fair.c 200.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

181
#define WMULT_CONST	(~0U)
182 183
#define WMULT_SHIFT	32

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
200 201

/*
202 203 204 205 206 207 208 209 210 211
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212
 */
213
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214
{
215 216
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
217

218
	__update_inv_weight(lw);
219

220 221 222 223 224
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
225 226
	}

227 228
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
229

230 231 232 233
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
234

235
	return mul_u64_u32_shr(delta_exec, fact, shift);
236 237 238 239
}


const struct sched_class fair_sched_class;
240

241 242 243 244
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

245
#ifdef CONFIG_FAIR_GROUP_SCHED
246

247
/* cpu runqueue to which this cfs_rq is attached */
248 249
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
250
	return cfs_rq->rq;
251 252
}

253 254
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
255

256 257 258 259 260 261 262 263
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
287

288 289 290
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
291 292 293 294 295 296 297 298 299 300 301 302
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304
		}
305 306

		cfs_rq->on_list = 1;
307
		/* We should have no load, but we need to update last_decay. */
308
		update_cfs_rq_blocked_load(cfs_rq, 0);
309 310 311 312 313 314 315 316 317 318 319
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
320 321 322 323 324
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
325
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
326 327 328
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
329
		return se->cfs_rq;
P
Peter Zijlstra 已提交
330

P
Peter Zijlstra 已提交
331
	return NULL;
P
Peter Zijlstra 已提交
332 333 334 335 336 337 338
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

339 340 341 342 343 344 345 346 347 348 349 350 351
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
352 353
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

371 372 373 374 375 376
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
377

378 379 380
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
381 382 383 384
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
385 386
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
387

P
Peter Zijlstra 已提交
388
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389
{
P
Peter Zijlstra 已提交
390
	return &task_rq(p)->cfs;
391 392
}

P
Peter Zijlstra 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

407 408 409 410 411 412 413 414
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
415 416 417 418 419 420 421 422
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

423 424 425 426 427
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
428 429
#endif	/* CONFIG_FAIR_GROUP_SCHED */

430
static __always_inline
431
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 433 434 435 436

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

437
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438
{
439
	s64 delta = (s64)(vruntime - max_vruntime);
440
	if (delta > 0)
441
		max_vruntime = vruntime;
442

443
	return max_vruntime;
444 445
}

446
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

455 456 457 458 459 460
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

461 462 463 464 465 466 467 468 469 470 471 472
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
473
		if (!cfs_rq->curr)
474 475 476 477 478
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

479
	/* ensure we never gain time by being placed backwards. */
480
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 482 483 484
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
485 486
}

487 488 489
/*
 * Enqueue an entity into the rb-tree:
 */
490
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
507
		if (entity_before(se, entry)) {
508 509 510 511 512 513 514 515 516 517 518
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
519
	if (leftmost)
I
Ingo Molnar 已提交
520
		cfs_rq->rb_leftmost = &se->run_node;
521 522 523 524 525

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

526
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527
{
P
Peter Zijlstra 已提交
528 529 530 531 532 533
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
534

535 536 537
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

538
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539
{
540 541 542 543 544 545
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
546 547
}

548 549 550 551 552 553 554 555 556 557 558
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
559
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560
{
561
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562

563 564
	if (!last)
		return NULL;
565 566

	return rb_entry(last, struct sched_entity, run_node);
567 568
}

569 570 571 572
/**************************************************************
 * Scheduling class statistics methods:
 */

573
int sched_proc_update_handler(struct ctl_table *table, int write,
574
		void __user *buffer, size_t *lenp,
575 576
		loff_t *ppos)
{
577
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578
	int factor = get_update_sysctl_factor();
579 580 581 582 583 584 585

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

586 587 588 589 590 591 592
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

593 594 595
	return 0;
}
#endif
596

597
/*
598
 * delta /= w
599
 */
600
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601
{
602
	if (unlikely(se->load.weight != NICE_0_LOAD))
603
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604 605 606 607

	return delta;
}

608 609 610
/*
 * The idea is to set a period in which each task runs once.
 *
611
 * When there are too many tasks (sched_nr_latency) we have to stretch
612 613 614 615
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
616 617 618
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
619
	unsigned long nr_latency = sched_nr_latency;
620 621

	if (unlikely(nr_running > nr_latency)) {
622
		period = sysctl_sched_min_granularity;
623 624 625 626 627 628
		period *= nr_running;
	}

	return period;
}

629 630 631 632
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
633
 * s = p*P[w/rw]
634
 */
P
Peter Zijlstra 已提交
635
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636
{
M
Mike Galbraith 已提交
637
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638

M
Mike Galbraith 已提交
639
	for_each_sched_entity(se) {
L
Lin Ming 已提交
640
		struct load_weight *load;
641
		struct load_weight lw;
L
Lin Ming 已提交
642 643 644

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
645

M
Mike Galbraith 已提交
646
		if (unlikely(!se->on_rq)) {
647
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
648 649 650 651

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
652
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
653 654
	}
	return slice;
655 656
}

657
/*
A
Andrei Epure 已提交
658
 * We calculate the vruntime slice of a to-be-inserted task.
659
 *
660
 * vs = s/w
661
 */
662
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
663
{
664
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 666
}

667
#ifdef CONFIG_SMP
668 669
static unsigned long task_h_load(struct task_struct *p);

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

689
/*
690
 * Update the current task's runtime statistics.
691
 */
692
static void update_curr(struct cfs_rq *cfs_rq)
693
{
694
	struct sched_entity *curr = cfs_rq->curr;
695
	u64 now = rq_clock_task(rq_of(cfs_rq));
696
	u64 delta_exec;
697 698 699 700

	if (unlikely(!curr))
		return;

701 702
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
703
		return;
704

I
Ingo Molnar 已提交
705
	curr->exec_start = now;
706

707 708 709 710 711 712 713 714 715
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

716 717 718
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

719
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720
		cpuacct_charge(curtask, delta_exec);
721
		account_group_exec_runtime(curtask, delta_exec);
722
	}
723 724

	account_cfs_rq_runtime(cfs_rq, delta_exec);
725 726 727
}

static inline void
728
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729
{
730
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 732 733 734 735
}

/*
 * Task is being enqueued - update stats:
 */
736
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 738 739 740 741
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
742
	if (se != cfs_rq->curr)
743
		update_stats_wait_start(cfs_rq, se);
744 745 746
}

static void
747
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748
{
749
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 752
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 755 756
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
757
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 759
	}
#endif
760
	schedstat_set(se->statistics.wait_start, 0);
761 762 763
}

static inline void
764
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 766 767 768 769
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
770
	if (se != cfs_rq->curr)
771
		update_stats_wait_end(cfs_rq, se);
772 773 774 775 776 777
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
778
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 780 781 782
{
	/*
	 * We are starting a new run period:
	 */
783
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 785 786 787 788 789
}

/**************************************************
 * Scheduling class queueing methods:
 */

790 791
#ifdef CONFIG_NUMA_BALANCING
/*
792 793 794
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
795
 */
796 797
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798 799 800

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
801

802 803 804
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

850 851 852 853 854 855 856 857 858 859 860 861
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

862 863 864 865 866
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
867
	pid_t gid;
868 869 870
	struct list_head task_list;

	struct rcu_head rcu;
871
	nodemask_t active_nodes;
872
	unsigned long total_faults;
873 874 875 876 877
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
878
	unsigned long *faults_cpu;
879
	unsigned long faults[0];
880 881
};

882 883 884 885 886 887 888 889 890
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

891 892 893 894 895
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

896 897
static inline int task_faults_idx(int nid, int priv)
{
898
	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 900 901 902
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
903
	if (!p->numa_faults_memory)
904 905
		return 0;

906 907
	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
		p->numa_faults_memory[task_faults_idx(nid, 1)];
908 909
}

910 911 912 913 914
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

915 916
	return p->numa_group->faults[task_faults_idx(nid, 0)] +
		p->numa_group->faults[task_faults_idx(nid, 1)];
917 918
}

919 920 921 922 923 924
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
	return group->faults_cpu[task_faults_idx(nid, 0)] +
		group->faults_cpu[task_faults_idx(nid, 1)];
}

925 926 927 928 929 930 931 932 933 934
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

935
	if (!p->numa_faults_memory)
936 937 938 939 940 941 942 943 944 945 946 947
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
948
	if (!p->numa_group || !p->numa_group->total_faults)
949 950
		return 0;

951
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 953
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1017
static unsigned long weighted_cpuload(const int cpu);
1018 1019 1020 1021 1022
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long power_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1023
/* Cached statistics for all CPUs within a node */
1024
struct numa_stats {
1025
	unsigned long nr_running;
1026
	unsigned long load;
1027 1028 1029 1030 1031 1032 1033

	/* Total compute capacity of CPUs on a node */
	unsigned long power;

	/* Approximate capacity in terms of runnable tasks on a node */
	unsigned long capacity;
	int has_capacity;
1034
};
1035

1036 1037 1038 1039 1040
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1041
	int cpu, cpus = 0;
1042 1043 1044 1045 1046 1047 1048 1049

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
		ns->power += power_of(cpu);
1050 1051

		cpus++;
1052 1053
	}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
	 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
	 * and bail there.
	 */
	if (!cpus)
		return;

1065 1066 1067 1068 1069
	ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
	ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
	ns->has_capacity = (ns->nr_running < ns->capacity);
}

1070 1071
struct task_numa_env {
	struct task_struct *p;
1072

1073 1074
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1075

1076
	struct numa_stats src_stats, dst_stats;
1077

1078
	int imbalance_pct;
1079 1080 1081

	struct task_struct *best_task;
	long best_imp;
1082 1083 1084
	int best_cpu;
};

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
				long src_load, long dst_load,
				struct task_numa_env *env)
{
	long imb, old_imb;

	/* We care about the slope of the imbalance, not the direction. */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	/* Is the difference below the threshold? */
	imb = dst_load * 100 - src_load * env->imbalance_pct;
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
	 * Compare it with the old imbalance.
	 */
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);

	old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;

	/* Would this change make things worse? */
	return (old_imb > imb);
}

1126 1127 1128 1129 1130 1131
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1132 1133
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1134 1135 1136 1137
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1138 1139
	long orig_src_load, src_load;
	long orig_dst_load, dst_load;
1140
	long load;
1141
	long imp = (groupimp > 0) ? groupimp : taskimp;
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1160 1161
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1162
		 * in any group then look only at task weights.
1163
		 */
1164
		if (cur->numa_group == env->p->numa_group) {
1165 1166
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1167 1168 1169 1170 1171 1172
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1173
		} else {
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (env->p->numa_group)
				imp = groupimp;
			else
				imp = taskimp;

			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1190
		}
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	}

	if (imp < env->best_imp)
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
		if (env->src_stats.has_capacity &&
		    !env->dst_stats.has_capacity)
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
	if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1213 1214
	orig_dst_load = env->dst_stats.load;
	orig_src_load = env->src_stats.load;
1215 1216 1217

	/* XXX missing power terms */
	load = task_h_load(env->p);
1218 1219
	dst_load = orig_dst_load + load;
	src_load = orig_src_load - load;
1220 1221 1222 1223 1224 1225 1226

	if (cur) {
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
	}

1227 1228
	if (load_too_imbalanced(orig_src_load, orig_dst_load,
				src_load, dst_load, env))
1229 1230 1231 1232 1233 1234 1235 1236
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1237 1238
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1239 1240 1241 1242 1243 1244 1245 1246 1247
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1248
		task_numa_compare(env, taskimp, groupimp);
1249 1250 1251
	}
}

1252 1253 1254 1255
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1256

1257
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1258
		.src_nid = task_node(p),
1259 1260 1261 1262 1263 1264

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1265 1266
	};
	struct sched_domain *sd;
1267
	unsigned long taskweight, groupweight;
1268
	int nid, ret;
1269
	long taskimp, groupimp;
1270

1271
	/*
1272 1273 1274 1275 1276 1277
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1278 1279
	 */
	rcu_read_lock();
1280
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1281 1282
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1283 1284
	rcu_read_unlock();

1285 1286 1287 1288 1289 1290 1291
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1292
		p->numa_preferred_nid = task_node(p);
1293 1294 1295
		return -EINVAL;
	}

