
	struct r5conf *conf = sh->raid_conf;
L
Linus Torvalds 已提交
423
	unsigned long flags;
424 425
	struct list_head list;
	int hash;
S
Shaohua Li 已提交
426
	bool wakeup;
427

428 429 430 431 432
	/* Avoid release_list until the last reference.
	 */
	if (atomic_add_unless(&sh->count, -1, 1))
		return;

433 434
	if (unlikely(!conf->mddev->thread) ||
		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
S
Shaohua Li 已提交
435 436 437 438 439 440
		goto slow_path;
	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
	if (wakeup)
		md_wakeup_thread(conf->mddev->thread);
	return;
slow_path:
441
	local_irq_save(flags);
S
Shaohua Li 已提交
442
	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
443
	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
444 445 446
		INIT_LIST_HEAD(&list);
		hash = sh->hash_lock_index;
		do_release_stripe(conf, sh, &list);
447
		spin_unlock(&conf->device_lock);
448
		release_inactive_stripe_list(conf, &list, hash);
449 450
	}
	local_irq_restore(flags);
L
Linus Torvalds 已提交
451 452
}

453
static inline void remove_hash(struct stripe_head *sh)
L
Linus Torvalds 已提交
454
{
455 456
	pr_debug("remove_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
457

458
	hlist_del_init(&sh->hash);
L
Linus Torvalds 已提交
459 460
}

461
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
L
Linus Torvalds 已提交
462
{
463
	struct hlist_head *hp = stripe_hash(conf, sh->sector);
L
Linus Torvalds 已提交
464

465 466
	pr_debug("insert_hash(), stripe %llu\n",
		(unsigned long long)sh->sector);
L
Linus Torvalds 已提交
467

468
	hlist_add_head(&sh->hash, hp);
L
Linus Torvalds 已提交
469 470 471
}

/* find an idle stripe, make sure it is unhashed, and return it. */
472
static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
L
Linus Torvalds 已提交
473 474 475 476
{
	struct stripe_head *sh = NULL;
	struct list_head *first;

477
	if (list_empty(conf->inactive_list + hash))
L
Linus Torvalds 已提交
478
		goto out;
479
	first = (conf->inactive_list + hash)->next;
L
Linus Torvalds 已提交
480 481 482 483
	sh = list_entry(first, struct stripe_head, lru);
	list_del_init(first);
	remove_hash(sh);
	atomic_inc(&conf->active_stripes);
484
	BUG_ON(hash != sh->hash_lock_index);
485 486
	if (list_empty(conf->inactive_list + hash))
		atomic_inc(&conf->empty_inactive_list_nr);
L
Linus Torvalds 已提交
487 488 489 490
out:
	return sh;
}

491
static void shrink_buffers(struct stripe_head *sh)
L
Linus Torvalds 已提交
492 493 494
{
	struct page *p;
	int i;
495
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
496

497
	for (i = 0; i < num ; i++) {
498
		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
L
Linus Torvalds 已提交
499 500 501 502
		p = sh->dev[i].page;
		if (!p)
			continue;
		sh->dev[i].page = NULL;
503
		put_page(p);
L
Linus Torvalds 已提交
504 505 506
	}
}

507
static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
L
Linus Torvalds 已提交
508 509
{
	int i;
510
	int num = sh->raid_conf->pool_size;
L
Linus Torvalds 已提交
511

512
	for (i = 0; i < num; i++) {
L
Linus Torvalds 已提交
513 514
		struct page *page;

515
		if (!(page = alloc_page(gfp))) {
L
Linus Torvalds 已提交
516 517 518
			return 1;
		}
		sh->dev[i].page = page;
519
		sh->dev[i].orig_page = page;
L
Linus Torvalds 已提交
520 521 522 523
	}
	return 0;
}

524
static void raid5_build_block(struct stripe_head *sh, int i, int previous);
525
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
526
			    struct stripe_head *sh);
L
Linus Torvalds 已提交
527

528
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
L
Linus Torvalds 已提交
529
{
530
	struct r5conf *conf = sh->raid_conf;
531
	int i, seq;
L
Linus Torvalds 已提交
532

533 534
	BUG_ON(atomic_read(&sh->count) != 0);
	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
535
	BUG_ON(stripe_operations_active(sh));
536
	BUG_ON(sh->batch_head);
537

538
	pr_debug("init_stripe called, stripe %llu\n",
539
		(unsigned long long)sector);
540 541
retry:
	seq = read_seqcount_begin(&conf->gen_lock);
542
	sh->generation = conf->generation - previous;
543
	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
L
Linus Torvalds 已提交
544
	sh->sector = sector;
545
	stripe_set_idx(sector, conf, previous, sh);
L
Linus Torvalds 已提交
546 547
	sh->state = 0;

548
	for (i = sh->disks; i--; ) {
L
Linus Torvalds 已提交
549 550
		struct r5dev *dev = &sh->dev[i];

551
		if (dev->toread || dev->read || dev->towrite || dev->written ||
L
Linus Torvalds 已提交
552
		    test_bit(R5_LOCKED, &dev->flags)) {
553
			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
L
Linus Torvalds 已提交
554
			       (unsigned long long)sh->sector, i, dev->toread,
555
			       dev->read, dev->towrite, dev->written,
L
Linus Torvalds 已提交
556
			       test_bit(R5_LOCKED, &dev->flags));
557
			WARN_ON(1);
L
Linus Torvalds 已提交
558 559
		}
		dev->flags = 0;
560
		raid5_build_block(sh, i, previous);
L
Linus Torvalds 已提交
561
	}
562 563
	if (read_seqcount_retry(&conf->gen_lock, seq))
		goto retry;
564
	sh->overwrite_disks = 0;
L
Linus Torvalds 已提交
565
	insert_hash(conf, sh);
566
	sh->cpu = smp_processor_id();
567
	set_bit(STRIPE_BATCH_READY, &sh->state);
L
Linus Torvalds 已提交
568 569
}

570
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
571
					 short generation)
L
Linus Torvalds 已提交
572 573 574
{
	struct stripe_head *sh;

575
	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
576
	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
577
		if (sh->sector == sector && sh->generation == generation)
L
Linus Torvalds 已提交
578
			return sh;
579
	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
580 581 582
	return NULL;
}

583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Need to check if array has failed when deciding whether to:
 *  - start an array
 *  - remove non-faulty devices
 *  - add a spare
 *  - allow a reshape
 * This determination is simple when no reshape is happening.
 * However if there is a reshape, we need to carefully check
 * both the before and after sections.
 * This is because some failed devices may only affect one
 * of the two sections, and some non-in_sync devices may
 * be insync in the section most affected by failed devices.
 */
596
static int calc_degraded(struct r5conf *conf)
597
{
598
	int degraded, degraded2;
599 600 601 602 603
	int i;

	rcu_read_lock();
	degraded = 0;
	for (i = 0; i < conf->previous_raid_disks; i++) {
604
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
605 606
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
		if (!rdev || test_bit(Faulty, &rdev->flags))
			degraded++;
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If the reshape increases the number of devices,
			 * this is being recovered by the reshape, so
			 * this 'previous' section is not in_sync.
			 * If the number of devices is being reduced however,
			 * the device can only be part of the array if
			 * we are reverting a reshape, so this section will
			 * be in-sync.
			 */
			if (conf->raid_disks >= conf->previous_raid_disks)
				degraded++;
	}
	rcu_read_unlock();
625 626
	if (conf->raid_disks == conf->previous_raid_disks)
		return degraded;
627
	rcu_read_lock();
628
	degraded2 = 0;
629
	for (i = 0; i < conf->raid_disks; i++) {
630
		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
631 632
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = rcu_dereference(conf->disks[i].replacement);
633
		if (!rdev || test_bit(Faulty, &rdev->flags))
634
			degraded2++;
635 636 637 638 639 640 641 642 643
		else if (test_bit(In_sync, &rdev->flags))
			;
		else
			/* not in-sync or faulty.
			 * If reshape increases the number of devices, this
			 * section has already been recovered, else it
			 * almost certainly hasn't.
			 */
			if (conf->raid_disks <= conf->previous_raid_disks)
644
				degraded2++;
645 646
	}
	rcu_read_unlock();
647 648 649 650 651 652 653 654 655 656 657 658 659
	if (degraded2 > degraded)
		return degraded2;
	return degraded;
}

static int has_failed(struct r5conf *conf)
{
	int degraded;

	if (conf->mddev->reshape_position == MaxSector)
		return conf->mddev->degraded > conf->max_degraded;

	degraded = calc_degraded(conf);
660 661 662 663 664
	if (degraded > conf->max_degraded)
		return 1;
	return 0;
}

665
static struct stripe_head *
666
get_active_stripe(struct r5conf *conf, sector_t sector,
667
		  int previous, int noblock, int noquiesce)
L
Linus Torvalds 已提交
668 669
{
	struct stripe_head *sh;
670
	int hash = stripe_hash_locks_hash(sector);
L
Linus Torvalds 已提交
671

672
	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
L
Linus Torvalds 已提交
673

674
	spin_lock_irq(conf->hash_locks + hash);
L
Linus Torvalds 已提交
675 676

	do {
677
		wait_event_lock_irq(conf->wait_for_quiescent,
678
				    conf->quiesce == 0 || noquiesce,
679
				    *(conf->hash_locks + hash));
680
		sh = __find_stripe(conf, sector, conf->generation - previous);
L
Linus Torvalds 已提交
681
		if (!sh) {
682
			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
683
				sh = get_free_stripe(conf, hash);
684 685
				if (!sh && !test_bit(R5_DID_ALLOC,
						     &conf->cache_state))
686 687 688
					set_bit(R5_ALLOC_MORE,
						&conf->cache_state);
			}
L
Linus Torvalds 已提交
689 690 691
			if (noblock && sh == NULL)
				break;
			if (!sh) {
692 693
				set_bit(R5_INACTIVE_BLOCKED,
					&conf->cache_state);
694 695
				wait_event_exclusive_cmd(
					conf->wait_for_stripe[hash],
696 697 698
					!list_empty(conf->inactive_list + hash) &&
					(atomic_read(&conf->active_stripes)
					 < (conf->max_nr_stripes * 3 / 4)
699 700
					 || !test_bit(R5_INACTIVE_BLOCKED,
						      &conf->cache_state)),
701 702
					spin_unlock_irq(conf->hash_locks + hash),
					spin_lock_irq(conf->hash_locks + hash));
703 704
				clear_bit(R5_INACTIVE_BLOCKED,
					  &conf->cache_state);
705
			} else {
706
				init_stripe(sh, sector, previous);
707 708
				atomic_inc(&sh->count);
			}
709
		} else if (!atomic_inc_not_zero(&sh->count)) {
710
			spin_lock(&conf->device_lock);
711
			if (!atomic_read(&sh->count)) {
L
Linus Torvalds 已提交
712 713
				if (!test_bit(STRIPE_HANDLE, &sh->state))
					atomic_inc(&conf->active_stripes);
714 715
				BUG_ON(list_empty(&sh->lru) &&
				       !test_bit(STRIPE_EXPANDING, &sh->state));
716
				list_del_init(&sh->lru);
717 718 719 720
				if (sh->group) {
					sh->group->stripes_cnt--;
					sh->group = NULL;
				}
L
Linus Torvalds 已提交
721
			}
722
			atomic_inc(&sh->count);
723
			spin_unlock(&conf->device_lock);
L
Linus Torvalds 已提交
724 725 726
		}
	} while (sh == NULL);

727 728 729
	if (!list_empty(conf->inactive_list + hash))
		wake_up(&conf->wait_for_stripe[hash]);

730
	spin_unlock_irq(conf->hash_locks + hash);
L
Linus Torvalds 已提交
731 732 733
	return sh;
}

734 735 736 737 738 739
static bool is_full_stripe_write(struct stripe_head *sh)
{
	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
{
	local_irq_disable();
	if (sh1 > sh2) {
		spin_lock(&sh2->stripe_lock);
		spin_lock_nested(&sh1->stripe_lock, 1);
	} else {
		spin_lock(&sh1->stripe_lock);
		spin_lock_nested(&sh2->stripe_lock, 1);
	}
}

static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
{
	spin_unlock(&sh1->stripe_lock);
	spin_unlock(&sh2->stripe_lock);
	local_irq_enable();
}

/* Only freshly new full stripe normal write stripe can be added to a batch list */
static bool stripe_can_batch(struct stripe_head *sh)
{
	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763
		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		is_full_stripe_write(sh);
}

/* we only do back search */
static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
{
	struct stripe_head *head;
	sector_t head_sector, tmp_sec;
	int hash;
	int dd_idx;

	if (!stripe_can_batch(sh))
		return;
	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
	tmp_sec = sh->sector;
	if (!sector_div(tmp_sec, conf->chunk_sectors))
		return;
	head_sector = sh->sector - STRIPE_SECTORS;

	hash = stripe_hash_locks_hash(head_sector);
	spin_lock_irq(conf->hash_locks + hash);
	head = __find_stripe(conf, head_sector, conf->generation);
	if (head && !atomic_inc_not_zero(&head->count)) {
		spin_lock(&conf->device_lock);
		if (!atomic_read(&head->count)) {
			if (!test_bit(STRIPE_HANDLE, &head->state))
				atomic_inc(&conf->active_stripes);
			BUG_ON(list_empty(&head->lru) &&
			       !test_bit(STRIPE_EXPANDING, &head->state));
			list_del_init(&head->lru);
			if (head->group) {
				head->group->stripes_cnt--;
				head->group = NULL;
			}
		}
		atomic_inc(&head->count);
		spin_unlock(&conf->device_lock);
	}
	spin_unlock_irq(conf->hash_locks + hash);

	if (!head)
		return;
	if (!stripe_can_batch(head))
		goto out;

	lock_two_stripes(head, sh);
	/* clear_batch_ready clear the flag */
	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
		goto unlock_out;

	if (sh->batch_head)
		goto unlock_out;

	dd_idx = 0;
	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
		dd_idx++;
	if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
		goto unlock_out;

	if (head->batch_head) {
		spin_lock(&head->batch_head->batch_lock);
		/* This batch list is already running */
		if (!stripe_can_batch(head)) {
			spin_unlock(&head->batch_head->batch_lock);
			goto unlock_out;
		}

		/*
		 * at this point, head's BATCH_READY could be cleared, but we
		 * can still add the stripe to batch list
		 */
		list_add(&sh->batch_list, &head->batch_list);
		spin_unlock(&head->batch_head->batch_lock);

		sh->batch_head = head->batch_head;
	} else {
		head->batch_head = head;
		sh->batch_head = head->batch_head;
		spin_lock(&head->batch_lock);
		list_add_tail(&sh->batch_list, &head->batch_list);
		spin_unlock(&head->batch_lock);
	}

	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		if (atomic_dec_return(&conf->preread_active_stripes)
		    < IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);

852 853 854 855 856 857 858 859 860
	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
		int seq = sh->bm_seq;
		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
		    sh->batch_head->bm_seq > seq)
			seq = sh->batch_head->bm_seq;
		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
		sh->batch_head->bm_seq = seq;
	}

861 862 863 864 865 866 867
	atomic_inc(&sh->count);
unlock_out:
	unlock_two_stripes(head, sh);
out:
	release_stripe(head);
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/* Determine if 'data_offset' or 'new_data_offset' should be used
 * in this stripe_head.
 */
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
	sector_t progress = conf->reshape_progress;
	/* Need a memory barrier to make sure we see the value
	 * of conf->generation, or ->data_offset that was set before
	 * reshape_progress was updated.
	 */
	smp_rmb();
	if (progress == MaxSector)
		return 0;
	if (sh->generation == conf->generation - 1)
		return 0;
	/* We are in a reshape, and this is a new-generation stripe,
	 * so use new_data_offset.
	 */
	return 1;
}

889 890 891 892
static void
raid5_end_read_request(struct bio *bi, int error);
static void
raid5_end_write_request(struct bio *bi, int error);
893

894
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895
{
896
	struct r5conf *conf = sh->raid_conf;
897
	int i, disks = sh->disks;
898
	struct stripe_head *head_sh = sh;
899 900 901 902 903

	might_sleep();

	for (i = disks; i--; ) {
		int rw;
904
		int replace_only = 0;
905 906
		struct bio *bi, *rbi;
		struct md_rdev *rdev, *rrdev = NULL;
907 908

		sh = head_sh;
T
Tejun Heo 已提交
909 910 911 912 913
		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
				rw = WRITE_FUA;
			else
				rw = WRITE;
914
			if (test_bit(R5_Discard, &sh->dev[i].flags))
S
Shaohua Li 已提交
915
				rw |= REQ_DISCARD;
T
Tejun Heo 已提交
916
		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
917
			rw = READ;
918 919 920 921 922
		else if (test_and_clear_bit(R5_WantReplace,
					    &sh->dev[i].flags)) {
			rw = WRITE;
			replace_only = 1;
		} else
923
			continue;
S
Shaohua Li 已提交
924 925
		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
			rw |= REQ_SYNC;
926

927
again:
928
		bi = &sh->dev[i].req;
929
		rbi = &sh->dev[i].rreq; /* For writing to replacement */
930 931

		rcu_read_lock();
932
		rrdev = rcu_dereference(conf->disks[i].replacement);
933 934 935 936 937 938
		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
		rdev = rcu_dereference(conf->disks[i].rdev);
		if (!rdev) {
			rdev = rrdev;
			rrdev = NULL;
		}
939 940 941
		if (rw & WRITE) {
			if (replace_only)
				rdev = NULL;
942 943 944
			if (rdev == rrdev)
				/* We raced and saw duplicates */
				rrdev = NULL;
945
		} else {
946
			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
947 948 949
				rdev = rrdev;
			rrdev = NULL;
		}
950

951 952 953 954
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
		if (rdev)
			atomic_inc(&rdev->nr_pending);
955 956 957 958
		if (rrdev && test_bit(Faulty, &rrdev->flags))
			rrdev = NULL;
		if (rrdev)
			atomic_inc(&rrdev->nr_pending);
959 960
		rcu_read_unlock();

961
		/* We have already checked bad blocks for reads.  Now
962 963
		 * need to check for writes.  We never accept write errors
		 * on the replacement, so we don't to check rrdev.
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
		 */
		while ((rw & WRITE) && rdev &&
		       test_bit(WriteErrorSeen, &rdev->flags)) {
			sector_t first_bad;
			int bad_sectors;
			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					      &first_bad, &bad_sectors);
			if (!bad)
				break;

			if (bad < 0) {
				set_bit(BlockedBadBlocks, &rdev->flags);
				if (!conf->mddev->external &&
				    conf->mddev->flags) {
					/* It is very unlikely, but we might
					 * still need to write out the
					 * bad block log - better give it
					 * a chance*/
					md_check_recovery(conf->mddev);
				}
984 985 986 987 988 989
				/*
				 * Because md_wait_for_blocked_rdev
				 * will dec nr_pending, we must
				 * increment it first.
				 */
				atomic_inc(&rdev->nr_pending);
990 991 992 993 994 995 996 997
				md_wait_for_blocked_rdev(rdev, conf->mddev);
			} else {
				/* Acknowledged bad block - skip the write */
				rdev_dec_pending(rdev, conf->mddev);
				rdev = NULL;
			}
		}

998
		if (rdev) {
999 1000
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
1001 1002
				md_sync_acct(rdev->bdev, STRIPE_SECTORS);

D
Dan Williams 已提交
1003 1004
			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
1005
			bio_reset(bi);
1006
			bi->bi_bdev = rdev->bdev;
K
Kent Overstreet 已提交
1007 1008 1009 1010 1011 1012
			bi->bi_rw = rw;
			bi->bi_end_io = (rw & WRITE)
				? raid5_end_write_request
				: raid5_end_read_request;
			bi->bi_private = sh;

1013
			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1014
				__func__, (unsigned long long)sh->sector,
1015 1016
				bi->bi_rw, i);
			atomic_inc(&sh->count);
1017 1018
			if (sh != head_sh)
				atomic_inc(&head_sh->count);
1019
			if (use_new_offset(conf, sh))
1020
				bi->bi_iter.bi_sector = (sh->sector
1021 1022
						 + rdev->new_data_offset);
			else
1023
				bi->bi_iter.bi_sector = (sh->sector
1024
						 + rdev->data_offset);
1025
			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1026
				bi->bi_rw |= REQ_NOMERGE;
1027

1028 1029 1030
			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].vec.bv_page = sh->dev[i].page;
K
Kent Overstreet 已提交
1031
			bi->bi_vcnt = 1;
1032 1033
			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			bi->bi_io_vec[0].bv_offset = 0;
1034
			bi->bi_iter.bi_size = STRIPE_SIZE;
1035 1036 1037 1038 1039 1040
			/*
			 * If this is discard request, set bi_vcnt 0. We don't
			 * want to confuse SCSI because SCSI will replace payload
			 */
			if (rw & REQ_DISCARD)
				bi->bi_vcnt = 0;
1041 1042
			if (rrdev)
				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1043 1044 1045 1046 1047

			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
						      bi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
1048
			generic_make_request(bi);
1049 1050
		}
		if (rrdev) {
1051 1052
			if (s->syncing || s->expanding || s->expanded
			    || s->replacing)
1053 1054 1055 1056
				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);

			set_bit(STRIPE_IO_STARTED, &sh->state);

K
Kent Overstreet 已提交
1057
			bio_reset(rbi);
1058
			rbi->bi_bdev = rrdev->bdev;
K
Kent Overstreet 已提交
1059 1060 1061 1062 1063
			rbi->bi_rw = rw;
			BUG_ON(!(rw & WRITE));
			rbi->bi_end_io = raid5_end_write_request;
			rbi->bi_private = sh;

1064 1065 1066 1067 1068
			pr_debug("%s: for %llu schedule op %ld on "
				 "replacement disc %d\n",
				__func__, (unsigned long long)sh->sector,
				rbi->bi_rw, i);
			atomic_inc(&sh->count);
1069 1070
			if (sh != head_sh)
				atomic_inc(&head_sh->count);
1071
			if (use_new_offset(conf, sh))
1072
				rbi->bi_iter.bi_sector = (sh->sector
1073 1074
						  + rrdev->new_data_offset);
			else
1075
				rbi->bi_iter.bi_sector = (sh->sector
1076
						  + rrdev->data_offset);
1077 1078 1079
			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].rvec.bv_page = sh->dev[i].page;
K
Kent Overstreet 已提交
1080
			rbi->bi_vcnt = 1;
1081 1082
			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
			rbi->bi_io_vec[0].bv_offset = 0;
1083
			rbi->bi_iter.bi_size = STRIPE_SIZE;
1084 1085 1086 1087 1088 1089
			/*
			 * If this is discard request, set bi_vcnt 0. We don't
			 * want to confuse SCSI because SCSI will replace payload
			 */
			if (rw & REQ_DISCARD)
				rbi->bi_vcnt = 0;
1090 1091 1092 1093
			if (conf->mddev->gendisk)
				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
						      rbi, disk_devt(conf->mddev->gendisk),
						      sh->dev[i].sector);
1094 1095 1096
			generic_make_request(rbi);
		}
		if (!rdev && !rrdev) {
1097
			if (rw & WRITE)
1098 1099 1100 1101 1102 1103
				set_bit(STRIPE_DEGRADED, &sh->state);
			pr_debug("skip op %ld on disc %d for sector %llu\n",
				bi->bi_rw, i, (unsigned long long)sh->sector);
			clear_bit(R5_LOCKED, &sh->dev[i].flags);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
1104 1105 1106 1107 1108 1109 1110

		if (!head_sh->batch_head)
			continue;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		if (sh != head_sh)
			goto again;
1111 1112 1113 1114
	}
}

static struct dma_async_tx_descriptor *
1115 1116 1117
async_copy_data(int frombio, struct bio *bio, struct page **page,
	sector_t sector, struct dma_async_tx_descriptor *tx,
	struct stripe_head *sh)
1118
{
1119 1120
	struct bio_vec bvl;
	struct bvec_iter iter;
1121 1122
	struct page *bio_page;
	int page_offset;
1123
	struct async_submit_ctl submit;
D
Dan Williams 已提交
1124
	enum async_tx_flags flags = 0;
1125

1126 1127
	if (bio->bi_iter.bi_sector >= sector)
		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1128
	else
1129
		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1130

D
Dan Williams 已提交
1131 1132 1133 1134
	if (frombio)
		flags |= ASYNC_TX_FENCE;
	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);

1135 1136
	bio_for_each_segment(bvl, bio, iter) {
		int len = bvl.bv_len;
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		int clen;
		int b_offset = 0;

		if (page_offset < 0) {
			b_offset = -page_offset;
			page_offset += b_offset;
			len -= b_offset;
		}

		if (len > 0 && page_offset + len > STRIPE_SIZE)
			clen = STRIPE_SIZE - page_offset;
		else
			clen = len;

		if (clen > 0) {
1152 1153
			b_offset += bvl.bv_offset;
			bio_page = bvl.bv_page;
1154 1155 1156 1157 1158 1159 1160
			if (frombio) {
				if (sh->raid_conf->skip_copy &&
				    b_offset == 0 && page_offset == 0 &&
				    clen == STRIPE_SIZE)
					*page = bio_page;
				else
					tx = async_memcpy(*page, bio_page, page_offset,
1161
						  b_offset, clen, &submit);
1162 1163
			} else
				tx = async_memcpy(bio_page, *page, b_offset,
1164
						  page_offset, clen, &submit);
1165
		}
1166 1167 1168
		/* chain the operations */
		submit.depend_tx = tx;

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		if (clen < len) /* hit end of page */
			break;
		page_offset +=  len;
	}

	return tx;
}

static void ops_complete_biofill(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;
	struct bio *return_bi = NULL;
1181
	int i;
1182

1183
	pr_debug("%s: stripe %llu\n", __func__,
1184 1185 1186 1187 1188 1189 1190
		(unsigned long long)sh->sector);

	/* clear completed biofills */
	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];

		/* acknowledge completion of a biofill operation */
1191 1192
		/* and check if we need to reply to a read request,
		 * new R5_Wantfill requests are held off until
1193
		 * !STRIPE_BIOFILL_RUN
1194 1195
		 */
		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1196 1197 1198 1199 1200
			struct bio *rbi, *rbi2;

			BUG_ON(!dev->read);
			rbi = dev->read;
			dev->read = NULL;
1201
			while (rbi && rbi->bi_iter.bi_sector <
1202 1203
				dev->sector + STRIPE_SECTORS) {
				rbi2 = r5_next_bio(rbi, dev->sector);
1204
				if (!raid5_dec_bi_active_stripes(rbi)) {
1205 1206 1207 1208 1209 1210 1211
					rbi->bi_next = return_bi;
					return_bi = rbi;
				}
				rbi = rbi2;
			}
		}
	}
1212
	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213 1214 1215

	return_io(return_bi);

1216
	set_bit(STRIPE_HANDLE, &sh->state);
1217 1218 1219 1220 1221 1222
	release_stripe(sh);
}

static void ops_run_biofill(struct stripe_head *sh)
{
	struct dma_async_tx_descriptor *tx = NULL;
1223
	struct async_submit_ctl submit;
1224 1225
	int i;

1226
	BUG_ON(sh->batch_head);
1227
	pr_debug("%s: stripe %llu\n", __func__,
1228 1229 1230 1231 1232 1233
		(unsigned long long)sh->sector);

	for (i = sh->disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		if (test_bit(R5_Wantfill, &dev->flags)) {
			struct bio *rbi;
S
Shaohua Li 已提交
1234
			spin_lock_irq(&sh->stripe_lock);
1235 1236
			dev->read = rbi = dev->toread;
			dev->toread = NULL;
S
Shaohua Li 已提交
1237
			spin_unlock_irq(&sh->stripe_lock);
1238
			while (rbi && rbi->bi_iter.bi_sector <
1239
				dev->sector + STRIPE_SECTORS) {
1240 1241
				tx = async_copy_data(0, rbi, &dev->page,
					dev->sector, tx, sh);
1242 1243 1244 1245 1246 1247
				rbi = r5_next_bio(rbi, dev->sector);
			}
		}
	}

	atomic_inc(&sh->count);
1248 1249
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
	async_trigger_callback(&submit);
1250 1251
}

1252
static void mark_target_uptodate(struct stripe_head *sh, int target)
1253
{
1254
	struct r5dev *tgt;
1255

1256 1257
	if (target < 0)
		return;
1258

1259
	tgt = &sh->dev[target];
1260 1261 1262
	set_bit(R5_UPTODATE, &tgt->flags);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	clear_bit(R5_Wantcompute, &tgt->flags);
1263 1264
}

1265
static void ops_complete_compute(void *stripe_head_ref)
1266 1267 1268
{
	struct stripe_head *sh = stripe_head_ref;

1269
	pr_debug("%s: stripe %llu\n", __func__,
1270 1271
		(unsigned long long)sh->sector);

1272
	/* mark the computed target(s) as uptodate */
1273
	mark_target_uptodate(sh, sh->ops.target);
1274
	mark_target_uptodate(sh, sh->ops.target2);
1275

1276 1277 1278
	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
	if (sh->check_state == check_state_compute_run)
		sh->check_state = check_state_compute_result;
1279 1280 1281 1282
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1283 1284
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285
				 struct raid5_percpu *percpu, int i)
1286
{
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	void *addr;

	addr = flex_array_get(percpu->scribble, i);
	return addr + sizeof(struct page *) * (sh->disks + 2);
}

/* return a pointer to the address conversion region of the scribble buffer */
static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
{
	void *addr;

	addr = flex_array_get(percpu->scribble, i);
	return addr;
1300 1301 1302 1303
}

static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 1305
{
	int disks = sh->disks;
1306
	struct page **xor_srcs = to_addr_page(percpu, 0);
1307 1308 1309 1310 1311
	int target = sh->ops.target;
	struct r5dev *tgt = &sh->dev[target];
	struct page *xor_dest = tgt->page;
	int count = 0;
	struct dma_async_tx_descriptor *tx;
1312
	struct async_submit_ctl submit;
1313 1314
	int i;

1315 1316
	BUG_ON(sh->batch_head);

1317
	pr_debug("%s: stripe %llu block: %d\n",
1318
		__func__, (unsigned long long)sh->sector, target);
1319 1320 1321 1322 1323 1324 1325 1326
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));

	for (i = disks; i--; )
		if (i != target)
			xor_srcs[count++] = sh->dev[i].page;

	atomic_inc(&sh->count);

D
Dan Williams 已提交
1327
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328
			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329
	if (unlikely(count == 1))
1330
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331
	else
1332
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333 1334 1335 1336

	return tx;
}

1337 1338 1339 1340 1341 1342 1343 1344 1345
/* set_syndrome_sources - populate source buffers for gen_syndrome
 * @srcs - (struct page *) array of size sh->disks
 * @sh - stripe_head to parse
 *
 * Populates srcs in proper layout order for the stripe and returns the
 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 * destination buffer is recorded in srcs[count] and the Q destination
 * is recorded in srcs[count+1]].
 */
1346 1347 1348
static int set_syndrome_sources(struct page **srcs,
				struct stripe_head *sh,
				int srctype)
1349 1350 1351 1352 1353 1354 1355 1356
{
	int disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
	int d0_idx = raid6_d0(sh);
	int count;
	int i;

	for (i = 0; i < disks; i++)
1357
		srcs[i] = NULL;
1358 1359 1360 1361 1362

	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363
		struct r5dev *dev = &sh->dev[i];
1364

1365 1366 1367 1368 1369 1370 1371
		if (i == sh->qd_idx || i == sh->pd_idx ||
		    (srctype == SYNDROME_SRC_ALL) ||
		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
		     test_bit(R5_Wantdrain, &dev->flags)) ||
		    (srctype == SYNDROME_SRC_WRITTEN &&
		     dev->written))
			srcs[slot] = sh->dev[i].page;
1372 1373 1374
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

