perf_event.c 144.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

38
atomic_t perf_task_events __read_mostly;
39 40 41
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
42

P
Peter Zijlstra 已提交
43 44 45 46
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

47
/*
48
 * perf event paranoia level:
49 50
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
51
 *   1 - disallow cpu events for unpriv
52
 *   2 - disallow kernel profiling for unpriv
53
 */
54
int sysctl_perf_event_paranoid __read_mostly = 1;
55

56
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57 58

/*
59
 * max perf event sample rate
60
 */
61
int sysctl_perf_event_sample_rate __read_mostly = 100000;
62

63
static atomic64_t perf_event_id;
64

65
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
66

67
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
68
{
69
	return "pmu";
T
Thomas Gleixner 已提交
70 71
}

P
Peter Zijlstra 已提交
72
void perf_pmu_disable(struct pmu *pmu)
73
{
P
Peter Zijlstra 已提交
74 75 76
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
77 78
}

P
Peter Zijlstra 已提交
79
void perf_pmu_enable(struct pmu *pmu)
80
{
P
Peter Zijlstra 已提交
81 82 83
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
84 85
}

86 87 88 89 90 91 92
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
93
static void perf_pmu_rotate_start(struct pmu *pmu)
94
{
P
Peter Zijlstra 已提交
95
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96
	struct list_head *head = &__get_cpu_var(rotation_list);
97

98
	WARN_ON(!irqs_disabled());
99

100 101
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
102 103
}

104
static void get_ctx(struct perf_event_context *ctx)
105
{
106
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 108
}

109 110
static void free_ctx(struct rcu_head *head)
{
111
	struct perf_event_context *ctx;
112

113
	ctx = container_of(head, struct perf_event_context, rcu_head);
114 115 116
	kfree(ctx);
}

117
static void put_ctx(struct perf_event_context *ctx)
118
{
119 120 121
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
122 123 124
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
125
	}
126 127
}

128
static void unclone_ctx(struct perf_event_context *ctx)
129 130 131 132 133 134 135
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

136
/*
137
 * If we inherit events we want to return the parent event id
138 139
 * to userspace.
 */
140
static u64 primary_event_id(struct perf_event *event)
141
{
142
	u64 id = event->id;
143

144 145
	if (event->parent)
		id = event->parent->id;
146 147 148 149

	return id;
}

150
/*
151
 * Get the perf_event_context for a task and lock it.
152 153 154
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
155
static struct perf_event_context *
P
Peter Zijlstra 已提交
156
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
157
{
158
	struct perf_event_context *ctx;
159 160

	rcu_read_lock();
P
Peter Zijlstra 已提交
161
retry:
P
Peter Zijlstra 已提交
162
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
163 164 165 166
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
167
		 * perf_event_task_sched_out, though the
168 169 170 171 172 173
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
174
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
175
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
176
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 178
			goto retry;
		}
179 180

		if (!atomic_inc_not_zero(&ctx->refcount)) {
181
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182 183
			ctx = NULL;
		}
184 185 186 187 188 189 190 191 192 193
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
194 195
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
196
{
197
	struct perf_event_context *ctx;
198 199
	unsigned long flags;

P
Peter Zijlstra 已提交
200
	ctx = perf_lock_task_context(task, ctxn, &flags);
201 202
	if (ctx) {
		++ctx->pin_count;
203
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
204 205 206 207
	}
	return ctx;
}

208
static void perf_unpin_context(struct perf_event_context *ctx)
209 210 211
{
	unsigned long flags;

212
	raw_spin_lock_irqsave(&ctx->lock, flags);
213
	--ctx->pin_count;
214
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
215 216 217
	put_ctx(ctx);
}

218 219
static inline u64 perf_clock(void)
{
220
	return local_clock();
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

246 247 248 249 250 251
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
252 253 254 255 256 257 258 259 260

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

261 262 263 264 265 266 267 268 269 270 271 272
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

273 274 275 276 277 278 279 280 281
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

282
/*
283
 * Add a event from the lists for its context.
284 285
 * Must be called with ctx->mutex and ctx->lock held.
 */
286
static void
287
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
288
{
289 290
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
291 292

	/*
293 294 295
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
296
	 */
297
	if (event->group_leader == event) {
298 299
		struct list_head *list;

300 301 302
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

303 304
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
305
	}
P
Peter Zijlstra 已提交
306

307
	list_add_rcu(&event->event_entry, &ctx->event_list);
308
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
309
		perf_pmu_rotate_start(ctx->pmu);
310 311
	ctx->nr_events++;
	if (event->attr.inherit_stat)
312
		ctx->nr_stat++;
313 314
}

315 316 317 318
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

P
Peter Zijlstra 已提交
319 320 321 322 323 324
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

325 326 327 328 329 330 331 332 333 334 335 336 337
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

338
/*
339
 * Remove a event from the lists for its context.
340
 * Must be called with ctx->mutex and ctx->lock held.
341
 */
342
static void
343
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344
{
345 346 347 348
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
349
		return;
350 351 352

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

353 354
	ctx->nr_events--;
	if (event->attr.inherit_stat)
355
		ctx->nr_stat--;
356

357
	list_del_rcu(&event->event_entry);
358

359 360
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
361

362
	update_group_times(event);
363 364 365 366 367 368 369 370 371 372

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
373 374
}

375
static void perf_group_detach(struct perf_event *event)
376 377
{
	struct perf_event *sibling, *tmp;
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
399

400
	/*
401 402
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
403
	 * to whatever list we are on.
404
	 */
405
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
406 407
		if (list)
			list_move_tail(&sibling->group_entry, list);
408
		sibling->group_leader = sibling;
409 410 411

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
412 413 414
	}
}

415 416 417 418 419 420
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

421 422
static void
event_sched_out(struct perf_event *event,
423
		  struct perf_cpu_context *cpuctx,
424
		  struct perf_event_context *ctx)
425
{
426 427 428 429 430 431 432 433 434 435 436 437 438 439
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

440
	if (event->state != PERF_EVENT_STATE_ACTIVE)
441
		return;
442

443 444 445 446
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
447
	}
448
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
449
	event->pmu->del(event, 0);
450
	event->oncpu = -1;
451

452
	if (!is_software_event(event))
453 454
		cpuctx->active_oncpu--;
	ctx->nr_active--;
455
	if (event->attr.exclusive || !cpuctx->active_oncpu)
456 457 458
		cpuctx->exclusive = 0;
}

459
static void
460
group_sched_out(struct perf_event *group_event,
461
		struct perf_cpu_context *cpuctx,
462
		struct perf_event_context *ctx)
463
{
464
	struct perf_event *event;
465
	int state = group_event->state;
466

467
	event_sched_out(group_event, cpuctx, ctx);
468 469 470 471

	/*
	 * Schedule out siblings (if any):
	 */
472 473
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
474

475
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
476 477 478
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
479 480 481 482 483 484
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
485
/*
486
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
487
 *
488
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
489 490
 * remove it from the context list.
 */
491
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
492
{
493 494
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
495
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
496 497 498 499 500 501

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
502
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
503 504
		return;

505
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
506

507
	event_sched_out(event, cpuctx, ctx);
508

509
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
510

511
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
512 513 514 515
}


/*
516
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
517
 *
518
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
519
 *
520
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
521
 * call when the task is on a CPU.
522
 *
523 524
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
525 526
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
527
 * When called from perf_event_exit_task, it's OK because the
528
 * context has been detached from its task.
T
Thomas Gleixner 已提交
529
 */
530
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
531
{
532
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
533 534 535 536
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
537
		 * Per cpu events are removed via an smp call and
538
		 * the removal is always successful.
T
Thomas Gleixner 已提交
539
		 */
540 541 542
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
543 544 545 546
		return;
	}

retry:
547 548
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
549

550
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
551 552 553
	/*
	 * If the context is active we need to retry the smp call.
	 */
554
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
555
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
556 557 558 559 560
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
561
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
562 563
	 * succeed.
	 */
P
Peter Zijlstra 已提交
564
	if (!list_empty(&event->group_entry))
565
		list_del_event(event, ctx);
566
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
567 568
}

569
/*
570
 * Cross CPU call to disable a performance event
571
 */
572
static void __perf_event_disable(void *info)
573
{
574 575
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
576
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
577 578

	/*
579 580
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
581
	 */
582
	if (ctx->task && cpuctx->task_ctx != ctx)
583 584
		return;

585
	raw_spin_lock(&ctx->lock);
586 587

	/*
588
	 * If the event is on, turn it off.
589 590
	 * If it is in error state, leave it in error state.
	 */
591
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592
		update_context_time(ctx);
593 594 595
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
596
		else
597 598
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
599 600
	}

601
	raw_spin_unlock(&ctx->lock);
602 603 604
}

/*
605
 * Disable a event.
606
 *
607 608
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
609
 * remains valid.  This condition is satisifed when called through
610 611 612 613
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
614
 * is the current context on this CPU and preemption is disabled,
615
 * hence we can't get into perf_event_task_sched_out for this context.
616
 */
617
void perf_event_disable(struct perf_event *event)
618
{
619
	struct perf_event_context *ctx = event->ctx;
620 621 622 623
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
624
		 * Disable the event on the cpu that it's on
625
		 */
626 627
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
628 629 630
		return;
	}

P
Peter Zijlstra 已提交
631
retry:
632
	task_oncpu_function_call(task, __perf_event_disable, event);
633

634
	raw_spin_lock_irq(&ctx->lock);
635
	/*
636
	 * If the event is still active, we need to retry the cross-call.
637
	 */
638
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
639
		raw_spin_unlock_irq(&ctx->lock);
640 641 642 643 644 645 646
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
647 648 649
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
650
	}
651

652
	raw_spin_unlock_irq(&ctx->lock);
653 654
}

655
static int
656
event_sched_in(struct perf_event *event,
657
		 struct perf_cpu_context *cpuctx,
658
		 struct perf_event_context *ctx)
659
{
660
	if (event->state <= PERF_EVENT_STATE_OFF)
661 662
		return 0;

663
	event->state = PERF_EVENT_STATE_ACTIVE;
664
	event->oncpu = smp_processor_id();
665 666 667 668 669
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
670
	if (event->pmu->add(event, PERF_EF_START)) {
671 672
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
673 674 675
		return -EAGAIN;
	}

676 677
	event->tstamp_running += ctx->time - event->tstamp_stopped;

678 679
	event->shadow_ctx_time = ctx->time - ctx->timestamp;

680
	if (!is_software_event(event))
681
		cpuctx->active_oncpu++;
682 683
	ctx->nr_active++;

684
	if (event->attr.exclusive)
685 686
		cpuctx->exclusive = 1;

687 688 689
	return 0;
}

690
static int
691
group_sched_in(struct perf_event *group_event,
692
	       struct perf_cpu_context *cpuctx,
693
	       struct perf_event_context *ctx)
694
{
695
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
696
	struct pmu *pmu = group_event->pmu;
697 698
	u64 now = ctx->time;
	bool simulate = false;
699

700
	if (group_event->state == PERF_EVENT_STATE_OFF)
701 702
		return 0;

P
Peter Zijlstra 已提交
703
	pmu->start_txn(pmu);
704

705
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
706
		pmu->cancel_txn(pmu);
707
		return -EAGAIN;
708
	}
709 710 711 712

	/*
	 * Schedule in siblings as one group (if any):
	 */
713
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714
		if (event_sched_in(event, cpuctx, ctx)) {
715
			partial_group = event;
716 717 718 719
			goto group_error;
		}
	}

720
	if (!pmu->commit_txn(pmu))
721
		return 0;
722

723 724 725 726
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
727 728 729 730 731 732 733 734 735 736
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
737
	 */
738 739
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
740 741 742 743 744 745 746 747
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
748
	}
749
	event_sched_out(group_event, cpuctx, ctx);
750

P
Peter Zijlstra 已提交
751
	pmu->cancel_txn(pmu);
752

753 754 755
	return -EAGAIN;
}

756
/*
757
 * Work out whether we can put this event group on the CPU now.
758
 */
759
static int group_can_go_on(struct perf_event *event,
760 761 762 763
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
764
	 * Groups consisting entirely of software events can always go on.
765
	 */
766
	if (event->group_flags & PERF_GROUP_SOFTWARE)
767 768 769
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
770
	 * events can go on.
771 772 773 774 775
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
776
	 * events on the CPU, it can't go on.
777
	 */
778
	if (event->attr.exclusive && cpuctx->active_oncpu)
779 780 781 782 783 784 785 786
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

787 788
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
789
{
790
	list_add_event(event, ctx);
791
	perf_group_attach(event);
792 793 794
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
795 796
}

T
Thomas Gleixner 已提交
797
/*
798
 * Cross CPU call to install and enable a performance event
799 800
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
801 802 803
 */
static void __perf_install_in_context(void *info)
{
804 805 806
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
807
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
808
	int err;
T
Thomas Gleixner 已提交
809 810 811 812 813

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
814
	 * Or possibly this is the right context but it isn't
815
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
816
	 */
817
	if (ctx->task && cpuctx->task_ctx != ctx) {
818
		if (cpuctx->task_ctx || ctx->task != current)
819 820 821
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
822