1296 1297
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1298
	update_numa_stats(&env.src_stats, env.src_nid);
1299
	env.dst_nid = p->numa_preferred_nid;
1300 1301
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1302
	update_numa_stats(&env.dst_stats, env.dst_nid);
1303

1304 1305
	/* If the preferred nid has capacity, try to use it. */
	if (env.dst_stats.has_capacity)
1306
		task_numa_find_cpu(&env, taskimp, groupimp);
1307 1308 1309

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1310 1311 1312
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1313

1314
			/* Only consider nodes where both task and groups benefit */
1315 1316 1317
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1318 1319
				continue;

1320 1321
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1322
			task_numa_find_cpu(&env, taskimp, groupimp);
1323 1324 1325
		}
	}

1326 1327 1328 1329
	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
	if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
		sched_setnuma(p, env.dst_nid);
1340

1341 1342 1343 1344 1345 1346
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1347
	if (env.best_task == NULL) {
1348 1349 1350
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1351 1352 1353 1354
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1355 1356
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1357 1358
	put_task_struct(env.best_task);
	return ret;
1359 1360
}

1361 1362 1363
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1364 1365
	unsigned long interval = HZ;

1366
	/* This task has no NUMA fault statistics yet */
1367
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1368 1369
		return;

1370
	/* Periodically retry migrating the task to the preferred node */
1371 1372
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1373 1374

	/* Success if task is already running on preferred CPU */
1375
	if (task_node(p) == p->numa_preferred_nid)
1376 1377 1378
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1379
	task_numa_migrate(p);
1380 1381
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
 * period will be for the next scan window. If local/remote ratio is below
 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
 * scan period will decrease
 */
#define NUMA_PERIOD_SLOTS 10
#define NUMA_PERIOD_THRESHOLD 3

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.runnable_avg_sum;
		*period = p->se.avg.runnable_avg_period;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1516 1517
static void task_numa_placement(struct task_struct *p)
{
1518 1519
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1520
	unsigned long fault_types[2] = { 0, 0 };
1521 1522
	unsigned long total_faults;
	u64 runtime, period;
1523
	spinlock_t *group_lock = NULL;
1524

1525
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1526 1527 1528
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1529
	p->numa_scan_period_max = task_scan_max(p);
1530

1531 1532 1533 1534
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1535 1536 1537
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1538
		spin_lock_irq(group_lock);
1539 1540
	}

1541 1542
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1543
		unsigned long faults = 0, group_faults = 0;
1544
		int priv, i;
1545

1546
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1547
			long diff, f_diff, f_weight;
1548

1549
			i = task_faults_idx(nid, priv);
1550

1551
			/* Decay existing window, copy faults since last scan */
1552
			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1553 1554
			fault_types[priv] += p->numa_faults_buffer_memory[i];
			p->numa_faults_buffer_memory[i] = 0;
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
				   (total_faults + 1);
1566
			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1567 1568
			p->numa_faults_buffer_cpu[i] = 0;

1569 1570
			p->numa_faults_memory[i] += diff;
			p->numa_faults_cpu[i] += f_diff;
1571
			faults += p->numa_faults_memory[i];
1572
			p->total_numa_faults += diff;
1573 1574
			if (p->numa_group) {
				/* safe because we can only change our own group */
1575
				p->numa_group->faults[i] += diff;
1576
				p->numa_group->faults_cpu[i] += f_diff;
1577 1578
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1579
			}
1580 1581
		}

1582 1583 1584 1585
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1586 1587 1588 1589 1590 1591 1592

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1593 1594
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1595
	if (p->numa_group) {
1596
		update_numa_active_node_mask(p->numa_group);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		/*
		 * If the preferred task and group nids are different,
		 * iterate over the nodes again to find the best place.
		 */
		if (max_nid != max_group_nid) {
			unsigned long weight, max_weight = 0;

			for_each_online_node(nid) {
				weight = task_weight(p, nid) + group_weight(p, nid);
				if (weight > max_weight) {
					max_weight = weight;
					max_nid = nid;
				}
1610 1611
			}
		}
1612

1613
		spin_unlock_irq(group_lock);
1614 1615
	}

1616
	/* Preferred node as the node with the most faults */
1617
	if (max_faults && max_nid != p->numa_preferred_nid) {
1618
		/* Update the preferred nid and migrate task if possible */
1619
		sched_setnuma(p, max_nid);
1620
		numa_migrate_preferred(p);
1621
	}
1622 1623
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1635 1636
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1637 1638 1639 1640 1641 1642 1643 1644 1645
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1646
				    4*nr_node_ids*sizeof(unsigned long);
1647 1648 1649 1650 1651 1652 1653 1654

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1655
		grp->gid = p->pid;
1656
		/* Second half of the array tracks nids where faults happen */
1657 1658
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1659

1660 1661
		node_set(task_node(current), grp->active_nodes);

1662
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1663
			grp->faults[i] = p->numa_faults_memory[i];
1664

1665
		grp->total_faults = p->total_numa_faults;
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1676
		goto no_join;
1677 1678 1679

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1680
		goto no_join;
1681 1682 1683

	my_grp = p->numa_group;
	if (grp == my_grp)
1684
		goto no_join;
1685 1686 1687 1688 1689 1690

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1691
		goto no_join;
1692 1693 1694 1695 1696

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1697
		goto no_join;
1698

1699 1700 1701 1702 1703 1704 1705
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1706

1707 1708 1709
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1710
	if (join && !get_numa_group(grp))
1711
		goto no_join;
1712 1713 1714 1715 1716 1717

	rcu_read_unlock();

	if (!join)
		return;

1718 1719
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
1720

1721
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1722 1723
		my_grp->faults[i] -= p->numa_faults_memory[i];
		grp->faults[i] += p->numa_faults_memory[i];
1724
	}
1725 1726
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1727 1728 1729 1730 1731 1732

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
1733
	spin_unlock_irq(&grp->lock);
1734 1735 1736 1737

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1738 1739 1740 1741 1742
	return;

no_join:
	rcu_read_unlock();
	return;
1743 1744 1745 1746 1747 1748
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
	int i;
1749
	void *numa_faults = p->numa_faults_memory;
1750 1751

	if (grp) {
1752
		spin_lock_irq(&grp->lock);
1753
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1754
			grp->faults[i] -= p->numa_faults_memory[i];
1755
		grp->total_faults -= p->total_numa_faults;
1756

1757 1758
		list_del(&p->numa_entry);
		grp->nr_tasks--;
1759
		spin_unlock_irq(&grp->lock);
1760 1761 1762 1763
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1764 1765
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1766 1767
	p->numa_faults_cpu= NULL;
	p->numa_faults_buffer_cpu = NULL;
1768
	kfree(numa_faults);
1769 1770
}

1771 1772 1773
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1774
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1775 1776
{
	struct task_struct *p = current;
1777
	bool migrated = flags & TNF_MIGRATED;
1778
	int cpu_node = task_node(current);
1779
	int local = !!(flags & TNF_FAULT_LOCAL);
1780
	int priv;
1781

1782
	if (!numabalancing_enabled)
1783 1784
		return;

1785 1786 1787 1788
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1789 1790 1791 1792
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1793
	/* Allocate buffer to track faults on a per-node basis */
1794
	if (unlikely(!p->numa_faults_memory)) {
1795 1796
		int size = sizeof(*p->numa_faults_memory) *
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1797

1798
		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1799
		if (!p->numa_faults_memory)
1800
			return;
1801

1802
		BUG_ON(p->numa_faults_buffer_memory);
1803 1804 1805 1806 1807 1808
		/*
		 * The averaged statistics, shared & private, memory & cpu,
		 * occupy the first half of the array. The second half of the
		 * array is for current counters, which are averaged into the
		 * first set by task_numa_placement.
		 */
1809 1810 1811
		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1812
		p->total_numa_faults = 0;
1813
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1814
	}
1815

1816 1817 1818 1819 1820 1821 1822 1823
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1824
		if (!priv && !(flags & TNF_NO_GROUP))
1825
			task_numa_group(p, last_cpupid, flags, &priv);
1826 1827
	}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

1839
	task_numa_placement(p);
1840

1841 1842 1843 1844 1845
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1846 1847
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1848 1849 1850
	if (migrated)
		p->numa_pages_migrated += pages;

1851 1852
	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1853
	p->numa_faults_locality[local] += pages;
1854 1855
}

1856 1857 1858 1859 1860 1861
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1862 1863 1864 1865 1866 1867 1868 1869 1870
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1871
	struct vm_area_struct *vma;
1872
	unsigned long start, end;
1873
	unsigned long nr_pte_updates = 0;
1874
	long pages;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1890
	if (!mm->numa_next_scan) {
1891 1892
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1893 1894
	}

1895 1896 1897 1898 1899 1900 1901
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1902 1903 1904 1905
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1906

1907
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1908 1909 1910
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1911 1912 1913 1914 1915 1916
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1917 1918 1919 1920 1921
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1922

1923
	down_read(&mm->mmap_sem);
1924
	vma = find_vma(mm, start);
1925 1926
	if (!vma) {
		reset_ptenuma_scan(p);
1927
		start = 0;
1928 1929
		vma = mm->mmap;
	}
1930
	for (; vma; vma = vma->vm_next) {
1931
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1932 1933
			continue;

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
1944 1945 1946 1947 1948 1949
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
1950

1951 1952 1953 1954
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1955 1956 1957 1958 1959 1960 1961 1962 1963
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1964

1965 1966 1967
			start = end;
			if (pages <= 0)
				goto out;
1968 1969

			cond_resched();
1970
		} while (end != vma->vm_end);
1971
	}
1972

1973
out:
1974
	/*
P
Peter Zijlstra 已提交
1975 1976 1977 1978
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
1979 1980
	 */
	if (vma)
1981
		mm->numa_scan_offset = start;
1982 1983 1984
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
2011
		if (!curr->node_stamp)
2012
			curr->numa_scan_period = task_scan_min(curr);
2013
		curr->node_stamp += period;
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2025 2026 2027 2028 2029 2030 2031 2032

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2033 2034
#endif /* CONFIG_NUMA_BALANCING */

2035 2036 2037 2038
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2039
	if (!parent_entity(se))
2040
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2041
#ifdef CONFIG_SMP
2042 2043 2044 2045 2046 2047
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2048
#endif
2049 2050 2051 2052 2053 2054 2055
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2056
	if (!parent_entity(se))
2057
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2058 2059
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2060
		list_del_init(&se->group_node);
2061
	}
2062 2063 2064
	cfs_rq->nr_running--;
}

2065 2066
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2067 2068 2069 2070 2071 2072 2073 2074 2075
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
2076
	tg_weight = atomic_long_read(&tg->load_avg);
2077
	tg_weight -= cfs_rq->tg_load_contrib;
2078 2079 2080 2081 2082
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

2083
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2084
{
2085
	long tg_weight, load, shares;
2086

2087
	tg_weight = calc_tg_weight(tg, cfs_rq);
2088
	load = cfs_rq->load.weight;
2089 2090

	shares = (tg->shares * load);
2091 2092
	if (tg_weight)
		shares /= tg_weight;
2093 2094 2095 2096 2097 2098 2099 2100 2101

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2102
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2103 2104 2105 2106
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2107 2108 2109
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2110 2111 2112 2113
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2114
		account_entity_dequeue(cfs_rq, se);
2115
	}
P
Peter Zijlstra 已提交
2116 2117 2118 2119 2120 2121 2122

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2123 2124
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2125
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2126 2127 2128
{
	struct task_group *tg;
	struct sched_entity *se;
2129
	long shares;
P
Peter Zijlstra 已提交
2130 2131 2132

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2133
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2134
		return;
2135 2136 2137 2138
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2139
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2140 2141 2142 2143

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2144
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2145 2146 2147 2148
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2149
#ifdef CONFIG_SMP
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2178 2179 2180 2181 2182 2183
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2204 2205
	}

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2271 2272
	u64 delta, periods;
	u32 runnable_contrib;
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2336
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2337
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2338 2339 2340 2341 2342 2343
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2344
		return 0;
2345 2346 2347