1375
	return syndrome_disks;
1376 1377 1378 1379 1380 1381
}

static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int disks = sh->disks;
1382
	struct page **blocks = to_addr_page(percpu, 0);
1383 1384 1385 1386 1387 1388 1389 1390 1391
	int target;
	int qd_idx = sh->qd_idx;
	struct dma_async_tx_descriptor *tx;
	struct async_submit_ctl submit;
	struct r5dev *tgt;
	struct page *dest;
	int i;
	int count;

1392
	BUG_ON(sh->batch_head);
1393 1394 1395 1396
	if (sh->ops.target < 0)
		target = sh->ops.target2;
	else if (sh->ops.target2 < 0)
		target = sh->ops.target;
1397
	else
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		/* we should only have one valid target */
		BUG();
	BUG_ON(target < 0);
	pr_debug("%s: stripe %llu block: %d\n",
		__func__, (unsigned long long)sh->sector, target);

	tgt = &sh->dev[target];
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	dest = tgt->page;

	atomic_inc(&sh->count);

	if (target == qd_idx) {
1411
		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412 1413
		blocks[count] = NULL; /* regenerating p is not necessary */
		BUG_ON(blocks[count+1] != dest); /* q should already be set */
D
Dan Williams 已提交
1414 1415
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
1416
				  to_addr_conv(sh, percpu, 0));
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
	} else {
		/* Compute any data- or p-drive using XOR */
		count = 0;
		for (i = disks; i-- ; ) {
			if (i == target || i == qd_idx)
				continue;
			blocks[count++] = sh->dev[i].page;
		}

D
Dan Williams 已提交
1427 1428
		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
				  NULL, ops_complete_compute, sh,
1429
				  to_addr_conv(sh, percpu, 0));
1430 1431
		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
	}
1432 1433 1434 1435

	return tx;
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
	int i, count, disks = sh->disks;
	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
	int d0_idx = raid6_d0(sh);
	int faila = -1, failb = -1;
	int target = sh->ops.target;
	int target2 = sh->ops.target2;
	struct r5dev *tgt = &sh->dev[target];
	struct r5dev *tgt2 = &sh->dev[target2];
	struct dma_async_tx_descriptor *tx;
1448
	struct page **blocks = to_addr_page(percpu, 0);
1449 1450
	struct async_submit_ctl submit;

1451
	BUG_ON(sh->batch_head);
1452 1453 1454 1455 1456 1457
	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
		 __func__, (unsigned long long)sh->sector, target, target2);
	BUG_ON(target < 0 || target2 < 0);
	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));

1458
	/* we need to open-code set_syndrome_sources to handle the
1459 1460 1461
	 * slot number conversion for 'faila' and 'failb'
	 */
	for (i = 0; i < disks ; i++)
1462
		blocks[i] = NULL;
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	count = 0;
	i = d0_idx;
	do {
		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);

		blocks[slot] = sh->dev[i].page;

		if (i == target)
			faila = slot;
		if (i == target2)
			failb = slot;
		i = raid6_next_disk(i, disks);
	} while (i != d0_idx);

	BUG_ON(faila == failb);
	if (failb < faila)
		swap(faila, failb);
	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
		 __func__, (unsigned long long)sh->sector, faila, failb);

	atomic_inc(&sh->count);

	if (failb == syndrome_disks+1) {
		/* Q disk is one of the missing disks */
		if (faila == syndrome_disks) {
			/* Missing P+Q, just recompute */
D
Dan Williams 已提交
1489 1490
			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
					  ops_complete_compute, sh,
1491
					  to_addr_conv(sh, percpu, 0));
1492
			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
						  STRIPE_SIZE, &submit);
		} else {
			struct page *dest;
			int data_target;
			int qd_idx = sh->qd_idx;

			/* Missing D+Q: recompute D from P, then recompute Q */
			if (target == qd_idx)
				data_target = target2;
			else
				data_target = target;

			count = 0;
			for (i = disks; i-- ; ) {
				if (i == data_target || i == qd_idx)
					continue;
				blocks[count++] = sh->dev[i].page;
			}
			dest = sh->dev[data_target].page;
D
Dan Williams 已提交
1512 1513 1514
			init_async_submit(&submit,
					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
					  NULL, NULL, NULL,
1515
					  to_addr_conv(sh, percpu, 0));
1516 1517 1518
			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
				       &submit);

1519
			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
D
Dan Williams 已提交
1520 1521
			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
					  ops_complete_compute, sh,
1522
					  to_addr_conv(sh, percpu, 0));
1523 1524 1525 1526
			return async_gen_syndrome(blocks, 0, count+2,
						  STRIPE_SIZE, &submit);
		}
	} else {
1527 1528
		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
				  ops_complete_compute, sh,
1529
				  to_addr_conv(sh, percpu, 0));
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		if (failb == syndrome_disks) {
			/* We're missing D+P. */
			return async_raid6_datap_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila,
						       blocks, &submit);
		} else {
			/* We're missing D+D. */
			return async_raid6_2data_recov(syndrome_disks+2,
						       STRIPE_SIZE, faila, failb,
						       blocks, &submit);
		}
1541 1542 1543
	}
}

1544 1545 1546 1547
static void ops_complete_prexor(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1548
	pr_debug("%s: stripe %llu\n", __func__,
1549 1550 1551 1552
		(unsigned long long)sh->sector);
}

static struct dma_async_tx_descriptor *
1553 1554
ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
		struct dma_async_tx_descriptor *tx)
1555 1556
{
	int disks = sh->disks;
1557
	struct page **xor_srcs = to_addr_page(percpu, 0);
1558
	int count = 0, pd_idx = sh->pd_idx, i;
1559
	struct async_submit_ctl submit;
1560 1561 1562 1563

	/* existing parity data subtracted */
	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;

1564
	BUG_ON(sh->batch_head);
1565
	pr_debug("%s: stripe %llu\n", __func__,
1566 1567 1568 1569 1570
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
		/* Only process blocks that are known to be uptodate */
1571
		if (test_bit(R5_Wantdrain, &dev->flags))
1572 1573 1574
			xor_srcs[count++] = dev->page;
	}

D
Dan Williams 已提交
1575
	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577
	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578 1579 1580 1581

	return tx;
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
		struct dma_async_tx_descriptor *tx)
{
	struct page **blocks = to_addr_page(percpu, 0);
	int count;
	struct async_submit_ctl submit;

	pr_debug("%s: stripe %llu\n", __func__,
		(unsigned long long)sh->sector);

	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);

	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);

	return tx;
}

1602
static struct dma_async_tx_descriptor *
1603
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 1605
{
	int disks = sh->disks;
1606
	int i;
1607
	struct stripe_head *head_sh = sh;
1608

1609
	pr_debug("%s: stripe %llu\n", __func__,
1610 1611 1612
		(unsigned long long)sh->sector);

	for (i = disks; i--; ) {
1613
		struct r5dev *dev;
1614 1615
		struct bio *chosen;

1616 1617
		sh = head_sh;
		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618 1619
			struct bio *wbi;

1620 1621
again:
			dev = &sh->dev[i];
S
Shaohua Li 已提交
1622
			spin_lock_irq(&sh->stripe_lock);
1623 1624
			chosen = dev->towrite;
			dev->towrite = NULL;
1625
			sh->overwrite_disks = 0;
1626 1627
			BUG_ON(dev->written);
			wbi = dev->written = chosen;
S
Shaohua Li 已提交
1628
			spin_unlock_irq(&sh->stripe_lock);
1629
			WARN_ON(dev->page != dev->orig_page);
1630

1631
			while (wbi && wbi->bi_iter.bi_sector <
1632
				dev->sector + STRIPE_SECTORS) {
T
Tejun Heo 已提交
1633 1634
				if (wbi->bi_rw & REQ_FUA)
					set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1635 1636
				if (wbi->bi_rw & REQ_SYNC)
					set_bit(R5_SyncIO, &dev->flags);
1637
				if (wbi->bi_rw & REQ_DISCARD)
S
Shaohua Li 已提交
1638
					set_bit(R5_Discard, &dev->flags);
1639 1640 1641 1642 1643 1644 1645 1646 1647
				else {
					tx = async_copy_data(1, wbi, &dev->page,
						dev->sector, tx, sh);
					if (dev->page != dev->orig_page) {
						set_bit(R5_SkipCopy, &dev->flags);
						clear_bit(R5_UPTODATE, &dev->flags);
						clear_bit(R5_OVERWRITE, &dev->flags);
					}
				}
1648 1649
				wbi = r5_next_bio(wbi, dev->sector);
			}
1650 1651 1652 1653 1654 1655 1656 1657 1658

			if (head_sh->batch_head) {
				sh = list_first_entry(&sh->batch_list,
						      struct stripe_head,
						      batch_list);
				if (sh == head_sh)
					continue;
				goto again;
			}
1659 1660 1661 1662 1663 1664
		}
	}

	return tx;
}

1665
static void ops_complete_reconstruct(void *stripe_head_ref)
1666 1667
{
	struct stripe_head *sh = stripe_head_ref;
1668 1669 1670 1671
	int disks = sh->disks;
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	int i;
1672
	bool fua = false, sync = false, discard = false;
1673

1674
	pr_debug("%s: stripe %llu\n", __func__,
1675 1676
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1677
	for (i = disks; i--; ) {
T
Tejun Heo 已提交
1678
		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
S
Shaohua Li 已提交
1679
		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680
		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
S
Shaohua Li 已提交
1681
	}
T
Tejun Heo 已提交
1682

1683 1684
	for (i = disks; i--; ) {
		struct r5dev *dev = &sh->dev[i];
1685

T
Tejun Heo 已提交
1686
		if (dev->written || i == pd_idx || i == qd_idx) {
1687
			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688
				set_bit(R5_UPTODATE, &dev->flags);
T
Tejun Heo 已提交
1689 1690
			if (fua)
				set_bit(R5_WantFUA, &dev->flags);
S
Shaohua Li 已提交
1691 1692
			if (sync)
				set_bit(R5_SyncIO, &dev->flags);
T
Tejun Heo 已提交
1693
		}
1694 1695
	}

1696 1697 1698 1699 1700 1701 1702 1703
	if (sh->reconstruct_state == reconstruct_state_drain_run)
		sh->reconstruct_state = reconstruct_state_drain_result;
	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
	else {
		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
		sh->reconstruct_state = reconstruct_state_result;
	}
1704 1705 1706 1707 1708 1709

	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

static void
1710 1711
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
1712 1713
{
	int disks = sh->disks;
1714
	struct page **xor_srcs;
1715
	struct async_submit_ctl submit;
1716
	int count, pd_idx = sh->pd_idx, i;
1717
	struct page *xor_dest;
1718
	int prexor = 0;
1719
	unsigned long flags;
1720 1721 1722
	int j = 0;
	struct stripe_head *head_sh = sh;
	int last_stripe;
1723

1724
	pr_debug("%s: stripe %llu\n", __func__,
1725 1726
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	for (i = 0; i < sh->disks; i++) {
		if (pd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}
1739 1740 1741
again:
	count = 0;
	xor_srcs = to_addr_page(percpu, j);
1742 1743 1744
	/* check if prexor is active which means only process blocks
	 * that are part of a read-modify-write (written)
	 */
1745
	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746
		prexor = 1;
1747 1748 1749
		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
1750
			if (head_sh->dev[i].written)
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
				xor_srcs[count++] = dev->page;
		}
	} else {
		xor_dest = sh->dev[pd_idx].page;
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (i != pd_idx)
				xor_srcs[count++] = dev->page;
		}
	}

	/* 1/ if we prexor'd then the dest is reused as a source
	 * 2/ if we did not prexor then we are redoing the parity
	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
	 * for the synchronous xor case
	 */
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	last_stripe = !head_sh->batch_head ||
		list_first_entry(&sh->batch_list,
				 struct stripe_head, batch_list) == head_sh;
	if (last_stripe) {
		flags = ASYNC_TX_ACK |
			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);

		atomic_inc(&head_sh->count);
		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
				  to_addr_conv(sh, percpu, j));
	} else {
		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
		init_async_submit(&submit, flags, tx, NULL, NULL,
				  to_addr_conv(sh, percpu, j));
	}
1782

1783 1784 1785 1786
	if (unlikely(count == 1))
		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
	else
		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787 1788 1789 1790 1791 1792
	if (!last_stripe) {
		j++;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		goto again;
	}
1793 1794
}

1795 1796 1797 1798 1799
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
		     struct dma_async_tx_descriptor *tx)
{
	struct async_submit_ctl submit;
1800 1801 1802 1803
	struct page **blocks;
	int count, i, j = 0;
	struct stripe_head *head_sh = sh;
	int last_stripe;
1804 1805
	int synflags;
	unsigned long txflags;
1806 1807 1808

	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);

S
Shaohua Li 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	for (i = 0; i < sh->disks; i++) {
		if (sh->pd_idx == i || sh->qd_idx == i)
			continue;
		if (!test_bit(R5_Discard, &sh->dev[i].flags))
			break;
	}
	if (i >= sh->disks) {
		atomic_inc(&sh->count);
		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
		ops_complete_reconstruct(sh);
		return;
	}

1823 1824
again:
	blocks = to_addr_page(percpu, j);
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
		synflags = SYNDROME_SRC_WRITTEN;
		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
	} else {
		synflags = SYNDROME_SRC_ALL;
		txflags = ASYNC_TX_ACK;
	}

	count = set_syndrome_sources(blocks, sh, synflags);
1835 1836 1837 1838 1839 1840
	last_stripe = !head_sh->batch_head ||
		list_first_entry(&sh->batch_list,
				 struct stripe_head, batch_list) == head_sh;

	if (last_stripe) {
		atomic_inc(&head_sh->count);
1841
		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842 1843 1844 1845
				  head_sh, to_addr_conv(sh, percpu, j));
	} else
		init_async_submit(&submit, 0, tx, NULL, NULL,
				  to_addr_conv(sh, percpu, j));
1846
	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1847 1848 1849 1850 1851 1852
	if (!last_stripe) {
		j++;
		sh = list_first_entry(&sh->batch_list, struct stripe_head,
				      batch_list);
		goto again;
	}
1853 1854 1855 1856 1857 1858
}

static void ops_complete_check(void *stripe_head_ref)
{
	struct stripe_head *sh = stripe_head_ref;

1859
	pr_debug("%s: stripe %llu\n", __func__,
1860 1861
		(unsigned long long)sh->sector);

1862
	sh->check_state = check_state_check_result;
1863 1864 1865 1866
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

1867
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 1869
{
	int disks = sh->disks;
1870 1871 1872
	int pd_idx = sh->pd_idx;
	int qd_idx = sh->qd_idx;
	struct page *xor_dest;
1873
	struct page **xor_srcs = to_addr_page(percpu, 0);
1874
	struct dma_async_tx_descriptor *tx;
1875
	struct async_submit_ctl submit;
1876 1877
	int count;
	int i;
1878

1879
	pr_debug("%s: stripe %llu\n", __func__,
1880 1881
		(unsigned long long)sh->sector);

1882
	BUG_ON(sh->batch_head);
1883 1884 1885
	count = 0;
	xor_dest = sh->dev[pd_idx].page;
	xor_srcs[count++] = xor_dest;
1886
	for (i = disks; i--; ) {
1887 1888 1889
		if (i == pd_idx || i == qd_idx)
			continue;
		xor_srcs[count++] = sh->dev[i].page;
1890 1891
	}

1892
	init_async_submit(&submit, 0, NULL, NULL, NULL,
1893
			  to_addr_conv(sh, percpu, 0));
D
Dan Williams 已提交
1894
	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895
			   &sh->ops.zero_sum_result, &submit);
1896 1897

	atomic_inc(&sh->count);
1898 1899
	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
	tx = async_trigger_callback(&submit);
1900 1901
}

1902 1903
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
1904
	struct page **srcs = to_addr_page(percpu, 0);
1905 1906 1907 1908 1909 1910
	struct async_submit_ctl submit;
	int count;

	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
		(unsigned long long)sh->sector, checkp);

1911
	BUG_ON(sh->batch_head);
1912
	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913 1914
	if (!checkp)
		srcs[count] = NULL;
1915 1916

	atomic_inc(&sh->count);
1917
	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918
			  sh, to_addr_conv(sh, percpu, 0));
1919 1920
	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 1922
}

N
NeilBrown 已提交
1923
static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 1925 1926
{
	int overlap_clear = 0, i, disks = sh->disks;
	struct dma_async_tx_descriptor *tx = NULL;
1927
	struct r5conf *conf = sh->raid_conf;
1928
	int level = conf->level;
1929 1930
	struct raid5_percpu *percpu;
	unsigned long cpu;
1931

1932 1933
	cpu = get_cpu();
	percpu = per_cpu_ptr(conf->percpu, cpu);
1934
	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935 1936 1937 1938
		ops_run_biofill(sh);
		overlap_clear++;
	}

1939
	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
		if (level < 6)
			tx = ops_run_compute5(sh, percpu);
		else {
			if (sh->ops.target2 < 0 || sh->ops.target < 0)
				tx = ops_run_compute6_1(sh, percpu);
			else
				tx = ops_run_compute6_2(sh, percpu);
		}
		/* terminate the chain if reconstruct is not set to be run */
		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950 1951
			async_tx_ack(tx);
	}
1952

1953 1954 1955 1956 1957 1958
	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
		if (level < 6)
			tx = ops_run_prexor5(sh, percpu, tx);
		else
			tx = ops_run_prexor6(sh, percpu, tx);
	}
1959

1960
	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961
		tx = ops_run_biodrain(sh, tx);
1962 1963 1964
		overlap_clear++;
	}

1965 1966 1967 1968 1969 1970
	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
		if (level < 6)
			ops_run_reconstruct5(sh, percpu, tx);
		else
			ops_run_reconstruct6(sh, percpu, tx);
	}
1971

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
		if (sh->check_state == check_state_run)
			ops_run_check_p(sh, percpu);
		else if (sh->check_state == check_state_run_q)
			ops_run_check_pq(sh, percpu, 0);
		else if (sh->check_state == check_state_run_pq)
			ops_run_check_pq(sh, percpu, 1);
		else
			BUG();
	}
1982

1983
	if (overlap_clear && !sh->batch_head)
1984 1985 1986 1987 1988
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_Overlap, &dev->flags))
				wake_up(&sh->raid_conf->wait_for_overlap);
		}
1989
	put_cpu();
1990 1991
}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
{
	struct stripe_head *sh;

	sh = kmem_cache_zalloc(sc, gfp);
	if (sh) {
		spin_lock_init(&sh->stripe_lock);
		spin_lock_init(&sh->batch_lock);
		INIT_LIST_HEAD(&sh->batch_list);
		INIT_LIST_HEAD(&sh->lru);
		atomic_set(&sh->count, 1);
	}
	return sh;
}
2006
static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
L
Linus Torvalds 已提交
2007 2008
{
	struct stripe_head *sh;
2009 2010

	sh = alloc_stripe(conf->slab_cache, gfp);
2011 2012
	if (!sh)
		return 0;
N
Namhyung Kim 已提交
2013

2014 2015
	sh->raid_conf = conf;

2016
	if (grow_buffers(sh, gfp)) {
2017
		shrink_buffers(sh);
2018 2019 2020
		kmem_cache_free(conf->slab_cache, sh);
		return 0;
	}
2021 2022
	sh->hash_lock_index =
		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023 2024
	/* we just created an active stripe so... */
	atomic_inc(&conf->active_stripes);
2025

2026
	release_stripe(sh);
2027
	conf->max_nr_stripes++;
2028 2029 2030
	return 1;
}

2031
static int grow_stripes(struct r5conf *conf, int num)
2032
{
2033
	struct kmem_cache *sc;
2034
	int devs = max(conf->raid_disks, conf->previous_raid_disks);
L
Linus Torvalds 已提交
2035

2036 2037 2038 2039 2040 2041 2042 2043
	if (conf->mddev->gendisk)
		sprintf(conf->cache_name[0],
			"raid%d-%s", conf->level, mdname(conf->mddev));
	else
		sprintf(conf->cache_name[0],
			"raid%d-%p", conf->level, conf->mddev);
	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);

2044 2045
	conf->active_name = 0;
	sc = kmem_cache_create(conf->cache_name[conf->active_name],
L
Linus Torvalds 已提交
2046
			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047
			       0, 0, NULL);
L
Linus Torvalds 已提交
2048 2049 2050
	if (!sc)
		return 1;
	conf->slab_cache = sc;
2051
	conf->pool_size = devs;
2052 2053
	while (num--)
		if (!grow_one_stripe(conf, GFP_KERNEL))
L
Linus Torvalds 已提交
2054
			return 1;
2055

L
Linus Torvalds 已提交
2056 2057
	return 0;
}
2058

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
/**
 * scribble_len - return the required size of the scribble region
 * @num - total number of disks in the array
 *
 * The size must be enough to contain:
 * 1/ a struct page pointer for each device in the array +2
 * 2/ room to convert each entry in (1) to its corresponding dma
 *    (dma_map_page()) or page (page_address()) address.
 *
 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
 * calculate over all devices (not just the data blocks), using zeros in place
 * of the P and Q blocks.
 */
2072
static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073
{
2074
	struct flex_array *ret;
2075 2076 2077
	size_t len;

	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078 2079 2080 2081 2082 2083 2084 2085 2086
	ret = flex_array_alloc(len, cnt, flags);
	if (!ret)
		return NULL;
	/* always prealloc all elements, so no locking is required */
	if (flex_array_prealloc(ret, 0, cnt, flags)) {
		flex_array_free(ret);
		return NULL;
	}
	return ret;
2087 2088
}

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
{
	unsigned long cpu;
	int err = 0;

	mddev_suspend(conf->mddev);
	get_online_cpus();
	for_each_present_cpu(cpu) {
		struct raid5_percpu *percpu;
		struct flex_array *scribble;

		percpu = per_cpu_ptr(conf->percpu, cpu);
		scribble = scribble_alloc(new_disks,
					  new_sectors / STRIPE_SECTORS,
					  GFP_NOIO);

		if (scribble) {
			flex_array_free(percpu->scribble);
			percpu->scribble = scribble;
		} else {
			err = -ENOMEM;
			break;
		}
	}
	put_online_cpus();
	mddev_resume(conf->mddev);
	return err;
}

2118
static int resize_stripes(struct r5conf *conf, int newsize)
2119 2120 2121 2122 2123 2124 2125
{
	/* Make all the stripes able to hold 'newsize' devices.
	 * New slots in each stripe get 'page' set to a new page.
	 *
	 * This happens in stages:
	 * 1/ create a new kmem_cache and allocate the required number of
	 *    stripe_heads.
M
Masanari Iida 已提交
2126
	 * 2/ gather all the old stripe_heads and transfer the pages across
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	 *    to the new stripe_heads.  This will have the side effect of
	 *    freezing the array as once all stripe_heads have been collected,
	 *    no IO will be possible.  Old stripe heads are freed once their
	 *    pages have been transferred over, and the old kmem_cache is
	 *    freed when all stripes are done.
	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
	 *    we simple return a failre status - no need to clean anything up.
	 * 4/ allocate new pages for the new slots in the new stripe_heads.
	 *    If this fails, we don't bother trying the shrink the
	 *    stripe_heads down again, we just leave them as they are.
	 *    As each stripe_head is processed the new one is released into
	 *    active service.
	 *
	 * Once step2 is started, we cannot afford to wait for a write,
	 * so we use GFP_NOIO allocations.
	 */
	struct stripe_head *osh, *nsh;
	LIST_HEAD(newstripes);
	struct disk_info *ndisks;
2146
	int err;
2147
	struct kmem_cache *sc;
2148
	int i;
2149
	int hash, cnt;
2150 2151 2152 2153

	if (newsize <= conf->pool_size)
		return 0; /* never bother to shrink */

2154 2155 2156
	err = md_allow_write(conf->mddev);
	if (err)
		return err;
2157

2158 2159 2160
	/* Step 1 */
	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161
			       0, 0, NULL);
2162 2163 2164
	if (!sc)
		return -ENOMEM;

2165 2166 2167
	/* Need to ensure auto-resizing doesn't interfere */
	mutex_lock(&conf->cache_size_mutex);

2168
	for (i = conf->max_nr_stripes; i; i--) {
2169
		nsh = alloc_stripe(sc, GFP_KERNEL);
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
		if (!nsh)
			break;

		nsh->raid_conf = conf;
		list_add(&nsh->lru, &newstripes);
	}
	if (i) {
		/* didn't get enough, give up */
		while (!list_empty(&newstripes)) {
			nsh = list_entry(newstripes.next, struct stripe_head, lru);
			list_del(&nsh->lru);
			kmem_cache_free(sc, nsh);
		}
		kmem_cache_destroy(sc);
2184
		mutex_unlock(&conf->cache_size_mutex);
2185 2186 2187 2188 2189 2190
		return -ENOMEM;
	}
	/* Step 2 - Must use GFP_NOIO now.
	 * OK, we have enough stripes, start collecting inactive
	 * stripes and copying them over
	 */
2191 2192
	hash = 0;
	cnt = 0;
2193
	list_for_each_entry(nsh, &newstripes, lru) {
2194
		lock_device_hash_lock(conf, hash);
2195
		wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2196 2197 2198 2199 2200
				    !list_empty(conf->inactive_list + hash),
				    unlock_device_hash_lock(conf, hash),
				    lock_device_hash_lock(conf, hash));
		osh = get_free_stripe(conf, hash);
		unlock_device_hash_lock(conf, hash);
2201

2202
		for(i=0; i<conf->pool_size; i++) {
2203
			nsh->dev[i].page = osh->dev[i].page;
2204 2205
			nsh->dev[i].orig_page = osh->dev[i].page;
		}
2206
		nsh->hash_lock_index = hash;
2207
		kmem_cache_free(conf->slab_cache, osh);
2208 2209 2210 2211 2212 2213
		cnt++;
		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
			hash++;
			cnt = 0;
		}
2214 2215 2216 2217 2218 2219
	}
	kmem_cache_destroy(conf->slab_cache);

	/* Step 3.
	 * At this point, we are holding all the stripes so the array
	 * is completely stalled, so now is a good time to resize
2220
	 * conf->disks and the scribble region
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
	 */
	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
	if (ndisks) {
		for (i=0; i<conf->raid_disks; i++)
			ndisks[i] = conf->disks[i];
		kfree(conf->disks);
		conf->disks = ndisks;
	} else
		err = -ENOMEM;

2231
	mutex_unlock(&conf->cache_size_mutex);
2232 2233 2234 2235
	/* Step 4, return new stripes to service */
	while(!list_empty(&newstripes)) {
		nsh = list_entry(newstripes.next, struct stripe_head, lru);
		list_del_init(&nsh->lru);
2236

2237 2238 2239 2240
		for (i=conf->raid_disks; i < newsize; i++)
			if (nsh->dev[i].page == NULL) {
				struct page *p = alloc_page(GFP_NOIO);
				nsh->dev[i].page = p;
2241
				nsh->dev[i].orig_page = p;
2242 2243 2244 2245 2246 2247 2248 2249 2250
				if (!p)
					err = -ENOMEM;
			}
		release_stripe(nsh);
	}
	/* critical section pass, GFP_NOIO no longer needed */

	conf->slab_cache = sc;
	conf->active_name = 1-conf->active_name;
2251 2252
	if (!err)
		conf->pool_size = newsize;
2253 2254
	return err;
}
L
Linus Torvalds 已提交
2255

2256
static int drop_one_stripe(struct r5conf *conf)
L
Linus Torvalds 已提交
2257 2258
{
	struct stripe_head *sh;
2259
	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
L
Linus Torvalds 已提交
2260

2261 2262 2263
	spin_lock_irq(conf->hash_locks + hash);
	sh = get_free_stripe(conf, hash);
	spin_unlock_irq(conf->hash_locks + hash);
2264 2265
	if (!sh)
		return 0;
2266
	BUG_ON(atomic_read(&sh->count));
2267
	shrink_buffers(sh);
2268 2269
	kmem_cache_free(conf->slab_cache, sh);
	atomic_dec(&conf->active_stripes);
2270
	conf->max_nr_stripes--;
2271 2272 2273
	return 1;
}

2274
static void shrink_stripes(struct r5conf *conf)
2275
{
2276 2277 2278
	while (conf->max_nr_stripes &&
	       drop_one_stripe(conf))
		;
2279

N
NeilBrown 已提交
2280 2281
	if (conf->slab_cache)
		kmem_cache_destroy(conf->slab_cache);
L
Linus Torvalds 已提交
2282 2283 2284
	conf->slab_cache = NULL;
}

2285
static void raid5_end_read_request(struct bio * bi, int error)
L
Linus Torvalds 已提交
2286
{
2287
	struct stripe_head *sh = bi->bi_private;
2288
	struct r5conf *conf = sh->raid_conf;
2289
	int disks = sh->disks, i;
L
Linus Torvalds 已提交
2290
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2291
	char b[BDEVNAME_SIZE];
2292
	struct md_rdev *rdev = NULL;
2293
	sector_t s;
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298

	for (i=0 ; i<disks; i++)
		if (bi == &sh->dev[i].req)
			break;

2299 2300
	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
L
Linus Torvalds 已提交
2301 2302 2303
		uptodate);
	if (i == disks) {
		BUG();
2304
		return;
L
Linus Torvalds 已提交
2305
	}
2306
	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2307 2308 2309 2310 2311
		/* If replacement finished while this request was outstanding,
		 * 'replacement' might be NULL already.
		 * In that case it moved down to 'rdev'.
		 * rdev is not removed until all requests are finished.
		 */
2312
		rdev = conf->disks[i].replacement;
2313
	if (!rdev)
2314
		rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
2315

2316 2317 2318 2319
	if (use_new_offset(conf, sh))
		s = sh->sector + rdev->new_data_offset;
	else
		s = sh->sector + rdev->data_offset;
L
Linus Torvalds 已提交
2320 2321
	if (uptodate) {
		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2322
		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2323 2324 2325 2326
			/* Note that this cannot happen on a
			 * replacement device.  We just fail those on
			 * any error
			 */
2327 2328 2329 2330 2331
			printk_ratelimited(
				KERN_INFO
				"md/raid:%s: read error corrected"
				" (%lu sectors at %llu on %s)\n",
				mdname(conf->mddev), STRIPE_SECTORS,
2332
				(unsigned long long)s,
2333
				bdevname(rdev->bdev, b));
2334
			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2335 2336
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2337 2338 2339
		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);

2340 2341
		if (atomic_read(&rdev->read_errors))
			atomic_set(&rdev->read_errors, 0);
L
Linus Torvalds 已提交
2342
	} else {
2343
		const char *bdn = bdevname(rdev->bdev, b);
2344
		int retry = 0;
2345
		int set_bad = 0;
2346

L
Linus Torvalds 已提交
2347
		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2348
		atomic_inc(&rdev->read_errors);
2349 2350 2351 2352 2353 2354
		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error on replacement device "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2355
				(unsigned long long)s,
2356
				bdn);
2357 2358
		else if (conf->mddev->degraded >= conf->max_degraded) {
			set_bad = 1;
2359 2360 2361 2362 2363
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error not correctable "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2364
				(unsigned long long)s,
2365
				bdn);
2366
		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2367
			/* Oh, no!!! */
2368
			set_bad = 1;
2369 2370 2371 2372 2373
			printk_ratelimited(
				KERN_WARNING
				"md/raid:%s: read error NOT corrected!! "
				"(sector %llu on %s).\n",
				mdname(conf->mddev),
2374
				(unsigned long long)s,
2375
				bdn);
2376
		} else if (atomic_read(&rdev->read_errors)
2377
			 > conf->max_nr_stripes)
N
NeilBrown 已提交
2378
			printk(KERN_WARNING
2379
			       "md/raid:%s: Too many read errors, failing device %s.\n",
2380
			       mdname(conf->mddev), bdn);
2381 2382
		else
			retry = 1;
2383 2384 2385
		if (set_bad && test_bit(In_sync, &rdev->flags)
		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
			retry = 1;
2386
		if (retry)
2387 2388 2389 2390 2391
			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
				set_bit(R5_ReadError, &sh->dev[i].flags);
				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
			} else
				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2392
		else {
2393 2394
			clear_bit(R5_ReadError, &sh->dev[i].flags);
			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2395 2396 2397 2398 2399
			if (!(set_bad
			      && test_bit(In_sync, &rdev->flags)
			      && rdev_set_badblocks(
				      rdev, sh->sector, STRIPE_SECTORS, 0)))
				md_error(conf->mddev, rdev);
2400
		}
L
Linus Torvalds 已提交
2401
	}
2402
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
2403 2404 2405 2406 2407
	clear_bit(R5_LOCKED, &sh->dev[i].flags);
	set_bit(STRIPE_HANDLE, &sh->state);
	release_stripe(sh);
}