823
	raw_spin_lock(&ctx->lock);
824
	ctx->is_active = 1;
825
	update_context_time(ctx);
T
Thomas Gleixner 已提交
826

827
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
828

829 830 831
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

832
	/*
833
	 * Don't put the event on if it is disabled or if
834 835
	 * it is in a group and the group isn't on.
	 */
836 837
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
838 839
		goto unlock;

840
	/*
841 842 843
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
844
	 */
845
	if (!group_can_go_on(event, cpuctx, 1))
846 847
		err = -EEXIST;
	else
848
		err = event_sched_in(event, cpuctx, ctx);
849

850 851
	if (err) {
		/*
852
		 * This event couldn't go on.  If it is in a group
853
		 * then we have to pull the whole group off.
854
		 * If the event group is pinned then put it in error state.
855
		 */
856
		if (leader != event)
857
			group_sched_out(leader, cpuctx, ctx);
858
		if (leader->attr.pinned) {
859
			update_group_times(leader);
860
			leader->state = PERF_EVENT_STATE_ERROR;
861
		}
862
	}
T
Thomas Gleixner 已提交
863

P
Peter Zijlstra 已提交
864
unlock:
865
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
866 867 868
}

/*
869
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
870
 *
871 872
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
873
 *
874
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
875 876
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
877 878
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
879 880
 */
static void
881 882
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
883 884 885 886
			int cpu)
{
	struct task_struct *task = ctx->task;

887 888
	event->ctx = ctx;

T
Thomas Gleixner 已提交
889 890
	if (!task) {
		/*
891
		 * Per cpu events are installed via an smp call and
892
		 * the install is always successful.
T
Thomas Gleixner 已提交
893 894
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
895
					 event, 1);
T
Thomas Gleixner 已提交
896 897 898 899 900
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
901
				 event);
T
Thomas Gleixner 已提交
902

903
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
904 905 906
	/*
	 * we need to retry the smp call.
	 */
907
	if (ctx->is_active && list_empty(&event->group_entry)) {
908
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
909 910 911 912 913
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
914
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
915 916
	 * succeed.
	 */
917 918
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
919
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
920 921
}

922
/*
923
 * Put a event into inactive state and update time fields.
924 925 926 927 928 929
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
930 931
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
932
{
933
	struct perf_event *sub;
934

935 936
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
937 938
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
939 940
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
941 942
		}
	}
943 944
}

945
/*
946
 * Cross CPU call to enable a performance event
947
 */
948
static void __perf_event_enable(void *info)
949
{
950 951 952
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
953
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
954
	int err;
955

956
	/*
957 958
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
959
	 */
960
	if (ctx->task && cpuctx->task_ctx != ctx) {
961
		if (cpuctx->task_ctx || ctx->task != current)
962 963 964
			return;
		cpuctx->task_ctx = ctx;
	}
965

966
	raw_spin_lock(&ctx->lock);
967
	ctx->is_active = 1;
968
	update_context_time(ctx);
969

970
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
971
		goto unlock;
972
	__perf_event_mark_enabled(event, ctx);
973

974 975 976
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

977
	/*
978
	 * If the event is in a group and isn't the group leader,
979
	 * then don't put it on unless the group is on.
980
	 */
981
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
982
		goto unlock;
983

984
	if (!group_can_go_on(event, cpuctx, 1)) {
985
		err = -EEXIST;
986
	} else {
987
		if (event == leader)
988
			err = group_sched_in(event, cpuctx, ctx);
989
		else
990
			err = event_sched_in(event, cpuctx, ctx);
991
	}
992 993 994

	if (err) {
		/*
995
		 * If this event can't go on and it's part of a
996 997
		 * group, then the whole group has to come off.
		 */
998
		if (leader != event)
999
			group_sched_out(leader, cpuctx, ctx);
1000
		if (leader->attr.pinned) {
1001
			update_group_times(leader);
1002
			leader->state = PERF_EVENT_STATE_ERROR;
1003
		}
1004 1005
	}

P
Peter Zijlstra 已提交
1006
unlock:
1007
	raw_spin_unlock(&ctx->lock);
1008 1009 1010
}

/*
1011
 * Enable a event.
1012
 *
1013 1014
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1015
 * remains valid.  This condition is satisfied when called through
1016 1017
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1018
 */
1019
void perf_event_enable(struct perf_event *event)
1020
{
1021
	struct perf_event_context *ctx = event->ctx;
1022 1023 1024 1025
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1026
		 * Enable the event on the cpu that it's on
1027
		 */
1028 1029
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1030 1031 1032
		return;
	}

1033
	raw_spin_lock_irq(&ctx->lock);
1034
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1035 1036 1037
		goto out;

	/*
1038 1039
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1040 1041 1042 1043
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1044 1045
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1046

P
Peter Zijlstra 已提交
1047
retry:
1048
	raw_spin_unlock_irq(&ctx->lock);
1049
	task_oncpu_function_call(task, __perf_event_enable, event);
1050

1051
	raw_spin_lock_irq(&ctx->lock);
1052 1053

	/*
1054
	 * If the context is active and the event is still off,
1055 1056
	 * we need to retry the cross-call.
	 */
1057
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1058 1059 1060 1061 1062 1063
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1064 1065
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1066

P
Peter Zijlstra 已提交
1067
out:
1068
	raw_spin_unlock_irq(&ctx->lock);
1069 1070
}

1071
static int perf_event_refresh(struct perf_event *event, int refresh)
1072
{
1073
	/*
1074
	 * not supported on inherited events
1075
	 */
1076
	if (event->attr.inherit)
1077 1078
		return -EINVAL;

1079 1080
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1081 1082

	return 0;
1083 1084
}

1085 1086 1087 1088 1089 1090 1091 1092 1093
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1094
{
1095
	struct perf_event *event;
1096

1097
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1098
	perf_pmu_disable(ctx->pmu);
1099
	ctx->is_active = 0;
1100
	if (likely(!ctx->nr_events))
1101
		goto out;
1102
	update_context_time(ctx);
1103

1104
	if (!ctx->nr_active)
1105
		goto out;
1106

P
Peter Zijlstra 已提交
1107
	if (event_type & EVENT_PINNED) {
1108 1109
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1110
	}
1111

P
Peter Zijlstra 已提交
1112
	if (event_type & EVENT_FLEXIBLE) {
1113
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1114
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1115 1116
	}
out:
P
Peter Zijlstra 已提交
1117
	perf_pmu_enable(ctx->pmu);
1118
	raw_spin_unlock(&ctx->lock);
1119 1120
}

1121 1122 1123
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1124 1125 1126 1127
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1128
 * in them directly with an fd; we can only enable/disable all
1129
 * events via prctl, or enable/disable all events in a family
1130 1131
 * via ioctl, which will have the same effect on both contexts.
 */
1132 1133
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1134 1135
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1136
		&& ctx1->parent_gen == ctx2->parent_gen
1137
		&& !ctx1->pin_count && !ctx2->pin_count;
1138 1139
}

1140 1141
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1142 1143 1144
{
	u64 value;

1145
	if (!event->attr.inherit_stat)
1146 1147 1148
		return;

	/*
1149
	 * Update the event value, we cannot use perf_event_read()
1150 1151
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1152
	 * we know the event must be on the current CPU, therefore we
1153 1154
	 * don't need to use it.
	 */
1155 1156
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1157 1158
		event->pmu->read(event);
		/* fall-through */
1159

1160 1161
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1162 1163 1164 1165 1166 1167 1168
		break;

	default:
		break;
	}

	/*
1169
	 * In order to keep per-task stats reliable we need to flip the event
1170 1171
	 * values when we flip the contexts.
	 */
1172 1173 1174
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1175

1176 1177
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1178

1179
	/*
1180
	 * Since we swizzled the values, update the user visible data too.
1181
	 */
1182 1183
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1184 1185 1186 1187 1188
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1189 1190
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1191
{
1192
	struct perf_event *event, *next_event;
1193 1194 1195 1196

	if (!ctx->nr_stat)
		return;

1197 1198
	update_context_time(ctx);

1199 1200
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1201

1202 1203
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1204

1205 1206
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1207

1208
		__perf_event_sync_stat(event, next_event);
1209

1210 1211
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1212 1213 1214
	}
}

P
Peter Zijlstra 已提交
1215 1216
void perf_event_context_sched_out(struct task_struct *task, int ctxn,
				  struct task_struct *next)
T
Thomas Gleixner 已提交
1217
{
P
Peter Zijlstra 已提交
1218
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1219 1220
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1221
	struct perf_cpu_context *cpuctx;
1222
	int do_switch = 1;
T
Thomas Gleixner 已提交
1223

P
Peter Zijlstra 已提交
1224 1225
	if (likely(!ctx))
		return;
1226

P
Peter Zijlstra 已提交
1227 1228
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1229 1230
		return;

1231 1232
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1233
	next_ctx = next->perf_event_ctxp[ctxn];
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1245 1246
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1247
		if (context_equiv(ctx, next_ctx)) {
1248 1249
			/*
			 * XXX do we need a memory barrier of sorts
1250
			 * wrt to rcu_dereference() of perf_event_ctxp
1251
			 */
P
Peter Zijlstra 已提交
1252 1253
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1254 1255 1256
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1257

1258
			perf_event_sync_stat(ctx, next_ctx);
1259
		}
1260 1261
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1262
	}
1263
	rcu_read_unlock();
1264

1265
	if (do_switch) {
1266
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1267 1268
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1269 1270
}

P
Peter Zijlstra 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
1285 1286
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
1287 1288 1289 1290 1291 1292 1293
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
}

1294 1295
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1296
{
P
Peter Zijlstra 已提交
1297
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1298

1299 1300
	if (!cpuctx->task_ctx)
		return;
1301 1302 1303 1304

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1305
	ctx_sched_out(ctx, cpuctx, event_type);
1306 1307 1308
	cpuctx->task_ctx = NULL;
}

1309 1310 1311 1312 1313 1314 1315
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1316 1317
}

1318
static void
1319
ctx_pinned_sched_in(struct perf_event_context *ctx,
1320
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1321
{
1322
	struct perf_event *event;
T
Thomas Gleixner 已提交
1323

1324 1325
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1326
			continue;
1327
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1328 1329
			continue;

1330
		if (group_can_go_on(event, cpuctx, 1))
1331
			group_sched_in(event, cpuctx, ctx);
1332 1333 1334 1335 1336

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1337 1338 1339
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1340
		}
1341
	}
1342 1343 1344 1345
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1346
		      struct perf_cpu_context *cpuctx)
1347 1348 1349
{
	struct perf_event *event;
	int can_add_hw = 1;
1350

1351 1352 1353
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1354
			continue;
1355 1356
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1357
		 * of events:
1358
		 */
1359
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1360 1361
			continue;

P
Peter Zijlstra 已提交
1362
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1363
			if (group_sched_in(event, cpuctx, ctx))
1364
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1365
		}
T
Thomas Gleixner 已提交
1366
	}
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1386
		ctx_pinned_sched_in(ctx, cpuctx);
1387 1388 1389

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1390
		ctx_flexible_sched_in(ctx, cpuctx);
1391

P
Peter Zijlstra 已提交
1392
out:
1393
	raw_spin_unlock(&ctx->lock);
1394 1395
}

1396 1397 1398 1399 1400 1401 1402 1403
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

P
Peter Zijlstra 已提交
1404
static void task_ctx_sched_in(struct perf_event_context *ctx,
1405 1406
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
1407
	struct perf_cpu_context *cpuctx;
1408

P
Peter Zijlstra 已提交
1409
       	cpuctx = __get_cpu_context(ctx);
1410 1411
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
1412

1413 1414 1415
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
T
Thomas Gleixner 已提交
1416

P
Peter Zijlstra 已提交
1417
void perf_event_context_sched_in(struct perf_event_context *ctx)
1418
{
P
Peter Zijlstra 已提交
1419
	struct perf_cpu_context *cpuctx;
1420

P
Peter Zijlstra 已提交
1421
	cpuctx = __get_cpu_context(ctx);
1422 1423 1424
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
1425
	perf_pmu_disable(ctx->pmu);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1438

1439 1440 1441 1442
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1443
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
1444
	perf_pmu_enable(ctx->pmu);
1445 1446
}

P
Peter Zijlstra 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
1458
void __perf_event_task_sched_in(struct task_struct *task)
P
Peter Zijlstra 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

		perf_event_context_sched_in(ctx);
	}
1470 1471
}

1472 1473
#define MAX_INTERRUPTS (~0ULL)

1474
static void perf_log_throttle(struct perf_event *event, int enable);
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1543 1544 1545
	if (!divisor)
		return dividend;

1546 1547 1548 1549
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1550
{
1551
	struct hw_perf_event *hwc = &event->hw;
1552
	s64 period, sample_period;
1553 1554
	s64 delta;

1555
	period = perf_calculate_period(event, nsec, count);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1566