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2348 2349

	return decays;
2350 2351
}

2352 2353 2354 2355 2356
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2357
	long tg_contrib;
2358 2359 2360 2361

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2362 2363
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2364 2365 2366
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2367

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2379
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2380 2381 2382 2383 2384 2385 2386 2387 2388
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2389 2390 2391 2392
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2393 2394
	int runnable_avg;

2395 2396 2397
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2398 2399
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2429
}
2430 2431 2432 2433 2434 2435

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}
2436
#else /* CONFIG_FAIR_GROUP_SCHED */
2437 2438
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2439 2440
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2441
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2442
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2443
#endif /* CONFIG_FAIR_GROUP_SCHED */
2444

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2455 2456 2457 2458 2459
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2460 2461 2462
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2463
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2464 2465
		__update_group_entity_contrib(se);
	}
2466 2467 2468 2469

	return se->avg.load_avg_contrib - old_contrib;
}

2470 2471 2472 2473 2474 2475 2476 2477 2478
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2479 2480
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2481
/* Update a sched_entity's runnable average */
2482 2483
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2484
{
2485 2486
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2487
	u64 now;
2488

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2499 2500 2501
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2502 2503 2504 2505

	if (!update_cfs_rq)
		return;

2506 2507
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2508 2509 2510 2511 2512 2513 2514 2515
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2516
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2517
{
2518
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2519 2520 2521
	u64 decays;

	decays = now - cfs_rq->last_decay;
2522
	if (!decays && !force_update)
2523 2524
		return;

2525 2526 2527
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2528 2529
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2530

2531 2532 2533 2534 2535 2536
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2537 2538

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2539
}
2540

2541 2542
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2543 2544
						  struct sched_entity *se,
						  int wakeup)
2545
{
2546 2547 2548 2549
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2550 2551 2552 2553
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2554 2555
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2556
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2572 2573
		wakeup = 0;
	} else {
2574
		__synchronize_entity_decay(se);
2575 2576
	}

2577 2578
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2579
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2580 2581
		update_entity_load_avg(se, 0);
	}
2582

2583
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2584 2585
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2586 2587
}

2588 2589 2590 2591 2592
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2593
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2594 2595
						  struct sched_entity *se,
						  int sleep)
2596
{
2597
	update_entity_load_avg(se, 1);
2598 2599
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2600

2601
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2602 2603 2604 2605
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2606
}
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2628 2629
static int idle_balance(struct rq *this_rq);

2630 2631
#else /* CONFIG_SMP */

2632 2633
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2634
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2635
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2636 2637
					   struct sched_entity *se,
					   int wakeup) {}
2638
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2639 2640
					   struct sched_entity *se,
					   int sleep) {}
2641 2642
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2643 2644 2645 2646 2647 2648

static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2649
#endif /* CONFIG_SMP */
2650

2651
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2652 2653
{
#ifdef CONFIG_SCHEDSTATS
2654 2655 2656 2657 2658
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2659
	if (se->statistics.sleep_start) {
2660
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2661 2662 2663 2664

		if ((s64)delta < 0)
			delta = 0;

2665 2666
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2667

2668
		se->statistics.sleep_start = 0;
2669
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2670

2671
		if (tsk) {
2672
			account_scheduler_latency(tsk, delta >> 10, 1);
2673 2674
			trace_sched_stat_sleep(tsk, delta);
		}
2675
	}
2676
	if (se->statistics.block_start) {
2677
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2678 2679 2680 2681

		if ((s64)delta < 0)
			delta = 0;

2682 2683
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2684

2685
		se->statistics.block_start = 0;
2686
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2687

2688
		if (tsk) {
2689
			if (tsk->in_iowait) {
2690 2691
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2692
				trace_sched_stat_iowait(tsk, delta);
2693 2694
			}

2695 2696
			trace_sched_stat_blocked(tsk, delta);

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2708
		}
2709 2710 2711 2712
	}
#endif
}

P
Peter Zijlstra 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2726 2727 2728
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2729
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2730

2731 2732 2733 2734 2735 2736
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2737
	if (initial && sched_feat(START_DEBIT))
2738
		vruntime += sched_vslice(cfs_rq, se);
2739

2740
	/* sleeps up to a single latency don't count. */
2741
	if (!initial) {
2742
		unsigned long thresh = sysctl_sched_latency;
2743

2744 2745 2746 2747 2748 2749
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2750

2751
		vruntime -= thresh;
2752 2753
	}

2754
	/* ensure we never gain time by being placed backwards. */
2755
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2756 2757
}

2758 2759
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2760
static void
2761
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2762
{
2763 2764
	/*
	 * Update the normalized vruntime before updating min_vruntime
2765
	 * through calling update_curr().
2766
	 */
2767
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2768 2769
		se->vruntime += cfs_rq->min_vruntime;

2770
	/*
2771
	 * Update run-time statistics of the 'current'.
2772
	 */
2773
	update_curr(cfs_rq);
2774
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2775 2776
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2777

2778
	if (flags & ENQUEUE_WAKEUP) {
2779
		place_entity(cfs_rq, se, 0);
2780
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2781
	}
2782

2783
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2784
	check_spread(cfs_rq, se);
2785 2786
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2787
	se->on_rq = 1;
2788

2789
	if (cfs_rq->nr_running == 1) {
2790
		list_add_leaf_cfs_rq(cfs_rq);
2791 2792
		check_enqueue_throttle(cfs_rq);
	}
2793 2794
}

2795
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2796
{
2797 2798
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2799
		if (cfs_rq->last != se)
2800
			break;
2801 2802

		cfs_rq->last = NULL;
2803 2804
	}
}
P
Peter Zijlstra 已提交
2805

2806 2807 2808 2809
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2810
		if (cfs_rq->next != se)
2811
			break;
2812 2813

		cfs_rq->next = NULL;
2814
	}
P
Peter Zijlstra 已提交
2815 2816
}

2817 2818 2819 2820
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2821
		if (cfs_rq->skip != se)
2822
			break;
2823 2824

		cfs_rq->skip = NULL;
2825 2826 2827
	}
}

P
Peter Zijlstra 已提交
2828 2829
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2830 2831 2832 2833 2834
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2835 2836 2837

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2838 2839
}

2840
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2841

2842
static void
2843
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2844
{
2845 2846 2847 2848
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2849
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2850

2851
	update_stats_dequeue(cfs_rq, se);
2852
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2853
#ifdef CONFIG_SCHEDSTATS
2854 2855 2856 2857
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2858
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2859
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2860
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2861
		}
2862
#endif
P
Peter Zijlstra 已提交
2863 2864
	}

P
Peter Zijlstra 已提交
2865
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2866

2867
	if (se != cfs_rq->curr)
2868
		__dequeue_entity(cfs_rq, se);
2869
	se->on_rq = 0;
2870
	account_entity_dequeue(cfs_rq, se);
2871 2872 2873 2874 2875 2876

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2877
	if (!(flags & DEQUEUE_SLEEP))
2878
		se->vruntime -= cfs_rq->min_vruntime;
2879

2880 2881 2882
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2883
	update_min_vruntime(cfs_rq);
2884
	update_cfs_shares(cfs_rq);
2885 2886 2887 2888 2889
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2890
static void
I
Ingo Molnar 已提交
2891
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2892
{
2893
	unsigned long ideal_runtime, delta_exec;
2894 2895
	struct sched_entity *se;
	s64 delta;
2896

P
Peter Zijlstra 已提交
2897
	ideal_runtime = sched_slice(cfs_rq, curr);
2898
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2899
	if (delta_exec > ideal_runtime) {
2900
		resched_task(rq_of(cfs_rq)->curr);
2901 2902 2903 2904 2905
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2917 2918
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2919

2920 2921
	if (delta < 0)
		return;
2922

2923 2924
	if (delta > ideal_runtime)
		resched_task(rq_of(cfs_rq)->curr);
2925 2926
}

2927
static void
2928
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2929
{
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2941
	update_stats_curr_start(cfs_rq, se);
2942
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2943 2944 2945 2946 2947 2948
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2949
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2950
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2951 2952 2953
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2954
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2955 2956
}

2957 2958 2959
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2960 2961 2962 2963 2964 2965 2966
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2967 2968
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2969
{
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
2981

2982 2983 2984 2985 2986
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

2997 2998 2999
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3000

3001 3002 3003 3004 3005 3006
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3007 3008 3009 3010 3011 3012
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3013
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3014 3015

	return se;
3016 3017
}

3018
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3019

3020
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3021 3022 3023 3024 3025 3026
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3027
		update_curr(cfs_rq);
3028

3029 3030 3031
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3032
	check_spread(cfs_rq, prev);
3033
	if (prev->on_rq) {
3034
		update_stats_wait_start(cfs_rq, prev);
3035 3036
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3037
		/* in !on_rq case, update occurred at dequeue */
3038
		update_entity_load_avg(prev, 1);
3039
	}
3040
	cfs_rq->curr = NULL;
3041 3042
}

P
Peter Zijlstra 已提交
3043 3044
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3045 3046
{
	/*
3047
	 * Update run-time statistics of the 'current'.
3048
	 */
3049
	update_curr(cfs_rq);
3050

3051 3052 3053
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3054
	update_entity_load_avg(curr, 1);
3055
	update_cfs_rq_blocked_load(cfs_rq, 1);
3056
	update_cfs_shares(cfs_rq);
3057

P
Peter Zijlstra 已提交
3058 3059 3060 3061 3062
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3063 3064 3065 3066
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
3067 3068 3069 3070 3071 3072 3073 3074
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3075
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3076
		check_preempt_tick(cfs_rq, curr);
3077 3078
}

3079 3080 3081 3082 3083 3084

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3085 3086

#ifdef HAVE_JUMP_LABEL
3087
static struct static_key __cfs_bandwidth_used;
3088 3089 3090

static inline bool cfs_bandwidth_used(void)
{
3091
	return static_key_false(&__cfs_bandwidth_used);
3092 3093
}

3094
void cfs_bandwidth_usage_inc(void)
3095
{
3096 3097 3098 3099 3100 3101
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3102 3103 3104 3105 3106 3107 3108
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3109 3110
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3111 3112
#endif /* HAVE_JUMP_LABEL */

3113 3114 3115 3116 3117 3118 3119 3120
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3121 3122 3123 3124 3125 3126

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3127 3128 3129 3130 3131 3132 3133
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3134
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3146 3147 3148 3149 3150
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3151 3152 3153 3154 3155 3156
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3157
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3158 3159
}

3160 3161
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3162 3163 3164
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3165
	u64 amount = 0, min_amount, expires;
3166 3167 3168 3169 3170 3171 3172

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3173
	else {
P
Paul Turner 已提交
3174 3175 3176 3177 3178 3179 3180 3181
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
3182
			__start_cfs_bandwidth(cfs_b);
P
Paul Turner 已提交
3183
		}
3184 3185 3186 3187 3188 3189

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3190
	}
P
Paul Turner 已提交
3191
	expires = cfs_b->runtime_expires;
3192 3193 3194
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3195 3196 3197 3198 3199 3200 3201
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3202 3203

	return cfs_rq->runtime_remaining > 0;
3204 3205
}

P
Paul Turner 已提交
3206 3207 3208 3209 3210
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3211
{
P
Paul Turner 已提交
3212 3213 3214
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3215
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3216 3217
		return;

P
Paul Turner 已提交
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
	 * whether the global deadline has advanced.
	 */

	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3239
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3240 3241
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3242
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3243 3244 3245
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3246 3247
		return;

3248 3249 3250 3251 3252 3253
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
		resched_task(rq_of(cfs_rq)->curr);
3254 3255
}

3256
static __always_inline
3257
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3258
{
3259
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3260 3261 3262 3263 3264
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3265 3266
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3267
	return cfs_bandwidth_used() && cfs_rq->throttled;
3268 3269
}

3270 3271 3272
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3273
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3302
		/* adjust cfs_rq_clock_task() */
3303
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3304
					     cfs_rq->throttled_clock_task;
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3316 3317
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3318
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3319 3320 3321 3322 3323
	cfs_rq->throttle_count++;

	return 0;
}

3324
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3325 3326 3327 3328 3329 3330 3331 3332
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3333
	/* freeze hierarchy runnable averages while throttled */
3334 3335 3336
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3354
		sub_nr_running(rq, task_delta);
3355 3356

	cfs_rq->throttled = 1;
3357
	cfs_rq->throttled_clock = rq_clock(rq);
3358 3359
	raw_spin_lock(&cfs_b->lock);
	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3360 3361
	if (!cfs_b->timer_active)
		__start_cfs_bandwidth(cfs_b);
3362 3363 3364
	raw_spin_unlock(&cfs_b->lock);
}