2408
static void raid5_end_write_request(struct bio *bi, int error)
L
Linus Torvalds 已提交
2409
{
2410
	struct stripe_head *sh = bi->bi_private;
2411
	struct r5conf *conf = sh->raid_conf;
2412
	int disks = sh->disks, i;
2413
	struct md_rdev *uninitialized_var(rdev);
L
Linus Torvalds 已提交
2414
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2415 2416
	sector_t first_bad;
	int bad_sectors;
2417
	int replacement = 0;
L
Linus Torvalds 已提交
2418

2419 2420 2421
	for (i = 0 ; i < disks; i++) {
		if (bi == &sh->dev[i].req) {
			rdev = conf->disks[i].rdev;
L
Linus Torvalds 已提交
2422
			break;
2423 2424 2425
		}
		if (bi == &sh->dev[i].rreq) {
			rdev = conf->disks[i].replacement;
2426 2427 2428 2429 2430 2431 2432 2433
			if (rdev)
				replacement = 1;
			else
				/* rdev was removed and 'replacement'
				 * replaced it.  rdev is not removed
				 * until all requests are finished.
				 */
				rdev = conf->disks[i].rdev;
2434 2435 2436
			break;
		}
	}
2437
	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
L
Linus Torvalds 已提交
2438 2439 2440 2441
		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
		uptodate);
	if (i == disks) {
		BUG();
2442
		return;
L
Linus Torvalds 已提交
2443 2444
	}

2445 2446 2447 2448 2449 2450 2451 2452 2453
	if (replacement) {
		if (!uptodate)
			md_error(conf->mddev, rdev);
		else if (is_badblock(rdev, sh->sector,
				     STRIPE_SECTORS,
				     &first_bad, &bad_sectors))
			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
	} else {
		if (!uptodate) {
2454
			set_bit(STRIPE_DEGRADED, &sh->state);
2455 2456
			set_bit(WriteErrorSeen, &rdev->flags);
			set_bit(R5_WriteError, &sh->dev[i].flags);
2457 2458 2459
			if (!test_and_set_bit(WantReplacement, &rdev->flags))
				set_bit(MD_RECOVERY_NEEDED,
					&rdev->mddev->recovery);
2460 2461
		} else if (is_badblock(rdev, sh->sector,
				       STRIPE_SECTORS,
2462
				       &first_bad, &bad_sectors)) {
2463
			set_bit(R5_MadeGood, &sh->dev[i].flags);
2464 2465 2466 2467 2468 2469 2470
			if (test_bit(R5_ReadError, &sh->dev[i].flags))
				/* That was a successful write so make
				 * sure it looks like we already did
				 * a re-write.
				 */
				set_bit(R5_ReWrite, &sh->dev[i].flags);
		}
2471 2472
	}
	rdev_dec_pending(rdev, conf->mddev);
L
Linus Torvalds 已提交
2473

2474
	if (sh->batch_head && !uptodate && !replacement)
2475 2476
		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);

2477 2478
	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
L
Linus Torvalds 已提交
2479
	set_bit(STRIPE_HANDLE, &sh->state);
2480
	release_stripe(sh);
2481 2482 2483

	if (sh->batch_head && sh != sh->batch_head)
		release_stripe(sh->batch_head);
L
Linus Torvalds 已提交
2484 2485
}

2486
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2487

2488
static void raid5_build_block(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2489 2490 2491 2492 2493
{
	struct r5dev *dev = &sh->dev[i];

	bio_init(&dev->req);
	dev->req.bi_io_vec = &dev->vec;
2494
	dev->req.bi_max_vecs = 1;
L
Linus Torvalds 已提交
2495 2496
	dev->req.bi_private = sh;

2497 2498
	bio_init(&dev->rreq);
	dev->rreq.bi_io_vec = &dev->rvec;
2499
	dev->rreq.bi_max_vecs = 1;
2500 2501
	dev->rreq.bi_private = sh;

L
Linus Torvalds 已提交
2502
	dev->flags = 0;
2503
	dev->sector = compute_blocknr(sh, i, previous);
L
Linus Torvalds 已提交
2504 2505
}

2506
static void error(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
2507 2508
{
	char b[BDEVNAME_SIZE];
2509
	struct r5conf *conf = mddev->private;
2510
	unsigned long flags;
2511
	pr_debug("raid456: error called\n");
L
Linus Torvalds 已提交
2512

2513 2514 2515 2516 2517 2518
	spin_lock_irqsave(&conf->device_lock, flags);
	clear_bit(In_sync, &rdev->flags);
	mddev->degraded = calc_degraded(conf);
	spin_unlock_irqrestore(&conf->device_lock, flags);
	set_bit(MD_RECOVERY_INTR, &mddev->recovery);

2519
	set_bit(Blocked, &rdev->flags);
2520 2521 2522 2523 2524 2525 2526 2527 2528
	set_bit(Faulty, &rdev->flags);
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
	printk(KERN_ALERT
	       "md/raid:%s: Disk failure on %s, disabling device.\n"
	       "md/raid:%s: Operation continuing on %d devices.\n",
	       mdname(mddev),
	       bdevname(rdev->bdev, b),
	       mdname(mddev),
	       conf->raid_disks - mddev->degraded);
2529
}
L
Linus Torvalds 已提交
2530 2531 2532 2533 2534

/*
 * Input: a 'big' sector number,
 * Output: index of the data and parity disk, and the sector # in them.
 */
2535
static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2536 2537
				     int previous, int *dd_idx,
				     struct stripe_head *sh)
L
Linus Torvalds 已提交
2538
{
N
NeilBrown 已提交
2539
	sector_t stripe, stripe2;
2540
	sector_t chunk_number;
L
Linus Torvalds 已提交
2541
	unsigned int chunk_offset;
2542
	int pd_idx, qd_idx;
2543
	int ddf_layout = 0;
L
Linus Torvalds 已提交
2544
	sector_t new_sector;
2545 2546
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
2547 2548
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2549 2550 2551
	int raid_disks = previous ? conf->previous_raid_disks
				  : conf->raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

	/* First compute the information on this sector */

	/*
	 * Compute the chunk number and the sector offset inside the chunk
	 */
	chunk_offset = sector_div(r_sector, sectors_per_chunk);
	chunk_number = r_sector;

	/*
	 * Compute the stripe number
	 */
2564 2565
	stripe = chunk_number;
	*dd_idx = sector_div(stripe, data_disks);
N
NeilBrown 已提交
2566
	stripe2 = stripe;
L
Linus Torvalds 已提交
2567 2568 2569
	/*
	 * Select the parity disk based on the user selected algorithm.
	 */
2570
	pd_idx = qd_idx = -1;
2571 2572
	switch(conf->level) {
	case 4:
2573
		pd_idx = data_disks;
2574 2575
		break;
	case 5:
2576
		switch (algorithm) {
L
Linus Torvalds 已提交
2577
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2578
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2579
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2580 2581 2582
				(*dd_idx)++;
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2583
			pd_idx = sector_div(stripe2, raid_disks);
2584
			if (*dd_idx >= pd_idx)
L
Linus Torvalds 已提交
2585 2586 2587
				(*dd_idx)++;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2588
			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2589
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2590 2591
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2592
			pd_idx = sector_div(stripe2, raid_disks);
2593
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
L
Linus Torvalds 已提交
2594
			break;
2595 2596 2597 2598 2599 2600 2601
		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			(*dd_idx)++;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			break;
L
Linus Torvalds 已提交
2602
		default:
2603
			BUG();
2604 2605 2606 2607
		}
		break;
	case 6:

2608
		switch (algorithm) {
2609
		case ALGORITHM_LEFT_ASYMMETRIC:
N
NeilBrown 已提交
2610
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2611 2612
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2613
				(*dd_idx)++;	/* Q D D D P */
2614 2615
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2616 2617 2618
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_RIGHT_ASYMMETRIC:
N
NeilBrown 已提交
2619
			pd_idx = sector_div(stripe2, raid_disks);
2620 2621
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
2622
				(*dd_idx)++;	/* Q D D D P */
2623 2624
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
2625 2626 2627
				(*dd_idx) += 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
N
NeilBrown 已提交
2628
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2629 2630
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2631 2632
			break;
		case ALGORITHM_RIGHT_SYMMETRIC:
N
NeilBrown 已提交
2633
			pd_idx = sector_div(stripe2, raid_disks);
2634 2635
			qd_idx = (pd_idx + 1) % raid_disks;
			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2636
			break;
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

		case ALGORITHM_PARITY_0:
			pd_idx = 0;
			qd_idx = 1;
			(*dd_idx) += 2;
			break;
		case ALGORITHM_PARITY_N:
			pd_idx = data_disks;
			qd_idx = data_disks + 1;
			break;

		case ALGORITHM_ROTATING_ZERO_RESTART:
			/* Exactly the same as RIGHT_ASYMMETRIC, but or
			 * of blocks for computing Q is different.
			 */
N
NeilBrown 已提交
2652
			pd_idx = sector_div(stripe2, raid_disks);
2653 2654 2655 2656 2657 2658
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2659
			ddf_layout = 1;
2660 2661 2662 2663 2664 2665 2666
			break;

		case ALGORITHM_ROTATING_N_RESTART:
			/* Same a left_asymmetric, by first stripe is
			 * D D D P Q  rather than
			 * Q D D D P
			 */
N
NeilBrown 已提交
2667 2668
			stripe2 += 1;
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2669 2670 2671 2672 2673 2674
			qd_idx = pd_idx + 1;
			if (pd_idx == raid_disks-1) {
				(*dd_idx)++;	/* Q D D D P */
				qd_idx = 0;
			} else if (*dd_idx >= pd_idx)
				(*dd_idx) += 2; /* D D P Q D */
2675
			ddf_layout = 1;
2676 2677 2678 2679
			break;

		case ALGORITHM_ROTATING_N_CONTINUE:
			/* Same as left_symmetric but Q is before P */
N
NeilBrown 已提交
2680
			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2681 2682
			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2683
			ddf_layout = 1;
2684 2685 2686 2687
			break;

		case ALGORITHM_LEFT_ASYMMETRIC_6:
			/* RAID5 left_asymmetric, with Q on last device */
N
NeilBrown 已提交
2688
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2689 2690 2691 2692 2693 2694
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_ASYMMETRIC_6:
N
NeilBrown 已提交
2695
			pd_idx = sector_div(stripe2, raid_disks-1);
2696 2697 2698 2699 2700 2701
			if (*dd_idx >= pd_idx)
				(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_LEFT_SYMMETRIC_6:
N
NeilBrown 已提交
2702
			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2703 2704 2705 2706 2707
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_RIGHT_SYMMETRIC_6:
N
NeilBrown 已提交
2708
			pd_idx = sector_div(stripe2, raid_disks-1);
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
			qd_idx = raid_disks - 1;
			break;

		case ALGORITHM_PARITY_0_6:
			pd_idx = 0;
			(*dd_idx)++;
			qd_idx = raid_disks - 1;
			break;

2719
		default:
2720
			BUG();
2721 2722
		}
		break;
L
Linus Torvalds 已提交
2723 2724
	}

2725 2726 2727
	if (sh) {
		sh->pd_idx = pd_idx;
		sh->qd_idx = qd_idx;
2728
		sh->ddf_layout = ddf_layout;
2729
	}
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735 2736
	/*
	 * Finally, compute the new sector number
	 */
	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
	return new_sector;
}

2737
static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
L
Linus Torvalds 已提交
2738
{
2739
	struct r5conf *conf = sh->raid_conf;
2740 2741
	int raid_disks = sh->disks;
	int data_disks = raid_disks - conf->max_degraded;
L
Linus Torvalds 已提交
2742
	sector_t new_sector = sh->sector, check;
2743 2744
	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
					 : conf->chunk_sectors;
2745 2746
	int algorithm = previous ? conf->prev_algo
				 : conf->algorithm;
L
Linus Torvalds 已提交
2747 2748
	sector_t stripe;
	int chunk_offset;
2749 2750
	sector_t chunk_number;
	int dummy1, dd_idx = i;
L
Linus Torvalds 已提交
2751
	sector_t r_sector;
2752
	struct stripe_head sh2;
L
Linus Torvalds 已提交
2753 2754 2755 2756

	chunk_offset = sector_div(new_sector, sectors_per_chunk);
	stripe = new_sector;

2757 2758 2759 2760 2761
	if (i == sh->pd_idx)
		return 0;
	switch(conf->level) {
	case 4: break;
	case 5:
2762
		switch (algorithm) {
L
Linus Torvalds 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (i < sh->pd_idx)
				i += raid_disks;
			i -= (sh->pd_idx + 1);
			break;
2774 2775 2776 2777 2778
		case ALGORITHM_PARITY_0:
			i -= 1;
			break;
		case ALGORITHM_PARITY_N:
			break;
L
Linus Torvalds 已提交
2779
		default:
2780
			BUG();
2781 2782 2783
		}
		break;
	case 6:
2784
		if (i == sh->qd_idx)
2785
			return 0; /* It is the Q disk */
2786
		switch (algorithm) {
2787 2788
		case ALGORITHM_LEFT_ASYMMETRIC:
		case ALGORITHM_RIGHT_ASYMMETRIC:
2789 2790 2791 2792
		case ALGORITHM_ROTATING_ZERO_RESTART:
		case ALGORITHM_ROTATING_N_RESTART:
			if (sh->pd_idx == raid_disks-1)
				i--;	/* Q D D D P */
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
			else if (i > sh->pd_idx)
				i -= 2; /* D D P Q D */
			break;
		case ALGORITHM_LEFT_SYMMETRIC:
		case ALGORITHM_RIGHT_SYMMETRIC:
			if (sh->pd_idx == raid_disks-1)
				i--; /* Q D D D P */
			else {
				/* D D P Q D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 2);
			}
			break;
2807 2808 2809 2810 2811 2812
		case ALGORITHM_PARITY_0:
			i -= 2;
			break;
		case ALGORITHM_PARITY_N:
			break;
		case ALGORITHM_ROTATING_N_CONTINUE:
2813
			/* Like left_symmetric, but P is before Q */
2814 2815
			if (sh->pd_idx == 0)
				i--;	/* P D D D Q */
2816 2817 2818 2819 2820 2821
			else {
				/* D D Q P D */
				if (i < sh->pd_idx)
					i += raid_disks;
				i -= (sh->pd_idx + 1);
			}
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
			break;
		case ALGORITHM_LEFT_ASYMMETRIC_6:
		case ALGORITHM_RIGHT_ASYMMETRIC_6:
			if (i > sh->pd_idx)
				i--;
			break;
		case ALGORITHM_LEFT_SYMMETRIC_6:
		case ALGORITHM_RIGHT_SYMMETRIC_6:
			if (i < sh->pd_idx)
				i += data_disks + 1;
			i -= (sh->pd_idx + 1);
			break;
		case ALGORITHM_PARITY_0_6:
			i -= 1;
			break;
2837
		default:
2838
			BUG();
2839 2840
		}
		break;
L
Linus Torvalds 已提交
2841 2842 2843
	}

	chunk_number = stripe * data_disks + i;
2844
	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
L
Linus Torvalds 已提交
2845

2846
	check = raid5_compute_sector(conf, r_sector,
2847
				     previous, &dummy1, &sh2);
2848 2849
	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
		|| sh2.qd_idx != sh->qd_idx) {
2850 2851
		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
		       mdname(conf->mddev));
L
Linus Torvalds 已提交
2852 2853 2854 2855 2856
		return 0;
	}
	return r_sector;
}

2857
static void
2858
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2859
			 int rcw, int expand)
2860
{
2861
	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2862
	struct r5conf *conf = sh->raid_conf;
2863
	int level = conf->level;
2864 2865 2866 2867 2868 2869 2870 2871

	if (rcw) {

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];

			if (dev->towrite) {
				set_bit(R5_LOCKED, &dev->flags);
2872
				set_bit(R5_Wantdrain, &dev->flags);
2873 2874
				if (!expand)
					clear_bit(R5_UPTODATE, &dev->flags);
2875
				s->locked++;
2876 2877
			}
		}
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
		/* if we are not expanding this is a proper write request, and
		 * there will be bios with new data to be drained into the
		 * stripe cache
		 */
		if (!expand) {
			if (!s->locked)
				/* False alarm, nothing to do */
				return;
			sh->reconstruct_state = reconstruct_state_drain_run;
			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		} else
			sh->reconstruct_state = reconstruct_state_run;

		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);

2893
		if (s->locked + conf->max_degraded == disks)
2894
			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2895
				atomic_inc(&conf->pending_full_writes);
2896 2897 2898
	} else {
		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2899 2900 2901
		BUG_ON(level == 6 &&
			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2902 2903 2904

		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
2905
			if (i == pd_idx || i == qd_idx)
2906 2907 2908 2909
				continue;

			if (dev->towrite &&
			    (test_bit(R5_UPTODATE, &dev->flags) ||
2910 2911
			     test_bit(R5_Wantcompute, &dev->flags))) {
				set_bit(R5_Wantdrain, &dev->flags);
2912 2913
				set_bit(R5_LOCKED, &dev->flags);
				clear_bit(R5_UPTODATE, &dev->flags);
2914
				s->locked++;
2915 2916
			}
		}
2917 2918 2919 2920 2921 2922 2923
		if (!s->locked)
			/* False alarm - nothing to do */
			return;
		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2924 2925
	}

2926
	/* keep the parity disk(s) locked while asynchronous operations
2927 2928 2929 2930
	 * are in flight
	 */
	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2931
	s->locked++;
2932

2933 2934 2935 2936 2937 2938 2939 2940 2941
	if (level == 6) {
		int qd_idx = sh->qd_idx;
		struct r5dev *dev = &sh->dev[qd_idx];

		set_bit(R5_LOCKED, &dev->flags);
		clear_bit(R5_UPTODATE, &dev->flags);
		s->locked++;
	}

2942
	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2943
		__func__, (unsigned long long)sh->sector,
2944
		s->locked, s->ops_request);
2945
}
2946

L
Linus Torvalds 已提交
2947 2948
/*
 * Each stripe/dev can have one or more bion attached.
2949
 * toread/towrite point to the first in a chain.
L
Linus Torvalds 已提交
2950 2951
 * The bi_next chain must be in order.
 */
2952 2953
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
			  int forwrite, int previous)
L
Linus Torvalds 已提交
2954 2955
{
	struct bio **bip;
2956
	struct r5conf *conf = sh->raid_conf;
2957
	int firstwrite=0;
L
Linus Torvalds 已提交
2958

2959
	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2960
		(unsigned long long)bi->bi_iter.bi_sector,
L
Linus Torvalds 已提交
2961 2962
		(unsigned long long)sh->sector);

S
Shaohua Li 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971
	/*
	 * If several bio share a stripe. The bio bi_phys_segments acts as a
	 * reference count to avoid race. The reference count should already be
	 * increased before this function is called (for example, in
	 * make_request()), so other bio sharing this stripe will not free the
	 * stripe. If a stripe is owned by one stripe, the stripe lock will
	 * protect it.
	 */
	spin_lock_irq(&sh->stripe_lock);
2972 2973 2974
	/* Don't allow new IO added to stripes in batch list */
	if (sh->batch_head)
		goto overlap;
2975
	if (forwrite) {
L
Linus Torvalds 已提交
2976
		bip = &sh->dev[dd_idx].towrite;
2977
		if (*bip == NULL)
2978 2979
			firstwrite = 1;
	} else
L
Linus Torvalds 已提交
2980
		bip = &sh->dev[dd_idx].toread;
2981 2982
	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
L
Linus Torvalds 已提交
2983 2984 2985
			goto overlap;
		bip = & (*bip)->bi_next;
	}
2986
	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
L
Linus Torvalds 已提交
2987 2988
		goto overlap;

2989 2990 2991
	if (!forwrite || previous)
		clear_bit(STRIPE_BATCH_READY, &sh->state);

2992
	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
L
Linus Torvalds 已提交
2993 2994 2995
	if (*bip)
		bi->bi_next = *bip;
	*bip = bi;
2996
	raid5_inc_bi_active_stripes(bi);
2997

L
Linus Torvalds 已提交
2998 2999 3000 3001 3002
	if (forwrite) {
		/* check if page is covered */
		sector_t sector = sh->dev[dd_idx].sector;
		for (bi=sh->dev[dd_idx].towrite;
		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3003
			     bi && bi->bi_iter.bi_sector <= sector;
L
Linus Torvalds 已提交
3004
		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
K
Kent Overstreet 已提交
3005 3006
			if (bio_end_sector(bi) >= sector)
				sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
3007 3008
		}
		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3009 3010
			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
				sh->overwrite_disks++;
L
Linus Torvalds 已提交
3011
	}
3012 3013

	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3014
		(unsigned long long)(*bip)->bi_iter.bi_sector,
3015 3016 3017
		(unsigned long long)sh->sector, dd_idx);

	if (conf->mddev->bitmap && firstwrite) {
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
		/* Cannot hold spinlock over bitmap_startwrite,
		 * but must ensure this isn't added to a batch until
		 * we have added to the bitmap and set bm_seq.
		 * So set STRIPE_BITMAP_PENDING to prevent
		 * batching.
		 * If multiple add_stripe_bio() calls race here they
		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
		 * to complete "bitmap_startwrite" gets to set
		 * STRIPE_BIT_DELAY.  This is important as once a stripe
		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
		 * any more.
		 */
		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
		spin_unlock_irq(&sh->stripe_lock);
3032 3033
		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
				  STRIPE_SECTORS, 0);
3034 3035 3036 3037 3038 3039
		spin_lock_irq(&sh->stripe_lock);
		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
		if (!sh->batch_head) {
			sh->bm_seq = conf->seq_flush+1;
			set_bit(STRIPE_BIT_DELAY, &sh->state);
		}
3040
	}
3041
	spin_unlock_irq(&sh->stripe_lock);
3042 3043 3044

	if (stripe_can_batch(sh))
		stripe_add_to_batch_list(conf, sh);
L
Linus Torvalds 已提交
3045 3046 3047 3048
	return 1;

 overlap:
	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
S
Shaohua Li 已提交
3049
	spin_unlock_irq(&sh->stripe_lock);
L
Linus Torvalds 已提交
3050 3051 3052
	return 0;
}

3053
static void end_reshape(struct r5conf *conf);
3054

3055
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3056
			    struct stripe_head *sh)
3057
{
3058
	int sectors_per_chunk =
3059
		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3060
	int dd_idx;
3061
	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3062
	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3063

3064 3065
	raid5_compute_sector(conf,
			     stripe * (disks - conf->max_degraded)
3066
			     *sectors_per_chunk + chunk_offset,
3067
			     previous,
3068
			     &dd_idx, sh);
3069 3070
}

3071
static void
3072
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3073 3074 3075 3076
				struct stripe_head_state *s, int disks,
				struct bio **return_bi)
{
	int i;
3077
	BUG_ON(sh->batch_head);
3078 3079 3080 3081 3082
	for (i = disks; i--; ) {
		struct bio *bi;
		int bitmap_end = 0;

		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3083
			struct md_rdev *rdev;
3084 3085 3086
			rcu_read_lock();
			rdev = rcu_dereference(conf->disks[i].rdev);
			if (rdev && test_bit(In_sync, &rdev->flags))
3087 3088 3089
				atomic_inc(&rdev->nr_pending);
			else
				rdev = NULL;
3090
			rcu_read_unlock();
3091 3092 3093 3094 3095 3096 3097 3098
			if (rdev) {
				if (!rdev_set_badblocks(
					    rdev,
					    sh->sector,
					    STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
3099
		}
S
Shaohua Li 已提交
3100
		spin_lock_irq(&sh->stripe_lock);
3101 3102 3103
		/* fail all writes first */
		bi = sh->dev[i].towrite;
		sh->dev[i].towrite = NULL;
3104
		sh->overwrite_disks = 0;
S
Shaohua Li 已提交
3105
		spin_unlock_irq(&sh->stripe_lock);
3106
		if (bi)
3107 3108 3109 3110 3111
			bitmap_end = 1;

		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
			wake_up(&conf->wait_for_overlap);

3112
		while (bi && bi->bi_iter.bi_sector <
3113 3114 3115
			sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3116
			if (!raid5_dec_bi_active_stripes(bi)) {
3117 3118 3119 3120 3121 3122
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = nextbi;
		}
3123 3124 3125 3126
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
				STRIPE_SECTORS, 0, 0);
		bitmap_end = 0;
3127 3128 3129
		/* and fail all 'written' */
		bi = sh->dev[i].written;
		sh->dev[i].written = NULL;
3130 3131 3132 3133 3134
		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
			sh->dev[i].page = sh->dev[i].orig_page;
		}

3135
		if (bi) bitmap_end = 1;
3136
		while (bi && bi->bi_iter.bi_sector <
3137 3138 3139
		       sh->dev[i].sector + STRIPE_SECTORS) {
			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3140
			if (!raid5_dec_bi_active_stripes(bi)) {
3141 3142 3143 3144 3145 3146 3147
				md_write_end(conf->mddev);
				bi->bi_next = *return_bi;
				*return_bi = bi;
			}
			bi = bi2;
		}

3148 3149 3150 3151 3152 3153
		/* fail any reads if this device is non-operational and
		 * the data has not reached the cache yet.
		 */
		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3154
			spin_lock_irq(&sh->stripe_lock);
3155 3156
			bi = sh->dev[i].toread;
			sh->dev[i].toread = NULL;
3157
			spin_unlock_irq(&sh->stripe_lock);
3158 3159
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				wake_up(&conf->wait_for_overlap);
3160
			while (bi && bi->bi_iter.bi_sector <
3161 3162 3163 3164
			       sh->dev[i].sector + STRIPE_SECTORS) {
				struct bio *nextbi =
					r5_next_bio(bi, sh->dev[i].sector);
				clear_bit(BIO_UPTODATE, &bi->bi_flags);
3165
				if (!raid5_dec_bi_active_stripes(bi)) {
3166 3167 3168 3169 3170 3171 3172 3173 3174
					bi->bi_next = *return_bi;
					*return_bi = bi;
				}
				bi = nextbi;
			}
		}
		if (bitmap_end)
			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
					STRIPE_SECTORS, 0, 0);
3175 3176 3177 3178
		/* If we were in the middle of a write the parity block might
		 * still be locked - so just clear all R5_LOCKED flags
		 */
		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3179 3180
	}

3181 3182 3183
	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
3184 3185
}

3186
static void
3187
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3188 3189 3190 3191 3192
		   struct stripe_head_state *s)
{
	int abort = 0;
	int i;

3193
	BUG_ON(sh->batch_head);
3194
	clear_bit(STRIPE_SYNCING, &sh->state);
3195 3196
	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
		wake_up(&conf->wait_for_overlap);
3197
	s->syncing = 0;
3198
	s->replacing = 0;
3199
	/* There is nothing more to do for sync/check/repair.
3200 3201 3202
	 * Don't even need to abort as that is handled elsewhere
	 * if needed, and not always wanted e.g. if there is a known
	 * bad block here.
3203
	 * For recover/replace we need to record a bad block on all
3204 3205
	 * non-sync devices, or abort the recovery
	 */
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
		/* During recovery devices cannot be removed, so
		 * locking and refcounting of rdevs is not needed
		 */
		for (i = 0; i < conf->raid_disks; i++) {
			struct md_rdev *rdev = conf->disks[i].rdev;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
			rdev = conf->disks[i].replacement;
			if (rdev
			    && !test_bit(Faulty, &rdev->flags)
			    && !test_bit(In_sync, &rdev->flags)
			    && !rdev_set_badblocks(rdev, sh->sector,
						   STRIPE_SECTORS, 0))
				abort = 1;
		}
		if (abort)
			conf->recovery_disabled =
				conf->mddev->recovery_disabled;
3229
	}
3230
	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3231 3232
}

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
static int want_replace(struct stripe_head *sh, int disk_idx)
{
	struct md_rdev *rdev;
	int rv = 0;
	/* Doing recovery so rcu locking not required */
	rdev = sh->raid_conf->disks[disk_idx].replacement;
	if (rdev
	    && !test_bit(Faulty, &rdev->flags)
	    && !test_bit(In_sync, &rdev->flags)
	    && (rdev->recovery_offset <= sh->sector
		|| rdev->mddev->recovery_cp <= sh->sector))
		rv = 1;

	return rv;
}

3249
/* fetch_block - checks the given member device to see if its data needs
3250 3251 3252
 * to be read or computed to satisfy a request.
 *
 * Returns 1 when no more member devices need to be checked, otherwise returns
3253
 * 0 to tell the loop in handle_stripe_fill to continue
3254
 */
3255 3256 3257

static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
			   int disk_idx, int disks)
3258
{
3259
	struct r5dev *dev = &sh->dev[disk_idx];
3260 3261
	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
				  &sh->dev[s->failed_num[1]] };
3262
	int i;
3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290

	if (test_bit(R5_LOCKED, &dev->flags) ||
	    test_bit(R5_UPTODATE, &dev->flags))
		/* No point reading this as we already have it or have
		 * decided to get it.
		 */
		return 0;

	if (dev->toread ||
	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
		/* We need this block to directly satisfy a request */
		return 1;

	if (s->syncing || s->expanding ||
	    (s->replacing && want_replace(sh, disk_idx)))
		/* When syncing, or expanding we read everything.
		 * When replacing, we need the replaced block.
		 */
		return 1;

	if ((s->failed >= 1 && fdev[0]->toread) ||
	    (s->failed >= 2 && fdev[1]->toread))
		/* If we want to read from a failed device, then
		 * we need to actually read every other device.
		 */
		return 1;

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
	/* Sometimes neither read-modify-write nor reconstruct-write
	 * cycles can work.  In those cases we read every block we
	 * can.  Then the parity-update is certain to have enough to
	 * work with.
	 * This can only be a problem when we need to write something,
	 * and some device has failed.  If either of those tests
	 * fail we need look no further.
	 */
	if (!s->failed || !s->to_write)
		return 0;

	if (test_bit(R5_Insync, &dev->flags) &&
	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		/* Pre-reads at not permitted until after short delay
		 * to gather multiple requests.  However if this
		 * device is no Insync, the block could only be be computed
		 * and there is no need to delay that.
		 */
		return 0;
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335

	for (i = 0; i < s->failed; i++) {
		if (fdev[i]->towrite &&
		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
			/* If we have a partial write to a failed
			 * device, then we will need to reconstruct
			 * the content of that device, so all other
			 * devices must be read.
			 */
			return 1;
	}

	/* If we are forced to do a reconstruct-write, either because
	 * the current RAID6 implementation only supports that, or
	 * or because parity cannot be trusted and we are currently
	 * recovering it, there is extra need to be careful.
	 * If one of the devices that we would need to read, because
	 * it is not being overwritten (and maybe not written at all)
	 * is missing/faulty, then we need to read everything we can.
	 */
	if (sh->raid_conf->level != 6 &&
	    sh->sector < sh->raid_conf->mddev->recovery_cp)
		/* reconstruct-write isn't being forced */
		return 0;
	for (i = 0; i < s->failed; i++) {
3336 3337 3338
		if (s->failed_num[i] != sh->pd_idx &&
		    s->failed_num[i] != sh->qd_idx &&
		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3339 3340 3341 3342
		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
			return 1;
	}