1567
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1568
		event->pmu->stop(event, PERF_EF_UPDATE);
1569
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1570
		event->pmu->start(event, PERF_EF_RELOAD);
1571
	}
1572 1573
}

1574
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1575
{
1576 1577
	struct perf_event *event;
	struct hw_perf_event *hwc;
1578 1579
	u64 interrupts, now;
	s64 delta;
1580

1581
	raw_spin_lock(&ctx->lock);
1582
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1583
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1584 1585
			continue;

1586 1587 1588
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1589
		hwc = &event->hw;
1590 1591 1592

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1593

1594
		/*
1595
		 * unthrottle events on the tick
1596
		 */
1597
		if (interrupts == MAX_INTERRUPTS) {
1598
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1599
			event->pmu->start(event, 0);
1600 1601
		}

1602
		if (!event->attr.freq || !event->attr.sample_freq)
1603 1604
			continue;

1605
		event->pmu->read(event);
1606
		now = local64_read(&event->count);
1607 1608
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1609

1610
		if (delta > 0)
1611
			perf_adjust_period(event, period, delta);
1612
	}
1613
	raw_spin_unlock(&ctx->lock);
1614 1615
}

1616
/*
1617
 * Round-robin a context's events:
1618
 */
1619
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1620
{
1621
	raw_spin_lock(&ctx->lock);
1622

1623 1624 1625 1626 1627 1628
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
1629

1630
	raw_spin_unlock(&ctx->lock);
1631 1632
}

1633
/*
1634 1635 1636
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
1637
 */
1638
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1639
{
1640
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
1641
	struct perf_event_context *ctx = NULL;
1642
	int rotate = 0, remove = 1;
1643

1644
	if (cpuctx->ctx.nr_events) {
1645
		remove = 0;
1646 1647 1648
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1649

P
Peter Zijlstra 已提交
1650
	ctx = cpuctx->task_ctx;
1651
	if (ctx && ctx->nr_events) {
1652
		remove = 0;
1653 1654 1655
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1656

P
Peter Zijlstra 已提交
1657
	perf_pmu_disable(cpuctx->ctx.pmu);
1658
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1659
	if (ctx)
1660
		perf_ctx_adjust_freq(ctx, interval);
1661

1662
	if (!rotate)
1663
		goto done;
1664

1665
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1666
	if (ctx)
1667
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1668

1669
	rotate_ctx(&cpuctx->ctx);
1670 1671
	if (ctx)
		rotate_ctx(ctx);
1672

1673
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1674
	if (ctx)
P
Peter Zijlstra 已提交
1675
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1676 1677

done:
1678 1679 1680
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
1681
	perf_pmu_enable(cpuctx->ctx.pmu);
1682 1683 1684 1685 1686 1687
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
1688

1689 1690 1691 1692 1693 1694 1695
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
1696 1697
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1713
/*
1714
 * Enable all of a task's events that have been marked enable-on-exec.
1715 1716
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
1717
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1718
{
1719
	struct perf_event *event;
1720 1721
	unsigned long flags;
	int enabled = 0;
1722
	int ret;
1723 1724

	local_irq_save(flags);
1725
	if (!ctx || !ctx->nr_events)
1726 1727
		goto out;

P
Peter Zijlstra 已提交
1728
	task_ctx_sched_out(ctx, EVENT_ALL);
1729

1730
	raw_spin_lock(&ctx->lock);
1731

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1742 1743 1744
	}

	/*
1745
	 * Unclone this context if we enabled any event.
1746
	 */
1747 1748
	if (enabled)
		unclone_ctx(ctx);
1749

1750
	raw_spin_unlock(&ctx->lock);
1751

P
Peter Zijlstra 已提交
1752
	perf_event_context_sched_in(ctx);
P
Peter Zijlstra 已提交
1753
out:
1754 1755 1756
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1757
/*
1758
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1759
 */
1760
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1761
{
1762 1763
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1764
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1765

1766 1767 1768 1769
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1770 1771
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1772 1773 1774 1775
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1776
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1777
	update_context_time(ctx);
1778
	update_event_times(event);
1779
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1780

P
Peter Zijlstra 已提交
1781
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1782 1783
}

P
Peter Zijlstra 已提交
1784 1785
static inline u64 perf_event_count(struct perf_event *event)
{
1786
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1787 1788
}

1789
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1790 1791
{
	/*
1792 1793
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1794
	 */
1795 1796 1797 1798
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1799 1800 1801
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1802
		raw_spin_lock_irqsave(&ctx->lock, flags);
1803 1804 1805 1806 1807 1808 1809
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
		if (ctx->is_active)
			update_context_time(ctx);
1810
		update_event_times(event);
1811
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1812 1813
	}

P
Peter Zijlstra 已提交
1814
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1815 1816
}

1817
/*
1818
 * Callchain support
1819
 */
1820 1821 1822 1823 1824 1825

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1826
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1827 1828 1829 1830 1831 1832 1833
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
1834 1835 1836
{
}

1837 1838
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
1839
{
1840
}
T
Thomas Gleixner 已提交
1841

1842 1843 1844 1845
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
1846

1847
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
1848

1849 1850
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
1851

1852 1853
	kfree(entries);
}
T
Thomas Gleixner 已提交
1854

1855 1856 1857
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1858

1859 1860 1861 1862
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
1863

1864 1865 1866 1867 1868
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1869

1870
	/*
1871 1872 1873
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
1874
	 */
1875 1876
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();
1877

1878 1879 1880
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
1881

1882
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
1883

1884 1885 1886 1887 1888
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
1889 1890
	}

1891
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2027
/*
2028
 * Initialize the perf_event context in a task_struct:
2029
 */
2030
static void __perf_event_init_context(struct perf_event_context *ctx)
2031
{
2032
	raw_spin_lock_init(&ctx->lock);
2033
	mutex_init(&ctx->mutex);
2034 2035
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2036 2037
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2053
	}
2054 2055 2056
	ctx->pmu = pmu;

	return ctx;
2057 2058
}

2059 2060 2061 2062 2063
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2064 2065

	rcu_read_lock();
2066
	if (!vpid)
T
Thomas Gleixner 已提交
2067 2068
		task = current;
	else
2069
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2070 2071 2072 2073 2074 2075 2076
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2077
	/*
2078
	 * Can't attach events to a dying task.
2079 2080 2081 2082 2083
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2084
	/* Reuse ptrace permission checks for now. */
2085 2086 2087 2088
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2089 2090 2091 2092 2093 2094 2095
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

P
Peter Zijlstra 已提交
2096
static struct perf_event_context *
M
Matt Helsley 已提交
2097
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2098
{
2099
	struct perf_event_context *ctx;
2100
	struct perf_cpu_context *cpuctx;
2101
	unsigned long flags;
P
Peter Zijlstra 已提交
2102
	int ctxn, err;
T
Thomas Gleixner 已提交
2103

M
Matt Helsley 已提交
2104
	if (!task && cpu != -1) {
2105
		/* Must be root to operate on a CPU event: */
2106
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2107 2108
			return ERR_PTR(-EACCES);

2109
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2110 2111 2112
			return ERR_PTR(-EINVAL);

		/*
2113
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2114 2115 2116
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2117
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2118 2119
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2120
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2121
		ctx = &cpuctx->ctx;
2122
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2123 2124 2125 2126

		return ctx;
	}

P
Peter Zijlstra 已提交
2127 2128 2129 2130 2131
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2132
retry:
P
Peter Zijlstra 已提交
2133
	ctx = perf_lock_task_context(task, ctxn, &flags);
2134
	if (ctx) {
2135
		unclone_ctx(ctx);
2136
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2137 2138
	}

2139
	if (!ctx) {
2140
		ctx = alloc_perf_context(pmu, task);
2141 2142 2143
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2144

2145
		get_ctx(ctx);
2146

P
Peter Zijlstra 已提交
2147
		if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2148 2149 2150 2151
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
2152
			put_task_struct(task);
2153
			kfree(ctx);
2154
			goto retry;
2155 2156 2157
		}
	}

T
Thomas Gleixner 已提交
2158
	return ctx;
2159

P
Peter Zijlstra 已提交
2160
errout:
2161
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2162 2163
}

L
Li Zefan 已提交
2164 2165
static void perf_event_free_filter(struct perf_event *event);

2166
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2167
{
2168
	struct perf_event *event;
P
Peter Zijlstra 已提交
2169

2170 2171 2172
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2173
	perf_event_free_filter(event);
2174
	kfree(event);
P
Peter Zijlstra 已提交
2175 2176
}

2177
static void perf_buffer_put(struct perf_buffer *buffer);
2178

2179
static void free_event(struct perf_event *event)
2180
{
2181
	irq_work_sync(&event->pending);
2182

2183
	if (!event->parent) {
2184 2185
		if (event->attach_state & PERF_ATTACH_TASK)
			jump_label_dec(&perf_task_events);
2186
		if (event->attr.mmap || event->attr.mmap_data)
2187 2188 2189 2190 2191
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2192 2193
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2194
	}
2195

2196 2197 2198
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2199 2200
	}

2201 2202
	if (event->destroy)
		event->destroy(event);
2203

P
Peter Zijlstra 已提交
2204 2205 2206
	if (event->ctx)
		put_ctx(event->ctx);

2207
	call_rcu(&event->rcu_head, free_event_rcu);
2208 2209
}

2210
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2211
{
2212
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2213

2214 2215 2216 2217 2218 2219
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2220
	WARN_ON_ONCE(ctx->parent_ctx);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2234
	raw_spin_lock_irq(&ctx->lock);
2235
	perf_group_detach(event);
2236 2237
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2238
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2239

2240
	free_event(event);
T
Thomas Gleixner 已提交
2241 2242 2243

	return 0;
}
2244
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2245

2246 2247 2248 2249
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2250
{
2251
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2252
	struct task_struct *owner;
2253

2254
	file->private_data = NULL;
2255

P
Peter Zijlstra 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2289
	return perf_event_release_kernel(event);
2290 2291
}

2292
static int perf_event_read_size(struct perf_event *event)
2293 2294 2295 2296 2297
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2298
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2299 2300
		size += sizeof(u64);

2301
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2302 2303
		size += sizeof(u64);

2304
	if (event->attr.read_format & PERF_FORMAT_ID)
2305 2306
		entry += sizeof(u64);

2307 2308
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2309 2310 2311 2312 2313 2314 2315 2316
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2317
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2318
{
2319
	struct perf_event *child;
2320 2321
	u64 total = 0;

2322 2323 2324
	*enabled = 0;
	*running = 0;

2325
	mutex_lock(&event->child_mutex);
2326
	total += perf_event_read(event);
2327 2328 2329 2330 2331 2332
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2333
		total += perf_event_read(child);
2334 2335 2336
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2337
	mutex_unlock(&event->child_mutex);
2338 2339 2340

	return total;
}
2341
EXPORT_SYMBOL_GPL(perf_event_read_value);
2342

2343
static int perf_event_read_group(struct perf_event *event,
2344 2345
				   u64 read_format, char __user *buf)
{
2346
	struct perf_event *leader = event->group_leader, *sub;
2347 2348
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2349
	u64 values[5];
2350
	u64 count, enabled, running;
2351

2352
	mutex_lock(&ctx->mutex);
2353
	count = perf_event_read_value(leader, &enabled, &running);
2354 2355

	values[n++] = 1 + leader->nr_siblings;
2356 2357 2358 2359
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2360 2361 2362
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2363 2364 2365 2366

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2367
		goto unlock;
2368

2369
	ret = size;
2370

2371
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2372
		n = 0;
2373

2374
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2375 2376 2377 2378 2379
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2380
		if (copy_to_user(buf + ret, values, size)) {
2381 2382 2383
			ret = -EFAULT;
			goto unlock;
		}
2384 2385

		ret += size;
2386
	}
2387 2388
unlock:
	mutex_unlock(&ctx->mutex);
2389

2390
	return ret;
2391 2392
}

2393
static int perf_event_read_one(struct perf_event *event,
2394 2395
				 u64 read_format, char __user *buf)
{
2396
	u64 enabled, running;
2397 2398 2399
	u64 values[4];
	int n = 0;

2400 2401 2402 2403 2404
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2405
	if (read_format & PERF_FORMAT_ID)
2406
		values[n++] = primary_event_id(event);
2407 2408 2409 2410 2411 2412 2413

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2414
/*
2415
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2416 2417
 */
static ssize_t
2418
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2419
{
2420
	u64 read_format = event->attr.read_format;
2421
	int ret;
T
Thomas Gleixner 已提交
2422

2423
	/*
2424
	 * Return end-of-file for a read on a event that is in
2425 2426 2427
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2428
	if (event->state == PERF_EVENT_STATE_ERROR)
2429 2430
		return 0;

2431
	if (count < perf_event_read_size(event))
2432 2433
		return -ENOSPC;

2434
	WARN_ON_ONCE(event->ctx->parent_ctx);
2435
	if (read_format & PERF_FORMAT_GROUP)
2436
		ret = perf_event_read_group(event, read_format, buf);
2437
	else
2438
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2439

2440
	return ret;
T
Thomas Gleixner 已提交
2441 2442 2443 2444 2445
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2446
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2447