3365
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3366 3367 3368 3369 3370 3371 3372
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3373
	se = cfs_rq->tg->se[cpu_of(rq)];
3374 3375

	cfs_rq->throttled = 0;
3376 3377 3378

	update_rq_clock(rq);

3379
	raw_spin_lock(&cfs_b->lock);
3380
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3381 3382 3383
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3384 3385 3386
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3405
		add_nr_running(rq, task_delta);
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
		resched_task(rq->curr);
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
	u64 runtime = remaining;

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

	return remaining;
}

3450 3451 3452 3453 3454 3455 3456 3457
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3458 3459
	u64 runtime, runtime_expires;
	int idle = 1, throttled;
3460 3461 3462 3463 3464 3465

	raw_spin_lock(&cfs_b->lock);
	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
		goto out_unlock;

3466 3467 3468
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	/* idle depends on !throttled (for the case of a large deficit) */
	idle = cfs_b->idle && !throttled;
3469
	cfs_b->nr_periods += overrun;
3470

P
Paul Turner 已提交
3471 3472 3473 3474
	/* if we're going inactive then everything else can be deferred */
	if (idle)
		goto out_unlock;

3475 3476 3477 3478 3479 3480 3481
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3482 3483
	__refill_cfs_bandwidth_runtime(cfs_b);

3484 3485 3486 3487 3488 3489
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
		goto out_unlock;
	}

3490 3491 3492
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	/*
	 * There are throttled entities so we must first use the new bandwidth
	 * to unthrottle them before making it generally available.  This
	 * ensures that all existing debts will be paid before a new cfs_rq is
	 * allowed to run.
	 */
	runtime = cfs_b->runtime;
	runtime_expires = cfs_b->runtime_expires;
	cfs_b->runtime = 0;

	/*
	 * This check is repeated as we are holding onto the new bandwidth
	 * while we unthrottle.  This can potentially race with an unthrottled
	 * group trying to acquire new bandwidth from the global pool.
	 */
	while (throttled && runtime > 0) {
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
3517

3518 3519 3520 3521 3522 3523 3524 3525 3526
	/* return (any) remaining runtime */
	cfs_b->runtime = runtime;
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3527 3528 3529 3530 3531 3532 3533
out_unlock:
	if (idle)
		cfs_b->timer_active = 0;
	raw_spin_unlock(&cfs_b->lock);

	return idle;
}
3534

3535 3536 3537 3538 3539 3540 3541
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3542 3543 3544 3545 3546 3547 3548
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3605 3606 3607
	if (!cfs_bandwidth_used())
		return;

3608
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3624 3625 3626
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3627
		return;
3628
	}
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
		runtime = cfs_b->runtime;
		cfs_b->runtime = 0;
	}
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
		cfs_b->runtime = runtime;
	raw_spin_unlock(&cfs_b->lock);
}

3648 3649 3650 3651 3652 3653 3654
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3655 3656 3657
	if (!cfs_bandwidth_used())
		return;

3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3673
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3674
{
3675
	if (!cfs_bandwidth_used())
3676
		return false;
3677

3678
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3679
		return false;
3680 3681 3682 3683 3684 3685

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3686
		return true;
3687 3688

	throttle_cfs_rq(cfs_rq);
3689
	return true;
3690
}
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3751 3752 3753
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3754
		raw_spin_unlock(&cfs_b->lock);
3755
		cpu_relax();
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
		if (cfs_b->timer_active)
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3772
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
		cfs_rq->runtime_remaining = cfs_b->quota;
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3793 3794
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3795
	return rq_clock_task(rq_of(cfs_rq));
3796 3797
}

3798
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3799
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3800
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3801
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3802 3803 3804 3805 3806

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3818 3819 3820 3821 3822

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3823 3824
#endif

3825 3826 3827 3828 3829
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3830
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3831 3832 3833

#endif /* CONFIG_CFS_BANDWIDTH */

3834 3835 3836 3837
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3838 3839 3840 3841 3842 3843 3844 3845
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3846
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3861
		if (rq->curr != p)
3862
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3863

3864
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3865 3866
	}
}
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3877
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3878 3879 3880 3881 3882
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3883
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3884 3885 3886 3887
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3888 3889 3890 3891

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3892 3893
#endif

3894 3895 3896 3897 3898
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3899
static void
3900
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3901 3902
{
	struct cfs_rq *cfs_rq;
3903
	struct sched_entity *se = &p->se;
3904 3905

	for_each_sched_entity(se) {
3906
		if (se->on_rq)
3907 3908
			break;
		cfs_rq = cfs_rq_of(se);
3909
		enqueue_entity(cfs_rq, se, flags);
3910 3911 3912 3913 3914 3915 3916 3917 3918

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3919
		cfs_rq->h_nr_running++;
3920

3921
		flags = ENQUEUE_WAKEUP;
3922
	}
P
Peter Zijlstra 已提交
3923

P
Peter Zijlstra 已提交
3924
	for_each_sched_entity(se) {
3925
		cfs_rq = cfs_rq_of(se);
3926
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3927

3928 3929 3930
		if (cfs_rq_throttled(cfs_rq))
			break;

3931
		update_cfs_shares(cfs_rq);
3932
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3933 3934
	}

3935 3936
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3937
		add_nr_running(rq, 1);
3938
	}
3939
	hrtick_update(rq);
3940 3941
}

3942 3943
static void set_next_buddy(struct sched_entity *se);

3944 3945 3946 3947 3948
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3949
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3950 3951
{
	struct cfs_rq *cfs_rq;
3952
	struct sched_entity *se = &p->se;
3953
	int task_sleep = flags & DEQUEUE_SLEEP;
3954 3955 3956

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3957
		dequeue_entity(cfs_rq, se, flags);
3958 3959 3960 3961 3962 3963 3964 3965 3966

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3967
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3968

3969
		/* Don't dequeue parent if it has other entities besides us */
3970 3971 3972 3973 3974 3975 3976
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
3977 3978 3979

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
3980
			break;
3981
		}
3982
		flags |= DEQUEUE_SLEEP;
3983
	}
P
Peter Zijlstra 已提交
3984

P
Peter Zijlstra 已提交
3985
	for_each_sched_entity(se) {
3986
		cfs_rq = cfs_rq_of(se);
3987
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
3988

3989 3990 3991
		if (cfs_rq_throttled(cfs_rq))
			break;

3992
		update_cfs_shares(cfs_rq);
3993
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3994 3995
	}

3996
	if (!se) {
3997
		sub_nr_running(rq, 1);
3998 3999
		update_rq_runnable_avg(rq, 1);
	}
4000
	hrtick_update(rq);
4001 4002
}

4003
#ifdef CONFIG_SMP
4004 4005 4006
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
4007
	return cpu_rq(cpu)->cfs.runnable_load_avg;
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

static unsigned long power_of(int cpu)
{
	return cpu_rq(cpu)->cpu_power;
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4052
	unsigned long load_avg = rq->cfs.runnable_load_avg;
4053 4054

	if (nr_running)
4055
		return load_avg / nr_running;
4056 4057 4058 4059

	return 0;
}

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
	if (jiffies > current->wakee_flip_decay_ts + HZ) {
		current->wakee_flips = 0;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4077

4078
static void task_waking_fair(struct task_struct *p)
4079 4080 4081
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4082 4083 4084 4085
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4086

4087 4088 4089 4090 4091 4092 4093 4094
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4095

4096
	se->vruntime -= min_vruntime;
4097
	record_wakee(p);
4098 4099
}

4100
#ifdef CONFIG_FAIR_GROUP_SCHED
4101 4102 4103 4104 4105 4106
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4150
 */
P
Peter Zijlstra 已提交
4151
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4152
{
P
Peter Zijlstra 已提交
4153
	struct sched_entity *se = tg->se[cpu];
4154

4155
	if (!tg->parent)	/* the trivial, non-cgroup case */
4156 4157
		return wl;

P
Peter Zijlstra 已提交
4158
	for_each_sched_entity(se) {
4159
		long w, W;
P
Peter Zijlstra 已提交
4160

4161
		tg = se->my_q->tg;
4162

4163 4164 4165 4166
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4167

4168 4169 4170 4171
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
4172

4173 4174 4175 4176 4177
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
4178 4179
		else
			wl = tg->shares;
4180

4181 4182 4183 4184 4185
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4186 4187
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4188 4189 4190 4191

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4192
		wl -= se->load.weight;
4193 4194 4195 4196 4197 4198 4199 4200

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4201 4202
		wg = 0;
	}
4203

P
Peter Zijlstra 已提交
4204
	return wl;
4205 4206
}
#else
P
Peter Zijlstra 已提交
4207

4208
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4209
{
4210
	return wl;
4211
}
P
Peter Zijlstra 已提交
4212

4213 4214
#endif

4215 4216
static int wake_wide(struct task_struct *p)
{
4217
	int factor = this_cpu_read(sd_llc_size);
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4237
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4238
{
4239
	s64 this_load, load;
4240
	int idx, this_cpu, prev_cpu;
4241
	unsigned long tl_per_task;
4242
	struct task_group *tg;
4243
	unsigned long weight;
4244
	int balanced;
4245

4246 4247 4248 4249 4250 4251 4252
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4253 4254 4255 4256 4257
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4258

4259 4260 4261 4262 4263
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4264 4265 4266 4267
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4268
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4269 4270
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4271

4272 4273
	tg = task_group(p);
	weight = p->se.load.weight;
4274

4275 4276
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4277 4278 4279
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4280 4281 4282 4283
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4284 4285
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298

		this_eff_load = 100;
		this_eff_load *= power_of(prev_cpu);
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= power_of(this_cpu);
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
4299

4300
	/*
I
Ingo Molnar 已提交
4301 4302 4303
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
4304
	 */
4305 4306
	if (sync && balanced)
		return 1;
4307

4308
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4309 4310
	tl_per_task = cpu_avg_load_per_task(this_cpu);

4311 4312 4313
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4314 4315 4316 4317 4318
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
4319
		schedstat_inc(sd, ttwu_move_affine);
4320
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4321 4322 4323 4324 4325 4326

		return 1;
	}
	return 0;
}

4327 4328 4329 4330 4331
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4332
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4333
		  int this_cpu, int sd_flag)
4334
{
4335
	struct sched_group *idlest = NULL, *group = sd->groups;
4336
	unsigned long min_load = ULONG_MAX, this_load = 0;
4337
	int load_idx = sd->forkexec_idx;
4338
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4339

4340 4341 4342
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4343 4344 4345 4346
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4347

4348 4349
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4350
					tsk_cpus_allowed(p)))
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
4370
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4396
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4397 4398 4399 4400 4401
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4402 4403 4404
		}
	}

4405 4406
	return idlest;
}
4407

4408 4409 4410
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4411
static int select_idle_sibling(struct task_struct *p, int target)
4412
{
4413
	struct sched_domain *sd;
4414
	struct sched_group *sg;
4415
	int i = task_cpu(p);
4416

4417 4418
	if (idle_cpu(target))
		return target;
4419 4420

	/*
4421
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4422
	 */
4423 4424
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4425 4426

	/*
4427
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4428
	 */
4429
	sd = rcu_dereference(per_cpu(sd_llc, target));
4430
	for_each_lower_domain(sd) {
4431 4432 4433 4434 4435 4436 4437
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4438
				if (i == target || !idle_cpu(i))
4439 4440
					goto next;
			}
4441

4442 4443 4444 4445 4446 4447 4448 4449
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4450 4451 4452
	return target;
}

4453
/*
4454 4455 4456
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4457
 *
4458 4459
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4460
 *
4461
 * Returns the target cpu number.
4462 4463 4464
 *
 * preempt must be disabled.
 */
4465
static int
4466
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4467
{
4468
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4469 4470
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4471
	int want_affine = 0;
4472
	int sync = wake_flags & WF_SYNC;
4473