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
	return 0;
}

static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
		       int disk_idx, int disks)
{
	struct r5dev *dev = &sh->dev[disk_idx];

	/* is the data in this block needed, and can we get it? */
	if (need_this_block(sh, s, disk_idx, disks)) {
3353 3354 3355 3356 3357
		/* we would like to get this block, possibly by computing it,
		 * otherwise read it if the backing disk is insync
		 */
		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3358
		BUG_ON(sh->batch_head);
3359
		if ((s->uptodate == disks - 1) &&
3360 3361
		    (s->failed && (disk_idx == s->failed_num[0] ||
				   disk_idx == s->failed_num[1]))) {
3362 3363
			/* have disk failed, and we're requested to fetch it;
			 * do compute it
3364
			 */
3365 3366 3367 3368 3369 3370 3371 3372
			pr_debug("Computing stripe %llu block %d\n",
			       (unsigned long long)sh->sector, disk_idx);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &dev->flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = -1; /* no 2nd target */
			s->req_compute = 1;
3373 3374 3375 3376 3377 3378
			/* Careful: from this point on 'uptodate' is in the eye
			 * of raid_run_ops which services 'compute' operations
			 * before writes. R5_Wantcompute flags a block that will
			 * be R5_UPTODATE by the time it is needed for a
			 * subsequent operation.
			 */
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
			s->uptodate++;
			return 1;
		} else if (s->uptodate == disks-2 && s->failed >= 2) {
			/* Computing 2-failure is *very* expensive; only
			 * do it if failed >= 2
			 */
			int other;
			for (other = disks; other--; ) {
				if (other == disk_idx)
					continue;
				if (!test_bit(R5_UPTODATE,
				      &sh->dev[other].flags))
					break;
3392
			}
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
			BUG_ON(other < 0);
			pr_debug("Computing stripe %llu blocks %d,%d\n",
			       (unsigned long long)sh->sector,
			       disk_idx, other);
			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
			set_bit(R5_Wantcompute, &sh->dev[other].flags);
			sh->ops.target = disk_idx;
			sh->ops.target2 = other;
			s->uptodate += 2;
			s->req_compute = 1;
			return 1;
		} else if (test_bit(R5_Insync, &dev->flags)) {
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantread, &dev->flags);
			s->locked++;
			pr_debug("Reading block %d (sync=%d)\n",
				disk_idx, s->syncing);
3412 3413
		}
	}
3414 3415 3416 3417 3418

	return 0;
}

/**
3419
 * handle_stripe_fill - read or compute data to satisfy pending requests.
3420
 */
3421 3422 3423
static void handle_stripe_fill(struct stripe_head *sh,
			       struct stripe_head_state *s,
			       int disks)
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
{
	int i;

	/* look for blocks to read/compute, skip this if a compute
	 * is already in flight, or if the stripe contents are in the
	 * midst of changing due to a write
	 */
	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
	    !sh->reconstruct_state)
		for (i = disks; i--; )
3434
			if (fetch_block(sh, s, i, disks))
3435
				break;
3436 3437 3438
	set_bit(STRIPE_HANDLE, &sh->state);
}

3439 3440
static void break_stripe_batch_list(struct stripe_head *head_sh,
				    unsigned long handle_flags);
3441
/* handle_stripe_clean_event
3442 3443 3444 3445
 * any written block on an uptodate or failed drive can be returned.
 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
 * never LOCKED, so we don't need to test 'failed' directly.
 */
3446
static void handle_stripe_clean_event(struct r5conf *conf,
3447 3448 3449 3450
	struct stripe_head *sh, int disks, struct bio **return_bi)
{
	int i;
	struct r5dev *dev;
3451
	int discard_pending = 0;
3452 3453
	struct stripe_head *head_sh = sh;
	bool do_endio = false;
3454 3455 3456 3457 3458

	for (i = disks; i--; )
		if (sh->dev[i].written) {
			dev = &sh->dev[i];
			if (!test_bit(R5_LOCKED, &dev->flags) &&
3459
			    (test_bit(R5_UPTODATE, &dev->flags) ||
3460 3461
			     test_bit(R5_Discard, &dev->flags) ||
			     test_bit(R5_SkipCopy, &dev->flags))) {
3462 3463
				/* We can return any write requests */
				struct bio *wbi, *wbi2;
3464
				pr_debug("Return write for disc %d\n", i);
3465 3466
				if (test_and_clear_bit(R5_Discard, &dev->flags))
					clear_bit(R5_UPTODATE, &dev->flags);
3467 3468 3469
				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
				}
3470 3471 3472 3473
				do_endio = true;

returnbi:
				dev->page = dev->orig_page;
3474 3475
				wbi = dev->written;
				dev->written = NULL;
3476
				while (wbi && wbi->bi_iter.bi_sector <
3477 3478
					dev->sector + STRIPE_SECTORS) {
					wbi2 = r5_next_bio(wbi, dev->sector);
3479
					if (!raid5_dec_bi_active_stripes(wbi)) {
3480 3481 3482 3483 3484 3485
						md_write_end(conf->mddev);
						wbi->bi_next = *return_bi;
						*return_bi = wbi;
					}
					wbi = wbi2;
				}
3486 3487
				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
						STRIPE_SECTORS,
3488
					 !test_bit(STRIPE_DEGRADED, &sh->state),
3489
						0);
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
				if (head_sh->batch_head) {
					sh = list_first_entry(&sh->batch_list,
							      struct stripe_head,
							      batch_list);
					if (sh != head_sh) {
						dev = &sh->dev[i];
						goto returnbi;
					}
				}
				sh = head_sh;
				dev = &sh->dev[i];
3501 3502
			} else if (test_bit(R5_Discard, &dev->flags))
				discard_pending = 1;
3503 3504
			WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
			WARN_ON(dev->page != dev->orig_page);
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
		}
	if (!discard_pending &&
	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
		if (sh->qd_idx >= 0) {
			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
		}
		/* now that discard is done we can proceed with any sync */
		clear_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
3516 3517 3518 3519 3520 3521
		/*
		 * SCSI discard will change some bio fields and the stripe has
		 * no updated data, so remove it from hash list and the stripe
		 * will be reinitialized
		 */
		spin_lock_irq(&conf->device_lock);
3522
unhash:
S
Shaohua Li 已提交
3523
		remove_hash(sh);
3524 3525 3526 3527 3528 3529
		if (head_sh->batch_head) {
			sh = list_first_entry(&sh->batch_list,
					      struct stripe_head, batch_list);
			if (sh != head_sh)
					goto unhash;
		}
S
Shaohua Li 已提交
3530
		spin_unlock_irq(&conf->device_lock);
3531 3532
		sh = head_sh;

3533 3534 3535 3536
		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
			set_bit(STRIPE_HANDLE, &sh->state);

	}
3537 3538 3539 3540

	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
		if (atomic_dec_and_test(&conf->pending_full_writes))
			md_wakeup_thread(conf->mddev->thread);
3541

3542 3543
	if (head_sh->batch_head && do_endio)
		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3544 3545
}

3546
static void handle_stripe_dirtying(struct r5conf *conf,
3547 3548 3549
				   struct stripe_head *sh,
				   struct stripe_head_state *s,
				   int disks)
3550 3551
{
	int rmw = 0, rcw = 0, i;
3552 3553
	sector_t recovery_cp = conf->mddev->recovery_cp;

3554
	/* Check whether resync is now happening or should start.
3555 3556 3557 3558 3559 3560
	 * If yes, then the array is dirty (after unclean shutdown or
	 * initial creation), so parity in some stripes might be inconsistent.
	 * In this case, we need to always do reconstruct-write, to ensure
	 * that in case of drive failure or read-error correction, we
	 * generate correct data from the parity.
	 */
3561
	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3562 3563
	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
	     s->failed == 0)) {
3564
		/* Calculate the real rcw later - for now make it
3565 3566 3567
		 * look like rcw is cheaper
		 */
		rcw = 1; rmw = 2;
3568 3569
		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
			 conf->rmw_level, (unsigned long long)recovery_cp,
3570
			 (unsigned long long)sh->sector);
3571
	} else for (i = disks; i--; ) {
3572 3573
		/* would I have to read this buffer for read_modify_write */
		struct r5dev *dev = &sh->dev[i];
3574
		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3575
		    !test_bit(R5_LOCKED, &dev->flags) &&
3576 3577
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		      test_bit(R5_Wantcompute, &dev->flags))) {
3578 3579 3580 3581 3582 3583
			if (test_bit(R5_Insync, &dev->flags))
				rmw++;
			else
				rmw += 2*disks;  /* cannot read it */
		}
		/* Would I have to read this buffer for reconstruct_write */
3584 3585
		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
		    i != sh->pd_idx && i != sh->qd_idx &&
3586
		    !test_bit(R5_LOCKED, &dev->flags) &&
3587 3588
		    !(test_bit(R5_UPTODATE, &dev->flags) ||
		    test_bit(R5_Wantcompute, &dev->flags))) {
3589 3590
			if (test_bit(R5_Insync, &dev->flags))
				rcw++;
3591 3592 3593 3594
			else
				rcw += 2*disks;
		}
	}
3595
	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3596 3597
		(unsigned long long)sh->sector, rmw, rcw);
	set_bit(STRIPE_HANDLE, &sh->state);
3598
	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3599
		/* prefer read-modify-write, but need to get some data */
3600 3601 3602 3603
		if (conf->mddev->queue)
			blk_add_trace_msg(conf->mddev->queue,
					  "raid5 rmw %llu %d",
					  (unsigned long long)sh->sector, rmw);
3604 3605
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
3606
			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3607
			    !test_bit(R5_LOCKED, &dev->flags) &&
3608 3609
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
			    test_bit(R5_Wantcompute, &dev->flags)) &&
3610
			    test_bit(R5_Insync, &dev->flags)) {
3611 3612 3613 3614
				if (test_bit(STRIPE_PREREAD_ACTIVE,
					     &sh->state)) {
					pr_debug("Read_old block %d for r-m-w\n",
						 i);
3615 3616 3617 3618 3619 3620 3621 3622 3623
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
N
NeilBrown 已提交
3624
	}
3625
	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3626
		/* want reconstruct write, but need to get some data */
N
NeilBrown 已提交
3627
		int qread =0;
3628
		rcw = 0;
3629 3630 3631
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3632
			    i != sh->pd_idx && i != sh->qd_idx &&
3633
			    !test_bit(R5_LOCKED, &dev->flags) &&
3634
			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3635 3636
			      test_bit(R5_Wantcompute, &dev->flags))) {
				rcw++;
3637 3638 3639
				if (test_bit(R5_Insync, &dev->flags) &&
				    test_bit(STRIPE_PREREAD_ACTIVE,
					     &sh->state)) {
3640
					pr_debug("Read_old block "
3641 3642 3643 3644
						"%d for Reconstruct\n", i);
					set_bit(R5_LOCKED, &dev->flags);
					set_bit(R5_Wantread, &dev->flags);
					s->locked++;
N
NeilBrown 已提交
3645
					qread++;
3646 3647 3648 3649 3650 3651
				} else {
					set_bit(STRIPE_DELAYED, &sh->state);
					set_bit(STRIPE_HANDLE, &sh->state);
				}
			}
		}
3652
		if (rcw && conf->mddev->queue)
N
NeilBrown 已提交
3653 3654 3655
			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
					  (unsigned long long)sh->sector,
					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3656
	}
3657 3658 3659 3660 3661

	if (rcw > disks && rmw > disks &&
	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
		set_bit(STRIPE_DELAYED, &sh->state);

3662 3663 3664
	/* now if nothing is locked, and if we have enough data,
	 * we can start a write request
	 */
3665 3666
	/* since handle_stripe can be called at any time we need to handle the
	 * case where a compute block operation has been submitted and then a
3667 3668
	 * subsequent call wants to start a write request.  raid_run_ops only
	 * handles the case where compute block and reconstruct are requested
3669 3670 3671
	 * simultaneously.  If this is not the case then new writes need to be
	 * held off until the compute completes.
	 */
3672 3673 3674
	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3675
		schedule_reconstruction(sh, s, rcw == 0, 0);
3676 3677
}

3678
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3679 3680
				struct stripe_head_state *s, int disks)
{
3681
	struct r5dev *dev = NULL;
3682

3683
	BUG_ON(sh->batch_head);
3684
	set_bit(STRIPE_HANDLE, &sh->state);
3685

3686 3687 3688
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are no failures */
3689 3690
		if (s->failed == 0) {
			BUG_ON(s->uptodate != disks);
3691 3692
			sh->check_state = check_state_run;
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3693 3694
			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
			s->uptodate--;
3695
			break;
3696
		}
3697
		dev = &sh->dev[s->failed_num[0]];
3698 3699 3700 3701 3702 3703 3704 3705 3706
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
		if (!dev)
			dev = &sh->dev[sh->pd_idx];

		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
D
Dan Williams 已提交
3707

3708 3709 3710 3711 3712
		/* either failed parity check, or recovery is happening */
		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
		BUG_ON(s->uptodate != disks);

		set_bit(R5_LOCKED, &dev->flags);
3713
		s->locked++;
3714
		set_bit(R5_Wantwrite, &dev->flags);
3715

3716 3717
		clear_bit(STRIPE_DEGRADED, &sh->state);
		set_bit(STRIPE_INSYNC, &sh->state);
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
		break;
	case check_state_run:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* if a failure occurred during the check operation, leave
		 * STRIPE_INSYNC not set and let the stripe be handled again
		 */
		if (s->failed)
			break;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
D
Dan Williams 已提交
3734
		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3735 3736 3737 3738 3739
			/* parity is correct (on disc,
			 * not in buffer any more)
			 */
			set_bit(STRIPE_INSYNC, &sh->state);
		else {
3740
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3741 3742 3743 3744 3745
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				sh->check_state = check_state_compute_run;
3746
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3747 3748 3749 3750
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				set_bit(R5_Wantcompute,
					&sh->dev[sh->pd_idx].flags);
				sh->ops.target = sh->pd_idx;
3751
				sh->ops.target2 = -1;
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
				s->uptodate++;
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3763 3764 3765
	}
}

3766
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3767
				  struct stripe_head_state *s,
3768
				  int disks)
3769 3770
{
	int pd_idx = sh->pd_idx;
N
NeilBrown 已提交
3771
	int qd_idx = sh->qd_idx;
3772
	struct r5dev *dev;
3773

3774
	BUG_ON(sh->batch_head);
3775 3776 3777
	set_bit(STRIPE_HANDLE, &sh->state);

	BUG_ON(s->failed > 2);
3778

3779 3780 3781 3782 3783 3784
	/* Want to check and possibly repair P and Q.
	 * However there could be one 'failed' device, in which
	 * case we can only check one of them, possibly using the
	 * other to generate missing data
	 */

3785 3786 3787
	switch (sh->check_state) {
	case check_state_idle:
		/* start a new check operation if there are < 2 failures */
3788
		if (s->failed == s->q_failed) {
3789
			/* The only possible failed device holds Q, so it
3790 3791 3792
			 * makes sense to check P (If anything else were failed,
			 * we would have used P to recreate it).
			 */
3793
			sh->check_state = check_state_run;
3794
		}
3795
		if (!s->q_failed && s->failed < 2) {
3796
			/* Q is not failed, and we didn't use it to generate
3797 3798
			 * anything, so it makes sense to check it
			 */
3799 3800 3801 3802
			if (sh->check_state == check_state_run)
				sh->check_state = check_state_run_pq;
			else
				sh->check_state = check_state_run_q;
3803 3804
		}

3805 3806
		/* discard potentially stale zero_sum_result */
		sh->ops.zero_sum_result = 0;
3807

3808 3809 3810 3811
		if (sh->check_state == check_state_run) {
			/* async_xor_zero_sum destroys the contents of P */
			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
			s->uptodate--;
3812
		}
3813 3814 3815 3816 3817 3818 3819
		if (sh->check_state >= check_state_run &&
		    sh->check_state <= check_state_run_pq) {
			/* async_syndrome_zero_sum preserves P and Q, so
			 * no need to mark them !uptodate here
			 */
			set_bit(STRIPE_OP_CHECK, &s->ops_request);
			break;
3820 3821
		}

3822 3823 3824 3825 3826
		/* we have 2-disk failure */
		BUG_ON(s->failed != 2);
		/* fall through */
	case check_state_compute_result:
		sh->check_state = check_state_idle;
3827

3828 3829 3830
		/* check that a write has not made the stripe insync */
		if (test_bit(STRIPE_INSYNC, &sh->state))
			break;
3831 3832

		/* now write out any block on a failed drive,
3833
		 * or P or Q if they were recomputed
3834
		 */
3835
		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3836
		if (s->failed == 2) {
3837
			dev = &sh->dev[s->failed_num[1]];
3838 3839 3840 3841 3842
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		if (s->failed >= 1) {
3843
			dev = &sh->dev[s->failed_num[0]];
3844 3845 3846 3847
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3848
		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3849 3850 3851 3852 3853
			dev = &sh->dev[pd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
3854
		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3855 3856 3857 3858 3859 3860 3861 3862
			dev = &sh->dev[qd_idx];
			s->locked++;
			set_bit(R5_LOCKED, &dev->flags);
			set_bit(R5_Wantwrite, &dev->flags);
		}
		clear_bit(STRIPE_DEGRADED, &sh->state);

		set_bit(STRIPE_INSYNC, &sh->state);
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
		break;
	case check_state_run:
	case check_state_run_q:
	case check_state_run_pq:
		break; /* we will be called again upon completion */
	case check_state_check_result:
		sh->check_state = check_state_idle;

		/* handle a successful check operation, if parity is correct
		 * we are done.  Otherwise update the mismatch count and repair
		 * parity if !MD_RECOVERY_CHECK
		 */
		if (sh->ops.zero_sum_result == 0) {
			/* both parities are correct */
			if (!s->failed)
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				/* in contrast to the raid5 case we can validate
				 * parity, but still have a failure to write
				 * back
				 */
				sh->check_state = check_state_compute_result;
				/* Returning at this point means that we may go
				 * off and bring p and/or q uptodate again so
				 * we make sure to check zero_sum_result again
				 * to verify if p or q need writeback
				 */
			}
		} else {
3892
			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
				/* don't try to repair!! */
				set_bit(STRIPE_INSYNC, &sh->state);
			else {
				int *target = &sh->ops.target;

				sh->ops.target = -1;
				sh->ops.target2 = -1;
				sh->check_state = check_state_compute_run;
				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[pd_idx].flags);
					*target = pd_idx;
					target = &sh->ops.target2;
					s->uptodate++;
				}
				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
					set_bit(R5_Wantcompute,
						&sh->dev[qd_idx].flags);
					*target = qd_idx;
					s->uptodate++;
				}
			}
		}
		break;
	case check_state_compute_run:
		break;
	default:
		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
		       __func__, sh->check_state,
		       (unsigned long long) sh->sector);
		BUG();
3927 3928 3929
	}
}

3930
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3931 3932 3933 3934 3935 3936
{
	int i;

	/* We have read all the blocks in this stripe and now we need to
	 * copy some of them into a target stripe for expand.
	 */
3937
	struct dma_async_tx_descriptor *tx = NULL;
3938
	BUG_ON(sh->batch_head);
3939 3940
	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
	for (i = 0; i < sh->disks; i++)
N
NeilBrown 已提交
3941
		if (i != sh->pd_idx && i != sh->qd_idx) {
3942
			int dd_idx, j;
3943
			struct stripe_head *sh2;
3944
			struct async_submit_ctl submit;
3945

3946
			sector_t bn = compute_blocknr(sh, i, 1);
3947 3948
			sector_t s = raid5_compute_sector(conf, bn, 0,
							  &dd_idx, NULL);
3949
			sh2 = get_active_stripe(conf, s, 0, 1, 1);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
			if (sh2 == NULL)
				/* so far only the early blocks of this stripe
				 * have been requested.  When later blocks
				 * get requested, we will try again
				 */
				continue;
			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
				/* must have already done this block */
				release_stripe(sh2);
				continue;
			}
3962 3963

			/* place all the copies on one channel */
3964
			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3965
			tx = async_memcpy(sh2->dev[dd_idx].page,
3966
					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3967
					  &submit);
3968

3969 3970 3971 3972
			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
			for (j = 0; j < conf->raid_disks; j++)
				if (j != sh2->pd_idx &&
3973
				    j != sh2->qd_idx &&
3974 3975 3976 3977 3978 3979 3980
				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
					break;
			if (j == conf->raid_disks) {
				set_bit(STRIPE_EXPAND_READY, &sh2->state);
				set_bit(STRIPE_HANDLE, &sh2->state);
			}
			release_stripe(sh2);
3981

3982
		}
3983
	/* done submitting copies, wait for them to complete */
3984
	async_tx_quiesce(&tx);
3985
}
L
Linus Torvalds 已提交
3986 3987 3988 3989

/*
 * handle_stripe - do things to a stripe.
 *
3990 3991
 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
 * state of various bits to see what needs to be done.
L
Linus Torvalds 已提交
3992
 * Possible results:
3993 3994
 *    return some read requests which now have data
 *    return some write requests which are safely on storage
L
Linus Torvalds 已提交
3995 3996 3997 3998 3999
 *    schedule a read on some buffers
 *    schedule a write of some buffers
 *    return confirmation of parity correctness
 *
 */
4000

4001
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
L
Linus Torvalds 已提交
4002
{
4003
	struct r5conf *conf = sh->raid_conf;
4004
	int disks = sh->disks;
4005 4006
	struct r5dev *dev;
	int i;
4007
	int do_recovery = 0;
L
Linus Torvalds 已提交
4008

4009 4010
	memset(s, 0, sizeof(*s));

4011 4012
	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4013 4014
	s->failed_num[0] = -1;
	s->failed_num[1] = -1;
L
Linus Torvalds 已提交
4015

4016
	/* Now to look around and see what can be done */
L
Linus Torvalds 已提交
4017
	rcu_read_lock();
4018
	for (i=disks; i--; ) {
4019
		struct md_rdev *rdev;
4020 4021 4022
		sector_t first_bad;
		int bad_sectors;
		int is_bad = 0;
4023

4024
		dev = &sh->dev[i];
L
Linus Torvalds 已提交
4025

4026
		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4027 4028
			 i, dev->flags,
			 dev->toread, dev->towrite, dev->written);
4029 4030 4031 4032 4033 4034 4035 4036
		/* maybe we can reply to a read
		 *
		 * new wantfill requests are only permitted while
		 * ops_complete_biofill is guaranteed to be inactive
		 */
		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
			set_bit(R5_Wantfill, &dev->flags);
L
Linus Torvalds 已提交
4037

4038
		/* now count some things */
4039 4040 4041 4042
		if (test_bit(R5_LOCKED, &dev->flags))
			s->locked++;
		if (test_bit(R5_UPTODATE, &dev->flags))
			s->uptodate++;
4043
		if (test_bit(R5_Wantcompute, &dev->flags)) {
4044 4045
			s->compute++;
			BUG_ON(s->compute > 2);
4046
		}
L
Linus Torvalds 已提交
4047

4048
		if (test_bit(R5_Wantfill, &dev->flags))
4049
			s->to_fill++;
4050
		else if (dev->toread)
4051
			s->to_read++;
4052
		if (dev->towrite) {
4053
			s->to_write++;
4054
			if (!test_bit(R5_OVERWRITE, &dev->flags))
4055
				s->non_overwrite++;
4056
		}
4057
		if (dev->written)
4058
			s->written++;
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
		/* Prefer to use the replacement for reads, but only
		 * if it is recovered enough and has no bad blocks.
		 */
		rdev = rcu_dereference(conf->disks[i].replacement);
		if (rdev && !test_bit(Faulty, &rdev->flags) &&
		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
				 &first_bad, &bad_sectors))
			set_bit(R5_ReadRepl, &dev->flags);
		else {
4069
			if (rdev && !test_bit(Faulty, &rdev->flags))
4070
				set_bit(R5_NeedReplace, &dev->flags);
4071 4072
			else
				clear_bit(R5_NeedReplace, &dev->flags);
4073 4074 4075
			rdev = rcu_dereference(conf->disks[i].rdev);
			clear_bit(R5_ReadRepl, &dev->flags);
		}
4076 4077
		if (rdev && test_bit(Faulty, &rdev->flags))
			rdev = NULL;
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
		if (rdev) {
			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
					     &first_bad, &bad_sectors);
			if (s->blocked_rdev == NULL
			    && (test_bit(Blocked, &rdev->flags)
				|| is_bad < 0)) {
				if (is_bad < 0)
					set_bit(BlockedBadBlocks,
						&rdev->flags);
				s->blocked_rdev = rdev;
				atomic_inc(&rdev->nr_pending);
			}
4090
		}
4091 4092 4093
		clear_bit(R5_Insync, &dev->flags);
		if (!rdev)
			/* Not in-sync */;
4094 4095
		else if (is_bad) {
			/* also not in-sync */
4096 4097
			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
			    test_bit(R5_UPTODATE, &dev->flags)) {
4098 4099 4100 4101 4102 4103 4104
				/* treat as in-sync, but with a read error
				 * which we can now try to correct
				 */
				set_bit(R5_Insync, &dev->flags);
				set_bit(R5_ReadError, &dev->flags);
			}
		} else if (test_bit(In_sync, &rdev->flags))
4105
			set_bit(R5_Insync, &dev->flags);
4106
		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4107
			/* in sync if before recovery_offset */
4108 4109 4110 4111 4112 4113 4114 4115 4116
			set_bit(R5_Insync, &dev->flags);
		else if (test_bit(R5_UPTODATE, &dev->flags) &&
			 test_bit(R5_Expanded, &dev->flags))
			/* If we've reshaped into here, we assume it is Insync.
			 * We will shortly update recovery_offset to make
			 * it official.
			 */
			set_bit(R5_Insync, &dev->flags);

4117
		if (test_bit(R5_WriteError, &dev->flags)) {
4118 4119 4120 4121 4122 4123 4124
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 == rdev)
				clear_bit(R5_Insync, &dev->flags);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4125
				s->handle_bad_blocks = 1;
4126
				atomic_inc(&rdev2->nr_pending);
4127 4128 4129
			} else
				clear_bit(R5_WriteError, &dev->flags);
		}
4130
		if (test_bit(R5_MadeGood, &dev->flags)) {
4131 4132 4133 4134 4135
			/* This flag does not apply to '.replacement'
			 * only to .rdev, so make sure to check that*/
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].rdev);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4136
				s->handle_bad_blocks = 1;
4137
				atomic_inc(&rdev2->nr_pending);
4138 4139 4140
			} else
				clear_bit(R5_MadeGood, &dev->flags);
		}
4141 4142 4143 4144 4145 4146 4147 4148 4149
		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
			struct md_rdev *rdev2 = rcu_dereference(
				conf->disks[i].replacement);
			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
				s->handle_bad_blocks = 1;
				atomic_inc(&rdev2->nr_pending);
			} else
				clear_bit(R5_MadeGoodRepl, &dev->flags);
		}
4150
		if (!test_bit(R5_Insync, &dev->flags)) {
4151 4152 4153
			/* The ReadError flag will just be confusing now */
			clear_bit(R5_ReadError, &dev->flags);
			clear_bit(R5_ReWrite, &dev->flags);
L
Linus Torvalds 已提交
4154
		}
4155 4156 4157
		if (test_bit(R5_ReadError, &dev->flags))
			clear_bit(R5_Insync, &dev->flags);
		if (!test_bit(R5_Insync, &dev->flags)) {
4158 4159 4160
			if (s->failed < 2)
				s->failed_num[s->failed] = i;
			s->failed++;
4161 4162
			if (rdev && !test_bit(Faulty, &rdev->flags))
				do_recovery = 1;
4163
		}
L
Linus Torvalds 已提交
4164
	}
4165 4166 4167 4168
	if (test_bit(STRIPE_SYNCING, &sh->state)) {
		/* If there is a failed device being replaced,
		 *     we must be recovering.
		 * else if we are after recovery_cp, we must be syncing
4169
		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4170 4171 4172 4173 4174
		 * else we can only be replacing
		 * sync and recovery both need to read all devices, and so
		 * use the same flag.
		 */
		if (do_recovery ||
4175 4176
		    sh->sector >= conf->mddev->recovery_cp ||
		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4177 4178 4179 4180
			s->syncing = 1;
		else
			s->replacing = 1;
	}
L
Linus Torvalds 已提交
4181
	rcu_read_unlock();
4182 4183
}

4184 4185
static int clear_batch_ready(struct stripe_head *sh)
{
4186 4187 4188 4189
	/* Return '1' if this is a member of batch, or
	 * '0' if it is a lone stripe or a head which can now be
	 * handled.
	 */
4190 4191
	struct stripe_head *tmp;
	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4192
		return (sh->batch_head && sh->batch_head != sh);
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	spin_lock(&sh->stripe_lock);
	if (!sh->batch_head) {
		spin_unlock(&sh->stripe_lock);
		return 0;
	}

	/*
	 * this stripe could be added to a batch list before we check
	 * BATCH_READY, skips it
	 */
	if (sh->batch_head != sh) {
		spin_unlock(&sh->stripe_lock);
		return 1;
	}
	spin_lock(&sh->batch_lock);
	list_for_each_entry(tmp, &sh->batch_list, batch_list)
		clear_bit(STRIPE_BATCH_READY, &tmp->state);
	spin_unlock(&sh->batch_lock);
	spin_unlock(&sh->stripe_lock);

	/*
	 * BATCH_READY is cleared, no new stripes can be added.
	 * batch_list can be accessed without lock
	 */
	return 0;
}

4220 4221
static void break_stripe_batch_list(struct stripe_head *head_sh,
				    unsigned long handle_flags)
4222
{
4223
	struct stripe_head *sh, *next;
4224
	int i;
4225
	int do_wakeup = 0;
4226

4227 4228
	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {

4229 4230
		list_del_init(&sh->batch_list);

4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
		WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
					  (1 << STRIPE_SYNCING) |
					  (1 << STRIPE_REPLACED) |
					  (1 << STRIPE_PREREAD_ACTIVE) |
					  (1 << STRIPE_DELAYED) |
					  (1 << STRIPE_BIT_DELAY) |
					  (1 << STRIPE_FULL_WRITE) |
					  (1 << STRIPE_BIOFILL_RUN) |
					  (1 << STRIPE_COMPUTE_RUN)  |
					  (1 << STRIPE_OPS_REQ_PENDING) |
					  (1 << STRIPE_DISCARD) |
					  (1 << STRIPE_BATCH_READY) |
					  (1 << STRIPE_BATCH_ERR) |
					  (1 << STRIPE_BITMAP_PENDING)));
		WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
					      (1 << STRIPE_REPLACED)));

		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
					    (1 << STRIPE_DEGRADED)),
			      head_sh->state & (1 << STRIPE_INSYNC));