2448
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2449 2450 2451 2452
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2453
	struct perf_event *event = file->private_data;
2454
	struct perf_buffer *buffer;
2455
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2456 2457

	rcu_read_lock();
2458 2459 2460
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2461
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2462

2463
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2464 2465 2466 2467

	return events;
}

2468
static void perf_event_reset(struct perf_event *event)
2469
{
2470
	(void)perf_event_read(event);
2471
	local64_set(&event->count, 0);
2472
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2473 2474
}

2475
/*
2476 2477 2478 2479
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2480
 */
2481 2482
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2483
{
2484
	struct perf_event *child;
P
Peter Zijlstra 已提交
2485

2486 2487 2488 2489
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2490
		func(child);
2491
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2492 2493
}

2494 2495
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2496
{
2497 2498
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2499

2500 2501
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2502
	event = event->group_leader;
2503

2504 2505 2506 2507
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2508
	mutex_unlock(&ctx->mutex);
2509 2510
}

2511
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2512
{
2513
	struct perf_event_context *ctx = event->ctx;
2514 2515 2516
	int ret = 0;
	u64 value;

2517
	if (!event->attr.sample_period)
2518 2519
		return -EINVAL;

2520
	if (copy_from_user(&value, arg, sizeof(value)))
2521 2522 2523 2524 2525
		return -EFAULT;

	if (!value)
		return -EINVAL;

2526
	raw_spin_lock_irq(&ctx->lock);
2527 2528
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2529 2530 2531 2532
			ret = -EINVAL;
			goto unlock;
		}

2533
		event->attr.sample_freq = value;
2534
	} else {
2535 2536
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2537 2538
	}
unlock:
2539
	raw_spin_unlock_irq(&ctx->lock);
2540 2541 2542 2543

	return ret;
}

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2565
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2566

2567 2568
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2569 2570
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2571
	u32 flags = arg;
2572 2573

	switch (cmd) {
2574 2575
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2576
		break;
2577 2578
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2579
		break;
2580 2581
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2582
		break;
P
Peter Zijlstra 已提交
2583

2584 2585
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2586

2587 2588
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2589

2590
	case PERF_EVENT_IOC_SET_OUTPUT:
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2608

L
Li Zefan 已提交
2609 2610 2611
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2612
	default:
P
Peter Zijlstra 已提交
2613
		return -ENOTTY;
2614
	}
P
Peter Zijlstra 已提交
2615 2616

	if (flags & PERF_IOC_FLAG_GROUP)
2617
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2618
	else
2619
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2620 2621

	return 0;
2622 2623
}

2624
int perf_event_task_enable(void)
2625
{
2626
	struct perf_event *event;
2627

2628 2629 2630 2631
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2632 2633 2634 2635

	return 0;
}

2636
int perf_event_task_disable(void)
2637
{
2638
	struct perf_event *event;
2639

2640 2641 2642 2643
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2644 2645 2646 2647

	return 0;
}

2648 2649
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2650 2651
#endif

2652
static int perf_event_index(struct perf_event *event)
2653
{
P
Peter Zijlstra 已提交
2654 2655 2656
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2657
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2658 2659
		return 0;

2660
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2661 2662
}

2663 2664 2665 2666 2667
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2668
void perf_event_update_userpage(struct perf_event *event)
2669
{
2670
	struct perf_event_mmap_page *userpg;
2671
	struct perf_buffer *buffer;
2672 2673

	rcu_read_lock();
2674 2675
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2676 2677
		goto unlock;

2678
	userpg = buffer->user_page;
2679

2680 2681 2682 2683 2684
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2685
	++userpg->lock;
2686
	barrier();
2687
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2688
	userpg->offset = perf_event_count(event);
2689
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2690
		userpg->offset -= local64_read(&event->hw.prev_count);
2691

2692 2693
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2694

2695 2696
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2697

2698
	barrier();
2699
	++userpg->lock;
2700
	preempt_enable();
2701
unlock:
2702
	rcu_read_unlock();
2703 2704
}

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2724
#ifndef CONFIG_PERF_USE_VMALLOC
2725

2726 2727 2728
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2729

2730
static struct page *
2731
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2732
{
2733
	if (pgoff > buffer->nr_pages)
2734
		return NULL;
2735

2736
	if (pgoff == 0)
2737
		return virt_to_page(buffer->user_page);
2738

2739
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2740 2741
}

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2755
static struct perf_buffer *
2756
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2757
{
2758
	struct perf_buffer *buffer;
2759 2760 2761
	unsigned long size;
	int i;

2762
	size = sizeof(struct perf_buffer);
2763 2764
	size += nr_pages * sizeof(void *);

2765 2766
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2767 2768
		goto fail;

2769
	buffer->user_page = perf_mmap_alloc_page(cpu);
2770
	if (!buffer->user_page)
2771 2772 2773
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2774
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2775
		if (!buffer->data_pages[i])
2776 2777 2778
			goto fail_data_pages;
	}

2779
	buffer->nr_pages = nr_pages;
2780

2781 2782
	perf_buffer_init(buffer, watermark, flags);

2783
	return buffer;
2784 2785 2786

fail_data_pages:
	for (i--; i >= 0; i--)
2787
		free_page((unsigned long)buffer->data_pages[i]);
2788

2789
	free_page((unsigned long)buffer->user_page);
2790 2791

fail_user_page:
2792
	kfree(buffer);
2793 2794

fail:
2795
	return NULL;
2796 2797
}

2798 2799
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2800
	struct page *page = virt_to_page((void *)addr);
2801 2802 2803 2804 2805

	page->mapping = NULL;
	__free_page(page);
}

2806
static void perf_buffer_free(struct perf_buffer *buffer)
2807 2808 2809
{
	int i;

2810 2811 2812 2813
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2814 2815
}

2816
static inline int page_order(struct perf_buffer *buffer)
2817 2818 2819 2820
{
	return 0;
}

2821 2822 2823 2824 2825 2826 2827 2828
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2829
static inline int page_order(struct perf_buffer *buffer)
2830
{
2831
	return buffer->page_order;
2832 2833
}

2834
static struct page *
2835
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2836
{
2837
	if (pgoff > (1UL << page_order(buffer)))
2838 2839
		return NULL;

2840
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2841 2842 2843 2844 2845 2846 2847 2848 2849
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2850
static void perf_buffer_free_work(struct work_struct *work)
2851
{
2852
	struct perf_buffer *buffer;
2853 2854 2855
	void *base;
	int i, nr;

2856 2857
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2858

2859
	base = buffer->user_page;
2860 2861 2862 2863
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2864
	kfree(buffer);
2865 2866
}

2867
static void perf_buffer_free(struct perf_buffer *buffer)
2868
{
2869
	schedule_work(&buffer->work);
2870 2871
}

2872
static struct perf_buffer *
2873
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2874
{
2875
	struct perf_buffer *buffer;
2876 2877 2878
	unsigned long size;
	void *all_buf;

2879
	size = sizeof(struct perf_buffer);
2880 2881
	size += sizeof(void *);

2882 2883
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2884 2885
		goto fail;

2886
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2887 2888 2889 2890 2891

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2892 2893 2894 2895
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2896

2897 2898
	perf_buffer_init(buffer, watermark, flags);

2899
	return buffer;
2900 2901

fail_all_buf:
2902
	kfree(buffer);
2903 2904 2905 2906 2907 2908 2909

fail:
	return NULL;
}

#endif

2910
static unsigned long perf_data_size(struct perf_buffer *buffer)
2911
{
2912
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2913 2914
}

2915 2916 2917
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2918
	struct perf_buffer *buffer;
2919 2920 2921 2922 2923 2924 2925 2926 2927
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2928 2929
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2930 2931 2932 2933 2934
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2935
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2950
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2951
{
2952
	struct perf_buffer *buffer;
2953

2954 2955
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2956 2957
}

2958
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2959
{
2960
	struct perf_buffer *buffer;
2961

2962
	rcu_read_lock();
2963 2964 2965 2966
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2967 2968 2969
	}
	rcu_read_unlock();

2970
	return buffer;
2971 2972
}

2973
static void perf_buffer_put(struct perf_buffer *buffer)
2974
{
2975
	if (!atomic_dec_and_test(&buffer->refcount))
2976
		return;
2977

2978
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2979 2980 2981 2982
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2983
	struct perf_event *event = vma->vm_file->private_data;
2984

2985
	atomic_inc(&event->mmap_count);
2986 2987 2988 2989
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2990
	struct perf_event *event = vma->vm_file->private_data;
2991

2992
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2993
		unsigned long size = perf_data_size(event->buffer);
2994
		struct user_struct *user = event->mmap_user;
2995
		struct perf_buffer *buffer = event->buffer;
2996

2997
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2998
		vma->vm_mm->locked_vm -= event->mmap_locked;
2999
		rcu_assign_pointer(event->buffer, NULL);
3000
		mutex_unlock(&event->mmap_mutex);
3001

3002
		perf_buffer_put(buffer);
3003
		free_uid(user);
3004
	}
3005 3006
}

3007
static const struct vm_operations_struct perf_mmap_vmops = {
3008 3009 3010 3011
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3012 3013 3014 3015
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3016
	struct perf_event *event = file->private_data;
3017
	unsigned long user_locked, user_lock_limit;
3018
	struct user_struct *user = current_user();
3019
	unsigned long locked, lock_limit;
3020
	struct perf_buffer *buffer;
3021 3022
	unsigned long vma_size;
	unsigned long nr_pages;
3023
	long user_extra, extra;
3024
	int ret = 0, flags = 0;
3025

3026 3027 3028 3029 3030 3031 3032 3033
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3034
	if (!(vma->vm_flags & VM_SHARED))
3035
		return -EINVAL;
3036 3037 3038 3039

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3040
	/*
3041
	 * If we have buffer pages ensure they're a power-of-two number, so we
3042 3043 3044
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3045 3046
		return -EINVAL;

3047
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3048 3049
		return -EINVAL;

3050 3051
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3052

3053 3054
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3055 3056 3057
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3058
		else
3059 3060 3061 3062
			ret = -EINVAL;
		goto unlock;
	}

3063
	user_extra = nr_pages + 1;
3064
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3065 3066 3067 3068 3069 3070

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3071
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3072

3073 3074 3075
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3076

3077
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3078
	lock_limit >>= PAGE_SHIFT;
3079
	locked = vma->vm_mm->locked_vm + extra;
3080

3081 3082
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3083 3084 3085
		ret = -EPERM;
		goto unlock;
	}
3086

3087
	WARN_ON(event->buffer);
3088

3089 3090 3091 3092 3093
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3094
	if (!buffer) {
3095
		ret = -ENOMEM;
3096
		goto unlock;
3097
	}
3098
	rcu_assign_pointer(event->buffer, buffer);
3099

3100 3101 3102 3103 3104
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3105
unlock:
3106 3107
	if (!ret)
		atomic_inc(&event->mmap_count);
3108
	mutex_unlock(&event->mmap_mutex);
3109 3110 3111

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3112 3113

	return ret;
3114 3115
}

P
Peter Zijlstra 已提交
3116 3117 3118
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3119
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3120 3121 3122
	int retval;

	mutex_lock(&inode->i_mutex);
3123
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3124 3125 3126 3127 3128 3129 3130 3131
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3132
static const struct file_operations perf_fops = {
3133
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3134 3135 3136
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3137 3138
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3139
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3140
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3141 3142
};

3143
/*
3144
 * Perf event wakeup
3145 3146 3147 3148 3149
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3150
void perf_event_wakeup(struct perf_event *event)
3151
{
3152
	wake_up_all(&event->waitq);
3153

3154 3155 3156
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3157
	}
3158 3159
}

3160
static void perf_pending_event(struct irq_work *entry)
3161
{
3162 3163
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3164

3165 3166 3167
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3168 3169
	}

3170 3171 3172
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3173 3174 3175
	}
}

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3197 3198 3199
/*
 * Output
 */
3200
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3201
			      unsigned long offset, unsigned long head)
3202 3203 3204
{
	unsigned long mask;

3205
	if (!buffer->writable)
3206 3207
		return true;

3208
	mask = perf_data_size(buffer) - 1;
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3219
static void perf_output_wakeup(struct perf_output_handle *handle)
3220
{
3221
	atomic_set(&handle->buffer->poll, POLL_IN);
3222

3223
	if (handle->nmi) {
3224
		handle->event->pending_wakeup = 1;
3225
		irq_work_queue(&handle->event->pending);
3226
	} else
3227
		perf_event_wakeup(handle->event);
3228 3229
}

3230
/*
3231
 * We need to ensure a later event_id doesn't publish a head when a former
3232
 * event isn't done writing. However since we need to deal with NMIs we
3233 3234 3235
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3236
 * event completes.
3237
 */
3238
static void perf_output_get_handle(struct perf_output_handle *handle)
3239
{
3240
	struct perf_buffer *buffer = handle->buffer;
3241

3242
	preempt_disable();
3243 3244
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3245 3246
}