4474
	if (p->nr_cpus_allowed == 1)
4475 4476
		return prev_cpu;

4477
	if (sd_flag & SD_BALANCE_WAKE) {
4478
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4479 4480 4481
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4482

4483
	rcu_read_lock();
4484
	for_each_domain(cpu, tmp) {
4485 4486 4487
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4488
		/*
4489 4490
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4491
		 */
4492 4493 4494
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4495
			break;
4496
		}
4497

4498
		if (tmp->flags & sd_flag)
4499 4500 4501
			sd = tmp;
	}

4502 4503
	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
		prev_cpu = cpu;
4504

4505
	if (sd_flag & SD_BALANCE_WAKE) {
4506 4507
		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4508
	}
4509

4510 4511
	while (sd) {
		struct sched_group *group;
4512
		int weight;
4513

4514
		if (!(sd->flags & sd_flag)) {
4515 4516 4517
			sd = sd->child;
			continue;
		}
4518

4519
		group = find_idlest_group(sd, p, cpu, sd_flag);
4520 4521 4522 4523
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4524

4525
		new_cpu = find_idlest_cpu(group, p, cpu);
4526 4527 4528 4529
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4530
		}
4531 4532 4533

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4534
		weight = sd->span_weight;
4535 4536
		sd = NULL;
		for_each_domain(cpu, tmp) {
4537
			if (weight <= tmp->span_weight)
4538
				break;
4539
			if (tmp->flags & sd_flag)
4540 4541 4542
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4543
	}
4544 4545
unlock:
	rcu_read_unlock();
4546

4547
	return new_cpu;
4548
}
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4570 4571
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4572
	}
4573 4574 4575

	/* We have migrated, no longer consider this task hot */
	se->exec_start = 0;
4576
}
4577 4578
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4579 4580
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4581 4582 4583 4584
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4585 4586
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4596
	 */
4597
	return calc_delta_fair(gran, se);
4598 4599
}

4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4622
	gran = wakeup_gran(curr, se);
4623 4624 4625 4626 4627 4628
	if (vdiff > gran)
		return 1;

	return 0;
}

4629 4630
static void set_last_buddy(struct sched_entity *se)
{
4631 4632 4633 4634 4635
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4636 4637 4638 4639
}

static void set_next_buddy(struct sched_entity *se)
{
4640 4641 4642 4643 4644
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4645 4646
}

4647 4648
static void set_skip_buddy(struct sched_entity *se)
{
4649 4650
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4651 4652
}

4653 4654 4655
/*
 * Preempt the current task with a newly woken task if needed:
 */
4656
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4657 4658
{
	struct task_struct *curr = rq->curr;
4659
	struct sched_entity *se = &curr->se, *pse = &p->se;
4660
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4661
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4662
	int next_buddy_marked = 0;
4663

I
Ingo Molnar 已提交
4664 4665 4666
	if (unlikely(se == pse))
		return;

4667
	/*
4668
	 * This is possible from callers such as move_task(), in which we
4669 4670 4671 4672 4673 4674 4675
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4676
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4677
		set_next_buddy(pse);
4678 4679
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4680

4681 4682 4683
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4684 4685 4686 4687 4688 4689
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4690 4691 4692 4693
	 */
	if (test_tsk_need_resched(curr))
		return;

4694 4695 4696 4697 4698
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4699
	/*
4700 4701
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4702
	 */
4703
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4704
		return;
4705

4706
	find_matching_se(&se, &pse);
4707
	update_curr(cfs_rq_of(se));
4708
	BUG_ON(!pse);
4709 4710 4711 4712 4713 4714 4715
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4716
		goto preempt;
4717
	}
4718

4719
	return;
4720

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
preempt:
	resched_task(curr);
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4737 4738
}

4739 4740
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4741 4742 4743
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
4744
	struct task_struct *p;
4745
	int new_tasks;
4746

4747
again:
4748 4749
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
4750
		goto idle;
4751

4752
	if (prev->sched_class != &fair_sched_class)
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
		if (curr && curr->on_rq)
			update_curr(cfs_rq);
		else
			curr = NULL;

		/*
		 * This call to check_cfs_rq_runtime() will do the throttle and
		 * dequeue its entity in the parent(s). Therefore the 'simple'
		 * nr_running test will indeed be correct.
		 */
		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
			goto simple;

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
4824

4825
	if (!cfs_rq->nr_running)
4826
		goto idle;
4827

4828
	put_prev_task(rq, prev);
4829

4830
	do {
4831
		se = pick_next_entity(cfs_rq, NULL);
4832
		set_next_entity(cfs_rq, se);
4833 4834 4835
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4836
	p = task_of(se);
4837

4838 4839
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4840 4841

	return p;
4842 4843

idle:
4844
	new_tasks = idle_balance(rq);
4845 4846 4847 4848 4849
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
4850
	if (new_tasks < 0)
4851 4852
		return RETRY_TASK;

4853
	if (new_tasks > 0)
4854 4855 4856
		goto again;

	return NULL;
4857 4858 4859 4860 4861
}

/*
 * Account for a descheduled task:
 */
4862
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4863 4864 4865 4866 4867 4868
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4869
		put_prev_entity(cfs_rq, se);
4870 4871 4872
	}
}

4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4898 4899 4900 4901 4902 4903
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4904 4905 4906 4907 4908
	}

	set_skip_buddy(se);
}

4909 4910 4911 4912
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4913 4914
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4925
#ifdef CONFIG_SMP
4926
/**************************************************
P
Peter Zijlstra 已提交
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
 *   imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j }    (4)
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5043

5044 5045
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5046 5047
enum fbq_type { regular, remote, all };

5048
#define LBF_ALL_PINNED	0x01
5049
#define LBF_NEED_BREAK	0x02
5050 5051
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5052 5053 5054 5055 5056

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5057
	int			src_cpu;
5058 5059 5060 5061

	int			dst_cpu;
	struct rq		*dst_rq;

5062 5063
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5064
	enum cpu_idle_type	idle;
5065
	long			imbalance;
5066 5067 5068
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5069
	unsigned int		flags;
5070 5071 5072 5073

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5074 5075

	enum fbq_type		fbq_type;
5076 5077
};

5078
/*
5079
 * move_task - move a task from one runqueue to another runqueue.
5080 5081
 * Both runqueues must be locked.
 */
5082
static void move_task(struct task_struct *p, struct lb_env *env)
5083
{
5084 5085 5086 5087
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
5088 5089
}

5090 5091 5092 5093
/*
 * Is this task likely cache-hot:
 */
static int
5094
task_hot(struct task_struct *p, u64 now)
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

5122 5123 5124 5125
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
5126
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5127 5128
	int src_nid, dst_nid;

5129
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5130 5131 5132 5133 5134 5135 5136
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5137
	if (src_nid == dst_nid)
5138 5139
		return false;

5140 5141 5142 5143
	if (numa_group) {
		/* Task is already in the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return false;
5144

5145 5146 5147 5148 5149 5150 5151 5152 5153
		/* Task is moving into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return true;

		return group_faults(p, dst_nid) > group_faults(p, src_nid);
	}

	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5154 5155
		return true;

5156
	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5157
}
5158 5159 5160 5161


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
5162
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5163 5164 5165 5166 5167
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

5168
	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5169 5170 5171 5172 5173
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5174
	if (src_nid == dst_nid)
5175 5176
		return false;

5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
	if (numa_group) {
		/* Task is moving within/into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return false;

		/* Task is moving out of the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return true;

		return group_faults(p, dst_nid) < group_faults(p, src_nid);
	}

5189 5190 5191 5192
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

5193
	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5194 5195
}

5196 5197 5198 5199 5200 5201
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5202 5203 5204 5205 5206 5207

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5208 5209
#endif

5210 5211 5212 5213
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5214
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5215 5216 5217 5218
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
5219
	 * 1) throttled_lb_pair, or
5220
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5221 5222
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5223
	 */
5224 5225 5226
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5227
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5228
		int cpu;
5229

5230
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5231

5232 5233
		env->flags |= LBF_SOME_PINNED;

5234 5235 5236 5237 5238 5239 5240 5241
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5242
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5243 5244
			return 0;

5245 5246 5247
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5248
				env->flags |= LBF_DST_PINNED;
5249 5250 5251
				env->new_dst_cpu = cpu;
				break;
			}
5252
		}
5253

5254 5255
		return 0;
	}
5256 5257

	/* Record that we found atleast one task that could run on dst_cpu */
5258
	env->flags &= ~LBF_ALL_PINNED;
5259

5260
	if (task_running(env->src_rq, p)) {
5261
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5262 5263 5264 5265 5266
		return 0;
	}

	/*
	 * Aggressive migration if:
5267 5268 5269
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5270
	 */
5271
	tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
5272 5273
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

5285
	if (!tsk_cache_hot ||
5286
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
5287

5288
		if (tsk_cache_hot) {
5289
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5290
			schedstat_inc(p, se.statistics.nr_forced_migrations);
5291
		}
Z
Zhang Hang 已提交
5292

5293 5294 5295
		return 1;
	}

Z
Zhang Hang 已提交
5296 5297
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5298 5299
}

5300 5301 5302 5303 5304 5305 5306
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
5307
static int move_one_task(struct lb_env *env)
5308 5309 5310
{
	struct task_struct *p, *n;

5311 5312 5313
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5314

5315 5316 5317 5318 5319 5320 5321 5322
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
5323 5324 5325 5326
	}
	return 0;
}

5327 5328
static const unsigned int sched_nr_migrate_break = 32;

5329
/*
5330
 * move_tasks tries to move up to imbalance weighted load from busiest to
5331 5332 5333 5334 5335 5336
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
5337
{
5338 5339
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5340 5341
	unsigned long load;
	int pulled = 0;
5342

5343
	if (env->imbalance <= 0)
5344
		return 0;
5345

5346 5347
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5348

5349 5350
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5351
		if (env->loop > env->loop_max)
5352
			break;
5353 5354

		/* take a breather every nr_migrate tasks */
5355
		if (env->loop > env->loop_break) {
5356
			env->loop_break += sched_nr_migrate_break;
5357
			env->flags |= LBF_NEED_BREAK;
5358
			break;
5359
		}
5360

5361
		if (!can_migrate_task(p, env))
5362 5363 5364
			goto next;

		load = task_h_load(p);
5365

5366
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5367 5368
			goto next;

5369
		if ((load / 2) > env->imbalance)
5370
			goto next;
5371

5372
		move_task(p, env);
5373
		pulled++;
5374
		env->imbalance -= load;
5375 5376

#ifdef CONFIG_PREEMPT
5377 5378 5379 5380 5381
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
5382
		if (env->idle == CPU_NEWLY_IDLE)
5383
			break;
5384 5385
#endif

5386 5387 5388 5389
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5390
		if (env->imbalance <= 0)
5391
			break;
5392 5393 5394

		continue;
next:
5395
		list_move_tail(&p->se.group_node, tasks);
5396
	}
5397

5398
	/*
5399 5400 5401
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
5402
	 */
5403
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5404

5405
	return pulled;
5406 5407
}

P
Peter Zijlstra 已提交
5408
#ifdef CONFIG_FAIR_GROUP_SCHED
5409 5410 5411
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5412
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5413
{
5414 5415
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5416

5417 5418 5419
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5420

5421
	update_cfs_rq_blocked_load(cfs_rq, 1);
5422

5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5437
		struct rq *rq = rq_of(cfs_rq);
5438 5439
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5440 5441
}

5442
static void update_blocked_averages(int cpu)
5443 5444
{
	struct rq *rq = cpu_rq(cpu);
5445 5446
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5447

5448 5449
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5450 5451 5452 5453
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5454
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5455 5456 5457 5458 5459 5460
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5461
	}
5462 5463

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5464 5465
}

5466
/*
5467
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5468 5469 5470
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5471
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5472
{
5473 5474
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5475
	unsigned long now = jiffies;
5476
	unsigned long load;
5477

5478
	if (cfs_rq->last_h_load_update == now)
5479 5480
		return;

5481 5482 5483 5484 5485 5486 5487
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5488

5489
	if (!se) {
5490
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5502 5503
}