4252 4253
		sh->check_state = head_sh->check_state;
		sh->reconstruct_state = head_sh->reconstruct_state;
4254 4255 4256
		for (i = 0; i < sh->disks; i++) {
			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
				do_wakeup = 1;
4257 4258
			sh->dev[i].flags = head_sh->dev[i].flags &
				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4259
		}
4260 4261 4262
		spin_lock_irq(&sh->stripe_lock);
		sh->batch_head = NULL;
		spin_unlock_irq(&sh->stripe_lock);
4263 4264 4265
		if (handle_flags == 0 ||
		    sh->state & handle_flags)
			set_bit(STRIPE_HANDLE, &sh->state);
4266 4267
		release_stripe(sh);
	}
4268 4269 4270 4271 4272 4273
	spin_lock_irq(&head_sh->stripe_lock);
	head_sh->batch_head = NULL;
	spin_unlock_irq(&head_sh->stripe_lock);
	for (i = 0; i < head_sh->disks; i++)
		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
			do_wakeup = 1;
4274 4275
	if (head_sh->state & handle_flags)
		set_bit(STRIPE_HANDLE, &head_sh->state);
4276 4277 4278

	if (do_wakeup)
		wake_up(&head_sh->raid_conf->wait_for_overlap);
4279 4280
}

4281 4282 4283
static void handle_stripe(struct stripe_head *sh)
{
	struct stripe_head_state s;
4284
	struct r5conf *conf = sh->raid_conf;
4285
	int i;
4286 4287
	int prexor;
	int disks = sh->disks;
4288
	struct r5dev *pdev, *qdev;
4289 4290

	clear_bit(STRIPE_HANDLE, &sh->state);
4291
	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4292 4293 4294 4295 4296 4297
		/* already being handled, ensure it gets handled
		 * again when current action finishes */
		set_bit(STRIPE_HANDLE, &sh->state);
		return;
	}

4298 4299 4300 4301 4302
	if (clear_batch_ready(sh) ) {
		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
		return;
	}

4303
	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4304
		break_stripe_batch_list(sh, 0);
4305

4306
	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4307 4308 4309 4310 4311 4312
		spin_lock(&sh->stripe_lock);
		/* Cannot process 'sync' concurrently with 'discard' */
		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
			set_bit(STRIPE_SYNCING, &sh->state);
			clear_bit(STRIPE_INSYNC, &sh->state);
4313
			clear_bit(STRIPE_REPLACED, &sh->state);
4314 4315
		}
		spin_unlock(&sh->stripe_lock);
4316 4317 4318 4319 4320 4321 4322 4323
	}
	clear_bit(STRIPE_DELAYED, &sh->state);

	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
	       (unsigned long long)sh->sector, sh->state,
	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
	       sh->check_state, sh->reconstruct_state);
4324

4325
	analyse_stripe(sh, &s);
4326

4327 4328 4329 4330 4331
	if (s.handle_bad_blocks) {
		set_bit(STRIPE_HANDLE, &sh->state);
		goto finish;
	}

4332 4333
	if (unlikely(s.blocked_rdev)) {
		if (s.syncing || s.expanding || s.expanded ||
4334
		    s.replacing || s.to_write || s.written) {
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
			set_bit(STRIPE_HANDLE, &sh->state);
			goto finish;
		}
		/* There is nothing for the blocked_rdev to block */
		rdev_dec_pending(s.blocked_rdev, conf->mddev);
		s.blocked_rdev = NULL;
	}

	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
	}

	pr_debug("locked=%d uptodate=%d to_read=%d"
	       " to_write=%d failed=%d failed_num=%d,%d\n",
	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
	       s.failed_num[0], s.failed_num[1]);
	/* check if the array has lost more than max_degraded devices and,
	 * if so, some requests might need to be failed.
	 */
4355 4356 4357
	if (s.failed > conf->max_degraded) {
		sh->check_state = 0;
		sh->reconstruct_state = 0;
4358
		break_stripe_batch_list(sh, 0);
4359 4360
		if (s.to_read+s.to_write+s.written)
			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4361
		if (s.syncing + s.replacing)
4362 4363
			handle_failed_sync(conf, sh, &s);
	}
4364

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
	/* Now we check to see if any write operations have recently
	 * completed
	 */
	prexor = 0;
	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
		prexor = 1;
	if (sh->reconstruct_state == reconstruct_state_drain_result ||
	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
		sh->reconstruct_state = reconstruct_state_idle;

		/* All the 'written' buffers and the parity block are ready to
		 * be written back to disk
		 */
4378 4379
		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4380
		BUG_ON(sh->qd_idx >= 0 &&
4381 4382
		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4383 4384 4385 4386 4387 4388 4389 4390 4391
		for (i = disks; i--; ) {
			struct r5dev *dev = &sh->dev[i];
			if (test_bit(R5_LOCKED, &dev->flags) &&
				(i == sh->pd_idx || i == sh->qd_idx ||
				 dev->written)) {
				pr_debug("Writing block %d\n", i);
				set_bit(R5_Wantwrite, &dev->flags);
				if (prexor)
					continue;
4392 4393
				if (s.failed > 1)
					continue;
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
				if (!test_bit(R5_Insync, &dev->flags) ||
				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
				     s.failed == 0))
					set_bit(STRIPE_INSYNC, &sh->state);
			}
		}
		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			s.dec_preread_active = 1;
	}

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
	/*
	 * might be able to return some write requests if the parity blocks
	 * are safe, or on a failed drive
	 */
	pdev = &sh->dev[sh->pd_idx];
	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
	qdev = &sh->dev[sh->qd_idx];
	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
		|| conf->level < 6;

	if (s.written &&
	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
			     && !test_bit(R5_LOCKED, &pdev->flags)
			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
				 test_bit(R5_Discard, &pdev->flags))))) &&
	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
			     && !test_bit(R5_LOCKED, &qdev->flags)
			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
				 test_bit(R5_Discard, &qdev->flags))))))
		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);

	/* Now we might consider reading some blocks, either to check/generate
	 * parity, or to satisfy requests
	 * or to load a block that is being partially written.
	 */
	if (s.to_read || s.non_overwrite
	    || (conf->level == 6 && s.to_write && s.failed)
	    || (s.syncing && (s.uptodate + s.compute < disks))
	    || s.replacing
	    || s.expanding)
		handle_stripe_fill(sh, &s, disks);

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
	/* Now to consider new write requests and what else, if anything
	 * should be read.  We do not handle new writes when:
	 * 1/ A 'write' operation (copy+xor) is already in flight.
	 * 2/ A 'check' operation is in flight, as it may clobber the parity
	 *    block.
	 */
	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
		handle_stripe_dirtying(conf, sh, &s, disks);

	/* maybe we need to check and possibly fix the parity for this stripe
	 * Any reads will already have been scheduled, so we just see if enough
	 * data is available.  The parity check is held off while parity
	 * dependent operations are in flight.
	 */
	if (sh->check_state ||
	    (s.syncing && s.locked == 0 &&
	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
	     !test_bit(STRIPE_INSYNC, &sh->state))) {
		if (conf->level == 6)
			handle_parity_checks6(conf, sh, &s, disks);
		else
			handle_parity_checks5(conf, sh, &s, disks);
	}
4461

4462 4463 4464
	if ((s.replacing || s.syncing) && s.locked == 0
	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4465 4466
		/* Write out to replacement devices where possible */
		for (i = 0; i < conf->raid_disks; i++)
4467 4468
			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4469 4470 4471 4472
				set_bit(R5_WantReplace, &sh->dev[i].flags);
				set_bit(R5_LOCKED, &sh->dev[i].flags);
				s.locked++;
			}
4473 4474 4475
		if (s.replacing)
			set_bit(STRIPE_INSYNC, &sh->state);
		set_bit(STRIPE_REPLACED, &sh->state);
4476 4477
	}
	if ((s.syncing || s.replacing) && s.locked == 0 &&
4478
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4479
	    test_bit(STRIPE_INSYNC, &sh->state)) {
4480 4481
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
		clear_bit(STRIPE_SYNCING, &sh->state);
4482 4483
		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
			wake_up(&conf->wait_for_overlap);
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
	}

	/* If the failed drives are just a ReadError, then we might need
	 * to progress the repair/check process
	 */
	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
		for (i = 0; i < s.failed; i++) {
			struct r5dev *dev = &sh->dev[s.failed_num[i]];
			if (test_bit(R5_ReadError, &dev->flags)
			    && !test_bit(R5_LOCKED, &dev->flags)
			    && test_bit(R5_UPTODATE, &dev->flags)
				) {
				if (!test_bit(R5_ReWrite, &dev->flags)) {
					set_bit(R5_Wantwrite, &dev->flags);
					set_bit(R5_ReWrite, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				} else {
					/* let's read it back */
					set_bit(R5_Wantread, &dev->flags);
					set_bit(R5_LOCKED, &dev->flags);
					s.locked++;
				}
			}
		}

4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
	/* Finish reconstruct operations initiated by the expansion process */
	if (sh->reconstruct_state == reconstruct_state_result) {
		struct stripe_head *sh_src
			= get_active_stripe(conf, sh->sector, 1, 1, 1);
		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
			/* sh cannot be written until sh_src has been read.
			 * so arrange for sh to be delayed a little
			 */
			set_bit(STRIPE_DELAYED, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
					      &sh_src->state))
				atomic_inc(&conf->preread_active_stripes);
			release_stripe(sh_src);
			goto finish;
		}
		if (sh_src)
			release_stripe(sh_src);

		sh->reconstruct_state = reconstruct_state_idle;
		clear_bit(STRIPE_EXPANDING, &sh->state);
		for (i = conf->raid_disks; i--; ) {
			set_bit(R5_Wantwrite, &sh->dev[i].flags);
			set_bit(R5_LOCKED, &sh->dev[i].flags);
			s.locked++;
		}
	}
4537

4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
	    !sh->reconstruct_state) {
		/* Need to write out all blocks after computing parity */
		sh->disks = conf->raid_disks;
		stripe_set_idx(sh->sector, conf, 0, sh);
		schedule_reconstruction(sh, &s, 1, 1);
	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
		clear_bit(STRIPE_EXPAND_READY, &sh->state);
		atomic_dec(&conf->reshape_stripes);
		wake_up(&conf->wait_for_overlap);
		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
	}

	if (s.expanding && s.locked == 0 &&
	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
		handle_stripe_expansion(conf, sh);
4554

4555
finish:
4556
	/* wait for this device to become unblocked */
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
	if (unlikely(s.blocked_rdev)) {
		if (conf->mddev->external)
			md_wait_for_blocked_rdev(s.blocked_rdev,
						 conf->mddev);
		else
			/* Internal metadata will immediately
			 * be written by raid5d, so we don't
			 * need to wait here.
			 */
			rdev_dec_pending(s.blocked_rdev,
					 conf->mddev);
	}
4569

4570 4571
	if (s.handle_bad_blocks)
		for (i = disks; i--; ) {
4572
			struct md_rdev *rdev;
4573 4574 4575 4576 4577 4578 4579 4580 4581
			struct r5dev *dev = &sh->dev[i];
			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
				/* We own a safe reference to the rdev */
				rdev = conf->disks[i].rdev;
				if (!rdev_set_badblocks(rdev, sh->sector,
							STRIPE_SECTORS, 0))
					md_error(conf->mddev, rdev);
				rdev_dec_pending(rdev, conf->mddev);
			}
4582 4583 4584
			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
				rdev = conf->disks[i].rdev;
				rdev_clear_badblocks(rdev, sh->sector,
4585
						     STRIPE_SECTORS, 0);
4586 4587
				rdev_dec_pending(rdev, conf->mddev);
			}
4588 4589
			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
				rdev = conf->disks[i].replacement;
4590 4591 4592
				if (!rdev)
					/* rdev have been moved down */
					rdev = conf->disks[i].rdev;
4593
				rdev_clear_badblocks(rdev, sh->sector,
4594
						     STRIPE_SECTORS, 0);
4595 4596
				rdev_dec_pending(rdev, conf->mddev);
			}
4597 4598
		}

4599 4600 4601
	if (s.ops_request)
		raid_run_ops(sh, s.ops_request);

D
Dan Williams 已提交
4602
	ops_run_io(sh, &s);
4603

4604
	if (s.dec_preread_active) {
4605
		/* We delay this until after ops_run_io so that if make_request
T
Tejun Heo 已提交
4606
		 * is waiting on a flush, it won't continue until the writes
4607 4608 4609 4610 4611 4612 4613 4614
		 * have actually been submitted.
		 */
		atomic_dec(&conf->preread_active_stripes);
		if (atomic_read(&conf->preread_active_stripes) <
		    IO_THRESHOLD)
			md_wakeup_thread(conf->mddev->thread);
	}

4615
	return_io(s.return_bi);
4616

4617
	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4618 4619
}

4620
static void raid5_activate_delayed(struct r5conf *conf)
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
{
	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
		while (!list_empty(&conf->delayed_list)) {
			struct list_head *l = conf->delayed_list.next;
			struct stripe_head *sh;
			sh = list_entry(l, struct stripe_head, lru);
			list_del_init(l);
			clear_bit(STRIPE_DELAYED, &sh->state);
			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
4631
			list_add_tail(&sh->lru, &conf->hold_list);
4632
			raid5_wakeup_stripe_thread(sh);
4633
		}
N
NeilBrown 已提交
4634
	}
4635 4636
}

4637 4638
static void activate_bit_delay(struct r5conf *conf,
	struct list_head *temp_inactive_list)
4639 4640 4641 4642 4643 4644 4645
{
	/* device_lock is held */
	struct list_head head;
	list_add(&head, &conf->bitmap_list);
	list_del_init(&conf->bitmap_list);
	while (!list_empty(&head)) {
		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4646
		int hash;
4647 4648
		list_del_init(&sh->lru);
		atomic_inc(&sh->count);
4649 4650
		hash = sh->hash_lock_index;
		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4651 4652 4653
	}
}

4654
static int raid5_congested(struct mddev *mddev, int bits)
4655
{
4656
	struct r5conf *conf = mddev->private;
4657 4658 4659 4660

	/* No difference between reads and writes.  Just check
	 * how busy the stripe_cache is
	 */
4661

4662
	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4663 4664 4665
		return 1;
	if (conf->quiesce)
		return 1;
4666
	if (atomic_read(&conf->empty_inactive_list_nr))
4667 4668 4669 4670 4671
		return 1;

	return 0;
}

4672 4673 4674
/* We want read requests to align with chunks where possible,
 * but write requests don't need to.
 */
4675
static int raid5_mergeable_bvec(struct mddev *mddev,
4676 4677
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
4678
{
4679
	struct r5conf *conf = mddev->private;
4680
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4681
	int max;
4682
	unsigned int chunk_sectors;
4683
	unsigned int bio_sectors = bvm->bi_size >> 9;
4684

4685 4686 4687 4688 4689 4690
	/*
	 * always allow writes to be mergeable, read as well if array
	 * is degraded as we'll go through stripe cache anyway.
	 */
	if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
		return biovec->bv_len;
4691

4692
	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4693 4694 4695 4696 4697 4698 4699 4700
	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
	if (max < 0) max = 0;
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else
		return max;
}

4701
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4702
{
4703
	struct r5conf *conf = mddev->private;
4704
	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4705
	unsigned int chunk_sectors;
4706
	unsigned int bio_sectors = bio_sectors(bio);
4707

4708
	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4709 4710 4711 4712
	return  chunk_sectors >=
		((sector & (chunk_sectors - 1)) + bio_sectors);
}

4713 4714 4715 4716
/*
 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
 *  later sampled by raid5d.
 */
4717
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
{
	unsigned long flags;

	spin_lock_irqsave(&conf->device_lock, flags);

	bi->bi_next = conf->retry_read_aligned_list;
	conf->retry_read_aligned_list = bi;

	spin_unlock_irqrestore(&conf->device_lock, flags);
	md_wakeup_thread(conf->mddev->thread);
}

4730
static struct bio *remove_bio_from_retry(struct r5conf *conf)
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
{
	struct bio *bi;

	bi = conf->retry_read_aligned;
	if (bi) {
		conf->retry_read_aligned = NULL;
		return bi;
	}
	bi = conf->retry_read_aligned_list;
	if(bi) {
4741
		conf->retry_read_aligned_list = bi->bi_next;
4742
		bi->bi_next = NULL;
4743 4744 4745 4746
		/*
		 * this sets the active strip count to 1 and the processed
		 * strip count to zero (upper 8 bits)
		 */
4747
		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4748 4749 4750 4751 4752
	}

	return bi;
}

4753 4754 4755 4756 4757 4758
/*
 *  The "raid5_align_endio" should check if the read succeeded and if it
 *  did, call bio_endio on the original bio (having bio_put the new bio
 *  first).
 *  If the read failed..
 */
4759
static void raid5_align_endio(struct bio *bi, int error)
4760 4761
{
	struct bio* raid_bi  = bi->bi_private;
4762
	struct mddev *mddev;
4763
	struct r5conf *conf;
4764
	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4765
	struct md_rdev *rdev;
4766

4767
	bio_put(bi);
4768 4769 4770

	rdev = (void*)raid_bi->bi_next;
	raid_bi->bi_next = NULL;
4771 4772
	mddev = rdev->mddev;
	conf = mddev->private;
4773 4774 4775 4776

	rdev_dec_pending(rdev, conf->mddev);

	if (!error && uptodate) {
4777 4778
		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
					 raid_bi, 0);
4779
		bio_endio(raid_bi, 0);
4780
		if (atomic_dec_and_test(&conf->active_aligned_reads))
4781
			wake_up(&conf->wait_for_quiescent);
4782
		return;
4783 4784
	}

4785
	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4786 4787

	add_bio_to_retry(raid_bi, conf);
4788 4789
}

4790 4791
static int bio_fits_rdev(struct bio *bi)
{
4792
	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4793

4794
	if (bio_sectors(bi) > queue_max_sectors(q))
4795 4796
		return 0;
	blk_recount_segments(q, bi);
4797
	if (bi->bi_phys_segments > queue_max_segments(q))
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
		return 0;

	if (q->merge_bvec_fn)
		/* it's too hard to apply the merge_bvec_fn at this stage,
		 * just just give up
		 */
		return 0;

	return 1;
}

4809
static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4810
{
4811
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4812
	int dd_idx;
4813
	struct bio* align_bi;
4814
	struct md_rdev *rdev;
4815
	sector_t end_sector;
4816 4817

	if (!in_chunk_boundary(mddev, raid_bio)) {
4818
		pr_debug("chunk_aligned_read : non aligned\n");
4819 4820 4821
		return 0;
	}
	/*
4822
	 * use bio_clone_mddev to make a copy of the bio
4823
	 */
4824
	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
	if (!align_bi)
		return 0;
	/*
	 *   set bi_end_io to a new function, and set bi_private to the
	 *     original bio.
	 */
	align_bi->bi_end_io  = raid5_align_endio;
	align_bi->bi_private = raid_bio;
	/*
	 *	compute position
	 */
4836 4837 4838
	align_bi->bi_iter.bi_sector =
		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
				     0, &dd_idx, NULL);
4839

K
Kent Overstreet 已提交
4840
	end_sector = bio_end_sector(align_bi);
4841
	rcu_read_lock();
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
	if (!rdev || test_bit(Faulty, &rdev->flags) ||
	    rdev->recovery_offset < end_sector) {
		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
		if (rdev &&
		    (test_bit(Faulty, &rdev->flags) ||
		    !(test_bit(In_sync, &rdev->flags) ||
		      rdev->recovery_offset >= end_sector)))
			rdev = NULL;
	}
	if (rdev) {
4853 4854 4855
		sector_t first_bad;
		int bad_sectors;

4856 4857
		atomic_inc(&rdev->nr_pending);
		rcu_read_unlock();
4858 4859
		raid_bio->bi_next = (void*)rdev;
		align_bi->bi_bdev =  rdev->bdev;
4860
		__clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4861

4862
		if (!bio_fits_rdev(align_bi) ||
4863 4864
		    is_badblock(rdev, align_bi->bi_iter.bi_sector,
				bio_sectors(align_bi),
4865 4866
				&first_bad, &bad_sectors)) {
			/* too big in some way, or has a known bad block */
4867 4868 4869 4870 4871
			bio_put(align_bi);
			rdev_dec_pending(rdev, mddev);
			return 0;
		}

4872
		/* No reshape active, so we can trust rdev->data_offset */
4873
		align_bi->bi_iter.bi_sector += rdev->data_offset;
4874

4875
		spin_lock_irq(&conf->device_lock);
4876
		wait_event_lock_irq(conf->wait_for_quiescent,
4877
				    conf->quiesce == 0,
4878
				    conf->device_lock);
4879 4880 4881
		atomic_inc(&conf->active_aligned_reads);
		spin_unlock_irq(&conf->device_lock);

4882 4883 4884
		if (mddev->gendisk)
			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
					      align_bi, disk_devt(mddev->gendisk),
4885
					      raid_bio->bi_iter.bi_sector);
4886 4887 4888 4889
		generic_make_request(align_bi);
		return 1;
	} else {
		rcu_read_unlock();
4890
		bio_put(align_bi);
4891 4892 4893 4894
		return 0;
	}
}

4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
/* __get_priority_stripe - get the next stripe to process
 *
 * Full stripe writes are allowed to pass preread active stripes up until
 * the bypass_threshold is exceeded.  In general the bypass_count
 * increments when the handle_list is handled before the hold_list; however, it
 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
 * stripe with in flight i/o.  The bypass_count will be reset when the
 * head of the hold_list has changed, i.e. the head was promoted to the
 * handle_list.
 */
4905
static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4906
{
4907 4908
	struct stripe_head *sh = NULL, *tmp;
	struct list_head *handle_list = NULL;
4909
	struct r5worker_group *wg = NULL;
4910 4911 4912 4913 4914

	if (conf->worker_cnt_per_group == 0) {
		handle_list = &conf->handle_list;
	} else if (group != ANY_GROUP) {
		handle_list = &conf->worker_groups[group].handle_list;
4915
		wg = &conf->worker_groups[group];
4916 4917 4918 4919
	} else {
		int i;
		for (i = 0; i < conf->group_cnt; i++) {
			handle_list = &conf->worker_groups[i].handle_list;
4920
			wg = &conf->worker_groups[i];
4921 4922 4923 4924
			if (!list_empty(handle_list))
				break;
		}
	}
4925 4926 4927

	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
		  __func__,
4928
		  list_empty(handle_list) ? "empty" : "busy",
4929 4930 4931
		  list_empty(&conf->hold_list) ? "empty" : "busy",
		  atomic_read(&conf->pending_full_writes), conf->bypass_count);

4932 4933
	if (!list_empty(handle_list)) {
		sh = list_entry(handle_list->next, typeof(*sh), lru);
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950

		if (list_empty(&conf->hold_list))
			conf->bypass_count = 0;
		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
			if (conf->hold_list.next == conf->last_hold)
				conf->bypass_count++;
			else {
				conf->last_hold = conf->hold_list.next;
				conf->bypass_count -= conf->bypass_threshold;
				if (conf->bypass_count < 0)
					conf->bypass_count = 0;
			}
		}
	} else if (!list_empty(&conf->hold_list) &&
		   ((conf->bypass_threshold &&
		     conf->bypass_count > conf->bypass_threshold) ||
		    atomic_read(&conf->pending_full_writes) == 0)) {
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966

		list_for_each_entry(tmp, &conf->hold_list,  lru) {
			if (conf->worker_cnt_per_group == 0 ||
			    group == ANY_GROUP ||
			    !cpu_online(tmp->cpu) ||
			    cpu_to_group(tmp->cpu) == group) {
				sh = tmp;
				break;
			}
		}

		if (sh) {
			conf->bypass_count -= conf->bypass_threshold;
			if (conf->bypass_count < 0)
				conf->bypass_count = 0;
		}
4967
		wg = NULL;
4968 4969 4970
	}

	if (!sh)
4971 4972
		return NULL;

4973 4974 4975 4976
	if (wg) {
		wg->stripes_cnt--;
		sh->group = NULL;
	}
4977
	list_del_init(&sh->lru);
4978
	BUG_ON(atomic_inc_return(&sh->count) != 1);
4979 4980
	return sh;
}
4981

4982 4983 4984
struct raid5_plug_cb {
	struct blk_plug_cb	cb;
	struct list_head	list;
4985
	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4986 4987 4988 4989 4990 4991 4992 4993 4994
};

static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
{
	struct raid5_plug_cb *cb = container_of(
		blk_cb, struct raid5_plug_cb, cb);
	struct stripe_head *sh;
	struct mddev *mddev = cb->cb.data;
	struct r5conf *conf = mddev->private;
N
NeilBrown 已提交
4995
	int cnt = 0;
4996
	int hash;
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007

	if (cb->list.next && !list_empty(&cb->list)) {
		spin_lock_irq(&conf->device_lock);
		while (!list_empty(&cb->list)) {
			sh = list_first_entry(&cb->list, struct stripe_head, lru);
			list_del_init(&sh->lru);
			/*
			 * avoid race release_stripe_plug() sees
			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
			 * is still in our list
			 */
5008
			smp_mb__before_atomic();
5009
			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
S
Shaohua Li 已提交
5010 5011 5012 5013
			/*
			 * STRIPE_ON_RELEASE_LIST could be set here. In that
			 * case, the count is always > 1 here
			 */
5014 5015
			hash = sh->hash_lock_index;
			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
N
NeilBrown 已提交
5016
			cnt++;
5017 5018 5019
		}
		spin_unlock_irq(&conf->device_lock);
	}
5020 5021
	release_inactive_stripe_list(conf, cb->temp_inactive_list,
				     NR_STRIPE_HASH_LOCKS);
5022 5023
	if (mddev->queue)
		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	kfree(cb);
}

static void release_stripe_plug(struct mddev *mddev,
				struct stripe_head *sh)
{
	struct blk_plug_cb *blk_cb = blk_check_plugged(
		raid5_unplug, mddev,
		sizeof(struct raid5_plug_cb));
	struct raid5_plug_cb *cb;

	if (!blk_cb) {
		release_stripe(sh);
		return;
	}

	cb = container_of(blk_cb, struct raid5_plug_cb, cb);

5042 5043
	if (cb->list.next == NULL) {
		int i;
5044
		INIT_LIST_HEAD(&cb->list);
5045 5046 5047
		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
			INIT_LIST_HEAD(cb->temp_inactive_list + i);
	}
5048 5049 5050 5051 5052 5053 5054

	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
		list_add_tail(&sh->lru, &cb->list);
	else
		release_stripe(sh);
}

S
Shaohua Li 已提交
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
static void make_discard_request(struct mddev *mddev, struct bio *bi)
{
	struct r5conf *conf = mddev->private;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
	int remaining;
	int stripe_sectors;

	if (mddev->reshape_position != MaxSector)
		/* Skip discard while reshape is happening */
		return;

5067 5068
	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
S
Shaohua Li 已提交
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089

	bi->bi_next = NULL;
	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */

	stripe_sectors = conf->chunk_sectors *
		(conf->raid_disks - conf->max_degraded);
	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
					       stripe_sectors);
	sector_div(last_sector, stripe_sectors);

	logical_sector *= conf->chunk_sectors;
	last_sector *= conf->chunk_sectors;

	for (; logical_sector < last_sector;
	     logical_sector += STRIPE_SECTORS) {
		DEFINE_WAIT(w);
		int d;
	again:
		sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
		prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
5090 5091 5092 5093 5094 5095 5096
		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
		if (test_bit(STRIPE_SYNCING, &sh->state)) {
			release_stripe(sh);
			schedule();
			goto again;
		}
		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
S
Shaohua Li 已提交
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
		spin_lock_irq(&sh->stripe_lock);
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			if (sh->dev[d].towrite || sh->dev[d].toread) {
				set_bit(R5_Overlap, &sh->dev[d].flags);
				spin_unlock_irq(&sh->stripe_lock);
				release_stripe(sh);
				schedule();
				goto again;
			}
		}
5109
		set_bit(STRIPE_DISCARD, &sh->state);
S
Shaohua Li 已提交
5110
		finish_wait(&conf->wait_for_overlap, &w);
5111
		sh->overwrite_disks = 0;
S
Shaohua Li 已提交
5112 5113 5114 5115 5116 5117
		for (d = 0; d < conf->raid_disks; d++) {
			if (d == sh->pd_idx || d == sh->qd_idx)
				continue;
			sh->dev[d].towrite = bi;
			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
			raid5_inc_bi_active_stripes(bi);
5118
			sh->overwrite_disks++;
S
Shaohua Li 已提交
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
		}
		spin_unlock_irq(&sh->stripe_lock);
		if (conf->mddev->bitmap) {
			for (d = 0;
			     d < conf->raid_disks - conf->max_degraded;
			     d++)
				bitmap_startwrite(mddev->bitmap,
						  sh->sector,
						  STRIPE_SECTORS,
						  0);
			sh->bm_seq = conf->seq_flush + 1;
			set_bit(STRIPE_BIT_DELAY, &sh->state);
		}

		set_bit(STRIPE_HANDLE, &sh->state);
		clear_bit(STRIPE_DELAYED, &sh->state);
		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
			atomic_inc(&conf->preread_active_stripes);
		release_stripe_plug(mddev, sh);
	}

	remaining = raid5_dec_bi_active_stripes(bi);
	if (remaining == 0) {
		md_write_end(mddev);
		bio_endio(bi, 0);
	}
}

5147
static void make_request(struct mddev *mddev, struct bio * bi)
L
Linus Torvalds 已提交
5148
{
5149
	struct r5conf *conf = mddev->private;
5150
	int dd_idx;
L
Linus Torvalds 已提交
5151 5152 5153
	sector_t new_sector;
	sector_t logical_sector, last_sector;
	struct stripe_head *sh;
5154
	const int rw = bio_data_dir(bi);
5155
	int remaining;
5156 5157
	DEFINE_WAIT(w);
	bool do_prepare;
L
Linus Torvalds 已提交
5158

T
Tejun Heo 已提交
5159 5160
	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
		md_flush_request(mddev, bi);
5161
		return;
5162 5163
	}

5164
	md_write_start(mddev, bi);
5165

5166 5167 5168 5169 5170 5171
	/*
	 * If array is degraded, better not do chunk aligned read because
	 * later we might have to read it again in order to reconstruct
	 * data on failed drives.
	 */
	if (rw == READ && mddev->degraded == 0 &&
5172
	     mddev->reshape_position == MaxSector &&
5173
	     chunk_aligned_read(mddev,bi))
5174
		return;
5175

S
Shaohua Li 已提交
5176 5177 5178 5179 5180
	if (unlikely(bi->bi_rw & REQ_DISCARD)) {
		make_discard_request(mddev, bi);
		return;
	}

5181
	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
K
Kent Overstreet 已提交
5182
	last_sector = bio_end_sector(bi);
L
Linus Torvalds 已提交
5183 5184
	bi->bi_next = NULL;
	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5185

5186
	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5187
	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5188
		int previous;
5189
		int seq;
5190

5191
		do_prepare = false;
5192
	retry:
5193
		seq = read_seqcount_begin(&conf->gen_lock);
5194
		previous = 0;
5195 5196 5197
		if (do_prepare)
			prepare_to_wait(&conf->wait_for_overlap, &w,
				TASK_UNINTERRUPTIBLE);
5198
		if (unlikely(conf->reshape_progress != MaxSector)) {
5199
			/* spinlock is needed as reshape_progress may be
5200 5201
			 * 64bit on a 32bit platform, and so it might be
			 * possible to see a half-updated value
5202
			 * Of course reshape_progress could change after
5203 5204 5205 5206
			 * the lock is dropped, so once we get a reference
			 * to the stripe that we think it is, we will have
			 * to check again.
			 */
5207
			spin_lock_irq(&conf->device_lock);
5208
			if (mddev->reshape_backwards
5209 5210
			    ? logical_sector < conf->reshape_progress
			    : logical_sector >= conf->reshape_progress) {
5211 5212
				previous = 1;
			} else {
5213
				if (mddev->reshape_backwards
5214 5215
				    ? logical_sector < conf->reshape_safe
				    : logical_sector >= conf->reshape_safe) {
5216 5217
					spin_unlock_irq(&conf->device_lock);
					schedule();
5218
					do_prepare = true;
5219 5220 5221
					goto retry;
				}
			}
5222 5223
			spin_unlock_irq(&conf->device_lock);
		}
5224