3247
static void perf_output_put_handle(struct perf_output_handle *handle)
3248
{
3249
	struct perf_buffer *buffer = handle->buffer;
3250
	unsigned long head;
3251 3252

again:
3253
	head = local_read(&buffer->head);
3254 3255

	/*
3256
	 * IRQ/NMI can happen here, which means we can miss a head update.
3257 3258
	 */

3259
	if (!local_dec_and_test(&buffer->nest))
3260
		goto out;
3261 3262

	/*
3263
	 * Publish the known good head. Rely on the full barrier implied
3264
	 * by atomic_dec_and_test() order the buffer->head read and this
3265
	 * write.
3266
	 */
3267
	buffer->user_page->data_head = head;
3268

3269 3270
	/*
	 * Now check if we missed an update, rely on the (compiler)
3271
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3272
	 */
3273 3274
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3275 3276 3277
		goto again;
	}

3278
	if (handle->wakeup != local_read(&buffer->wakeup))
3279
		perf_output_wakeup(handle);
3280

P
Peter Zijlstra 已提交
3281
out:
3282
	preempt_enable();
3283 3284
}

3285
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3286
		      const void *buf, unsigned int len)
3287
{
3288
	do {
3289
		unsigned long size = min_t(unsigned long, handle->size, len);
3290 3291 3292 3293 3294

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3295
		buf += size;
3296 3297
		handle->size -= size;
		if (!handle->size) {
3298
			struct perf_buffer *buffer = handle->buffer;
3299

3300
			handle->page++;
3301 3302 3303
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3304 3305
		}
	} while (len);
3306 3307
}

3308
int perf_output_begin(struct perf_output_handle *handle,
3309
		      struct perf_event *event, unsigned int size,
3310
		      int nmi, int sample)
3311
{
3312
	struct perf_buffer *buffer;
3313
	unsigned long tail, offset, head;
3314 3315 3316 3317 3318 3319
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3320

3321
	rcu_read_lock();
3322
	/*
3323
	 * For inherited events we send all the output towards the parent.
3324
	 */
3325 3326
	if (event->parent)
		event = event->parent;
3327

3328 3329
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3330 3331
		goto out;

3332
	handle->buffer	= buffer;
3333
	handle->event	= event;
3334 3335
	handle->nmi	= nmi;
	handle->sample	= sample;
3336

3337
	if (!buffer->nr_pages)
3338
		goto out;
3339

3340
	have_lost = local_read(&buffer->lost);
3341 3342 3343
	if (have_lost)
		size += sizeof(lost_event);

3344
	perf_output_get_handle(handle);
3345

3346
	do {
3347 3348 3349 3350 3351
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3352
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3353
		smp_rmb();
3354
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3355
		head += size;
3356
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3357
			goto fail;
3358
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3359

3360 3361
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3362

3363 3364 3365 3366
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3367
	handle->addr += handle->size;
3368
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3369

3370
	if (have_lost) {
3371
		lost_event.header.type = PERF_RECORD_LOST;
3372 3373
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3374
		lost_event.id          = event->id;
3375
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3376 3377 3378 3379

		perf_output_put(handle, lost_event);
	}

3380
	return 0;
3381

3382
fail:
3383
	local_inc(&buffer->lost);
3384
	perf_output_put_handle(handle);
3385 3386
out:
	rcu_read_unlock();
3387

3388 3389
	return -ENOSPC;
}
3390

3391
void perf_output_end(struct perf_output_handle *handle)
3392
{
3393
	struct perf_event *event = handle->event;
3394
	struct perf_buffer *buffer = handle->buffer;
3395

3396
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3397

3398
	if (handle->sample && wakeup_events) {
3399
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3400
		if (events >= wakeup_events) {
3401 3402
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3403
		}
3404 3405
	}

3406
	perf_output_put_handle(handle);
3407
	rcu_read_unlock();
3408 3409
}

3410
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3411 3412
{
	/*
3413
	 * only top level events have the pid namespace they were created in
3414
	 */
3415 3416
	if (event->parent)
		event = event->parent;
3417

3418
	return task_tgid_nr_ns(p, event->ns);
3419 3420
}

3421
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3422 3423
{
	/*
3424
	 * only top level events have the pid namespace they were created in
3425
	 */
3426 3427
	if (event->parent)
		event = event->parent;
3428

3429
	return task_pid_nr_ns(p, event->ns);
3430 3431
}

3432
static void perf_output_read_one(struct perf_output_handle *handle,
3433 3434
				 struct perf_event *event,
				 u64 enabled, u64 running)
3435
{
3436
	u64 read_format = event->attr.read_format;
3437 3438 3439
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3440
	values[n++] = perf_event_count(event);
3441
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3442
		values[n++] = enabled +
3443
			atomic64_read(&event->child_total_time_enabled);
3444 3445
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3446
		values[n++] = running +
3447
			atomic64_read(&event->child_total_time_running);
3448 3449
	}
	if (read_format & PERF_FORMAT_ID)
3450
		values[n++] = primary_event_id(event);
3451 3452 3453 3454 3455

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3456
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3457 3458
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3459 3460
			    struct perf_event *event,
			    u64 enabled, u64 running)
3461
{
3462 3463
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3464 3465 3466 3467 3468 3469
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3470
		values[n++] = enabled;
3471 3472

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3473
		values[n++] = running;
3474

3475
	if (leader != event)
3476 3477
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3478
	values[n++] = perf_event_count(leader);
3479
	if (read_format & PERF_FORMAT_ID)
3480
		values[n++] = primary_event_id(leader);
3481 3482 3483

	perf_output_copy(handle, values, n * sizeof(u64));

3484
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3485 3486
		n = 0;

3487
		if (sub != event)
3488 3489
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3490
		values[n++] = perf_event_count(sub);
3491
		if (read_format & PERF_FORMAT_ID)
3492
			values[n++] = primary_event_id(sub);
3493 3494 3495 3496 3497

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

3498 3499 3500
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

3501
static void perf_output_read(struct perf_output_handle *handle,
3502
			     struct perf_event *event)
3503
{
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
	u64 enabled = 0, running = 0, now, ctx_time;
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
	if (read_format & PERF_FORMAT_TOTAL_TIMES) {
		now = perf_clock();
		ctx_time = event->shadow_ctx_time + now;
		enabled = ctx_time - event->tstamp_enabled;
		running = ctx_time - event->tstamp_running;
	}

3523
	if (event->attr.read_format & PERF_FORMAT_GROUP)
3524
		perf_output_read_group(handle, event, enabled, running);
3525
	else
3526
		perf_output_read_one(handle, event, enabled, running);
3527 3528
}

3529 3530 3531
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3532
			struct perf_event *event)
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3563
		perf_output_read(handle, event);
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3601
			 struct perf_event *event,
3602
			 struct pt_regs *regs)
3603
{
3604
	u64 sample_type = event->attr.sample_type;
3605

3606
	data->type = sample_type;
3607

3608
	header->type = PERF_RECORD_SAMPLE;
3609 3610 3611 3612
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3613

3614
	if (sample_type & PERF_SAMPLE_IP) {
3615 3616 3617
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3618
	}
3619

3620
	if (sample_type & PERF_SAMPLE_TID) {
3621
		/* namespace issues */
3622 3623
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3624

3625
		header->size += sizeof(data->tid_entry);
3626 3627
	}

3628
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3629
		data->time = perf_clock();
3630

3631
		header->size += sizeof(data->time);
3632 3633
	}

3634
	if (sample_type & PERF_SAMPLE_ADDR)
3635
		header->size += sizeof(data->addr);
3636

3637
	if (sample_type & PERF_SAMPLE_ID) {
3638
		data->id = primary_event_id(event);
3639

3640 3641 3642 3643
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3644
		data->stream_id = event->id;
3645 3646 3647

		header->size += sizeof(data->stream_id);
	}
3648

3649
	if (sample_type & PERF_SAMPLE_CPU) {
3650 3651
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3652

3653
		header->size += sizeof(data->cpu_entry);
3654 3655
	}

3656
	if (sample_type & PERF_SAMPLE_PERIOD)
3657
		header->size += sizeof(data->period);
3658

3659
	if (sample_type & PERF_SAMPLE_READ)
3660
		header->size += perf_event_read_size(event);
3661

3662
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3663
		int size = 1;
3664

3665 3666 3667 3668 3669 3670
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3671 3672
	}

3673
	if (sample_type & PERF_SAMPLE_RAW) {
3674 3675 3676 3677 3678 3679 3680 3681
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3682
		header->size += size;
3683
	}
3684
}
3685

3686
static void perf_event_output(struct perf_event *event, int nmi,
3687 3688 3689 3690 3691
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3692

3693 3694 3695
	/* protect the callchain buffers */
	rcu_read_lock();

3696
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3697

3698
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3699
		goto exit;
3700

3701
	perf_output_sample(&handle, &header, data, event);
3702

3703
	perf_output_end(&handle);
3704 3705 3706

exit:
	rcu_read_unlock();
3707 3708
}

3709
/*
3710
 * read event_id
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3721
perf_event_read_event(struct perf_event *event,
3722 3723 3724
			struct task_struct *task)
{
	struct perf_output_handle handle;
3725
	struct perf_read_event read_event = {
3726
		.header = {
3727
			.type = PERF_RECORD_READ,
3728
			.misc = 0,
3729
			.size = sizeof(read_event) + perf_event_read_size(event),
3730
		},
3731 3732
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3733
	};
3734
	int ret;
3735

3736
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3737 3738 3739
	if (ret)
		return;

3740
	perf_output_put(&handle, read_event);
3741
	perf_output_read(&handle, event);
3742

3743 3744 3745
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3746
/*
P
Peter Zijlstra 已提交
3747 3748
 * task tracking -- fork/exit
 *
3749
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3750 3751
 */

P
Peter Zijlstra 已提交
3752
struct perf_task_event {
3753
	struct task_struct		*task;
3754
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3755 3756 3757 3758 3759 3760

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3761 3762
		u32				tid;
		u32				ptid;
3763
		u64				time;
3764
	} event_id;
P
Peter Zijlstra 已提交
3765 3766
};

3767
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3768
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3769 3770
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3771
	struct task_struct *task = task_event->task;
3772 3773
	int size, ret;

3774 3775
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3776

3777
	if (ret)
P
Peter Zijlstra 已提交
3778 3779
		return;

3780 3781
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3782

3783 3784
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3785

3786
	perf_output_put(&handle, task_event->event_id);
3787

P
Peter Zijlstra 已提交
3788 3789 3790
	perf_output_end(&handle);
}

3791
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3792
{
P
Peter Zijlstra 已提交
3793
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3794 3795
		return 0;

3796 3797 3798
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3799 3800
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3801 3802 3803 3804 3805
		return 1;

	return 0;
}

3806
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3807
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3808
{
3809
	struct perf_event *event;
P
Peter Zijlstra 已提交
3810

3811 3812 3813
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3814 3815 3816
	}
}

3817
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3818 3819
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
3820
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3821
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3822
	int ctxn;
P
Peter Zijlstra 已提交
3823

3824
	rcu_read_lock();
P
Peter Zijlstra 已提交
3825
	list_for_each_entry_rcu(pmu, &pmus, entry) {
3826
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3827
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3828 3829 3830 3831 3832

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
3833
				goto next;
P
Peter Zijlstra 已提交
3834 3835 3836 3837
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
3838 3839
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3840
	}
P
Peter Zijlstra 已提交
3841 3842 3843
	rcu_read_unlock();
}

3844 3845
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3846
			      int new)
P
Peter Zijlstra 已提交
3847
{
P
Peter Zijlstra 已提交
3848
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3849

3850 3851 3852
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3853 3854
		return;

P
Peter Zijlstra 已提交
3855
	task_event = (struct perf_task_event){
3856 3857
		.task	  = task,
		.task_ctx = task_ctx,
3858
		.event_id    = {
P
Peter Zijlstra 已提交
3859
			.header = {
3860
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3861
				.misc = 0,
3862
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3863
			},
3864 3865
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3866 3867
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3868
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3869 3870 3871
		},
	};

3872
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3873 3874
}

3875
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3876
{
3877
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3878 3879
}

3880 3881 3882 3883 3884
/*
 * comm tracking
 */

struct perf_comm_event {
3885 3886
	struct task_struct	*task;
	char			*comm;
3887 3888 3889 3890 3891 3892 3893
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3894
	} event_id;
3895 3896
};

3897
static void perf_event_comm_output(struct perf_event *event,
3898 3899 3900
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3901 3902
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3903 3904 3905 3906

	if (ret)
		return;

3907 3908
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3909

3910
	perf_output_put(&handle, comm_event->event_id);
3911 3912 3913 3914 3915
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3916
static int perf_event_comm_match(struct perf_event *event)
3917
{
P
Peter Zijlstra 已提交
3918
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3919 3920
		return 0;

3921 3922 3923
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3924
	if (event->attr.comm)
3925 3926 3927 3928 3929
		return 1;

	return 0;
}

3930
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3931 3932
				  struct perf_comm_event *comm_event)
{
3933
	struct perf_event *event;
3934

3935 3936 3937
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3938 3939 3940
	}
}