5504
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5505
{
5506
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5507

5508
	update_cfs_rq_h_load(cfs_rq);
5509 5510
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5511 5512
}
#else
5513
static inline void update_blocked_averages(int cpu)
5514 5515 5516
{
}

5517
static unsigned long task_h_load(struct task_struct *p)
5518
{
5519
	return p->se.avg.load_avg_contrib;
5520
}
P
Peter Zijlstra 已提交
5521
#endif
5522 5523 5524 5525 5526 5527 5528 5529 5530

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5531
	unsigned long load_per_task;
5532
	unsigned long group_power;
5533 5534 5535 5536
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int group_capacity;
	unsigned int idle_cpus;
	unsigned int group_weight;
5537
	int group_imb; /* Is there an imbalance in the group ? */
5538
	int group_has_capacity; /* Is there extra capacity in the group? */
5539 5540 5541 5542
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5543 5544
};

J
Joonsoo Kim 已提交
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
	unsigned long total_pwr;	/* Total power of all groups in sd */
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5557
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5558 5559
};

5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
		.total_pwr = 0UL,
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5579 5580 5581
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5582
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5583 5584
 *
 * Return: The load index.
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5607
static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5608
{
5609
	return SCHED_POWER_SCALE;
5610 5611 5612 5613 5614 5615 5616
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

5617
static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5618
{
5619
	unsigned long weight = sd->span_weight;
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

5632
static unsigned long scale_rt_power(int cpu)
5633 5634
{
	struct rq *rq = cpu_rq(cpu);
5635
	u64 total, available, age_stamp, avg;
5636
	s64 delta;
5637

5638 5639 5640 5641 5642 5643 5644
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5645 5646 5647 5648 5649
	delta = rq_clock(rq) - age_stamp;
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
5650

5651
	if (unlikely(total < avg)) {
5652 5653 5654
		/* Ensures that power won't end up being negative */
		available = 0;
	} else {
5655
		available = total - avg;
5656
	}
5657

5658 5659
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_POWER_SCALE;
5660

5661
	total >>= SCHED_POWER_SHIFT;
5662 5663 5664 5665 5666 5667

	return div_u64(available, total);
}

static void update_cpu_power(struct sched_domain *sd, int cpu)
{
5668
	unsigned long weight = sd->span_weight;
5669
	unsigned long power = SCHED_POWER_SCALE;
5670 5671 5672 5673 5674 5675 5676 5677
	struct sched_group *sdg = sd->groups;

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

5678
		power >>= SCHED_POWER_SHIFT;
5679 5680
	}

5681
	sdg->sgp->power_orig = power;
5682 5683 5684 5685 5686 5687

	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

5688
	power >>= SCHED_POWER_SHIFT;
5689

5690
	power *= scale_rt_power(cpu);
5691
	power >>= SCHED_POWER_SHIFT;
5692 5693 5694 5695

	if (!power)
		power = 1;

5696
	cpu_rq(cpu)->cpu_power = power;
5697
	sdg->sgp->power = power;
5698 5699
}

5700
void update_group_power(struct sched_domain *sd, int cpu)
5701 5702 5703
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5704
	unsigned long power, power_orig;
5705 5706 5707 5708 5709
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
	sdg->sgp->next_update = jiffies + interval;
5710 5711 5712 5713 5714 5715

	if (!child) {
		update_cpu_power(sd, cpu);
		return;
	}

5716
	power_orig = power = 0;
5717

P
Peter Zijlstra 已提交
5718 5719 5720 5721 5722 5723
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5724
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5725 5726
			struct sched_group_power *sgp;
			struct rq *rq = cpu_rq(cpu);
5727

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
			/*
			 * build_sched_domains() -> init_sched_groups_power()
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
			 * Use power_of(), which is set irrespective of domains
			 * in update_cpu_power().
			 *
			 * This avoids power/power_orig from being 0 and
			 * causing divide-by-zero issues on boot.
			 *
			 * Runtime updates will correct power_orig.
			 */
			if (unlikely(!rq->sd)) {
				power_orig += power_of(cpu);
				power += power_of(cpu);
				continue;
			}
5746

5747 5748 5749
			sgp = rq->sd->groups->sgp;
			power_orig += sgp->power_orig;
			power += sgp->power;
5750
		}
P
Peter Zijlstra 已提交
5751 5752 5753 5754 5755 5756 5757 5758
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5759
			power_orig += group->sgp->power_orig;
P
Peter Zijlstra 已提交
5760 5761 5762 5763
			power += group->sgp->power;
			group = group->next;
		} while (group != child->groups);
	}
5764

5765 5766
	sdg->sgp->power_orig = power_orig;
	sdg->sgp->power = power;
5767 5768
}

5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5780
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
5781
	 */
P
Peter Zijlstra 已提交
5782
	if (!(sd->flags & SD_SHARE_CPUPOWER))
5783 5784 5785 5786 5787
		return 0;

	/*
	 * If ~90% of the cpu_power is still there, we're good.
	 */
5788
	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5789 5790 5791 5792 5793
		return 1;

	return 0;
}

5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5810 5811
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5812 5813
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5814
 * update_sd_pick_busiest(). And calculate_imbalance() and
5815
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5816 5817 5818 5819 5820 5821 5822
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5823
static inline int sg_imbalanced(struct sched_group *group)
5824
{
5825
	return group->sgp->imbalance;
5826 5827
}

5828 5829 5830
/*
 * Compute the group capacity.
 *
5831 5832 5833
 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
 * first dividing out the smt factor and computing the actual number of cores
 * and limit power unit capacity with that.
5834 5835 5836
 */
static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
{
5837 5838 5839 5840 5841 5842
	unsigned int capacity, smt, cpus;
	unsigned int power, power_orig;

	power = group->sgp->power;
	power_orig = group->sgp->power_orig;
	cpus = group->group_weight;
5843

5844 5845 5846
	/* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
	capacity = cpus / smt; /* cores */
5847

5848
	capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5849 5850 5851 5852 5853 5854
	if (!capacity)
		capacity = fix_small_capacity(env->sd, group);

	return capacity;
}

5855 5856
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5857
 * @env: The load balancing environment.
5858 5859 5860 5861 5862
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5863 5864
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5865
			int local_group, struct sg_lb_stats *sgs)
5866
{
5867
	unsigned long load;
5868
	int i;
5869

5870 5871
	memset(sgs, 0, sizeof(*sgs));

5872
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5873 5874 5875
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5876
		if (local_group)
5877
			load = target_load(i, load_idx);
5878
		else
5879 5880 5881
			load = source_load(i, load_idx);

		sgs->group_load += load;
5882
		sgs->sum_nr_running += rq->nr_running;
5883 5884 5885 5886
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
5887
		sgs->sum_weighted_load += weighted_cpuload(i);
5888 5889
		if (idle_cpu(i))
			sgs->idle_cpus++;
5890 5891 5892
	}

	/* Adjust by relative CPU power of the group */
5893 5894
	sgs->group_power = group->sgp->power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5895

5896
	if (sgs->sum_nr_running)
5897
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5898

5899
	sgs->group_weight = group->group_weight;
5900

5901 5902 5903
	sgs->group_imb = sg_imbalanced(group);
	sgs->group_capacity = sg_capacity(env, group);

5904 5905
	if (sgs->group_capacity > sgs->sum_nr_running)
		sgs->group_has_capacity = 1;
5906 5907
}

5908 5909
/**
 * update_sd_pick_busiest - return 1 on busiest group
5910
 * @env: The load balancing environment.
5911 5912
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5913
 * @sgs: sched_group statistics
5914 5915 5916
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5917 5918 5919
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5920
 */
5921
static bool update_sd_pick_busiest(struct lb_env *env,
5922 5923
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5924
				   struct sg_lb_stats *sgs)
5925
{
J
Joonsoo Kim 已提交
5926
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
		return false;

	if (sgs->sum_nr_running > sgs->group_capacity)
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5940 5941
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

5982
/**
5983
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5984
 * @env: The load balancing environment.
5985 5986
 * @sds: variable to hold the statistics for this sched_domain.
 */
5987
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5988
{
5989 5990
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
5991
	struct sg_lb_stats tmp_sgs;
5992 5993 5994 5995 5996
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

5997
	load_idx = get_sd_load_idx(env->sd, env->idle);
5998 5999

	do {
J
Joonsoo Kim 已提交
6000
		struct sg_lb_stats *sgs = &tmp_sgs;
6001 6002
		int local_group;

6003
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6004 6005 6006
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6007 6008 6009 6010

			if (env->idle != CPU_NEWLY_IDLE ||
			    time_after_eq(jiffies, sg->sgp->next_update))
				update_group_power(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6011
		}
6012

J
Joonsoo Kim 已提交
6013
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
6014

6015 6016 6017
		if (local_group)
			goto next_group;

6018 6019
		/*
		 * In case the child domain prefers tasks go to siblings
6020
		 * first, lower the sg capacity to one so that we'll try
6021 6022 6023 6024 6025 6026
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
		 * these excess tasks, i.e. nr_running < group_capacity. The
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
6027
		 */
6028 6029
		if (prefer_sibling && sds->local &&
		    sds->local_stat.group_has_capacity)
6030
			sgs->group_capacity = min(sgs->group_capacity, 1U);
6031

6032
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6033
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6034
			sds->busiest_stat = *sgs;
6035 6036
		}

6037 6038 6039 6040 6041
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
		sds->total_pwr += sgs->group_power;

6042
		sg = sg->next;
6043
	} while (sg != env->sd->groups);
6044 6045 6046

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6066
 * Return: 1 when packing is required and a task should be moved to
6067 6068
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6069
 * @env: The load balancing environment.
6070 6071
 * @sds: Statistics of the sched_domain which is to be packed
 */
6072
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6073 6074 6075
{
	int busiest_cpu;

6076
	if (!(env->sd->flags & SD_ASYM_PACKING))
6077 6078 6079 6080 6081 6082
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6083
	if (env->dst_cpu > busiest_cpu)
6084 6085
		return 0;

6086
	env->imbalance = DIV_ROUND_CLOSEST(
6087 6088
		sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
		SCHED_POWER_SCALE);
6089

6090
	return 1;
6091 6092 6093 6094 6095 6096
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6097
 * @env: The load balancing environment.
6098 6099
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6100 6101
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6102 6103 6104
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;
6105
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6106
	struct sg_lb_stats *local, *busiest;
6107

J
Joonsoo Kim 已提交
6108 6109
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6110

J
Joonsoo Kim 已提交
6111 6112 6113 6114
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6115

J
Joonsoo Kim 已提交
6116 6117
	scaled_busy_load_per_task =
		(busiest->load_per_task * SCHED_POWER_SCALE) /
6118
		busiest->group_power;
J
Joonsoo Kim 已提交
6119

6120 6121
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6122
		env->imbalance = busiest->load_per_task;
6123 6124 6125 6126 6127 6128 6129 6130 6131
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
	 */

6132
	pwr_now += busiest->group_power *
J
Joonsoo Kim 已提交
6133
			min(busiest->load_per_task, busiest->avg_load);
6134
	pwr_now += local->group_power *
J
Joonsoo Kim 已提交
6135
			min(local->load_per_task, local->avg_load);
6136
	pwr_now /= SCHED_POWER_SCALE;
6137 6138

	/* Amount of load we'd subtract */
6139
	if (busiest->avg_load > scaled_busy_load_per_task) {
6140
		pwr_move += busiest->group_power *
J
Joonsoo Kim 已提交
6141
			    min(busiest->load_per_task,
6142
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6143
	}
6144 6145

	/* Amount of load we'd add */
6146
	if (busiest->avg_load * busiest->group_power <
J
Joonsoo Kim 已提交
6147
	    busiest->load_per_task * SCHED_POWER_SCALE) {
6148 6149
		tmp = (busiest->avg_load * busiest->group_power) /
		      local->group_power;
J
Joonsoo Kim 已提交
6150 6151
	} else {
		tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
6152
		      local->group_power;
J
Joonsoo Kim 已提交
6153
	}
6154 6155
	pwr_move += local->group_power *
		    min(local->load_per_task, local->avg_load + tmp);
6156
	pwr_move /= SCHED_POWER_SCALE;
6157 6158 6159