5225 5226
		new_sector = raid5_compute_sector(conf, logical_sector,
						  previous,
5227
						  &dd_idx, NULL);
5228
		pr_debug("raid456: make_request, sector %llu logical %llu\n",
5229
			(unsigned long long)new_sector,
L
Linus Torvalds 已提交
5230 5231
			(unsigned long long)logical_sector);

5232
		sh = get_active_stripe(conf, new_sector, previous,
5233
				       (bi->bi_rw&RWA_MASK), 0);
L
Linus Torvalds 已提交
5234
		if (sh) {
5235
			if (unlikely(previous)) {
5236
				/* expansion might have moved on while waiting for a
5237 5238 5239 5240 5241 5242
				 * stripe, so we must do the range check again.
				 * Expansion could still move past after this
				 * test, but as we are holding a reference to
				 * 'sh', we know that if that happens,
				 *  STRIPE_EXPANDING will get set and the expansion
				 * won't proceed until we finish with the stripe.
5243 5244 5245
				 */
				int must_retry = 0;
				spin_lock_irq(&conf->device_lock);
5246
				if (mddev->reshape_backwards
5247 5248
				    ? logical_sector >= conf->reshape_progress
				    : logical_sector < conf->reshape_progress)
5249 5250 5251 5252 5253
					/* mismatch, need to try again */
					must_retry = 1;
				spin_unlock_irq(&conf->device_lock);
				if (must_retry) {
					release_stripe(sh);
5254
					schedule();
5255
					do_prepare = true;
5256 5257 5258
					goto retry;
				}
			}
5259 5260 5261 5262 5263 5264 5265
			if (read_seqcount_retry(&conf->gen_lock, seq)) {
				/* Might have got the wrong stripe_head
				 * by accident
				 */
				release_stripe(sh);
				goto retry;
			}
5266

5267
			if (rw == WRITE &&
5268
			    logical_sector >= mddev->suspend_lo &&
5269 5270
			    logical_sector < mddev->suspend_hi) {
				release_stripe(sh);
5271 5272 5273 5274 5275 5276 5277 5278
				/* As the suspend_* range is controlled by
				 * userspace, we want an interruptible
				 * wait.
				 */
				flush_signals(current);
				prepare_to_wait(&conf->wait_for_overlap,
						&w, TASK_INTERRUPTIBLE);
				if (logical_sector >= mddev->suspend_lo &&
5279
				    logical_sector < mddev->suspend_hi) {
5280
					schedule();
5281 5282
					do_prepare = true;
				}
5283 5284
				goto retry;
			}
5285 5286

			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5287
			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5288 5289
				/* Stripe is busy expanding or
				 * add failed due to overlap.  Flush everything
L
Linus Torvalds 已提交
5290 5291
				 * and wait a while
				 */
N
NeilBrown 已提交
5292
				md_wakeup_thread(mddev->thread);
L
Linus Torvalds 已提交
5293 5294
				release_stripe(sh);
				schedule();
5295
				do_prepare = true;
L
Linus Torvalds 已提交
5296 5297
				goto retry;
			}
5298 5299
			set_bit(STRIPE_HANDLE, &sh->state);
			clear_bit(STRIPE_DELAYED, &sh->state);
5300 5301
			if ((!sh->batch_head || sh == sh->batch_head) &&
			    (bi->bi_rw & REQ_SYNC) &&
5302 5303
			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
				atomic_inc(&conf->preread_active_stripes);
5304
			release_stripe_plug(mddev, sh);
L
Linus Torvalds 已提交
5305 5306 5307 5308 5309 5310
		} else {
			/* cannot get stripe for read-ahead, just give-up */
			clear_bit(BIO_UPTODATE, &bi->bi_flags);
			break;
		}
	}
5311
	finish_wait(&conf->wait_for_overlap, &w);
5312

5313
	remaining = raid5_dec_bi_active_stripes(bi);
5314
	if (remaining == 0) {
L
Linus Torvalds 已提交
5315

5316
		if ( rw == WRITE )
L
Linus Torvalds 已提交
5317
			md_write_end(mddev);
5318

5319 5320
		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
					 bi, 0);
5321
		bio_endio(bi, 0);
L
Linus Torvalds 已提交
5322 5323 5324
	}
}

5325
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
D
Dan Williams 已提交
5326

5327
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
L
Linus Torvalds 已提交
5328
{
5329 5330 5331 5332 5333 5334 5335 5336 5337
	/* reshaping is quite different to recovery/resync so it is
	 * handled quite separately ... here.
	 *
	 * On each call to sync_request, we gather one chunk worth of
	 * destination stripes and flag them as expanding.
	 * Then we find all the source stripes and request reads.
	 * As the reads complete, handle_stripe will copy the data
	 * into the destination stripe and release that stripe.
	 */
5338
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5339
	struct stripe_head *sh;
5340
	sector_t first_sector, last_sector;
5341 5342 5343
	int raid_disks = conf->previous_raid_disks;
	int data_disks = raid_disks - conf->max_degraded;
	int new_data_disks = conf->raid_disks - conf->max_degraded;
5344 5345
	int i;
	int dd_idx;
5346
	sector_t writepos, readpos, safepos;
5347
	sector_t stripe_addr;
5348
	int reshape_sectors;
5349
	struct list_head stripes;
5350
	sector_t retn;
5351

5352 5353
	if (sector_nr == 0) {
		/* If restarting in the middle, skip the initial sectors */
5354
		if (mddev->reshape_backwards &&
5355 5356 5357
		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
			sector_nr = raid5_size(mddev, 0, 0)
				- conf->reshape_progress;
5358 5359 5360 5361
		} else if (mddev->reshape_backwards &&
			   conf->reshape_progress == MaxSector) {
			/* shouldn't happen, but just in case, finish up.*/
			sector_nr = MaxSector;
5362
		} else if (!mddev->reshape_backwards &&
5363 5364
			   conf->reshape_progress > 0)
			sector_nr = conf->reshape_progress;
5365
		sector_div(sector_nr, new_data_disks);
5366
		if (sector_nr) {
5367 5368
			mddev->curr_resync_completed = sector_nr;
			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5369
			*skipped = 1;
5370 5371
			retn = sector_nr;
			goto finish;
5372
		}
5373 5374
	}

5375 5376 5377 5378
	/* We need to process a full chunk at a time.
	 * If old and new chunk sizes differ, we need to process the
	 * largest of these
	 */
5379 5380

	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5381

5382 5383 5384 5385 5386
	/* We update the metadata at least every 10 seconds, or when
	 * the data about to be copied would over-write the source of
	 * the data at the front of the range.  i.e. one new_stripe
	 * along from reshape_progress new_maps to after where
	 * reshape_safe old_maps to
5387
	 */
5388
	writepos = conf->reshape_progress;
5389
	sector_div(writepos, new_data_disks);
5390 5391
	readpos = conf->reshape_progress;
	sector_div(readpos, data_disks);
5392
	safepos = conf->reshape_safe;
5393
	sector_div(safepos, data_disks);
5394
	if (mddev->reshape_backwards) {
5395 5396
		BUG_ON(writepos < reshape_sectors);
		writepos -= reshape_sectors;
5397
		readpos += reshape_sectors;
5398
		safepos += reshape_sectors;
5399
	} else {
5400
		writepos += reshape_sectors;
5401 5402 5403 5404
		/* readpos and safepos are worst-case calculations.
		 * A negative number is overly pessimistic, and causes
		 * obvious problems for unsigned storage.  So clip to 0.
		 */
5405 5406
		readpos -= min_t(sector_t, reshape_sectors, readpos);
		safepos -= min_t(sector_t, reshape_sectors, safepos);
5407
	}
5408

5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
	/* Having calculated the 'writepos' possibly use it
	 * to set 'stripe_addr' which is where we will write to.
	 */
	if (mddev->reshape_backwards) {
		BUG_ON(conf->reshape_progress == 0);
		stripe_addr = writepos;
		BUG_ON((mddev->dev_sectors &
			~((sector_t)reshape_sectors - 1))
		       - reshape_sectors - stripe_addr
		       != sector_nr);
	} else {
		BUG_ON(writepos != sector_nr + reshape_sectors);
		stripe_addr = sector_nr;
	}

5424 5425 5426 5427
	/* 'writepos' is the most advanced device address we might write.
	 * 'readpos' is the least advanced device address we might read.
	 * 'safepos' is the least address recorded in the metadata as having
	 *     been reshaped.
5428 5429 5430 5431
	 * If there is a min_offset_diff, these are adjusted either by
	 * increasing the safepos/readpos if diff is negative, or
	 * increasing writepos if diff is positive.
	 * If 'readpos' is then behind 'writepos', there is no way that we can
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
	 * ensure safety in the face of a crash - that must be done by userspace
	 * making a backup of the data.  So in that case there is no particular
	 * rush to update metadata.
	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
	 * update the metadata to advance 'safepos' to match 'readpos' so that
	 * we can be safe in the event of a crash.
	 * So we insist on updating metadata if safepos is behind writepos and
	 * readpos is beyond writepos.
	 * In any case, update the metadata every 10 seconds.
	 * Maybe that number should be configurable, but I'm not sure it is
	 * worth it.... maybe it could be a multiple of safemode_delay???
	 */
5444 5445 5446 5447 5448 5449
	if (conf->min_offset_diff < 0) {
		safepos += -conf->min_offset_diff;
		readpos += -conf->min_offset_diff;
	} else
		writepos += conf->min_offset_diff;

5450
	if ((mddev->reshape_backwards
5451 5452 5453
	     ? (safepos > writepos && readpos < writepos)
	     : (safepos < writepos && readpos > writepos)) ||
	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5454 5455
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
5456 5457 5458 5459
			   atomic_read(&conf->reshape_stripes)==0
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (atomic_read(&conf->reshape_stripes) != 0)
			return 0;
5460
		mddev->reshape_position = conf->reshape_progress;
5461
		mddev->curr_resync_completed = sector_nr;
5462
		conf->reshape_checkpoint = jiffies;
5463
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5464
		md_wakeup_thread(mddev->thread);
5465
		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5466 5467 5468
			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
			return 0;
5469
		spin_lock_irq(&conf->device_lock);
5470
		conf->reshape_safe = mddev->reshape_position;
5471 5472
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
5473
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5474 5475
	}

5476
	INIT_LIST_HEAD(&stripes);
5477
	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5478
		int j;
5479
		int skipped_disk = 0;
5480
		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5481 5482 5483 5484 5485 5486 5487 5488 5489
		set_bit(STRIPE_EXPANDING, &sh->state);
		atomic_inc(&conf->reshape_stripes);
		/* If any of this stripe is beyond the end of the old
		 * array, then we need to zero those blocks
		 */
		for (j=sh->disks; j--;) {
			sector_t s;
			if (j == sh->pd_idx)
				continue;
5490
			if (conf->level == 6 &&
5491
			    j == sh->qd_idx)
5492
				continue;
5493
			s = compute_blocknr(sh, j, 0);
D
Dan Williams 已提交
5494
			if (s < raid5_size(mddev, 0, 0)) {
5495
				skipped_disk = 1;
5496 5497 5498 5499 5500 5501
				continue;
			}
			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
			set_bit(R5_Expanded, &sh->dev[j].flags);
			set_bit(R5_UPTODATE, &sh->dev[j].flags);
		}
5502
		if (!skipped_disk) {
5503 5504 5505
			set_bit(STRIPE_EXPAND_READY, &sh->state);
			set_bit(STRIPE_HANDLE, &sh->state);
		}
5506
		list_add(&sh->lru, &stripes);
5507 5508
	}
	spin_lock_irq(&conf->device_lock);
5509
	if (mddev->reshape_backwards)
5510
		conf->reshape_progress -= reshape_sectors * new_data_disks;
5511
	else
5512
		conf->reshape_progress += reshape_sectors * new_data_disks;
5513 5514 5515 5516 5517 5518 5519
	spin_unlock_irq(&conf->device_lock);
	/* Ok, those stripe are ready. We can start scheduling
	 * reads on the source stripes.
	 * The source stripes are determined by mapping the first and last
	 * block on the destination stripes.
	 */
	first_sector =
5520
		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5521
				     1, &dd_idx, NULL);
5522
	last_sector =
5523
		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5524
					    * new_data_disks - 1),
5525
				     1, &dd_idx, NULL);
A
Andre Noll 已提交
5526 5527
	if (last_sector >= mddev->dev_sectors)
		last_sector = mddev->dev_sectors - 1;
5528
	while (first_sector <= last_sector) {
5529
		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5530 5531 5532 5533 5534
		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
		set_bit(STRIPE_HANDLE, &sh->state);
		release_stripe(sh);
		first_sector += STRIPE_SECTORS;
	}
5535 5536 5537 5538 5539 5540 5541 5542
	/* Now that the sources are clearly marked, we can release
	 * the destination stripes
	 */
	while (!list_empty(&stripes)) {
		sh = list_entry(stripes.next, struct stripe_head, lru);
		list_del_init(&sh->lru);
		release_stripe(sh);
	}
5543 5544 5545
	/* If this takes us to the resync_max point where we have to pause,
	 * then we need to write out the superblock.
	 */
5546
	sector_nr += reshape_sectors;
5547 5548
	retn = reshape_sectors;
finish:
5549 5550
	if (mddev->curr_resync_completed > mddev->resync_max ||
	    (sector_nr - mddev->curr_resync_completed) * 2
5551
	    >= mddev->resync_max - mddev->curr_resync_completed) {
5552 5553
		/* Cannot proceed until we've updated the superblock... */
		wait_event(conf->wait_for_overlap,
5554 5555 5556 5557
			   atomic_read(&conf->reshape_stripes) == 0
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (atomic_read(&conf->reshape_stripes) != 0)
			goto ret;
5558
		mddev->reshape_position = conf->reshape_progress;
5559
		mddev->curr_resync_completed = sector_nr;
5560
		conf->reshape_checkpoint = jiffies;
5561 5562 5563 5564
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
		wait_event(mddev->sb_wait,
			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5565 5566 5567
			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
			goto ret;
5568
		spin_lock_irq(&conf->device_lock);
5569
		conf->reshape_safe = mddev->reshape_position;
5570 5571
		spin_unlock_irq(&conf->device_lock);
		wake_up(&conf->wait_for_overlap);
5572
		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5573
	}
5574
ret:
5575
	return retn;
5576 5577
}

5578
static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5579
{
5580
	struct r5conf *conf = mddev->private;
5581
	struct stripe_head *sh;
A
Andre Noll 已提交
5582
	sector_t max_sector = mddev->dev_sectors;
N
NeilBrown 已提交
5583
	sector_t sync_blocks;
5584 5585
	int still_degraded = 0;
	int i;
L
Linus Torvalds 已提交
5586

5587
	if (sector_nr >= max_sector) {
L
Linus Torvalds 已提交
5588
		/* just being told to finish up .. nothing much to do */
5589

5590 5591 5592 5593
		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
			end_reshape(conf);
			return 0;
		}
5594 5595 5596 5597

		if (mddev->curr_resync < max_sector) /* aborted */
			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
					&sync_blocks, 1);
5598
		else /* completed sync */
5599 5600 5601
			conf->fullsync = 0;
		bitmap_close_sync(mddev->bitmap);

L
Linus Torvalds 已提交
5602 5603
		return 0;
	}
5604

5605 5606 5607
	/* Allow raid5_quiesce to complete */
	wait_event(conf->wait_for_overlap, conf->quiesce != 2);

5608 5609
	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
		return reshape_request(mddev, sector_nr, skipped);
5610

5611 5612 5613 5614 5615 5616
	/* No need to check resync_max as we never do more than one
	 * stripe, and as resync_max will always be on a chunk boundary,
	 * if the check in md_do_sync didn't fire, there is no chance
	 * of overstepping resync_max here
	 */

5617
	/* if there is too many failed drives and we are trying
L
Linus Torvalds 已提交
5618 5619 5620
	 * to resync, then assert that we are finished, because there is
	 * nothing we can do.
	 */
5621
	if (mddev->degraded >= conf->max_degraded &&
5622
	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
A
Andre Noll 已提交
5623
		sector_t rv = mddev->dev_sectors - sector_nr;
5624
		*skipped = 1;
L
Linus Torvalds 已提交
5625 5626
		return rv;
	}
5627 5628 5629 5630
	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
	    !conf->fullsync &&
	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
	    sync_blocks >= STRIPE_SECTORS) {
5631 5632 5633 5634 5635
		/* we can skip this block, and probably more */
		sync_blocks /= STRIPE_SECTORS;
		*skipped = 1;
		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
	}
L
Linus Torvalds 已提交
5636

N
NeilBrown 已提交
5637 5638
	bitmap_cond_end_sync(mddev->bitmap, sector_nr);

5639
	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
L
Linus Torvalds 已提交
5640
	if (sh == NULL) {
5641
		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
L
Linus Torvalds 已提交
5642
		/* make sure we don't swamp the stripe cache if someone else
5643
		 * is trying to get access
L
Linus Torvalds 已提交
5644
		 */
5645
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
5646
	}
5647
	/* Need to check if array will still be degraded after recovery/resync
5648 5649
	 * Note in case of > 1 drive failures it's possible we're rebuilding
	 * one drive while leaving another faulty drive in array.
5650
	 */
5651 5652 5653 5654 5655
	rcu_read_lock();
	for (i = 0; i < conf->raid_disks; i++) {
		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);

		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5656
			still_degraded = 1;
5657 5658
	}
	rcu_read_unlock();
5659 5660 5661

	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);

5662
	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5663
	set_bit(STRIPE_HANDLE, &sh->state);
L
Linus Torvalds 已提交
5664 5665 5666 5667 5668 5669

	release_stripe(sh);

	return STRIPE_SECTORS;
}

5670
static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
{
	/* We may not be able to submit a whole bio at once as there
	 * may not be enough stripe_heads available.
	 * We cannot pre-allocate enough stripe_heads as we may need
	 * more than exist in the cache (if we allow ever large chunks).
	 * So we do one stripe head at a time and record in
	 * ->bi_hw_segments how many have been done.
	 *
	 * We *know* that this entire raid_bio is in one chunk, so
	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
	 */
	struct stripe_head *sh;
5683
	int dd_idx;
5684 5685 5686 5687 5688
	sector_t sector, logical_sector, last_sector;
	int scnt = 0;
	int remaining;
	int handled = 0;

5689 5690
	logical_sector = raid_bio->bi_iter.bi_sector &
		~((sector_t)STRIPE_SECTORS-1);
5691
	sector = raid5_compute_sector(conf, logical_sector,
5692
				      0, &dd_idx, NULL);
K
Kent Overstreet 已提交
5693
	last_sector = bio_end_sector(raid_bio);
5694 5695

	for (; logical_sector < last_sector;
5696 5697 5698
	     logical_sector += STRIPE_SECTORS,
		     sector += STRIPE_SECTORS,
		     scnt++) {
5699

5700
		if (scnt < raid5_bi_processed_stripes(raid_bio))
5701 5702 5703
			/* already done this stripe */
			continue;

5704
		sh = get_active_stripe(conf, sector, 0, 1, 1);
5705 5706 5707

		if (!sh) {
			/* failed to get a stripe - must wait */
5708
			raid5_set_bi_processed_stripes(raid_bio, scnt);
5709 5710 5711 5712
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

5713
		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5714
			release_stripe(sh);
5715
			raid5_set_bi_processed_stripes(raid_bio, scnt);
5716 5717 5718 5719
			conf->retry_read_aligned = raid_bio;
			return handled;
		}

5720
		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5721
		handle_stripe(sh);
5722 5723 5724
		release_stripe(sh);
		handled++;
	}
5725
	remaining = raid5_dec_bi_active_stripes(raid_bio);
5726 5727 5728
	if (remaining == 0) {
		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
					 raid_bio, 0);
5729
		bio_endio(raid_bio, 0);
5730
	}
5731
	if (atomic_dec_and_test(&conf->active_aligned_reads))
5732
		wake_up(&conf->wait_for_quiescent);
5733 5734 5735
	return handled;
}

5736
static int handle_active_stripes(struct r5conf *conf, int group,
5737 5738
				 struct r5worker *worker,
				 struct list_head *temp_inactive_list)
5739 5740
{
	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5741 5742
	int i, batch_size = 0, hash;
	bool release_inactive = false;
5743 5744

	while (batch_size < MAX_STRIPE_BATCH &&
5745
			(sh = __get_priority_stripe(conf, group)) != NULL)
5746 5747
		batch[batch_size++] = sh;

5748 5749 5750 5751 5752 5753 5754 5755
	if (batch_size == 0) {
		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
			if (!list_empty(temp_inactive_list + i))
				break;
		if (i == NR_STRIPE_HASH_LOCKS)
			return batch_size;
		release_inactive = true;
	}
5756 5757
	spin_unlock_irq(&conf->device_lock);

5758 5759 5760 5761 5762 5763 5764 5765
	release_inactive_stripe_list(conf, temp_inactive_list,
				     NR_STRIPE_HASH_LOCKS);

	if (release_inactive) {
		spin_lock_irq(&conf->device_lock);
		return 0;
	}

5766 5767 5768 5769 5770 5771
	for (i = 0; i < batch_size; i++)
		handle_stripe(batch[i]);

	cond_resched();

	spin_lock_irq(&conf->device_lock);
5772 5773 5774 5775
	for (i = 0; i < batch_size; i++) {
		hash = batch[i]->hash_lock_index;
		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
	}
5776 5777
	return batch_size;
}
5778

5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
static void raid5_do_work(struct work_struct *work)
{
	struct r5worker *worker = container_of(work, struct r5worker, work);
	struct r5worker_group *group = worker->group;
	struct r5conf *conf = group->conf;
	int group_id = group - conf->worker_groups;
	int handled;
	struct blk_plug plug;

	pr_debug("+++ raid5worker active\n");

	blk_start_plug(&plug);
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
		int batch_size, released;

5796
		released = release_stripe_list(conf, worker->temp_inactive_list);
5797

5798 5799
		batch_size = handle_active_stripes(conf, group_id, worker,
						   worker->temp_inactive_list);
5800
		worker->working = false;
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
		if (!batch_size && !released)
			break;
		handled += batch_size;
	}
	pr_debug("%d stripes handled\n", handled);

	spin_unlock_irq(&conf->device_lock);
	blk_finish_plug(&plug);

	pr_debug("--- raid5worker inactive\n");
}

L
Linus Torvalds 已提交
5813 5814 5815 5816 5817 5818 5819
/*
 * This is our raid5 kernel thread.
 *
 * We scan the hash table for stripes which can be handled now.
 * During the scan, completed stripes are saved for us by the interrupt
 * handler, so that they will not have to wait for our next wakeup.
 */
S
Shaohua Li 已提交
5820
static void raid5d(struct md_thread *thread)
L
Linus Torvalds 已提交
5821
{
S
Shaohua Li 已提交
5822
	struct mddev *mddev = thread->mddev;
5823
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
5824
	int handled;
5825
	struct blk_plug plug;
L
Linus Torvalds 已提交
5826

5827
	pr_debug("+++ raid5d active\n");
L
Linus Torvalds 已提交
5828 5829 5830

	md_check_recovery(mddev);

5831
	blk_start_plug(&plug);
L
Linus Torvalds 已提交
5832 5833 5834
	handled = 0;
	spin_lock_irq(&conf->device_lock);
	while (1) {
5835
		struct bio *bio;
S
Shaohua Li 已提交
5836 5837
		int batch_size, released;

5838
		released = release_stripe_list(conf, conf->temp_inactive_list);
5839 5840
		if (released)
			clear_bit(R5_DID_ALLOC, &conf->cache_state);
L
Linus Torvalds 已提交
5841

5842
		if (
5843 5844 5845
		    !list_empty(&conf->bitmap_list)) {
			/* Now is a good time to flush some bitmap updates */
			conf->seq_flush++;
5846
			spin_unlock_irq(&conf->device_lock);
5847
			bitmap_unplug(mddev->bitmap);
5848
			spin_lock_irq(&conf->device_lock);
5849
			conf->seq_write = conf->seq_flush;
5850
			activate_bit_delay(conf, conf->temp_inactive_list);
5851
		}
5852
		raid5_activate_delayed(conf);
5853

5854 5855 5856 5857 5858 5859 5860 5861 5862 5863
		while ((bio = remove_bio_from_retry(conf))) {
			int ok;
			spin_unlock_irq(&conf->device_lock);
			ok = retry_aligned_read(conf, bio);
			spin_lock_irq(&conf->device_lock);
			if (!ok)
				break;
			handled++;
		}

5864 5865
		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
						   conf->temp_inactive_list);
S
Shaohua Li 已提交
5866
		if (!batch_size && !released)
L
Linus Torvalds 已提交
5867
			break;
5868
		handled += batch_size;
L
Linus Torvalds 已提交
5869

5870 5871
		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
			spin_unlock_irq(&conf->device_lock);
5872
			md_check_recovery(mddev);
5873 5874
			spin_lock_irq(&conf->device_lock);
		}
L
Linus Torvalds 已提交
5875
	}
5876
	pr_debug("%d stripes handled\n", handled);
L
Linus Torvalds 已提交
5877 5878

	spin_unlock_irq(&conf->device_lock);
5879 5880
	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
	    mutex_trylock(&conf->cache_size_mutex)) {
5881 5882 5883 5884 5885
		grow_one_stripe(conf, __GFP_NOWARN);
		/* Set flag even if allocation failed.  This helps
		 * slow down allocation requests when mem is short
		 */
		set_bit(R5_DID_ALLOC, &conf->cache_state);
5886
		mutex_unlock(&conf->cache_size_mutex);
5887
	}
L
Linus Torvalds 已提交
5888

5889
	async_tx_issue_pending_all();
5890
	blk_finish_plug(&plug);
L
Linus Torvalds 已提交
5891

5892
	pr_debug("--- raid5d inactive\n");
L
Linus Torvalds 已提交
5893 5894
}

5895
static ssize_t
5896
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5897
{
5898 5899 5900 5901
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
5902
	if (conf)
5903
		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5904 5905
	spin_unlock(&mddev->lock);
	return ret;
5906 5907
}

5908
int
5909
raid5_set_cache_size(struct mddev *mddev, int size)
5910
{
5911
	struct r5conf *conf = mddev->private;
5912 5913
	int err;

5914
	if (size <= 16 || size > 32768)
5915
		return -EINVAL;
5916

5917
	conf->min_nr_stripes = size;
5918
	mutex_lock(&conf->cache_size_mutex);
5919 5920 5921
	while (size < conf->max_nr_stripes &&
	       drop_one_stripe(conf))
		;
5922
	mutex_unlock(&conf->cache_size_mutex);
5923

5924

5925 5926 5927
	err = md_allow_write(mddev);
	if (err)
		return err;
5928

5929
	mutex_lock(&conf->cache_size_mutex);
5930 5931 5932
	while (size > conf->max_nr_stripes)
		if (!grow_one_stripe(conf, GFP_KERNEL))
			break;
5933
	mutex_unlock(&conf->cache_size_mutex);
5934

5935 5936 5937 5938 5939
	return 0;
}
EXPORT_SYMBOL(raid5_set_cache_size);

static ssize_t
5940
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5941
{
5942
	struct r5conf *conf;
5943 5944 5945 5946 5947
	unsigned long new;
	int err;

	if (len >= PAGE_SIZE)
		return -EINVAL;
5948
	if (kstrtoul(page, 10, &new))
5949
		return -EINVAL;
5950
	err = mddev_lock(mddev);
5951 5952
	if (err)
		return err;
5953 5954 5955 5956 5957 5958 5959 5960
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else
		err = raid5_set_cache_size(mddev, new);
	mddev_unlock(mddev);

	return err ?: len;
5961
}
5962

5963 5964 5965 5966
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
				raid5_show_stripe_cache_size,
				raid5_store_stripe_cache_size);
5967

5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
static ssize_t
raid5_show_rmw_level(struct mddev  *mddev, char *page)
{
	struct r5conf *conf = mddev->private;
	if (conf)
		return sprintf(page, "%d\n", conf->rmw_level);
	else
		return 0;
}

static ssize_t
raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
{
	struct r5conf *conf = mddev->private;
	unsigned long new;

	if (!conf)
		return -ENODEV;

	if (len >= PAGE_SIZE)
		return -EINVAL;

	if (kstrtoul(page, 10, &new))
		return -EINVAL;

	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
		return -EINVAL;

	if (new != PARITY_DISABLE_RMW &&
	    new != PARITY_ENABLE_RMW &&
	    new != PARITY_PREFER_RMW)
		return -EINVAL;

	conf->rmw_level = new;
	return len;
}

static struct md_sysfs_entry
raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
			 raid5_show_rmw_level,
			 raid5_store_rmw_level);


6011
static ssize_t
6012
raid5_show_preread_threshold(struct mddev *mddev, char *page)
6013
{
6014 6015 6016 6017
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
6018
	if (conf)
6019 6020 6021
		ret = sprintf(page, "%d\n", conf->bypass_threshold);
	spin_unlock(&mddev->lock);
	return ret;
6022 6023 6024
}

static ssize_t
6025
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6026
{
6027
	struct r5conf *conf;
6028
	unsigned long new;
6029 6030
	int err;

6031 6032
	if (len >= PAGE_SIZE)
		return -EINVAL;
6033
	if (kstrtoul(page, 10, &new))
6034
		return -EINVAL;
6035 6036 6037 6038 6039 6040 6041

	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
6042
	else if (new > conf->min_nr_stripes)
6043 6044 6045 6046 6047
		err = -EINVAL;
	else
		conf->bypass_threshold = new;
	mddev_unlock(mddev);
	return err ?: len;
6048 6049 6050 6051 6052 6053 6054 6055
}

static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
					S_IRUGO | S_IWUSR,
					raid5_show_preread_threshold,
					raid5_store_preread_threshold);

6056 6057 6058
static ssize_t
raid5_show_skip_copy(struct mddev *mddev, char *page)
{
6059 6060 6061 6062
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
6063
	if (conf)
6064 6065 6066
		ret = sprintf(page, "%d\n", conf->skip_copy);
	spin_unlock(&mddev->lock);
	return ret;
6067 6068 6069 6070 6071
}

static ssize_t
raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
{
6072
	struct r5conf *conf;
6073
	unsigned long new;
6074 6075
	int err;

6076 6077 6078 6079 6080
	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (kstrtoul(page, 10, &new))
		return -EINVAL;
	new = !!new;
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100

	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else if (new != conf->skip_copy) {
		mddev_suspend(mddev);
		conf->skip_copy = new;
		if (new)
			mddev->queue->backing_dev_info.capabilities |=
				BDI_CAP_STABLE_WRITES;
		else
			mddev->queue->backing_dev_info.capabilities &=
				~BDI_CAP_STABLE_WRITES;
		mddev_resume(mddev);
	}
	mddev_unlock(mddev);
	return err ?: len;
6101 6102 6103 6104 6105 6106 6107
}

static struct md_sysfs_entry
raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
					raid5_show_skip_copy,
					raid5_store_skip_copy);

6108
static ssize_t
6109
stripe_cache_active_show(struct mddev *mddev, char *page)
6110
{
6111
	struct r5conf *conf = mddev->private;
6112 6113 6114 6115
	if (conf)
		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
	else
		return 0;
6116 6117
}

6118 6119
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6120

6121 6122 6123
static ssize_t
raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
{
6124 6125 6126 6127
	struct r5conf *conf;
	int ret = 0;
	spin_lock(&mddev->lock);
	conf = mddev->private;
6128
	if (conf)
6129 6130 6131
		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
	spin_unlock(&mddev->lock);
	return ret;
6132 6133
}