3941
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3942 3943
{
	struct perf_cpu_context *cpuctx;
3944
	struct perf_event_context *ctx;
3945
	char comm[TASK_COMM_LEN];
3946
	unsigned int size;
P
Peter Zijlstra 已提交
3947
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3948
	int ctxn;
3949

3950
	memset(comm, 0, sizeof(comm));
3951
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3952
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3953 3954 3955 3956

	comm_event->comm = comm;
	comm_event->comm_size = size;

3957
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3958

3959
	rcu_read_lock();
P
Peter Zijlstra 已提交
3960
	list_for_each_entry_rcu(pmu, &pmus, entry) {
3961
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3962
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
3963 3964 3965

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
3966
			goto next;
P
Peter Zijlstra 已提交
3967 3968 3969 3970

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
3971 3972
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3973
	}
3974
	rcu_read_unlock();
3975 3976
}

3977
void perf_event_comm(struct task_struct *task)
3978
{
3979
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
3980 3981
	struct perf_event_context *ctx;
	int ctxn;
3982

P
Peter Zijlstra 已提交
3983 3984 3985 3986
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
3987

P
Peter Zijlstra 已提交
3988 3989
		perf_event_enable_on_exec(ctx);
	}
3990

3991
	if (!atomic_read(&nr_comm_events))
3992
		return;
3993

3994
	comm_event = (struct perf_comm_event){
3995
		.task	= task,
3996 3997
		/* .comm      */
		/* .comm_size */
3998
		.event_id  = {
3999
			.header = {
4000
				.type = PERF_RECORD_COMM,
4001 4002 4003 4004 4005
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4006 4007 4008
		},
	};

4009
	perf_event_comm_event(&comm_event);
4010 4011
}

4012 4013 4014 4015 4016
/*
 * mmap tracking
 */

struct perf_mmap_event {
4017 4018 4019 4020
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4021 4022 4023 4024 4025 4026 4027 4028 4029

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4030
	} event_id;
4031 4032
};

4033
static void perf_event_mmap_output(struct perf_event *event,
4034 4035 4036
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4037 4038
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
4039 4040 4041 4042

	if (ret)
		return;

4043 4044
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4045

4046
	perf_output_put(&handle, mmap_event->event_id);
4047 4048
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4049
	perf_output_end(&handle);
4050 4051
}

4052
static int perf_event_mmap_match(struct perf_event *event,
4053 4054
				   struct perf_mmap_event *mmap_event,
				   int executable)
4055
{
P
Peter Zijlstra 已提交
4056
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4057 4058
		return 0;

4059 4060 4061
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4062 4063
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4064 4065 4066 4067 4068
		return 1;

	return 0;
}

4069
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4070 4071
				  struct perf_mmap_event *mmap_event,
				  int executable)
4072
{
4073
	struct perf_event *event;
4074

4075
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4076
		if (perf_event_mmap_match(event, mmap_event, executable))
4077
			perf_event_mmap_output(event, mmap_event);
4078 4079 4080
	}
}

4081
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4082 4083
{
	struct perf_cpu_context *cpuctx;
4084
	struct perf_event_context *ctx;
4085 4086
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4087 4088 4089
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4090
	const char *name;
P
Peter Zijlstra 已提交
4091
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4092
	int ctxn;
4093

4094 4095
	memset(tmp, 0, sizeof(tmp));

4096
	if (file) {
4097 4098 4099 4100 4101 4102
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4103 4104 4105 4106
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4107
		name = d_path(&file->f_path, buf, PATH_MAX);
4108 4109 4110 4111 4112
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4113 4114 4115
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4116
			goto got_name;
4117
		}
4118 4119 4120 4121

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4122 4123 4124 4125 4126 4127 4128 4129
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4130 4131
		}

4132 4133 4134 4135 4136
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4137
	size = ALIGN(strlen(name)+1, sizeof(u64));
4138 4139 4140 4141

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4142
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4143

4144
	rcu_read_lock();
P
Peter Zijlstra 已提交
4145
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4146
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4147 4148
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4149 4150 4151

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4152
			goto next;
P
Peter Zijlstra 已提交
4153 4154 4155 4156 4157 4158

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4159 4160
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4161
	}
4162 4163
	rcu_read_unlock();

4164 4165 4166
	kfree(buf);
}

4167
void perf_event_mmap(struct vm_area_struct *vma)
4168
{
4169 4170
	struct perf_mmap_event mmap_event;

4171
	if (!atomic_read(&nr_mmap_events))
4172 4173 4174
		return;

	mmap_event = (struct perf_mmap_event){
4175
		.vma	= vma,
4176 4177
		/* .file_name */
		/* .file_size */
4178
		.event_id  = {
4179
			.header = {
4180
				.type = PERF_RECORD_MMAP,
4181
				.misc = PERF_RECORD_MISC_USER,
4182 4183 4184 4185
				/* .size */
			},
			/* .pid */
			/* .tid */
4186 4187
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4188
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4189 4190 4191
		},
	};

4192
	perf_event_mmap_event(&mmap_event);
4193 4194
}

4195 4196 4197 4198
/*
 * IRQ throttle logging
 */

4199
static void perf_log_throttle(struct perf_event *event, int enable)
4200 4201 4202 4203 4204 4205 4206
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4207
		u64				id;
4208
		u64				stream_id;
4209 4210
	} throttle_event = {
		.header = {
4211
			.type = PERF_RECORD_THROTTLE,
4212 4213 4214
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4215
		.time		= perf_clock(),
4216 4217
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4218 4219
	};

4220
	if (enable)
4221
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4222

4223
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4224 4225 4226 4227 4228 4229 4230
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4231
/*
4232
 * Generic event overflow handling, sampling.
4233 4234
 */

4235
static int __perf_event_overflow(struct perf_event *event, int nmi,
4236 4237
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4238
{
4239 4240
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4241 4242
	int ret = 0;

4243
	if (!throttle) {
4244
		hwc->interrupts++;
4245
	} else {
4246 4247
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4248
			if (HZ * hwc->interrupts >
4249
					(u64)sysctl_perf_event_sample_rate) {
4250
				hwc->interrupts = MAX_INTERRUPTS;
4251
				perf_log_throttle(event, 0);
4252 4253 4254 4255
				ret = 1;
			}
		} else {
			/*
4256
			 * Keep re-disabling events even though on the previous
4257
			 * pass we disabled it - just in case we raced with a
4258
			 * sched-in and the event got enabled again:
4259
			 */
4260 4261 4262
			ret = 1;
		}
	}
4263

4264
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4265
		u64 now = perf_clock();
4266
		s64 delta = now - hwc->freq_time_stamp;
4267

4268
		hwc->freq_time_stamp = now;
4269

4270 4271
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4272 4273
	}

4274 4275
	/*
	 * XXX event_limit might not quite work as expected on inherited
4276
	 * events
4277 4278
	 */

4279 4280
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4281
		ret = 1;
4282
		event->pending_kill = POLL_HUP;
4283
		if (nmi) {
4284
			event->pending_disable = 1;
4285
			irq_work_queue(&event->pending);
4286
		} else
4287
			perf_event_disable(event);
4288 4289
	}

4290 4291 4292 4293 4294
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4295
	return ret;
4296 4297
}

4298
int perf_event_overflow(struct perf_event *event, int nmi,
4299 4300
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4301
{
4302
	return __perf_event_overflow(event, nmi, 1, data, regs);
4303 4304
}

4305
/*
4306
 * Generic software event infrastructure
4307 4308
 */

4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4320
/*
4321 4322
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4323 4324 4325 4326
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4327
static u64 perf_swevent_set_period(struct perf_event *event)
4328
{
4329
	struct hw_perf_event *hwc = &event->hw;
4330 4331 4332 4333 4334
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4335 4336

again:
4337
	old = val = local64_read(&hwc->period_left);
4338 4339
	if (val < 0)
		return 0;
4340

4341 4342 4343
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4344
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4345
		goto again;
4346

4347
	return nr;
4348 4349
}

4350
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4351 4352
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4353
{
4354
	struct hw_perf_event *hwc = &event->hw;
4355
	int throttle = 0;
4356

4357
	data->period = event->hw.last_period;
4358 4359
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4360

4361 4362
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4363

4364
	for (; overflow; overflow--) {
4365
		if (__perf_event_overflow(event, nmi, throttle,
4366
					    data, regs)) {
4367 4368 4369 4370 4371 4372
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4373
		throttle = 1;
4374
	}
4375 4376
}

P
Peter Zijlstra 已提交
4377
static void perf_swevent_event(struct perf_event *event, u64 nr,
4378 4379
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4380
{
4381
	struct hw_perf_event *hwc = &event->hw;
4382

4383
	local64_add(nr, &event->count);
4384

4385 4386 4387
	if (!regs)
		return;

4388 4389
	if (!hwc->sample_period)
		return;
4390

4391 4392 4393
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4394
	if (local64_add_negative(nr, &hwc->period_left))
4395
		return;
4396

4397
	perf_swevent_overflow(event, 0, nmi, data, regs);
4398 4399
}

4400 4401 4402
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4403 4404 4405
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4417
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4418
				enum perf_type_id type,
L
Li Zefan 已提交
4419 4420 4421
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4422
{
4423
	if (event->attr.type != type)
4424
		return 0;
4425

4426
	if (event->attr.config != event_id)
4427 4428
		return 0;

4429 4430
	if (perf_exclude_event(event, regs))
		return 0;
4431 4432 4433 4434

	return 1;
}

4435 4436 4437 4438 4439 4440 4441
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4442 4443
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4444
{
4445 4446 4447 4448
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4449

4450 4451
/* For the read side: events when they trigger */
static inline struct hlist_head *
4452
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4453 4454
{
	struct swevent_hlist *hlist;
4455

4456
	hlist = rcu_dereference(swhash->swevent_hlist);
4457 4458 4459
	if (!hlist)
		return NULL;

4460 4461 4462 4463 4464
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4465
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4476
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4477 4478 4479 4480 4481
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4482 4483 4484 4485 4486 4487
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4488
{
4489
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4490
	struct perf_event *event;
4491 4492
	struct hlist_node *node;
	struct hlist_head *head;
4493

4494
	rcu_read_lock();
4495
	head = find_swevent_head_rcu(swhash, type, event_id);
4496 4497 4498 4499
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4500
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4501
			perf_swevent_event(event, nr, nmi, data, regs);
4502
	}
4503 4504
end:
	rcu_read_unlock();
4505 4506
}

4507
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4508
{
4509
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4510

4511
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4512
}
I
Ingo Molnar 已提交
4513
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4514

4515
void inline perf_swevent_put_recursion_context(int rctx)
4516
{
4517
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4518

4519
	put_recursion_context(swhash->recursion, rctx);
4520
}
4521

4522
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4523
			    struct pt_regs *regs, u64 addr)
4524
{
4525
	struct perf_sample_data data;
4526 4527
	int rctx;

4528
	preempt_disable_notrace();
4529 4530 4531
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4532

4533
	perf_sample_data_init(&data, addr);
4534

4535
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4536 4537

	perf_swevent_put_recursion_context(rctx);
4538
	preempt_enable_notrace();
4539 4540
}

4541
static void perf_swevent_read(struct perf_event *event)
4542 4543 4544
{
}

P
Peter Zijlstra 已提交
4545
static int perf_swevent_add(struct perf_event *event, int flags)
4546
{
4547
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4548
	struct hw_perf_event *hwc = &event->hw;
4549 4550
	struct hlist_head *head;

4551 4552
	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4553
		perf_swevent_set_period(event);
4554
	}
4555

P
Peter Zijlstra 已提交
4556 4557
	hwc->state = !(flags & PERF_EF_START);

4558
	head = find_swevent_head(swhash, event);
4559 4560 4561 4562 4563
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4564 4565 4566
	return 0;
}

P
Peter Zijlstra 已提交
4567
static void perf_swevent_del(struct perf_event *event, int flags)
4568
{
4569
	hlist_del_rcu(&event->hlist_entry);
4570 4571
}

P
Peter Zijlstra 已提交
4572
static void perf_swevent_start(struct perf_event *event, int flags)
4573
{
P
Peter Zijlstra 已提交
4574
	event->hw.state = 0;
4575
}
I
Ingo Molnar 已提交
4576

P
Peter Zijlstra 已提交
4577
static void perf_swevent_stop(struct perf_event *event, int flags)
4578
{
P
Peter Zijlstra 已提交
4579
	event->hw.state = PERF_HES_STOPPED;
4580 4581
}

4582 4583
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4584
swevent_hlist_deref(struct swevent_htable *swhash)
4585
{
4586 4587
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4588 4589
}

4590 4591 4592 4593 4594 4595 4596 4597
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4598
static void swevent_hlist_release(struct swevent_htable *swhash)
4599
{
4600
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4601

4602
	if (!hlist)
4603 4604
		return;

4605
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4606 4607 4608 4609 4610
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4611
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4612

4613
	mutex_lock(&swhash->hlist_mutex);
4614

4615 4616
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4617

4618
	mutex_unlock(&swhash->hlist_mutex);
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4636
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4637 4638
	int err = 0;