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
J
Joonsoo Kim 已提交
6160
		env->imbalance = busiest->load_per_task;
6161 6162 6163 6164 6165
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6166
 * @env: load balance environment
6167 6168
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6169
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6170
{
6171
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6172 6173 6174 6175
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6176

J
Joonsoo Kim 已提交
6177
	if (busiest->group_imb) {
6178 6179 6180 6181
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6182 6183
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6184 6185
	}

6186 6187 6188 6189 6190
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
6191 6192
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6193 6194
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6195 6196
	}

J
Joonsoo Kim 已提交
6197
	if (!busiest->group_imb) {
6198 6199
		/*
		 * Don't want to pull so many tasks that a group would go idle.
6200 6201
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
6202
		 */
J
Joonsoo Kim 已提交
6203 6204
		load_above_capacity =
			(busiest->sum_nr_running - busiest->group_capacity);
6205

6206
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6207
		load_above_capacity /= busiest->group_power;
6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6218
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6219 6220

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6221
	env->imbalance = min(
6222 6223
		max_pull * busiest->group_power,
		(sds->avg_load - local->avg_load) * local->group_power
J
Joonsoo Kim 已提交
6224
	) / SCHED_POWER_SCALE;
6225 6226 6227

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6228
	 * there is no guarantee that any tasks will be moved so we'll have
6229 6230 6231
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6232
	if (env->imbalance < busiest->load_per_task)
6233
		return fix_small_imbalance(env, sds);
6234
}
6235

6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6248
 * @env: The load balancing environment.
6249
 *
6250
 * Return:	- The busiest group if imbalance exists.
6251 6252 6253 6254
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6255
static struct sched_group *find_busiest_group(struct lb_env *env)
6256
{
J
Joonsoo Kim 已提交
6257
	struct sg_lb_stats *local, *busiest;
6258 6259
	struct sd_lb_stats sds;

6260
	init_sd_lb_stats(&sds);
6261 6262 6263 6264 6265

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6266
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6267 6268
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6269

6270 6271
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6272 6273
		return sds.busiest;

6274
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6275
	if (!sds.busiest || busiest->sum_nr_running == 0)
6276 6277
		goto out_balanced;

6278
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6279

P
Peter Zijlstra 已提交
6280 6281
	/*
	 * If the busiest group is imbalanced the below checks don't
6282
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6283 6284
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
6285
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
6286 6287
		goto force_balance;

6288
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
J
Joonsoo Kim 已提交
6289 6290
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
	    !busiest->group_has_capacity)
6291 6292
		goto force_balance;

6293 6294 6295 6296
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6297
	if (local->avg_load >= busiest->avg_load)
6298 6299
		goto out_balanced;

6300 6301 6302 6303
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6304
	if (local->avg_load >= sds.avg_load)
6305 6306
		goto out_balanced;

6307
	if (env->idle == CPU_IDLE) {
6308 6309 6310 6311 6312 6313
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
6314 6315
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
6316
			goto out_balanced;
6317 6318 6319 6320 6321
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6322 6323
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6324
			goto out_balanced;
6325
	}
6326

6327
force_balance:
6328
	/* Looks like there is an imbalance. Compute it */
6329
	calculate_imbalance(env, &sds);
6330 6331 6332
	return sds.busiest;

out_balanced:
6333
	env->imbalance = 0;
6334 6335 6336 6337 6338 6339
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6340
static struct rq *find_busiest_queue(struct lb_env *env,
6341
				     struct sched_group *group)
6342 6343
{
	struct rq *busiest = NULL, *rq;
6344
	unsigned long busiest_load = 0, busiest_power = 1;
6345 6346
	int i;

6347
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6348 6349 6350 6351 6352
		unsigned long power, capacity, wl;
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6353

6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

		power = power_of(i);
		capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6378
		if (!capacity)
6379
			capacity = fix_small_capacity(env->sd, group);
6380

6381
		wl = weighted_cpuload(i);
6382

6383 6384 6385 6386
		/*
		 * When comparing with imbalance, use weighted_cpuload()
		 * which is not scaled with the cpu power.
		 */
6387
		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6388 6389
			continue;

6390 6391 6392 6393 6394
		/*
		 * For the load comparisons with the other cpu's, consider
		 * the weighted_cpuload() scaled with the cpu power, so that
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
6395 6396 6397 6398 6399
		 *
		 * Thus we're looking for max(wl_i / power_i), crosswise
		 * multiplication to rid ourselves of the division works out
		 * to: wl_i * power_j > wl_j * power_i;  where j is our
		 * previous maximum.
6400
		 */
6401 6402 6403
		if (wl * busiest_power > busiest_load * power) {
			busiest_load = wl;
			busiest_power = power;
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6418
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6419

6420
static int need_active_balance(struct lb_env *env)
6421
{
6422 6423 6424
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6425 6426 6427 6428 6429 6430

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6431
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6432
			return 1;
6433 6434 6435 6436 6437
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6438 6439
static int active_load_balance_cpu_stop(void *data);

6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6471
	return balance_cpu == env->dst_cpu;
6472 6473
}

6474 6475 6476 6477 6478 6479
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6480
			int *continue_balancing)
6481
{
6482
	int ld_moved, cur_ld_moved, active_balance = 0;
6483
	struct sched_domain *sd_parent = sd->parent;
6484 6485 6486
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6487
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6488

6489 6490
	struct lb_env env = {
		.sd		= sd,
6491 6492
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6493
		.dst_grpmask    = sched_group_cpus(sd->groups),
6494
		.idle		= idle,
6495
		.loop_break	= sched_nr_migrate_break,
6496
		.cpus		= cpus,
6497
		.fbq_type	= all,
6498 6499
	};

6500 6501 6502 6503
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6504
	if (idle == CPU_NEWLY_IDLE)
6505 6506
		env.dst_grpmask = NULL;

6507 6508 6509 6510 6511
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6512 6513
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6514
		goto out_balanced;
6515
	}
6516

6517
	group = find_busiest_group(&env);
6518 6519 6520 6521 6522
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6523
	busiest = find_busiest_queue(&env, group);
6524 6525 6526 6527 6528
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6529
	BUG_ON(busiest == env.dst_rq);
6530

6531
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6532 6533 6534 6535 6536 6537 6538 6539 6540

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6541
		env.flags |= LBF_ALL_PINNED;
6542 6543 6544
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6545

6546
more_balance:
6547
		local_irq_save(flags);
6548
		double_rq_lock(env.dst_rq, busiest);
6549 6550 6551 6552 6553 6554 6555

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
6556
		double_rq_unlock(env.dst_rq, busiest);
6557 6558 6559 6560 6561
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6562 6563 6564
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6565 6566 6567 6568 6569
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6589
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6590

6591 6592 6593
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6594
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6595
			env.dst_cpu	 = env.new_dst_cpu;
6596
			env.flags	&= ~LBF_DST_PINNED;
6597 6598
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6599

6600 6601 6602 6603 6604 6605
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6606

6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
			int *group_imbalance = &sd_parent->groups->sgp->imbalance;

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6619
		/* All tasks on this runqueue were pinned by CPU affinity */
6620
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6621
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6622 6623 6624
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6625
				goto redo;
6626
			}
6627 6628 6629 6630 6631 6632
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6633 6634 6635 6636 6637 6638 6639 6640
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6641

6642
		if (need_active_balance(&env)) {
6643 6644
			raw_spin_lock_irqsave(&busiest->lock, flags);

6645 6646 6647
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6648 6649
			 */
			if (!cpumask_test_cpu(this_cpu,
6650
					tsk_cpus_allowed(busiest->curr))) {
6651 6652
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6653
				env.flags |= LBF_ALL_PINNED;
6654 6655 6656
				goto out_one_pinned;
			}

6657 6658 6659 6660 6661
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6662 6663 6664 6665 6666 6667
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6668

6669
			if (active_balance) {
6670 6671 6672
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6673
			}
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6707
	if (((env.flags & LBF_ALL_PINNED) &&
6708
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6709 6710 6711
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6712
	ld_moved = 0;
6713 6714 6715 6716
out:
	return ld_moved;
}

6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

6744 6745 6746 6747
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6748
static int idle_balance(struct rq *this_rq)
6749
{
6750 6751
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
6752 6753
	struct sched_domain *sd;
	int pulled_task = 0;
6754
	u64 curr_cost = 0;
6755

6756
	idle_enter_fair(this_rq);
6757

6758 6759 6760 6761 6762 6763
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

6764 6765 6766 6767 6768 6769 6770
	if (this_rq->avg_idle < sysctl_sched_migration_cost) {
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

6771
		goto out;
6772
	}
6773

6774 6775 6776 6777 6778
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6779
	update_blocked_averages(this_cpu);
6780
	rcu_read_lock();
6781
	for_each_domain(this_cpu, sd) {
6782
		int continue_balancing = 1;
6783
		u64 t0, domain_cost;
6784 6785 6786 6787

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6788 6789
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
6790
			break;
6791
		}
6792

6793
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6794 6795
			t0 = sched_clock_cpu(this_cpu);

6796
			pulled_task = load_balance(this_cpu, this_rq,
6797 6798
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6799 6800 6801 6802 6803 6804

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6805
		}
6806

6807
		update_next_balance(sd, 0, &next_balance);
6808 6809 6810 6811 6812 6813

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
6814 6815
			break;
	}
6816
	rcu_read_unlock();
6817 6818 6819

	raw_spin_lock(&this_rq->lock);

6820 6821 6822
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

6823
	/*
6824 6825 6826
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
6827
	 */
6828
	if (this_rq->cfs.h_nr_running && !pulled_task)
6829
		pulled_task = 1;
6830

6831 6832 6833
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
6834
		this_rq->next_balance = next_balance;
6835

6836
	/* Is there a task of a high priority class? */
6837
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6838 6839 6840 6841
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
6842
		this_rq->idle_stamp = 0;
6843
	}
6844

6845
	return pulled_task;
6846 6847 6848
}

/*
6849 6850 6851 6852
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6853
 */
6854
static int active_load_balance_cpu_stop(void *data)
6855
{
6856 6857
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6858
	int target_cpu = busiest_rq->push_cpu;
6859
	struct rq *target_rq = cpu_rq(target_cpu);
6860
	struct sched_domain *sd;
6861 6862 6863 6864 6865 6866 6867

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6868 6869 6870

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6871
		goto out_unlock;
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6884
	rcu_read_lock();
6885 6886 6887 6888 6889 6890 6891
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6892 6893
		struct lb_env env = {
			.sd		= sd,
6894 6895 6896 6897
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6898 6899 6900
			.idle		= CPU_IDLE,
		};

6901 6902
		schedstat_inc(sd, alb_count);

6903
		if (move_one_task(&env))
6904 6905 6906 6907
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6908
	rcu_read_unlock();
6909
	double_unlock_balance(busiest_rq, target_rq);
6910 6911 6912 6913
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6914 6915
}

6916 6917 6918 6919 6920
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

6921
#ifdef CONFIG_NO_HZ_COMMON
6922 6923 6924 6925 6926 6927
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6928
static struct {
6929
	cpumask_var_t idle_cpus_mask;
6930
	atomic_t nr_cpus;
6931 6932
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6933

6934
static inline int find_new_ilb(void)
6935
{
6936
	int ilb = cpumask_first(nohz.idle_cpus_mask);
6937

6938 6939 6940 6941
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
6942 6943
}

6944 6945 6946 6947 6948
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
6949
static void nohz_balancer_kick(void)
6950 6951 6952 6953 6954
{
	int ilb_cpu;

	nohz.next_balance++;

6955
	ilb_cpu = find_new_ilb();
6956

6957 6958
	if (ilb_cpu >= nr_cpu_ids)
		return;
6959

6960
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6961 6962 6963 6964 6965 6966 6967 6968
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
6969 6970 6971
	return;
}

6972
static inline void nohz_balance_exit_idle(int cpu)
6973 6974
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6975 6976 6977 6978 6979 6980 6981
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
6982 6983 6984 6985
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

6986 6987 6988
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
6989
	int cpu = smp_processor_id();
6990 6991

	rcu_read_lock();
6992
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
6993 6994 6995 6996 6997