6134 6135 6136 6137
static int alloc_thread_groups(struct r5conf *conf, int cnt,
			       int *group_cnt,
			       int *worker_cnt_per_group,
			       struct r5worker_group **worker_groups);
6138 6139 6140
static ssize_t
raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
{
6141
	struct r5conf *conf;
6142 6143
	unsigned long new;
	int err;
6144 6145
	struct r5worker_group *new_groups, *old_groups;
	int group_cnt, worker_cnt_per_group;
6146 6147 6148 6149 6150 6151

	if (len >= PAGE_SIZE)
		return -EINVAL;
	if (kstrtoul(page, 10, &new))
		return -EINVAL;

6152 6153 6154 6155 6156 6157 6158 6159
	err = mddev_lock(mddev);
	if (err)
		return err;
	conf = mddev->private;
	if (!conf)
		err = -ENODEV;
	else if (new != conf->worker_cnt_per_group) {
		mddev_suspend(mddev);
6160

6161 6162 6163
		old_groups = conf->worker_groups;
		if (old_groups)
			flush_workqueue(raid5_wq);
6164

6165 6166 6167 6168 6169 6170 6171 6172 6173
		err = alloc_thread_groups(conf, new,
					  &group_cnt, &worker_cnt_per_group,
					  &new_groups);
		if (!err) {
			spin_lock_irq(&conf->device_lock);
			conf->group_cnt = group_cnt;
			conf->worker_cnt_per_group = worker_cnt_per_group;
			conf->worker_groups = new_groups;
			spin_unlock_irq(&conf->device_lock);
6174

6175 6176 6177 6178 6179
			if (old_groups)
				kfree(old_groups[0].workers);
			kfree(old_groups);
		}
		mddev_resume(mddev);
6180
	}
6181
	mddev_unlock(mddev);
6182

6183
	return err ?: len;
6184 6185 6186 6187 6188 6189 6190
}

static struct md_sysfs_entry
raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
				raid5_show_group_thread_cnt,
				raid5_store_group_thread_cnt);

6191
static struct attribute *raid5_attrs[] =  {
6192 6193
	&raid5_stripecache_size.attr,
	&raid5_stripecache_active.attr,
6194
	&raid5_preread_bypass_threshold.attr,
6195
	&raid5_group_thread_cnt.attr,
6196
	&raid5_skip_copy.attr,
6197
	&raid5_rmw_level.attr,
6198 6199
	NULL,
};
6200 6201 6202
static struct attribute_group raid5_attrs_group = {
	.name = NULL,
	.attrs = raid5_attrs,
6203 6204
};

6205 6206 6207 6208
static int alloc_thread_groups(struct r5conf *conf, int cnt,
			       int *group_cnt,
			       int *worker_cnt_per_group,
			       struct r5worker_group **worker_groups)
6209
{
6210
	int i, j, k;
6211 6212 6213
	ssize_t size;
	struct r5worker *workers;

6214
	*worker_cnt_per_group = cnt;
6215
	if (cnt == 0) {
6216 6217
		*group_cnt = 0;
		*worker_groups = NULL;
6218 6219
		return 0;
	}
6220
	*group_cnt = num_possible_nodes();
6221
	size = sizeof(struct r5worker) * cnt;
6222 6223 6224 6225
	workers = kzalloc(size * *group_cnt, GFP_NOIO);
	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
				*group_cnt, GFP_NOIO);
	if (!*worker_groups || !workers) {
6226
		kfree(workers);
6227
		kfree(*worker_groups);
6228 6229 6230
		return -ENOMEM;
	}

6231
	for (i = 0; i < *group_cnt; i++) {
6232 6233
		struct r5worker_group *group;

6234
		group = &(*worker_groups)[i];
6235 6236 6237 6238 6239
		INIT_LIST_HEAD(&group->handle_list);
		group->conf = conf;
		group->workers = workers + i * cnt;

		for (j = 0; j < cnt; j++) {
6240 6241 6242 6243 6244 6245
			struct r5worker *worker = group->workers + j;
			worker->group = group;
			INIT_WORK(&worker->work, raid5_do_work);

			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
		}
	}

	return 0;
}

static void free_thread_groups(struct r5conf *conf)
{
	if (conf->worker_groups)
		kfree(conf->worker_groups[0].workers);
	kfree(conf->worker_groups);
	conf->worker_groups = NULL;
}

6260
static sector_t
6261
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6262
{
6263
	struct r5conf *conf = mddev->private;
6264 6265 6266

	if (!sectors)
		sectors = mddev->dev_sectors;
6267
	if (!raid_disks)
6268
		/* size is defined by the smallest of previous and new size */
6269
		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6270

6271 6272
	sectors &= ~((sector_t)conf->chunk_sectors - 1);
	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6273 6274 6275
	return sectors * (raid_disks - conf->max_degraded);
}

6276 6277 6278
static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
	safe_put_page(percpu->spare_page);
6279 6280
	if (percpu->scribble)
		flex_array_free(percpu->scribble);
6281 6282 6283 6284 6285 6286 6287 6288 6289
	percpu->spare_page = NULL;
	percpu->scribble = NULL;
}

static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
	if (conf->level == 6 && !percpu->spare_page)
		percpu->spare_page = alloc_page(GFP_KERNEL);
	if (!percpu->scribble)
6290
		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6291 6292 6293 6294 6295
						      conf->previous_raid_disks),
						  max(conf->chunk_sectors,
						      conf->prev_chunk_sectors)
						   / STRIPE_SECTORS,
						  GFP_KERNEL);
6296 6297 6298 6299 6300 6301 6302 6303 6304

	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
		free_scratch_buffer(conf, percpu);
		return -ENOMEM;
	}

	return 0;
}

6305
static void raid5_free_percpu(struct r5conf *conf)
6306 6307 6308 6309 6310 6311 6312 6313 6314
{
	unsigned long cpu;

	if (!conf->percpu)
		return;

#ifdef CONFIG_HOTPLUG_CPU
	unregister_cpu_notifier(&conf->cpu_notify);
#endif
6315 6316 6317 6318

	get_online_cpus();
	for_each_possible_cpu(cpu)
		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6319 6320 6321 6322 6323
	put_online_cpus();

	free_percpu(conf->percpu);
}

6324
static void free_conf(struct r5conf *conf)
6325
{
6326 6327
	if (conf->shrinker.seeks)
		unregister_shrinker(&conf->shrinker);
6328
	free_thread_groups(conf);
6329
	shrink_stripes(conf);
6330
	raid5_free_percpu(conf);
6331 6332 6333 6334 6335
	kfree(conf->disks);
	kfree(conf->stripe_hashtbl);
	kfree(conf);
}

6336 6337 6338 6339
#ifdef CONFIG_HOTPLUG_CPU
static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
			      void *hcpu)
{
6340
	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6341 6342 6343 6344 6345 6346
	long cpu = (long)hcpu;
	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
6347
		if (alloc_scratch_buffer(conf, percpu)) {
6348 6349
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
6350
			return notifier_from_errno(-ENOMEM);
6351 6352 6353 6354
		}
		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
6355
		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6356 6357 6358 6359 6360 6361 6362 6363
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}
#endif

6364
static int raid5_alloc_percpu(struct r5conf *conf)
6365 6366
{
	unsigned long cpu;
6367
	int err = 0;
6368

6369 6370
	conf->percpu = alloc_percpu(struct raid5_percpu);
	if (!conf->percpu)
6371
		return -ENOMEM;
6372 6373 6374 6375 6376 6377 6378 6379

#ifdef CONFIG_HOTPLUG_CPU
	conf->cpu_notify.notifier_call = raid456_cpu_notify;
	conf->cpu_notify.priority = 0;
	err = register_cpu_notifier(&conf->cpu_notify);
	if (err)
		return err;
#endif
6380 6381 6382

	get_online_cpus();
	for_each_present_cpu(cpu) {
6383 6384 6385 6386
		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
		if (err) {
			pr_err("%s: failed memory allocation for cpu%ld\n",
			       __func__, cpu);
6387 6388 6389 6390 6391 6392 6393 6394
			break;
		}
	}
	put_online_cpus();

	return err;
}

6395 6396 6397 6398
static unsigned long raid5_cache_scan(struct shrinker *shrink,
				      struct shrink_control *sc)
{
	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6399 6400 6401 6402
	unsigned long ret = SHRINK_STOP;

	if (mutex_trylock(&conf->cache_size_mutex)) {
		ret= 0;
6403 6404
		while (ret < sc->nr_to_scan &&
		       conf->max_nr_stripes > conf->min_nr_stripes) {
6405 6406 6407 6408 6409 6410 6411
			if (drop_one_stripe(conf) == 0) {
				ret = SHRINK_STOP;
				break;
			}
			ret++;
		}
		mutex_unlock(&conf->cache_size_mutex);
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
	}
	return ret;
}

static unsigned long raid5_cache_count(struct shrinker *shrink,
				       struct shrink_control *sc)
{
	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);

	if (conf->max_nr_stripes < conf->min_nr_stripes)
		/* unlikely, but not impossible */
		return 0;
	return conf->max_nr_stripes - conf->min_nr_stripes;
}

6427
static struct r5conf *setup_conf(struct mddev *mddev)
L
Linus Torvalds 已提交
6428
{
6429
	struct r5conf *conf;
6430
	int raid_disk, memory, max_disks;
6431
	struct md_rdev *rdev;
L
Linus Torvalds 已提交
6432
	struct disk_info *disk;
6433
	char pers_name[6];
6434
	int i;
6435 6436
	int group_cnt, worker_cnt_per_group;
	struct r5worker_group *new_group;
L
Linus Torvalds 已提交
6437

N
NeilBrown 已提交
6438 6439 6440
	if (mddev->new_level != 5
	    && mddev->new_level != 4
	    && mddev->new_level != 6) {
6441
		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
N
NeilBrown 已提交
6442 6443
		       mdname(mddev), mddev->new_level);
		return ERR_PTR(-EIO);
L
Linus Torvalds 已提交
6444
	}
N
NeilBrown 已提交
6445 6446 6447 6448
	if ((mddev->new_level == 5
	     && !algorithm_valid_raid5(mddev->new_layout)) ||
	    (mddev->new_level == 6
	     && !algorithm_valid_raid6(mddev->new_layout))) {
6449
		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
N
NeilBrown 已提交
6450 6451
		       mdname(mddev), mddev->new_layout);
		return ERR_PTR(-EIO);
6452
	}
N
NeilBrown 已提交
6453
	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6454
		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
N
NeilBrown 已提交
6455 6456
		       mdname(mddev), mddev->raid_disks);
		return ERR_PTR(-EINVAL);
6457 6458
	}

6459 6460 6461
	if (!mddev->new_chunk_sectors ||
	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
	    !is_power_of_2(mddev->new_chunk_sectors)) {
6462 6463
		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
		       mdname(mddev), mddev->new_chunk_sectors << 9);
N
NeilBrown 已提交
6464
		return ERR_PTR(-EINVAL);
6465 6466
	}

6467
	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
N
NeilBrown 已提交
6468
	if (conf == NULL)
L
Linus Torvalds 已提交
6469
		goto abort;
6470
	/* Don't enable multi-threading by default*/
6471 6472 6473 6474 6475 6476
	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
				 &new_group)) {
		conf->group_cnt = group_cnt;
		conf->worker_cnt_per_group = worker_cnt_per_group;
		conf->worker_groups = new_group;
	} else
6477
		goto abort;
6478
	spin_lock_init(&conf->device_lock);
6479
	seqcount_init(&conf->gen_lock);
6480
	mutex_init(&conf->cache_size_mutex);
6481
	init_waitqueue_head(&conf->wait_for_quiescent);
6482 6483 6484
	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
		init_waitqueue_head(&conf->wait_for_stripe[i]);
	}
6485 6486 6487 6488 6489
	init_waitqueue_head(&conf->wait_for_overlap);
	INIT_LIST_HEAD(&conf->handle_list);
	INIT_LIST_HEAD(&conf->hold_list);
	INIT_LIST_HEAD(&conf->delayed_list);
	INIT_LIST_HEAD(&conf->bitmap_list);
S
Shaohua Li 已提交
6490
	init_llist_head(&conf->released_stripes);
6491 6492 6493 6494
	atomic_set(&conf->active_stripes, 0);
	atomic_set(&conf->preread_active_stripes, 0);
	atomic_set(&conf->active_aligned_reads, 0);
	conf->bypass_threshold = BYPASS_THRESHOLD;
6495
	conf->recovery_disabled = mddev->recovery_disabled - 1;
N
NeilBrown 已提交
6496 6497 6498 6499 6500

	conf->raid_disks = mddev->raid_disks;
	if (mddev->reshape_position == MaxSector)
		conf->previous_raid_disks = mddev->raid_disks;
	else
6501
		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6502
	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6503

6504
	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6505 6506 6507
			      GFP_KERNEL);
	if (!conf->disks)
		goto abort;
6508

L
Linus Torvalds 已提交
6509 6510
	conf->mddev = mddev;

6511
	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
L
Linus Torvalds 已提交
6512 6513
		goto abort;

6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
	/* We init hash_locks[0] separately to that it can be used
	 * as the reference lock in the spin_lock_nest_lock() call
	 * in lock_all_device_hash_locks_irq in order to convince
	 * lockdep that we know what we are doing.
	 */
	spin_lock_init(conf->hash_locks);
	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
		spin_lock_init(conf->hash_locks + i);

	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
		INIT_LIST_HEAD(conf->inactive_list + i);

	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
		INIT_LIST_HEAD(conf->temp_inactive_list + i);

6529
	conf->level = mddev->new_level;
6530
	conf->chunk_sectors = mddev->new_chunk_sectors;
6531 6532 6533
	if (raid5_alloc_percpu(conf) != 0)
		goto abort;

6534
	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
L
Linus Torvalds 已提交
6535

N
NeilBrown 已提交
6536
	rdev_for_each(rdev, mddev) {
L
Linus Torvalds 已提交
6537
		raid_disk = rdev->raid_disk;
6538
		if (raid_disk >= max_disks
L
Linus Torvalds 已提交
6539 6540 6541 6542
		    || raid_disk < 0)
			continue;
		disk = conf->disks + raid_disk;

6543 6544 6545 6546 6547 6548 6549 6550 6551
		if (test_bit(Replacement, &rdev->flags)) {
			if (disk->replacement)
				goto abort;
			disk->replacement = rdev;
		} else {
			if (disk->rdev)
				goto abort;
			disk->rdev = rdev;
		}
L
Linus Torvalds 已提交
6552

6553
		if (test_bit(In_sync, &rdev->flags)) {
L
Linus Torvalds 已提交
6554
			char b[BDEVNAME_SIZE];
6555 6556 6557
			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
			       " disk %d\n",
			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
J
Jonathan Brassow 已提交
6558
		} else if (rdev->saved_raid_disk != raid_disk)
6559 6560
			/* Cannot rely on bitmap to complete recovery */
			conf->fullsync = 1;
L
Linus Torvalds 已提交
6561 6562
	}

N
NeilBrown 已提交
6563
	conf->level = mddev->new_level;
6564
	if (conf->level == 6) {
6565
		conf->max_degraded = 2;
6566 6567 6568 6569 6570
		if (raid6_call.xor_syndrome)
			conf->rmw_level = PARITY_ENABLE_RMW;
		else
			conf->rmw_level = PARITY_DISABLE_RMW;
	} else {
6571
		conf->max_degraded = 1;
6572 6573
		conf->rmw_level = PARITY_ENABLE_RMW;
	}
N
NeilBrown 已提交
6574
	conf->algorithm = mddev->new_layout;
6575
	conf->reshape_progress = mddev->reshape_position;
6576
	if (conf->reshape_progress != MaxSector) {
6577
		conf->prev_chunk_sectors = mddev->chunk_sectors;
6578
		conf->prev_algo = mddev->layout;
6579 6580 6581
	} else {
		conf->prev_chunk_sectors = conf->chunk_sectors;
		conf->prev_algo = conf->algorithm;
6582
	}
L
Linus Torvalds 已提交
6583

6584 6585
	conf->min_nr_stripes = NR_STRIPES;
	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6586
		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6587
	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6588
	if (grow_stripes(conf, conf->min_nr_stripes)) {
N
NeilBrown 已提交
6589
		printk(KERN_ERR
6590 6591
		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
		       mdname(mddev), memory);
N
NeilBrown 已提交
6592 6593
		goto abort;
	} else
6594 6595
		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
		       mdname(mddev), memory);
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606
	/*
	 * Losing a stripe head costs more than the time to refill it,
	 * it reduces the queue depth and so can hurt throughput.
	 * So set it rather large, scaled by number of devices.
	 */
	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
	conf->shrinker.scan_objects = raid5_cache_scan;
	conf->shrinker.count_objects = raid5_cache_count;
	conf->shrinker.batch = 128;
	conf->shrinker.flags = 0;
	register_shrinker(&conf->shrinker);
L
Linus Torvalds 已提交
6607

6608 6609
	sprintf(pers_name, "raid%d", mddev->new_level);
	conf->thread = md_register_thread(raid5d, mddev, pers_name);
N
NeilBrown 已提交
6610 6611
	if (!conf->thread) {
		printk(KERN_ERR
6612
		       "md/raid:%s: couldn't allocate thread.\n",
N
NeilBrown 已提交
6613
		       mdname(mddev));
6614 6615
		goto abort;
	}
N
NeilBrown 已提交
6616 6617 6618 6619 6620

	return conf;

 abort:
	if (conf) {
6621
		free_conf(conf);
N
NeilBrown 已提交
6622 6623 6624 6625 6626
		return ERR_PTR(-EIO);
	} else
		return ERR_PTR(-ENOMEM);
}

6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
	switch (algo) {
	case ALGORITHM_PARITY_0:
		if (raid_disk < max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_N:
		if (raid_disk >= raid_disks - max_degraded)
			return 1;
		break;
	case ALGORITHM_PARITY_0_6:
6639
		if (raid_disk == 0 ||
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
		    raid_disk == raid_disks - 1)
			return 1;
		break;
	case ALGORITHM_LEFT_ASYMMETRIC_6:
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
	case ALGORITHM_LEFT_SYMMETRIC_6:
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		if (raid_disk == raid_disks - 1)
			return 1;
	}
	return 0;
}

6653
static int run(struct mddev *mddev)
N
NeilBrown 已提交
6654
{
6655
	struct r5conf *conf;
6656
	int working_disks = 0;
6657
	int dirty_parity_disks = 0;
6658
	struct md_rdev *rdev;
6659
	sector_t reshape_offset = 0;
6660
	int i;
6661 6662
	long long min_offset_diff = 0;
	int first = 1;
N
NeilBrown 已提交
6663

6664
	if (mddev->recovery_cp != MaxSector)
6665
		printk(KERN_NOTICE "md/raid:%s: not clean"
6666 6667
		       " -- starting background reconstruction\n",
		       mdname(mddev));
6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684

	rdev_for_each(rdev, mddev) {
		long long diff;
		if (rdev->raid_disk < 0)
			continue;
		diff = (rdev->new_data_offset - rdev->data_offset);
		if (first) {
			min_offset_diff = diff;
			first = 0;
		} else if (mddev->reshape_backwards &&
			 diff < min_offset_diff)
			min_offset_diff = diff;
		else if (!mddev->reshape_backwards &&
			 diff > min_offset_diff)
			min_offset_diff = diff;
	}

N
NeilBrown 已提交
6685 6686
	if (mddev->reshape_position != MaxSector) {
		/* Check that we can continue the reshape.
6687 6688 6689 6690 6691 6692 6693 6694 6695 6696
		 * Difficulties arise if the stripe we would write to
		 * next is at or after the stripe we would read from next.
		 * For a reshape that changes the number of devices, this
		 * is only possible for a very short time, and mdadm makes
		 * sure that time appears to have past before assembling
		 * the array.  So we fail if that time hasn't passed.
		 * For a reshape that keeps the number of devices the same
		 * mdadm must be monitoring the reshape can keeping the
		 * critical areas read-only and backed up.  It will start
		 * the array in read-only mode, so we check for that.
N
NeilBrown 已提交
6697 6698 6699
		 */
		sector_t here_new, here_old;
		int old_disks;
6700
		int max_degraded = (mddev->level == 6 ? 2 : 1);
6701 6702
		int chunk_sectors;
		int new_data_disks;
N
NeilBrown 已提交
6703

6704
		if (mddev->new_level != mddev->level) {
6705
			printk(KERN_ERR "md/raid:%s: unsupported reshape "
N
NeilBrown 已提交
6706 6707 6708 6709 6710 6711 6712 6713
			       "required - aborting.\n",
			       mdname(mddev));
			return -EINVAL;
		}
		old_disks = mddev->raid_disks - mddev->delta_disks;
		/* reshape_position must be on a new-stripe boundary, and one
		 * further up in new geometry must map after here in old
		 * geometry.
6714 6715 6716
		 * If the chunk sizes are different, then as we perform reshape
		 * in units of the largest of the two, reshape_position needs
		 * be a multiple of the largest chunk size times new data disks.
N
NeilBrown 已提交
6717 6718
		 */
		here_new = mddev->reshape_position;
6719 6720 6721
		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
		new_data_disks = mddev->raid_disks - max_degraded;
		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6722 6723
			printk(KERN_ERR "md/raid:%s: reshape_position not "
			       "on a stripe boundary\n", mdname(mddev));
N
NeilBrown 已提交
6724 6725
			return -EINVAL;
		}
6726
		reshape_offset = here_new * chunk_sectors;
N
NeilBrown 已提交
6727 6728
		/* here_new is the stripe we will write to */
		here_old = mddev->reshape_position;
6729
		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
N
NeilBrown 已提交
6730 6731
		/* here_old is the first stripe that we might need to read
		 * from */
6732 6733
		if (mddev->delta_disks == 0) {
			/* We cannot be sure it is safe to start an in-place
6734
			 * reshape.  It is only safe if user-space is monitoring
6735 6736 6737 6738 6739
			 * and taking constant backups.
			 * mdadm always starts a situation like this in
			 * readonly mode so it can take control before
			 * allowing any writes.  So just check for that.
			 */
6740 6741 6742 6743 6744 6745 6746
			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
				/* not really in-place - so OK */;
			else if (mddev->ro == 0) {
				printk(KERN_ERR "md/raid:%s: in-place reshape "
				       "must be started in read-only mode "
				       "- aborting\n",
6747
				       mdname(mddev));
6748 6749
				return -EINVAL;
			}
6750
		} else if (mddev->reshape_backwards
6751 6752 6753 6754
		    ? (here_new * chunk_sectors + min_offset_diff <=
		       here_old * chunk_sectors)
		    : (here_new * chunk_sectors >=
		       here_old * chunk_sectors + (-min_offset_diff))) {
N
NeilBrown 已提交
6755
			/* Reading from the same stripe as writing to - bad */
6756 6757 6758
			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
			       "auto-recovery - aborting.\n",
			       mdname(mddev));
N
NeilBrown 已提交
6759 6760
			return -EINVAL;
		}
6761 6762
		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
		       mdname(mddev));
N
NeilBrown 已提交
6763 6764 6765 6766
		/* OK, we should be able to continue; */
	} else {
		BUG_ON(mddev->level != mddev->new_level);
		BUG_ON(mddev->layout != mddev->new_layout);
6767
		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
N
NeilBrown 已提交
6768
		BUG_ON(mddev->delta_disks != 0);
L
Linus Torvalds 已提交
6769
	}
N
NeilBrown 已提交
6770

6771 6772 6773 6774 6775
	if (mddev->private == NULL)
		conf = setup_conf(mddev);
	else
		conf = mddev->private;

N
NeilBrown 已提交
6776 6777 6778
	if (IS_ERR(conf))
		return PTR_ERR(conf);

6779
	conf->min_offset_diff = min_offset_diff;
N
NeilBrown 已提交
6780 6781 6782 6783
	mddev->thread = conf->thread;
	conf->thread = NULL;
	mddev->private = conf;

6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
	     i++) {
		rdev = conf->disks[i].rdev;
		if (!rdev && conf->disks[i].replacement) {
			/* The replacement is all we have yet */
			rdev = conf->disks[i].replacement;
			conf->disks[i].replacement = NULL;
			clear_bit(Replacement, &rdev->flags);
			conf->disks[i].rdev = rdev;
		}
		if (!rdev)
6795
			continue;
6796 6797 6798 6799 6800 6801 6802
		if (conf->disks[i].replacement &&
		    conf->reshape_progress != MaxSector) {
			/* replacements and reshape simply do not mix. */
			printk(KERN_ERR "md: cannot handle concurrent "
			       "replacement and reshape.\n");
			goto abort;
		}
6803
		if (test_bit(In_sync, &rdev->flags)) {
N
NeilBrown 已提交
6804
			working_disks++;
6805 6806
			continue;
		}
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
		/* This disc is not fully in-sync.  However if it
		 * just stored parity (beyond the recovery_offset),
		 * when we don't need to be concerned about the
		 * array being dirty.
		 * When reshape goes 'backwards', we never have
		 * partially completed devices, so we only need
		 * to worry about reshape going forwards.
		 */
		/* Hack because v0.91 doesn't store recovery_offset properly. */
		if (mddev->major_version == 0 &&
		    mddev->minor_version > 90)
			rdev->recovery_offset = reshape_offset;
6819

6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
		if (rdev->recovery_offset < reshape_offset) {
			/* We need to check old and new layout */
			if (!only_parity(rdev->raid_disk,
					 conf->algorithm,
					 conf->raid_disks,
					 conf->max_degraded))
				continue;
		}
		if (!only_parity(rdev->raid_disk,
				 conf->prev_algo,
				 conf->previous_raid_disks,
				 conf->max_degraded))
			continue;
		dirty_parity_disks++;
	}
N
NeilBrown 已提交
6835

6836 6837 6838
	/*
	 * 0 for a fully functional array, 1 or 2 for a degraded array.
	 */
6839
	mddev->degraded = calc_degraded(conf);
N
NeilBrown 已提交
6840

6841
	if (has_failed(conf)) {
6842
		printk(KERN_ERR "md/raid:%s: not enough operational devices"
L
Linus Torvalds 已提交
6843
			" (%d/%d failed)\n",
6844
			mdname(mddev), mddev->degraded, conf->raid_disks);
L
Linus Torvalds 已提交
6845 6846 6847
		goto abort;
	}

N
NeilBrown 已提交
6848
	/* device size must be a multiple of chunk size */
6849
	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
N
NeilBrown 已提交
6850 6851
	mddev->resync_max_sectors = mddev->dev_sectors;

6852
	if (mddev->degraded > dirty_parity_disks &&
L
Linus Torvalds 已提交
6853
	    mddev->recovery_cp != MaxSector) {
6854 6855
		if (mddev->ok_start_degraded)
			printk(KERN_WARNING
6856 6857
			       "md/raid:%s: starting dirty degraded array"
			       " - data corruption possible.\n",
6858 6859 6860
			       mdname(mddev));
		else {
			printk(KERN_ERR
6861
			       "md/raid:%s: cannot start dirty degraded array.\n",
6862 6863 6864
			       mdname(mddev));
			goto abort;
		}
L
Linus Torvalds 已提交
6865 6866 6867
	}

	if (mddev->degraded == 0)
6868 6869
		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6870 6871
		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
		       mddev->new_layout);
L
Linus Torvalds 已提交
6872
	else
6873 6874 6875 6876 6877
		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
		       " out of %d devices, algorithm %d\n",
		       mdname(mddev), conf->level,
		       mddev->raid_disks - mddev->degraded,
		       mddev->raid_disks, mddev->new_layout);
L
Linus Torvalds 已提交
6878 6879 6880

	print_raid5_conf(conf);

6881 6882
	if (conf->reshape_progress != MaxSector) {
		conf->reshape_safe = conf->reshape_progress;
6883 6884 6885 6886 6887 6888
		atomic_set(&conf->reshape_stripes, 0);
		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6889
							"reshape");
6890 6891
	}

L
Linus Torvalds 已提交
6892
	/* Ok, everything is just fine now */
6893 6894
	if (mddev->to_remove == &raid5_attrs_group)
		mddev->to_remove = NULL;
N
NeilBrown 已提交
6895 6896
	else if (mddev->kobj.sd &&
	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6897
		printk(KERN_WARNING
6898
		       "raid5: failed to create sysfs attributes for %s\n",
6899
		       mdname(mddev));
6900
	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6901

6902
	if (mddev->queue) {
6903
		int chunk_size;
S
Shaohua Li 已提交
6904
		bool discard_supported = true;
6905 6906 6907 6908 6909 6910 6911 6912 6913
		/* read-ahead size must cover two whole stripes, which
		 * is 2 * (datadisks) * chunksize where 'n' is the
		 * number of raid devices
		 */
		int data_disks = conf->previous_raid_disks - conf->max_degraded;
		int stripe = data_disks *
			((mddev->chunk_sectors << 9) / PAGE_SIZE);
		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
N
NeilBrown 已提交
6914

6915 6916 6917 6918
		chunk_size = mddev->chunk_sectors << 9;
		blk_queue_io_min(mddev->queue, chunk_size);
		blk_queue_io_opt(mddev->queue, chunk_size *
				 (conf->raid_disks - conf->max_degraded));
6919
		mddev->queue->limits.raid_partial_stripes_expensive = 1;
S
Shaohua Li 已提交
6920 6921 6922 6923 6924
		/*
		 * We can only discard a whole stripe. It doesn't make sense to
		 * discard data disk but write parity disk
		 */
		stripe = stripe * PAGE_SIZE;
6925 6926 6927 6928
		/* Round up to power of 2, as discard handling
		 * currently assumes that */
		while ((stripe-1) & stripe)
			stripe = (stripe | (stripe-1)) + 1;
S
Shaohua Li 已提交
6929 6930 6931 6932
		mddev->queue->limits.discard_alignment = stripe;
		mddev->queue->limits.discard_granularity = stripe;
		/*
		 * unaligned part of discard request will be ignored, so can't
6933
		 * guarantee discard_zeroes_data
S
Shaohua Li 已提交
6934 6935
		 */
		mddev->queue->limits.discard_zeroes_data = 0;
6936

6937 6938
		blk_queue_max_write_same_sectors(mddev->queue, 0);

6939
		rdev_for_each(rdev, mddev) {
6940 6941
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->data_offset << 9);
6942 6943
			disk_stack_limits(mddev->gendisk, rdev->bdev,
					  rdev->new_data_offset << 9);
S
Shaohua Li 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
			/*
			 * discard_zeroes_data is required, otherwise data
			 * could be lost. Consider a scenario: discard a stripe
			 * (the stripe could be inconsistent if
			 * discard_zeroes_data is 0); write one disk of the
			 * stripe (the stripe could be inconsistent again
			 * depending on which disks are used to calculate
			 * parity); the disk is broken; The stripe data of this
			 * disk is lost.
			 */
			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
			    !bdev_get_queue(rdev->bdev)->
						limits.discard_zeroes_data)
				discard_supported = false;
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
			/* Unfortunately, discard_zeroes_data is not currently
			 * a guarantee - just a hint.  So we only allow DISCARD
			 * if the sysadmin has confirmed that only safe devices
			 * are in use by setting a module parameter.
			 */
			if (!devices_handle_discard_safely) {
				if (discard_supported) {
					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
				}
				discard_supported = false;
			}
6970
		}
S
Shaohua Li 已提交
6971 6972 6973 6974 6975 6976 6977 6978 6979

		if (discard_supported &&
		   mddev->queue->limits.max_discard_sectors >= stripe &&
		   mddev->queue->limits.discard_granularity >= stripe)
			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
		else
			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
						mddev->queue);
6980
	}
6981

L
Linus Torvalds 已提交
6982 6983
	return 0;
abort:
6984
	md_unregister_thread(&mddev->thread);
N
NeilBrown 已提交
6985 6986
	print_raid5_conf(conf);
	free_conf(conf);
L
Linus Torvalds 已提交
6987
	mddev->private = NULL;
6988
	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
L
Linus Torvalds 已提交
6989 6990 6991
	return -EIO;
}