4639
	mutex_lock(&swhash->hlist_mutex);
4640

4641
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4642 4643 4644 4645 4646 4647 4648
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4649
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4650
	}
4651
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4652
exit:
4653
	mutex_unlock(&swhash->hlist_mutex);
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4677
fail:
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4688
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4689

4690 4691 4692
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4693

4694 4695
	WARN_ON(event->parent);

P
Peter Zijlstra 已提交
4696
	jump_label_dec(&perf_swevent_enabled[event_id]);
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

P
Peter Zijlstra 已提交
4726
		jump_label_inc(&perf_swevent_enabled[event_id]);
4727 4728 4729 4730 4731 4732 4733
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
4734
	.task_ctx_nr	= perf_sw_context,
4735

4736
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4737 4738 4739 4740
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4741 4742 4743
	.read		= perf_swevent_read,
};

4744 4745
#ifdef CONFIG_EVENT_TRACING

4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4760 4761 4762 4763
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4764 4765 4766 4767 4768 4769 4770 4771 4772
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4773
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4774 4775
{
	struct perf_sample_data data;
4776 4777 4778
	struct perf_event *event;
	struct hlist_node *node;

4779 4780 4781 4782 4783 4784 4785 4786
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4787 4788
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4789
			perf_swevent_event(event, count, 1, &data, regs);
4790
	}
4791 4792

	perf_swevent_put_recursion_context(rctx);
4793 4794 4795
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4796
static void tp_perf_event_destroy(struct perf_event *event)
4797
{
4798
	perf_trace_destroy(event);
4799 4800
}

4801
static int perf_tp_event_init(struct perf_event *event)
4802
{
4803 4804
	int err;

4805 4806 4807
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4808 4809
	err = perf_trace_init(event);
	if (err)
4810
		return err;
4811

4812
	event->destroy = tp_perf_event_destroy;
4813

4814 4815 4816 4817
	return 0;
}

static struct pmu perf_tracepoint = {
4818 4819
	.task_ctx_nr	= perf_sw_context,

4820
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4821 4822 4823 4824
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4825 4826 4827 4828 4829 4830
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4831
}
L
Li Zefan 已提交
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4856
#else
L
Li Zefan 已提交
4857

4858
static inline void perf_tp_register(void)
4859 4860
{
}
L
Li Zefan 已提交
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4871
#endif /* CONFIG_EVENT_TRACING */
4872

4873
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4874
void perf_bp_event(struct perf_event *bp, void *data)
4875
{
4876 4877 4878
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4879
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4880

P
Peter Zijlstra 已提交
4881 4882
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4883 4884 4885
}
#endif

4886 4887 4888
/*
 * hrtimer based swevent callback
 */
4889

4890
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4891
{
4892 4893 4894 4895 4896
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4897

4898 4899
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4900

4901 4902 4903 4904 4905 4906 4907 4908 4909
	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4910

4911 4912
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4913

4914
	return ret;
4915 4916
}

4917
static void perf_swevent_start_hrtimer(struct perf_event *event)
4918
{
4919
	struct hw_perf_event *hwc = &event->hw;
4920

4921 4922 4923
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4924
		s64 period = local64_read(&hwc->period_left);
4925

P
Peter Zijlstra 已提交
4926 4927
		if (period) {
			if (period < 0)
4928
				period = 10000;
P
Peter Zijlstra 已提交
4929 4930

			local64_set(&hwc->period_left, 0);
4931 4932 4933 4934 4935
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
4936
				HRTIMER_MODE_REL_PINNED, 0);
4937
	}
4938
}
4939 4940

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4941
{
4942 4943 4944 4945
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4946
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4947 4948 4949

		hrtimer_cancel(&hwc->hrtimer);
	}
4950 4951
}

4952 4953 4954 4955 4956
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4957
{
4958 4959 4960
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4961
	now = local_clock();
4962 4963
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4964 4965
}

P
Peter Zijlstra 已提交
4966
static void cpu_clock_event_start(struct perf_event *event, int flags)
4967
{
P
Peter Zijlstra 已提交
4968
	local64_set(&event->hw.prev_count, local_clock());
4969 4970 4971
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4972
static void cpu_clock_event_stop(struct perf_event *event, int flags)
4973
{
4974 4975 4976
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4977

P
Peter Zijlstra 已提交
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

4991 4992 4993 4994
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4995

4996 4997 4998 4999 5000 5001 5002 5003 5004
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
5005 5006
}

5007
static struct pmu perf_cpu_clock = {
5008 5009
	.task_ctx_nr	= perf_sw_context,

5010
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5011 5012 5013 5014
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5015 5016 5017 5018 5019 5020 5021 5022
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5023
{
5024 5025
	u64 prev;
	s64 delta;
5026

5027 5028 5029 5030
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5031

P
Peter Zijlstra 已提交
5032
static void task_clock_event_start(struct perf_event *event, int flags)
5033
{
P
Peter Zijlstra 已提交
5034
	local64_set(&event->hw.prev_count, event->ctx->time);
5035 5036 5037
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5038
static void task_clock_event_stop(struct perf_event *event, int flags)
5039 5040 5041
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5042 5043 5044 5045 5046 5047
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5048

P
Peter Zijlstra 已提交
5049 5050 5051 5052 5053 5054
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5074
{
5075 5076 5077 5078 5079 5080 5081
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
L
Li Zefan 已提交
5082 5083
}

5084
static struct pmu perf_task_clock = {
5085 5086
	.task_ctx_nr	= perf_sw_context,

5087
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5088 5089 5090 5091
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5092 5093
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5094

P
Peter Zijlstra 已提交
5095
static void perf_pmu_nop_void(struct pmu *pmu)
5096 5097
{
}
L
Li Zefan 已提交
5098

P
Peter Zijlstra 已提交
5099
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5100
{
P
Peter Zijlstra 已提交
5101
	return 0;
L
Li Zefan 已提交
5102 5103
}

P
Peter Zijlstra 已提交
5104
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5105
{
P
Peter Zijlstra 已提交
5106
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5107 5108
}

P
Peter Zijlstra 已提交
5109 5110 5111 5112 5113
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5114

P
Peter Zijlstra 已提交
5115
static void perf_pmu_cancel_txn(struct pmu *pmu)
5116
{
P
Peter Zijlstra 已提交
5117
	perf_pmu_enable(pmu);
5118 5119
}

P
Peter Zijlstra 已提交
5120 5121 5122 5123 5124
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5125
{
P
Peter Zijlstra 已提交
5126
	struct pmu *pmu;
5127

P
Peter Zijlstra 已提交
5128 5129
	if (ctxn < 0)
		return NULL;
5130

P
Peter Zijlstra 已提交
5131 5132 5133 5134
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5135

P
Peter Zijlstra 已提交
5136
	return NULL;
5137 5138
}

P
Peter Zijlstra 已提交
5139
static void free_pmu_context(void * __percpu cpu_context)
5140
{
P
Peter Zijlstra 已提交
5141
	struct pmu *pmu;
5142

P
Peter Zijlstra 已提交
5143
	mutex_lock(&pmus_lock);
5144
	/*
P
Peter Zijlstra 已提交
5145
	 * Like a real lame refcount.
5146
	 */
P
Peter Zijlstra 已提交
5147 5148 5149 5150
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->pmu_cpu_context == cpu_context)
			goto out;
	}
5151

P
Peter Zijlstra 已提交
5152 5153 5154
	free_percpu(cpu_context);
out:
	mutex_unlock(&pmus_lock);
5155
}
5156

5157
int perf_pmu_register(struct pmu *pmu)
5158
{
P
Peter Zijlstra 已提交
5159
	int cpu, ret;
5160

5161
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5162 5163 5164 5165
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5166

P
Peter Zijlstra 已提交
5167 5168 5169
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5170

P
Peter Zijlstra 已提交
5171 5172 5173
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
		goto free_pdc;
5174

P
Peter Zijlstra 已提交
5175 5176 5177 5178
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5179
		__perf_event_init_context(&cpuctx->ctx);
5180
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5181
		cpuctx->ctx.pmu = pmu;
5182 5183
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
P
Peter Zijlstra 已提交
5184
	}
5185

P
Peter Zijlstra 已提交
5186
got_cpu_context:
P
Peter Zijlstra 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
5201
		}
5202
	}
5203

P
Peter Zijlstra 已提交
5204 5205 5206 5207 5208
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5209
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5210 5211
	ret = 0;
unlock:
5212 5213
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5214
	return ret;
P
Peter Zijlstra 已提交
5215 5216 5217 5218

free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5219 5220
}

5221
void perf_pmu_unregister(struct pmu *pmu)
5222
{
5223 5224 5225
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5226

5227
	/*
P
Peter Zijlstra 已提交
5228 5229
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5230
	 */
5231
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5232
	synchronize_rcu();
5233

P
Peter Zijlstra 已提交
5234
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5235
	free_pmu_context(pmu->pmu_cpu_context);
5236
}
5237

5238 5239 5240 5241 5242 5243 5244 5245 5246
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
P
Peter Zijlstra 已提交
5247
			goto unlock;
5248

5249 5250
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5251
			goto unlock;
5252
		}
5253
	}
P
Peter Zijlstra 已提交
5254 5255
	pmu = ERR_PTR(-ENOENT);
unlock:
5256
	srcu_read_unlock(&pmus_srcu, idx);
5257

5258
	return pmu;
5259 5260
}

T
Thomas Gleixner 已提交
5261
/*
5262
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5263
 */
5264
static struct perf_event *
5265
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5266 5267 5268 5269
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
		 perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5270
{
P
Peter Zijlstra 已提交
5271
	struct pmu *pmu;
5272 5273
	struct perf_event *event;
	struct hw_perf_event *hwc;
5274
	long err;
T
Thomas Gleixner 已提交
5275

5276
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5277
	if (!event)
5278
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5279

5280
	/*
5281
	 * Single events are their own group leaders, with an
5282 5283 5284
	 * empty sibling list:
	 */
	if (!group_leader)
5285
		group_leader = event;
5286

5287 5288
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5289

5290 5291 5292 5293
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
5294
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5295

5296
	mutex_init(&event->mmap_mutex);
5297

5298 5299 5300 5301 5302
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5303

5304
	event->parent		= parent_event;
5305

5306 5307
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5308

5309
	event->state		= PERF_EVENT_STATE_INACTIVE;
5310

5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

5322 5323
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5324
	
5325
	event->overflow_handler	= overflow_handler;
5326

5327
	if (attr->disabled)
5328
		event->state = PERF_EVENT_STATE_OFF;
5329

5330
	pmu = NULL;
5331

5332
	hwc = &event->hw;
5333
	hwc->sample_period = attr->sample_period;
5334
	if (attr->freq && attr->sample_freq)
5335
		hwc->sample_period = 1;
5336
	hwc->last_period = hwc->sample_period;
5337

5338
	local64_set(&hwc->period_left, hwc->sample_period);
5339

5340
	/*
5341
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5342
	 */
5343
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5344 5345
		goto done;

5346
	pmu = perf_init_event(event);
5347

5348 5349
done:
	err = 0;
5350
	if (!pmu)
5351
		err = -EINVAL;
5352 5353
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5354

5355
	if (err) {
5356 5357 5358
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5359
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5360
	}
5361

5362
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5363

5364
	if (!event->parent) {
5365 5366
		if (event->attach_state & PERF_ATTACH_TASK)
			jump_label_inc(&perf_task_events);
5367
		if (event->attr.mmap || event->attr.mmap_data)
5368 5369 5370 5371 5372
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5373 5374 5375 5376 5377 5378 5379
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5380
	}
5381

5382
	return event;
T
Thomas Gleixner 已提交
5383 5384
}

5385 5386
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5387 5388
{
	u32 size;
5389
	int ret;
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5414 5415 5416
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5417 5418
	 */
	if (size > sizeof(*attr)) {
5419 5420 5421
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5422

5423 5424
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5425

5426
		for (; addr < end; addr++) {
5427 5428 5429 5430 5431 5432
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5433
		size = sizeof(*attr);
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5447
	if (attr->__reserved_1)
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5465 5466
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5467
{
5468
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5469 5470
	int ret = -EINVAL;

5471
	if (!output_event)
5472 5473
		goto set;

5474 5475
	/* don't allow circular references */
	if (event == output_event)
5476 5477
		goto out;

5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5490
set:
5491
	mutex_lock(&event->mmap_mutex);
5492 5493 5494
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5495

5496 5497
	if (output_event) {
		/* get the buffer we want to redirect to */
5498 5499
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5500
			goto unlock;
5501 5502
	}

5503 5504
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5505
	ret = 0;
5506 5507 5508
unlock:
	mutex_unlock(&event->mmap_mutex);

5509 5510
	if (old_buffer)
		perf_buffer_put(old_buffer);
5511 5512 5513 5514
out:
	return ret;
}