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

6998
	atomic_inc(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
6999
unlock:
7000 7001 7002 7003 7004 7005
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7006
	int cpu = smp_processor_id();
7007 7008

	rcu_read_lock();
7009
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7010 7011 7012 7013 7014

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7015
	atomic_dec(&sd->groups->sgp->nr_busy_cpus);
V
Vincent Guittot 已提交
7016
unlock:
7017 7018 7019
	rcu_read_unlock();
}

7020
/*
7021
 * This routine will record that the cpu is going idle with tick stopped.
7022
 * This info will be used in performing idle load balancing in the future.
7023
 */
7024
void nohz_balance_enter_idle(int cpu)
7025
{
7026 7027 7028 7029 7030 7031
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7032 7033
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7034

7035 7036 7037 7038 7039 7040
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7041 7042 7043
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7044
}
7045

7046
static int sched_ilb_notifier(struct notifier_block *nfb,
7047 7048 7049 7050
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7051
		nohz_balance_exit_idle(smp_processor_id());
7052 7053 7054 7055 7056
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7057 7058 7059 7060
#endif

static DEFINE_SPINLOCK(balancing);

7061 7062 7063 7064
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7065
void update_max_interval(void)
7066 7067 7068 7069
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7070 7071 7072 7073
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7074
 * Balancing parameters are set up in init_sched_domains.
7075
 */
7076
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7077
{
7078
	int continue_balancing = 1;
7079
	int cpu = rq->cpu;
7080
	unsigned long interval;
7081
	struct sched_domain *sd;
7082 7083 7084
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7085 7086
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7087

7088
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7089

7090
	rcu_read_lock();
7091
	for_each_domain(cpu, sd) {
7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7104 7105 7106
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7118
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7119 7120 7121 7122 7123 7124 7125 7126

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7127
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7128
				/*
7129
				 * The LBF_DST_PINNED logic could have changed
7130 7131
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7132
				 */
7133
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7134 7135
			}
			sd->last_balance = jiffies;
7136
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7137 7138 7139 7140 7141 7142 7143 7144
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7145 7146
	}
	if (need_decay) {
7147
		/*
7148 7149
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7150
		 */
7151 7152
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7153
	}
7154
	rcu_read_unlock();
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

7165
#ifdef CONFIG_NO_HZ_COMMON
7166
/*
7167
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7168 7169
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7170
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7171
{
7172
	int this_cpu = this_rq->cpu;
7173 7174 7175
	struct rq *rq;
	int balance_cpu;

7176 7177 7178
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7179 7180

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7181
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7182 7183 7184 7185 7186 7187 7188
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7189
		if (need_resched())
7190 7191
			break;

V
Vincent Guittot 已提交
7192 7193 7194 7195 7196 7197
		rq = cpu_rq(balance_cpu);

		raw_spin_lock_irq(&rq->lock);
		update_rq_clock(rq);
		update_idle_cpu_load(rq);
		raw_spin_unlock_irq(&rq->lock);
7198

7199
		rebalance_domains(rq, CPU_IDLE);
7200 7201 7202 7203 7204

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
7205 7206
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7207 7208 7209
}

/*
7210 7211 7212 7213 7214 7215 7216
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
 *     busy cpu's exceeding the group's power.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7217
 */
7218
static inline int nohz_kick_needed(struct rq *rq)
7219 7220
{
	unsigned long now = jiffies;
7221
	struct sched_domain *sd;
7222
	struct sched_group_power *sgp;
7223
	int nr_busy, cpu = rq->cpu;
7224

7225
	if (unlikely(rq->idle_balance))
7226 7227
		return 0;

7228 7229 7230 7231
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7232
	set_cpu_sd_state_busy();
7233
	nohz_balance_exit_idle(cpu);
7234 7235 7236 7237 7238 7239 7240

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
7241 7242

	if (time_before(now, nohz.next_balance))
7243 7244
		return 0;

7245 7246
	if (rq->nr_running >= 2)
		goto need_kick;
7247

7248
	rcu_read_lock();
7249
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7250

7251 7252 7253
	if (sd) {
		sgp = sd->groups->sgp;
		nr_busy = atomic_read(&sgp->nr_busy_cpus);
7254

7255
		if (nr_busy > 1)
7256
			goto need_kick_unlock;
7257
	}
7258 7259 7260 7261 7262 7263 7264

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

7265
	rcu_read_unlock();
7266
	return 0;
7267 7268 7269

need_kick_unlock:
	rcu_read_unlock();
7270 7271
need_kick:
	return 1;
7272 7273
}
#else
7274
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7275 7276 7277 7278 7279 7280
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7281 7282
static void run_rebalance_domains(struct softirq_action *h)
{
7283
	struct rq *this_rq = this_rq();
7284
	enum cpu_idle_type idle = this_rq->idle_balance ?
7285 7286
						CPU_IDLE : CPU_NOT_IDLE;

7287
	rebalance_domains(this_rq, idle);
7288 7289

	/*
7290
	 * If this cpu has a pending nohz_balance_kick, then do the
7291 7292 7293
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
7294
	nohz_idle_balance(this_rq, idle);
7295 7296 7297 7298 7299
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7300
void trigger_load_balance(struct rq *rq)
7301 7302
{
	/* Don't need to rebalance while attached to NULL domain */
7303 7304 7305 7306
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7307
		raise_softirq(SCHED_SOFTIRQ);
7308
#ifdef CONFIG_NO_HZ_COMMON
7309
	if (nohz_kick_needed(rq))
7310
		nohz_balancer_kick();
7311
#endif
7312 7313
}

7314 7315 7316 7317 7318 7319 7320 7321
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7322 7323 7324

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7325 7326
}

7327
#endif /* CONFIG_SMP */
7328

7329 7330 7331
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7332
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7333 7334 7335 7336 7337 7338
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7339
		entity_tick(cfs_rq, se, queued);
7340
	}
7341

7342
	if (numabalancing_enabled)
7343
		task_tick_numa(rq, curr);
7344

7345
	update_rq_runnable_avg(rq, 1);
7346 7347 7348
}

/*
P
Peter Zijlstra 已提交
7349 7350 7351
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7352
 */
P
Peter Zijlstra 已提交
7353
static void task_fork_fair(struct task_struct *p)
7354
{
7355 7356
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7357
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7358 7359 7360
	struct rq *rq = this_rq();
	unsigned long flags;

7361
	raw_spin_lock_irqsave(&rq->lock, flags);
7362

7363 7364
	update_rq_clock(rq);

7365 7366 7367
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7368 7369 7370 7371 7372 7373 7374 7375 7376
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7377

7378
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7379

7380 7381
	if (curr)
		se->vruntime = curr->vruntime;
7382
	place_entity(cfs_rq, se, 1);
7383

P
Peter Zijlstra 已提交
7384
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7385
		/*
7386 7387 7388
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7389
		swap(curr->vruntime, se->vruntime);
7390
		resched_task(rq->curr);
7391
	}
7392

7393 7394
	se->vruntime -= cfs_rq->min_vruntime;

7395
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7396 7397
}

7398 7399 7400 7401
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7402 7403
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7404
{
P
Peter Zijlstra 已提交
7405 7406 7407
	if (!p->se.on_rq)
		return;

7408 7409 7410 7411 7412
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7413
	if (rq->curr == p) {
7414 7415 7416
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
7417
		check_preempt_curr(rq, p, 0);
7418 7419
}

P
Peter Zijlstra 已提交
7420 7421 7422 7423 7424 7425
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
7426
	 * Ensure the task's vruntime is normalized, so that when it's
P
Peter Zijlstra 已提交
7427 7428 7429
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
7430 7431
	 * If it's on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it's !on_rq, then only when
P
Peter Zijlstra 已提交
7432 7433
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
7434
	if (!p->on_rq && p->state != TASK_RUNNING) {
P
Peter Zijlstra 已提交
7435 7436 7437 7438 7439 7440 7441
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7442

7443
#ifdef CONFIG_SMP
7444 7445 7446 7447 7448
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7449 7450 7451
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7452 7453
	}
#endif
P
Peter Zijlstra 已提交
7454 7455
}

7456 7457 7458
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7459
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7460
{
7461 7462 7463 7464 7465 7466 7467 7468 7469
	struct sched_entity *se = &p->se;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
	if (!se->on_rq)
P
Peter Zijlstra 已提交
7470 7471
		return;

7472 7473 7474 7475 7476
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7477
	if (rq->curr == p)
7478 7479
		resched_task(rq->curr);
	else
7480
		check_preempt_curr(rq, p, 0);
7481 7482
}

7483 7484 7485 7486 7487 7488 7489 7490 7491
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7492 7493 7494 7495 7496 7497 7498
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7499 7500
}

7501 7502 7503 7504 7505 7506 7507
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7508
#ifdef CONFIG_SMP
7509
	atomic64_set(&cfs_rq->decay_counter, 1);
7510
	atomic_long_set(&cfs_rq->removed_load, 0);
7511
#endif
7512 7513
}

P
Peter Zijlstra 已提交
7514
#ifdef CONFIG_FAIR_GROUP_SCHED
7515
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
7516
{
P
Peter Zijlstra 已提交
7517
	struct sched_entity *se = &p->se;
7518
	struct cfs_rq *cfs_rq;
P
Peter Zijlstra 已提交
7519

7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7533 7534 7535 7536 7537 7538
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7539 7540
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7541 7542 7543 7544
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
P
Peter Zijlstra 已提交
7545
	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7546 7547
		on_rq = 1;

7548
	if (!on_rq)
P
Peter Zijlstra 已提交
7549
		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7550
	set_task_rq(p, task_cpu(p));
P
Peter Zijlstra 已提交
7551
	se->depth = se->parent ? se->parent->depth + 1 : 0;
7552
	if (!on_rq) {
P
Peter Zijlstra 已提交
7553 7554
		cfs_rq = cfs_rq_of(se);
		se->vruntime += cfs_rq->min_vruntime;
7555 7556 7557 7558 7559 7560
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
P
Peter Zijlstra 已提交
7561 7562
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7563 7564
#endif
	}
P
Peter Zijlstra 已提交
7565
}
7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
7658
	if (!parent) {
7659
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
7660 7661
		se->depth = 0;
	} else {
7662
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
7663 7664
		se->depth = parent->depth + 1;
	}
7665 7666

	se->my_q = cfs_rq;
7667 7668
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7699 7700 7701

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7702
		for_each_sched_entity(se)
7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7724

7725
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7726 7727 7728 7729 7730 7731 7732 7733 7734
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7735
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7736 7737 7738 7739

	return rr_interval;
}

7740 7741 7742
/*
 * All the scheduling class methods:
 */
7743
const struct sched_class fair_sched_class = {
7744
	.next			= &idle_sched_class,
7745 7746 7747
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7748
	.yield_to_task		= yield_to_task_fair,
7749

I
Ingo Molnar 已提交
7750
	.check_preempt_curr	= check_preempt_wakeup,
7751 7752 7753 7754

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7755
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7756
	.select_task_rq		= select_task_rq_fair,
7757
	.migrate_task_rq	= migrate_task_rq_fair,
7758

7759 7760
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7761 7762

	.task_waking		= task_waking_fair,
7763
#endif
7764

7765
	.set_curr_task          = set_curr_task_fair,
7766
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7767
	.task_fork		= task_fork_fair,
7768 7769

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7770
	.switched_from		= switched_from_fair,
7771
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7772

7773 7774
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7775
#ifdef CONFIG_FAIR_GROUP_SCHED
7776
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7777
#endif
7778 7779 7780
};

#ifdef CONFIG_SCHED_DEBUG
7781
void print_cfs_stats(struct seq_file *m, int cpu)
7782 7783 7784
{
	struct cfs_rq *cfs_rq;

7785
	rcu_read_lock();
7786
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7787
		print_cfs_rq(m, cpu, cfs_rq);
7788
	rcu_read_unlock();
7789 7790
}
#endif
7791 7792 7793 7794 7795 7796

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7797
#ifdef CONFIG_NO_HZ_COMMON
7798
	nohz.next_balance = jiffies;
7799
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7800
	cpu_notifier(sched_ilb_notifier, 0);
7801 7802 7803 7804
#endif
#endif /* SMP */

}