N
NeilBrown 已提交
6992
static void raid5_free(struct mddev *mddev, void *priv)
L
Linus Torvalds 已提交
6993
{
N
NeilBrown 已提交
6994
	struct r5conf *conf = priv;
L
Linus Torvalds 已提交
6995

6996
	free_conf(conf);
6997
	mddev->to_remove = &raid5_attrs_group;
L
Linus Torvalds 已提交
6998 6999
}

7000
static void status(struct seq_file *seq, struct mddev *mddev)
L
Linus Torvalds 已提交
7001
{
7002
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
7003 7004
	int i;

7005
	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7006
		conf->chunk_sectors / 2, mddev->layout);
7007
	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
L
Linus Torvalds 已提交
7008 7009 7010
	for (i = 0; i < conf->raid_disks; i++)
		seq_printf (seq, "%s",
			       conf->disks[i].rdev &&
7011
			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
L
Linus Torvalds 已提交
7012 7013 7014
	seq_printf (seq, "]");
}

7015
static void print_raid5_conf (struct r5conf *conf)
L
Linus Torvalds 已提交
7016 7017 7018 7019
{
	int i;
	struct disk_info *tmp;

7020
	printk(KERN_DEBUG "RAID conf printout:\n");
L
Linus Torvalds 已提交
7021 7022 7023 7024
	if (!conf) {
		printk("(conf==NULL)\n");
		return;
	}
7025 7026 7027
	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
	       conf->raid_disks,
	       conf->raid_disks - conf->mddev->degraded);
L
Linus Torvalds 已提交
7028 7029 7030 7031 7032

	for (i = 0; i < conf->raid_disks; i++) {
		char b[BDEVNAME_SIZE];
		tmp = conf->disks + i;
		if (tmp->rdev)
7033 7034 7035
			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
			       i, !test_bit(Faulty, &tmp->rdev->flags),
			       bdevname(tmp->rdev->bdev, b));
L
Linus Torvalds 已提交
7036 7037 7038
	}
}

7039
static int raid5_spare_active(struct mddev *mddev)
L
Linus Torvalds 已提交
7040 7041
{
	int i;
7042
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
7043
	struct disk_info *tmp;
7044 7045
	int count = 0;
	unsigned long flags;
L
Linus Torvalds 已提交
7046 7047 7048

	for (i = 0; i < conf->raid_disks; i++) {
		tmp = conf->disks + i;
7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
		if (tmp->replacement
		    && tmp->replacement->recovery_offset == MaxSector
		    && !test_bit(Faulty, &tmp->replacement->flags)
		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
			/* Replacement has just become active. */
			if (!tmp->rdev
			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
				count++;
			if (tmp->rdev) {
				/* Replaced device not technically faulty,
				 * but we need to be sure it gets removed
				 * and never re-added.
				 */
				set_bit(Faulty, &tmp->rdev->flags);
				sysfs_notify_dirent_safe(
					tmp->rdev->sysfs_state);
			}
			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
		} else if (tmp->rdev
7068
		    && tmp->rdev->recovery_offset == MaxSector
7069
		    && !test_bit(Faulty, &tmp->rdev->flags)
7070
		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7071
			count++;
7072
			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
L
Linus Torvalds 已提交
7073 7074
		}
	}
7075
	spin_lock_irqsave(&conf->device_lock, flags);
7076
	mddev->degraded = calc_degraded(conf);
7077
	spin_unlock_irqrestore(&conf->device_lock, flags);
L
Linus Torvalds 已提交
7078
	print_raid5_conf(conf);
7079
	return count;
L
Linus Torvalds 已提交
7080 7081
}

7082
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
7083
{
7084
	struct r5conf *conf = mddev->private;
L
Linus Torvalds 已提交
7085
	int err = 0;
7086
	int number = rdev->raid_disk;
7087
	struct md_rdev **rdevp;
L
Linus Torvalds 已提交
7088 7089 7090
	struct disk_info *p = conf->disks + number;

	print_raid5_conf(conf);
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
	if (rdev == p->rdev)
		rdevp = &p->rdev;
	else if (rdev == p->replacement)
		rdevp = &p->replacement;
	else
		return 0;

	if (number >= conf->raid_disks &&
	    conf->reshape_progress == MaxSector)
		clear_bit(In_sync, &rdev->flags);

	if (test_bit(In_sync, &rdev->flags) ||
	    atomic_read(&rdev->nr_pending)) {
		err = -EBUSY;
		goto abort;
	}
	/* Only remove non-faulty devices if recovery
	 * isn't possible.
	 */
	if (!test_bit(Faulty, &rdev->flags) &&
	    mddev->recovery_disabled != conf->recovery_disabled &&
	    !has_failed(conf) &&
7113
	    (!p->replacement || p->replacement == rdev) &&
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123
	    number < conf->raid_disks) {
		err = -EBUSY;
		goto abort;
	}
	*rdevp = NULL;
	synchronize_rcu();
	if (atomic_read(&rdev->nr_pending)) {
		/* lost the race, try later */
		err = -EBUSY;
		*rdevp = rdev;
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
	} else if (p->replacement) {
		/* We must have just cleared 'rdev' */
		p->rdev = p->replacement;
		clear_bit(Replacement, &p->replacement->flags);
		smp_mb(); /* Make sure other CPUs may see both as identical
			   * but will never see neither - if they are careful
			   */
		p->replacement = NULL;
		clear_bit(WantReplacement, &rdev->flags);
	} else
		/* We might have just removed the Replacement as faulty-
		 * clear the bit just in case
		 */
		clear_bit(WantReplacement, &rdev->flags);
L
Linus Torvalds 已提交
7138 7139 7140 7141 7142 7143
abort:

	print_raid5_conf(conf);
	return err;
}

7144
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
L
Linus Torvalds 已提交
7145
{
7146
	struct r5conf *conf = mddev->private;
7147
	int err = -EEXIST;
L
Linus Torvalds 已提交
7148 7149
	int disk;
	struct disk_info *p;
7150 7151
	int first = 0;
	int last = conf->raid_disks - 1;
L
Linus Torvalds 已提交
7152

7153 7154 7155
	if (mddev->recovery_disabled == conf->recovery_disabled)
		return -EBUSY;

N
NeilBrown 已提交
7156
	if (rdev->saved_raid_disk < 0 && has_failed(conf))
L
Linus Torvalds 已提交
7157
		/* no point adding a device */
7158
		return -EINVAL;
L
Linus Torvalds 已提交
7159

7160 7161
	if (rdev->raid_disk >= 0)
		first = last = rdev->raid_disk;
L
Linus Torvalds 已提交
7162 7163

	/*
7164 7165
	 * find the disk ... but prefer rdev->saved_raid_disk
	 * if possible.
L
Linus Torvalds 已提交
7166
	 */
7167
	if (rdev->saved_raid_disk >= 0 &&
7168
	    rdev->saved_raid_disk >= first &&
7169
	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7170 7171 7172
		first = rdev->saved_raid_disk;

	for (disk = first; disk <= last; disk++) {
7173 7174
		p = conf->disks + disk;
		if (p->rdev == NULL) {
7175
			clear_bit(In_sync, &rdev->flags);
L
Linus Torvalds 已提交
7176
			rdev->raid_disk = disk;
7177
			err = 0;
7178 7179
			if (rdev->saved_raid_disk != disk)
				conf->fullsync = 1;
7180
			rcu_assign_pointer(p->rdev, rdev);
7181
			goto out;
L
Linus Torvalds 已提交
7182
		}
7183 7184 7185
	}
	for (disk = first; disk <= last; disk++) {
		p = conf->disks + disk;
7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196
		if (test_bit(WantReplacement, &p->rdev->flags) &&
		    p->replacement == NULL) {
			clear_bit(In_sync, &rdev->flags);
			set_bit(Replacement, &rdev->flags);
			rdev->raid_disk = disk;
			err = 0;
			conf->fullsync = 1;
			rcu_assign_pointer(p->replacement, rdev);
			break;
		}
	}
7197
out:
L
Linus Torvalds 已提交
7198
	print_raid5_conf(conf);
7199
	return err;
L
Linus Torvalds 已提交
7200 7201
}

7202
static int raid5_resize(struct mddev *mddev, sector_t sectors)
L
Linus Torvalds 已提交
7203 7204 7205 7206 7207 7208 7209 7210
{
	/* no resync is happening, and there is enough space
	 * on all devices, so we can resize.
	 * We need to make sure resync covers any new space.
	 * If the array is shrinking we should possibly wait until
	 * any io in the removed space completes, but it hardly seems
	 * worth it.
	 */
7211
	sector_t newsize;
7212 7213 7214
	struct r5conf *conf = mddev->private;

	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7215 7216 7217
	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
	if (mddev->external_size &&
	    mddev->array_sectors > newsize)
D
Dan Williams 已提交
7218
		return -EINVAL;
7219 7220 7221 7222 7223 7224
	if (mddev->bitmap) {
		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
		if (ret)
			return ret;
	}
	md_set_array_sectors(mddev, newsize);
7225
	set_capacity(mddev->gendisk, mddev->array_sectors);
7226
	revalidate_disk(mddev->gendisk);
7227 7228
	if (sectors > mddev->dev_sectors &&
	    mddev->recovery_cp > mddev->dev_sectors) {
A
Andre Noll 已提交
7229
		mddev->recovery_cp = mddev->dev_sectors;
L
Linus Torvalds 已提交
7230 7231
		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
	}
A
Andre Noll 已提交
7232
	mddev->dev_sectors = sectors;
7233
	mddev->resync_max_sectors = sectors;
L
Linus Torvalds 已提交
7234 7235 7236
	return 0;
}

7237
static int check_stripe_cache(struct mddev *mddev)
7238 7239 7240 7241 7242 7243 7244 7245 7246
{
	/* Can only proceed if there are plenty of stripe_heads.
	 * We need a minimum of one full stripe,, and for sensible progress
	 * it is best to have about 4 times that.
	 * If we require 4 times, then the default 256 4K stripe_heads will
	 * allow for chunk sizes up to 256K, which is probably OK.
	 * If the chunk size is greater, user-space should request more
	 * stripe_heads first.
	 */
7247
	struct r5conf *conf = mddev->private;
7248
	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7249
	    > conf->min_nr_stripes ||
7250
	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7251
	    > conf->min_nr_stripes) {
7252 7253
		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
		       mdname(mddev),
7254 7255 7256 7257 7258 7259 7260
		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
			/ STRIPE_SIZE)*4);
		return 0;
	}
	return 1;
}

7261
static int check_reshape(struct mddev *mddev)
7262
{
7263
	struct r5conf *conf = mddev->private;
7264

7265 7266
	if (mddev->delta_disks == 0 &&
	    mddev->new_layout == mddev->layout &&
7267
	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7268
		return 0; /* nothing to do */
7269
	if (has_failed(conf))
7270
		return -EINVAL;
7271
	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
		/* We might be able to shrink, but the devices must
		 * be made bigger first.
		 * For raid6, 4 is the minimum size.
		 * Otherwise 2 is the minimum
		 */
		int min = 2;
		if (mddev->level == 6)
			min = 4;
		if (mddev->raid_disks + mddev->delta_disks < min)
			return -EINVAL;
	}
7283

7284
	if (!check_stripe_cache(mddev))
7285 7286
		return -ENOSPC;

7287 7288 7289 7290 7291 7292 7293 7294 7295
	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
	    mddev->delta_disks > 0)
		if (resize_chunks(conf,
				  conf->previous_raid_disks
				  + max(0, mddev->delta_disks),
				  max(mddev->new_chunk_sectors,
				      mddev->chunk_sectors)
			    ) < 0)
			return -ENOMEM;
7296 7297
	return resize_stripes(conf, (conf->previous_raid_disks
				     + mddev->delta_disks));
7298 7299
}

7300
static int raid5_start_reshape(struct mddev *mddev)
7301
{
7302
	struct r5conf *conf = mddev->private;
7303
	struct md_rdev *rdev;
7304
	int spares = 0;
7305
	unsigned long flags;
7306

7307
	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7308 7309
		return -EBUSY;

7310 7311 7312
	if (!check_stripe_cache(mddev))
		return -ENOSPC;

7313 7314 7315
	if (has_failed(conf))
		return -EINVAL;

7316
	rdev_for_each(rdev, mddev) {
7317 7318
		if (!test_bit(In_sync, &rdev->flags)
		    && !test_bit(Faulty, &rdev->flags))
7319
			spares++;
7320
	}
7321

7322
	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7323 7324 7325 7326 7327
		/* Not enough devices even to make a degraded array
		 * of that size
		 */
		return -EINVAL;

7328 7329 7330 7331 7332 7333
	/* Refuse to reduce size of the array.  Any reductions in
	 * array size must be through explicit setting of array_size
	 * attribute.
	 */
	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
	    < mddev->array_sectors) {
7334
		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7335 7336 7337 7338
		       "before number of disks\n", mdname(mddev));
		return -EINVAL;
	}

7339
	atomic_set(&conf->reshape_stripes, 0);
7340
	spin_lock_irq(&conf->device_lock);
7341
	write_seqcount_begin(&conf->gen_lock);
7342
	conf->previous_raid_disks = conf->raid_disks;
7343
	conf->raid_disks += mddev->delta_disks;
7344 7345
	conf->prev_chunk_sectors = conf->chunk_sectors;
	conf->chunk_sectors = mddev->new_chunk_sectors;
7346 7347
	conf->prev_algo = conf->algorithm;
	conf->algorithm = mddev->new_layout;
7348 7349 7350 7351 7352
	conf->generation++;
	/* Code that selects data_offset needs to see the generation update
	 * if reshape_progress has been set - so a memory barrier needed.
	 */
	smp_mb();
7353
	if (mddev->reshape_backwards)
7354 7355 7356 7357
		conf->reshape_progress = raid5_size(mddev, 0, 0);
	else
		conf->reshape_progress = 0;
	conf->reshape_safe = conf->reshape_progress;
7358
	write_seqcount_end(&conf->gen_lock);
7359 7360
	spin_unlock_irq(&conf->device_lock);

7361 7362 7363 7364 7365 7366 7367
	/* Now make sure any requests that proceeded on the assumption
	 * the reshape wasn't running - like Discard or Read - have
	 * completed.
	 */
	mddev_suspend(mddev);
	mddev_resume(mddev);

7368 7369
	/* Add some new drives, as many as will fit.
	 * We know there are enough to make the newly sized array work.
7370 7371 7372 7373
	 * Don't add devices if we are reducing the number of
	 * devices in the array.  This is because it is not possible
	 * to correctly record the "partially reconstructed" state of
	 * such devices during the reshape and confusion could result.
7374
	 */
7375
	if (mddev->delta_disks >= 0) {
N
NeilBrown 已提交
7376
		rdev_for_each(rdev, mddev)
7377 7378 7379 7380
			if (rdev->raid_disk < 0 &&
			    !test_bit(Faulty, &rdev->flags)) {
				if (raid5_add_disk(mddev, rdev) == 0) {
					if (rdev->raid_disk
7381
					    >= conf->previous_raid_disks)
7382
						set_bit(In_sync, &rdev->flags);
7383
					else
7384
						rdev->recovery_offset = 0;
7385 7386

					if (sysfs_link_rdev(mddev, rdev))
7387
						/* Failure here is OK */;
7388
				}
7389 7390 7391 7392 7393
			} else if (rdev->raid_disk >= conf->previous_raid_disks
				   && !test_bit(Faulty, &rdev->flags)) {
				/* This is a spare that was manually added */
				set_bit(In_sync, &rdev->flags);
			}
7394

7395 7396 7397 7398
		/* When a reshape changes the number of devices,
		 * ->degraded is measured against the larger of the
		 * pre and post number of devices.
		 */
7399
		spin_lock_irqsave(&conf->device_lock, flags);
7400
		mddev->degraded = calc_degraded(conf);
7401 7402
		spin_unlock_irqrestore(&conf->device_lock, flags);
	}
7403
	mddev->raid_disks = conf->raid_disks;
7404
	mddev->reshape_position = conf->reshape_progress;
7405
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7406

7407 7408
	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7409
	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7410 7411 7412
	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7413
						"reshape");
7414 7415 7416
	if (!mddev->sync_thread) {
		mddev->recovery = 0;
		spin_lock_irq(&conf->device_lock);
7417
		write_seqcount_begin(&conf->gen_lock);
7418
		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7419 7420 7421
		mddev->new_chunk_sectors =
			conf->chunk_sectors = conf->prev_chunk_sectors;
		mddev->new_layout = conf->algorithm = conf->prev_algo;
7422 7423 7424
		rdev_for_each(rdev, mddev)
			rdev->new_data_offset = rdev->data_offset;
		smp_wmb();
7425
		conf->generation --;
7426
		conf->reshape_progress = MaxSector;
7427
		mddev->reshape_position = MaxSector;
7428
		write_seqcount_end(&conf->gen_lock);
7429 7430 7431
		spin_unlock_irq(&conf->device_lock);
		return -EAGAIN;
	}
7432
	conf->reshape_checkpoint = jiffies;
7433 7434 7435 7436 7437
	md_wakeup_thread(mddev->sync_thread);
	md_new_event(mddev);
	return 0;
}

7438 7439 7440
/* This is called from the reshape thread and should make any
 * changes needed in 'conf'
 */
7441
static void end_reshape(struct r5conf *conf)
7442 7443
{

7444
	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7445
		struct md_rdev *rdev;
7446 7447

		spin_lock_irq(&conf->device_lock);
7448
		conf->previous_raid_disks = conf->raid_disks;
7449 7450 7451
		rdev_for_each(rdev, conf->mddev)
			rdev->data_offset = rdev->new_data_offset;
		smp_wmb();
7452
		conf->reshape_progress = MaxSector;
7453
		conf->mddev->reshape_position = MaxSector;
7454
		spin_unlock_irq(&conf->device_lock);
7455
		wake_up(&conf->wait_for_overlap);
7456 7457 7458 7459

		/* read-ahead size must cover two whole stripes, which is
		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
		 */
7460
		if (conf->mddev->queue) {
7461
			int data_disks = conf->raid_disks - conf->max_degraded;
7462
			int stripe = data_disks * ((conf->chunk_sectors << 9)
7463
						   / PAGE_SIZE);
7464 7465 7466
			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
		}
7467 7468 7469
	}
}

7470 7471 7472
/* This is called from the raid5d thread with mddev_lock held.
 * It makes config changes to the device.
 */
7473
static void raid5_finish_reshape(struct mddev *mddev)
7474
{
7475
	struct r5conf *conf = mddev->private;
7476 7477 7478

	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {

7479 7480 7481
		if (mddev->delta_disks > 0) {
			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
			set_capacity(mddev->gendisk, mddev->array_sectors);
7482
			revalidate_disk(mddev->gendisk);
7483 7484
		} else {
			int d;
7485 7486 7487
			spin_lock_irq(&conf->device_lock);
			mddev->degraded = calc_degraded(conf);
			spin_unlock_irq(&conf->device_lock);
7488 7489
			for (d = conf->raid_disks ;
			     d < conf->raid_disks - mddev->delta_disks;
7490
			     d++) {
7491
				struct md_rdev *rdev = conf->disks[d].rdev;
7492 7493 7494 7495 7496
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
				rdev = conf->disks[d].replacement;
				if (rdev)
					clear_bit(In_sync, &rdev->flags);
7497
			}
7498
		}
7499
		mddev->layout = conf->algorithm;
7500
		mddev->chunk_sectors = conf->chunk_sectors;
7501 7502
		mddev->reshape_position = MaxSector;
		mddev->delta_disks = 0;
7503
		mddev->reshape_backwards = 0;
7504 7505 7506
	}
}

7507
static void raid5_quiesce(struct mddev *mddev, int state)
7508
{
7509
	struct r5conf *conf = mddev->private;
7510 7511

	switch(state) {
7512 7513 7514 7515
	case 2: /* resume for a suspend */
		wake_up(&conf->wait_for_overlap);
		break;

7516
	case 1: /* stop all writes */
7517
		lock_all_device_hash_locks_irq(conf);
7518 7519 7520 7521
		/* '2' tells resync/reshape to pause so that all
		 * active stripes can drain
		 */
		conf->quiesce = 2;
7522
		wait_event_cmd(conf->wait_for_quiescent,
7523 7524
				    atomic_read(&conf->active_stripes) == 0 &&
				    atomic_read(&conf->active_aligned_reads) == 0,
7525 7526
				    unlock_all_device_hash_locks_irq(conf),
				    lock_all_device_hash_locks_irq(conf));
7527
		conf->quiesce = 1;
7528
		unlock_all_device_hash_locks_irq(conf);
7529 7530
		/* allow reshape to continue */
		wake_up(&conf->wait_for_overlap);
7531 7532 7533
		break;

	case 0: /* re-enable writes */
7534
		lock_all_device_hash_locks_irq(conf);
7535
		conf->quiesce = 0;
7536
		wake_up(&conf->wait_for_quiescent);
7537
		wake_up(&conf->wait_for_overlap);
7538
		unlock_all_device_hash_locks_irq(conf);
7539 7540 7541
		break;
	}
}
7542

7543
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7544
{
7545
	struct r0conf *raid0_conf = mddev->private;
7546
	sector_t sectors;
7547

D
Dan Williams 已提交
7548
	/* for raid0 takeover only one zone is supported */
7549
	if (raid0_conf->nr_strip_zones > 1) {
7550 7551
		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
		       mdname(mddev));
D
Dan Williams 已提交
7552 7553 7554
		return ERR_PTR(-EINVAL);
	}

7555 7556
	sectors = raid0_conf->strip_zone[0].zone_end;
	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7557
	mddev->dev_sectors = sectors;
D
Dan Williams 已提交
7558
	mddev->new_level = level;
7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
	mddev->new_layout = ALGORITHM_PARITY_N;
	mddev->new_chunk_sectors = mddev->chunk_sectors;
	mddev->raid_disks += 1;
	mddev->delta_disks = 1;
	/* make sure it will be not marked as dirty */
	mddev->recovery_cp = MaxSector;

	return setup_conf(mddev);
}

7569
static void *raid5_takeover_raid1(struct mddev *mddev)
7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590
{
	int chunksect;

	if (mddev->raid_disks != 2 ||
	    mddev->degraded > 1)
		return ERR_PTR(-EINVAL);

	/* Should check if there are write-behind devices? */

	chunksect = 64*2; /* 64K by default */

	/* The array must be an exact multiple of chunksize */
	while (chunksect && (mddev->array_sectors & (chunksect-1)))
		chunksect >>= 1;

	if ((chunksect<<9) < STRIPE_SIZE)
		/* array size does not allow a suitable chunk size */
		return ERR_PTR(-EINVAL);

	mddev->new_level = 5;
	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7591
	mddev->new_chunk_sectors = chunksect;
7592 7593 7594 7595

	return setup_conf(mddev);
}

7596
static void *raid5_takeover_raid6(struct mddev *mddev)
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628
{
	int new_layout;

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
		break;
	case ALGORITHM_LEFT_SYMMETRIC_6:
		new_layout = ALGORITHM_LEFT_SYMMETRIC;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC_6:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
		break;
	case ALGORITHM_PARITY_0_6:
		new_layout = ALGORITHM_PARITY_0;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 5;
	mddev->new_layout = new_layout;
	mddev->delta_disks = -1;
	mddev->raid_disks -= 1;
	return setup_conf(mddev);
}

7629
static int raid5_check_reshape(struct mddev *mddev)
7630
{
7631 7632 7633 7634
	/* For a 2-drive array, the layout and chunk size can be changed
	 * immediately as not restriping is needed.
	 * For larger arrays we record the new value - after validation
	 * to be used by a reshape pass.
7635
	 */
7636
	struct r5conf *conf = mddev->private;
7637
	int new_chunk = mddev->new_chunk_sectors;
7638

7639
	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7640 7641
		return -EINVAL;
	if (new_chunk > 0) {
7642
		if (!is_power_of_2(new_chunk))
7643
			return -EINVAL;
7644
		if (new_chunk < (PAGE_SIZE>>9))
7645
			return -EINVAL;
7646
		if (mddev->array_sectors & (new_chunk-1))
7647 7648 7649 7650 7651 7652
			/* not factor of array size */
			return -EINVAL;
	}

	/* They look valid */

7653
	if (mddev->raid_disks == 2) {
7654 7655 7656 7657
		/* can make the change immediately */
		if (mddev->new_layout >= 0) {
			conf->algorithm = mddev->new_layout;
			mddev->layout = mddev->new_layout;
7658 7659
		}
		if (new_chunk > 0) {
7660 7661
			conf->chunk_sectors = new_chunk ;
			mddev->chunk_sectors = new_chunk;
7662 7663 7664
		}
		set_bit(MD_CHANGE_DEVS, &mddev->flags);
		md_wakeup_thread(mddev->thread);
7665
	}
7666
	return check_reshape(mddev);
7667 7668
}

7669
static int raid6_check_reshape(struct mddev *mddev)
7670
{
7671
	int new_chunk = mddev->new_chunk_sectors;
7672

7673
	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7674
		return -EINVAL;
7675
	if (new_chunk > 0) {
7676
		if (!is_power_of_2(new_chunk))
7677
			return -EINVAL;
7678
		if (new_chunk < (PAGE_SIZE >> 9))
7679
			return -EINVAL;
7680
		if (mddev->array_sectors & (new_chunk-1))
7681 7682
			/* not factor of array size */
			return -EINVAL;
7683
	}
7684 7685

	/* They look valid */
7686
	return check_reshape(mddev);
7687 7688
}

7689
static void *raid5_takeover(struct mddev *mddev)
7690 7691
{
	/* raid5 can take over:
D
Dan Williams 已提交
7692
	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7693 7694 7695 7696
	 *  raid1 - if there are two drives.  We need to know the chunk size
	 *  raid4 - trivial - just use a raid4 layout.
	 *  raid6 - Providing it is a *_6 layout
	 */
D
Dan Williams 已提交
7697 7698
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 5);
7699 7700
	if (mddev->level == 1)
		return raid5_takeover_raid1(mddev);
7701 7702 7703 7704 7705
	if (mddev->level == 4) {
		mddev->new_layout = ALGORITHM_PARITY_N;
		mddev->new_level = 5;
		return setup_conf(mddev);
	}
7706 7707
	if (mddev->level == 6)
		return raid5_takeover_raid6(mddev);
7708 7709 7710 7711

	return ERR_PTR(-EINVAL);
}

7712
static void *raid4_takeover(struct mddev *mddev)
7713
{
D
Dan Williams 已提交
7714 7715 7716
	/* raid4 can take over:
	 *  raid0 - if there is only one strip zone
	 *  raid5 - if layout is right
7717
	 */
D
Dan Williams 已提交
7718 7719
	if (mddev->level == 0)
		return raid45_takeover_raid0(mddev, 4);
7720 7721 7722 7723 7724 7725 7726 7727
	if (mddev->level == 5 &&
	    mddev->layout == ALGORITHM_PARITY_N) {
		mddev->new_layout = 0;
		mddev->new_level = 4;
		return setup_conf(mddev);
	}
	return ERR_PTR(-EINVAL);
}
7728

7729
static struct md_personality raid5_personality;
7730

7731
static void *raid6_takeover(struct mddev *mddev)
7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
{
	/* Currently can only take over a raid5.  We map the
	 * personality to an equivalent raid6 personality
	 * with the Q block at the end.
	 */
	int new_layout;

	if (mddev->pers != &raid5_personality)
		return ERR_PTR(-EINVAL);
	if (mddev->degraded > 1)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks > 253)
		return ERR_PTR(-EINVAL);
	if (mddev->raid_disks < 3)
		return ERR_PTR(-EINVAL);

	switch (mddev->layout) {
	case ALGORITHM_LEFT_ASYMMETRIC:
		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_ASYMMETRIC:
		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
		break;
	case ALGORITHM_LEFT_SYMMETRIC:
		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
		break;
	case ALGORITHM_RIGHT_SYMMETRIC:
		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
		break;
	case ALGORITHM_PARITY_0:
		new_layout = ALGORITHM_PARITY_0_6;
		break;
	case ALGORITHM_PARITY_N:
		new_layout = ALGORITHM_PARITY_N;
		break;
	default:
		return ERR_PTR(-EINVAL);
	}
	mddev->new_level = 6;
	mddev->new_layout = new_layout;
	mddev->delta_disks = 1;
	mddev->raid_disks += 1;
	return setup_conf(mddev);
}

7777
static struct md_personality raid6_personality =
7778 7779 7780 7781 7782 7783
{
	.name		= "raid6",
	.level		= 6,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7784
	.free		= raid5_free,
7785 7786 7787 7788 7789 7790 7791
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7792
	.size		= raid5_size,
7793
	.check_reshape	= raid6_check_reshape,
7794
	.start_reshape  = raid5_start_reshape,
7795
	.finish_reshape = raid5_finish_reshape,
7796
	.quiesce	= raid5_quiesce,
7797
	.takeover	= raid6_takeover,
7798
	.congested	= raid5_congested,
7799
	.mergeable_bvec	= raid5_mergeable_bvec,
7800
};
7801
static struct md_personality raid5_personality =
L
Linus Torvalds 已提交
7802 7803
{
	.name		= "raid5",
7804
	.level		= 5,
L
Linus Torvalds 已提交
7805 7806 7807
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7808
	.free		= raid5_free,
L
Linus Torvalds 已提交
7809 7810 7811 7812 7813 7814 7815
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7816
	.size		= raid5_size,
7817 7818
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
7819
	.finish_reshape = raid5_finish_reshape,
7820
	.quiesce	= raid5_quiesce,
7821
	.takeover	= raid5_takeover,
7822
	.congested	= raid5_congested,
7823
	.mergeable_bvec	= raid5_mergeable_bvec,
L
Linus Torvalds 已提交
7824 7825
};

7826
static struct md_personality raid4_personality =
L
Linus Torvalds 已提交
7827
{
7828 7829 7830 7831 7832
	.name		= "raid4",
	.level		= 4,
	.owner		= THIS_MODULE,
	.make_request	= make_request,
	.run		= run,
N
NeilBrown 已提交
7833
	.free		= raid5_free,
7834 7835 7836 7837 7838 7839 7840
	.status		= status,
	.error_handler	= error,
	.hot_add_disk	= raid5_add_disk,
	.hot_remove_disk= raid5_remove_disk,
	.spare_active	= raid5_spare_active,
	.sync_request	= sync_request,
	.resize		= raid5_resize,
7841
	.size		= raid5_size,
7842 7843
	.check_reshape	= raid5_check_reshape,
	.start_reshape  = raid5_start_reshape,
7844
	.finish_reshape = raid5_finish_reshape,
7845
	.quiesce	= raid5_quiesce,
7846
	.takeover	= raid4_takeover,
7847
	.congested	= raid5_congested,
7848
	.mergeable_bvec	= raid5_mergeable_bvec,
7849 7850 7851 7852
};

static int __init raid5_init(void)
{
7853 7854 7855 7856
	raid5_wq = alloc_workqueue("raid5wq",
		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
	if (!raid5_wq)
		return -ENOMEM;
7857
	register_md_personality(&raid6_personality);
7858 7859 7860
	register_md_personality(&raid5_personality);
	register_md_personality(&raid4_personality);
	return 0;
L
Linus Torvalds 已提交
7861 7862
}

7863
static void raid5_exit(void)
L
Linus Torvalds 已提交
7864
{
7865
	unregister_md_personality(&raid6_personality);
7866 7867
	unregister_md_personality(&raid5_personality);
	unregister_md_personality(&raid4_personality);
7868
	destroy_workqueue(raid5_wq);
L
Linus Torvalds 已提交
7869 7870 7871 7872 7873
}

module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
7874
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
L
Linus Torvalds 已提交
7875
MODULE_ALIAS("md-personality-4"); /* RAID5 */
7876 7877
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
7878 7879
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
7880 7881 7882 7883 7884 7885 7886
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");

/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");