T
Thomas Gleixner 已提交
5515
/**
5516
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5517
 *
5518
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5519
 * @pid:		target pid
I
Ingo Molnar 已提交
5520
 * @cpu:		target cpu
5521
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5522
 */
5523 5524
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5525
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5526
{
5527 5528
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5529 5530 5531
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5532
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5533
	struct task_struct *task = NULL;
5534
	struct pmu *pmu;
5535
	int event_fd;
5536
	int move_group = 0;
5537
	int fput_needed = 0;
5538
	int err;
T
Thomas Gleixner 已提交
5539

5540
	/* for future expandability... */
5541
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5542 5543
		return -EINVAL;

5544 5545 5546
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5547

5548 5549 5550 5551 5552
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5553
	if (attr.freq) {
5554
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5555 5556 5557
			return -EINVAL;
	}

5558 5559 5560 5561
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5562 5563 5564 5565
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5566
			goto err_fd;
5567 5568 5569 5570 5571 5572 5573 5574
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

5575 5576 5577 5578 5579 5580 5581 5582
	if (pid != -1) {
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

5583
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5584 5585
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5586
		goto err_task;
5587 5588
	}

5589 5590 5591 5592 5593
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
5617 5618 5619 5620

	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
5621
	ctx = find_get_context(pmu, task, cpu);
5622 5623
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5624
		goto err_alloc;
5625 5626
	}

I
Ingo Molnar 已提交
5627
	/*
5628
	 * Look up the group leader (we will attach this event to it):
5629
	 */
5630
	if (group_leader) {
5631
		err = -EINVAL;
5632 5633

		/*
I
Ingo Molnar 已提交
5634 5635 5636 5637
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5638
			goto err_context;
I
Ingo Molnar 已提交
5639 5640 5641
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5642
		 */
5643 5644 5645 5646 5647 5648 5649 5650
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

5651 5652 5653
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5654
		if (attr.exclusive || attr.pinned)
5655
			goto err_context;
5656 5657 5658 5659 5660
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5661
			goto err_context;
5662
	}
T
Thomas Gleixner 已提交
5663

5664 5665 5666
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5667
		goto err_context;
5668
	}
5669

5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
		perf_event_remove_from_context(group_leader);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_event_remove_from_context(sibling);
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
5682
	}
5683

5684
	event->filp = event_file;
5685
	WARN_ON_ONCE(ctx->parent_ctx);
5686
	mutex_lock(&ctx->mutex);
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

5698
	perf_install_in_context(ctx, event, cpu);
5699
	++ctx->generation;
5700
	mutex_unlock(&ctx->mutex);
5701

5702
	event->owner = current;
P
Peter Zijlstra 已提交
5703

5704 5705 5706
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5707

5708 5709 5710 5711 5712 5713
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5714 5715 5716
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5717

5718
err_context:
5719
	put_ctx(ctx);
5720
err_alloc:
5721
	free_event(event);
P
Peter Zijlstra 已提交
5722 5723 5724
err_task:
	if (task)
		put_task_struct(task);
5725
err_group_fd:
5726
	fput_light(group_file, fput_needed);
5727 5728
err_fd:
	put_unused_fd(event_fd);
5729
	return err;
T
Thomas Gleixner 已提交
5730 5731
}

5732 5733 5734 5735 5736
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
5737
 * @task: task to profile (NULL for percpu)
5738 5739 5740
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
5741
				 struct task_struct *task,
5742
				 perf_overflow_handler_t overflow_handler)
5743 5744
{
	struct perf_event_context *ctx;
5745
	struct perf_event *event;
5746
	int err;
5747

5748 5749 5750
	/*
	 * Get the target context (task or percpu):
	 */
5751

5752
	event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5753 5754 5755 5756
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
5757

M
Matt Helsley 已提交
5758
	ctx = find_get_context(event->pmu, task, cpu);
5759 5760
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5761
		goto err_free;
5762
	}
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	return event;

5773 5774 5775
err_free:
	free_event(event);
err:
5776
	return ERR_PTR(err);
5777
}
5778
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5779

5780
static void sync_child_event(struct perf_event *child_event,
5781
			       struct task_struct *child)
5782
{
5783
	struct perf_event *parent_event = child_event->parent;
5784
	u64 child_val;
5785

5786 5787
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5788

P
Peter Zijlstra 已提交
5789
	child_val = perf_event_count(child_event);
5790 5791 5792 5793

	/*
	 * Add back the child's count to the parent's count:
	 */
5794
	atomic64_add(child_val, &parent_event->child_count);
5795 5796 5797 5798
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5799 5800

	/*
5801
	 * Remove this event from the parent's list
5802
	 */
5803 5804 5805 5806
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5807 5808

	/*
5809
	 * Release the parent event, if this was the last
5810 5811
	 * reference to it.
	 */
5812
	fput(parent_event->filp);
5813 5814
}

5815
static void
5816 5817
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5818
			 struct task_struct *child)
5819
{
5820
	struct perf_event *parent_event;
5821

5822
	perf_event_remove_from_context(child_event);
5823

5824
	parent_event = child_event->parent;
5825
	/*
5826
	 * It can happen that parent exits first, and has events
5827
	 * that are still around due to the child reference. These
5828
	 * events need to be zapped - but otherwise linger.
5829
	 */
5830 5831 5832
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5833
	}
5834 5835
}

P
Peter Zijlstra 已提交
5836
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5837
{
5838 5839
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5840
	unsigned long flags;
5841

P
Peter Zijlstra 已提交
5842
	if (likely(!child->perf_event_ctxp[ctxn])) {
5843
		perf_event_task(child, NULL, 0);
5844
		return;
P
Peter Zijlstra 已提交
5845
	}
5846

5847
	local_irq_save(flags);
5848 5849 5850 5851 5852 5853
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
P
Peter Zijlstra 已提交
5854
	child_ctx = child->perf_event_ctxp[ctxn];
5855
	task_ctx_sched_out(child_ctx, EVENT_ALL);
5856 5857 5858

	/*
	 * Take the context lock here so that if find_get_context is
5859
	 * reading child->perf_event_ctxp, we wait until it has
5860 5861
	 * incremented the context's refcount before we do put_ctx below.
	 */
5862
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
5863
	child->perf_event_ctxp[ctxn] = NULL;
5864 5865 5866
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5867
	 * the events from it.
5868 5869
	 */
	unclone_ctx(child_ctx);
5870
	update_context_time(child_ctx);
5871
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5872 5873

	/*
5874 5875 5876
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5877
	 */
5878
	perf_event_task(child, child_ctx, 0);
5879

5880 5881 5882
	/*
	 * We can recurse on the same lock type through:
	 *
5883 5884 5885
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5886 5887 5888 5889 5890
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5891
	mutex_lock(&child_ctx->mutex);
5892

5893
again:
5894 5895 5896 5897 5898
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5899
				 group_entry)
5900
		__perf_event_exit_task(child_event, child_ctx, child);
5901 5902

	/*
5903
	 * If the last event was a group event, it will have appended all
5904 5905 5906
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5907 5908
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5909
		goto again;
5910 5911 5912 5913

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5914 5915
}

P
Peter Zijlstra 已提交
5916 5917 5918 5919 5920
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
5921
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
5922 5923
	int ctxn;

P
Peter Zijlstra 已提交
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
5939 5940 5941 5942
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5957
	perf_group_detach(event);
5958 5959 5960 5961
	list_del_event(event, ctx);
	free_event(event);
}

5962 5963
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
5964
 * perf_event_init_task below, used by fork() in case of fail.
5965
 */
5966
void perf_event_free_task(struct task_struct *task)
5967
{
P
Peter Zijlstra 已提交
5968
	struct perf_event_context *ctx;
5969
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
5970
	int ctxn;
5971

P
Peter Zijlstra 已提交
5972 5973 5974 5975
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5976

P
Peter Zijlstra 已提交
5977
		mutex_lock(&ctx->mutex);
5978
again:
P
Peter Zijlstra 已提交
5979 5980 5981
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
5982

P
Peter Zijlstra 已提交
5983 5984 5985
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
5986

P
Peter Zijlstra 已提交
5987 5988 5989
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
5990

P
Peter Zijlstra 已提交
5991
		mutex_unlock(&ctx->mutex);
5992

P
Peter Zijlstra 已提交
5993 5994
		put_ctx(ctx);
	}
5995 5996
}

5997 5998 5999 6000 6001 6002 6003 6004
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6017
	unsigned long flags;
P
Peter Zijlstra 已提交
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
6030
					   child,
P
Peter Zijlstra 已提交
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

	/*
	 * Link it up in the child's context:
	 */
6063
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6064
	add_event_to_ctx(child_event, child_ctx);
6065
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6107 6108 6109 6110 6111
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6112
		   struct task_struct *child, int ctxn,
6113 6114 6115
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6116
	struct perf_event_context *child_ctx;
6117 6118 6119 6120

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6121 6122
	}

P
Peter Zijlstra 已提交
6123
       	child_ctx = child->perf_event_ctxp[ctxn];
6124 6125 6126 6127 6128 6129 6130
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6131

6132
		child_ctx = alloc_perf_context(event->pmu, child);
6133 6134
		if (!child_ctx)
			return -ENOMEM;
6135

P
Peter Zijlstra 已提交
6136
		child->perf_event_ctxp[ctxn] = child_ctx;
6137 6138 6139 6140 6141 6142 6143 6144 6145
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6146 6147
}

6148
/*
6149
 * Initialize the perf_event context in task_struct
6150
 */
P
Peter Zijlstra 已提交
6151
int perf_event_init_context(struct task_struct *child, int ctxn)
6152
{
6153
	struct perf_event_context *child_ctx, *parent_ctx;
6154 6155
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6156
	struct task_struct *parent = current;
6157
	int inherited_all = 1;
6158
	unsigned long flags;
6159
	int ret = 0;
6160

P
Peter Zijlstra 已提交
6161
	child->perf_event_ctxp[ctxn] = NULL;
6162

6163 6164
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
6165

P
Peter Zijlstra 已提交
6166
	if (likely(!parent->perf_event_ctxp[ctxn]))
6167 6168
		return 0;

6169
	/*
6170 6171
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6172
	 */
P
Peter Zijlstra 已提交
6173
	parent_ctx = perf_pin_task_context(parent, ctxn);
6174

6175 6176 6177 6178 6179 6180 6181
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6182 6183 6184 6185
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6186
	mutex_lock(&parent_ctx->mutex);
6187 6188 6189 6190 6191

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6192
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6193 6194
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6195 6196 6197
		if (ret)
			break;
	}
6198

6199 6200 6201 6202 6203 6204 6205 6206 6207
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

6208
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6209 6210
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6211
		if (ret)
6212
			break;
6213 6214
	}

6215 6216 6217 6218
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

P
Peter Zijlstra 已提交
6219
	child_ctx = child->perf_event_ctxp[ctxn];
6220

6221
	if (child_ctx && inherited_all) {
6222 6223 6224
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
6225 6226
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
6227
		 * because the list of events and the generation
6228
		 * count can't have changed since we took the mutex.
6229
		 */
6230 6231 6232
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6233
			child_ctx->parent_gen = parent_ctx->parent_gen;
6234 6235 6236 6237 6238
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6239 6240
	}

6241
	mutex_unlock(&parent_ctx->mutex);
6242

6243
	perf_unpin_context(parent_ctx);
6244

6245
	return ret;
6246 6247
}

P
Peter Zijlstra 已提交
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6264 6265
static void __init perf_event_init_all_cpus(void)
{
6266
	struct swevent_htable *swhash;
6267 6268 6269
	int cpu;

	for_each_possible_cpu(cpu) {
6270 6271
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6272
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6273 6274 6275
	}
}

6276
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6277
{
P
Peter Zijlstra 已提交
6278
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6279

6280 6281
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6282 6283
		struct swevent_hlist *hlist;

6284 6285 6286
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6287
	}
6288
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6289 6290 6291
}

#ifdef CONFIG_HOTPLUG_CPU
6292
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6293
{
6294 6295 6296 6297 6298 6299 6300
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6301
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6302
{
P
Peter Zijlstra 已提交
6303
	struct perf_event_context *ctx = __info;
6304
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6305

P
Peter Zijlstra 已提交
6306
	perf_pmu_rotate_stop(ctx->pmu);
6307

6308 6309 6310
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6311
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6312
}
P
Peter Zijlstra 已提交
6313 6314 6315 6316 6317 6318 6319 6320 6321

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6322
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6323 6324 6325 6326 6327 6328 6329 6330

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6331
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6332
{
6333
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6334

6335 6336 6337
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6338

P
Peter Zijlstra 已提交
6339
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6340 6341
}
#else
6342
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6343 6344 6345 6346 6347 6348 6349
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6350
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6351 6352

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6353
	case CPU_DOWN_FAILED:
6354
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6355 6356
		break;

P
Peter Zijlstra 已提交
6357
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6358
	case CPU_DOWN_PREPARE:
6359
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6360 6361 6362 6363 6364 6365 6366 6367 6368
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6369
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6370
{
6371 6372
	int ret;

6373
	perf_event_init_all_cpus();
6374 6375 6376 6377 6378 6379
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
6380 6381 6382

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
T
Thomas Gleixner 已提交
6383
}