i915_gem.c 110.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38
#include <linux/dma-buf.h>
39

40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
44 45
						    bool map_and_fenceable,
						    bool nonblocking);
46 47
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
48
				struct drm_i915_gem_pwrite *args,
49
				struct drm_file *file);
50

51 52 53 54 55 56
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

57
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58
				    struct shrink_control *sc);
C
Chris Wilson 已提交
59 60
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62

63 64 65 66 67 68 69 70
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
71
	obj->fence_dirty = false;
72 73 74
	obj->fence_reg = I915_FENCE_REG_NONE;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

90 91
static int
i915_gem_wait_for_error(struct drm_device *dev)
92 93 94 95 96 97 98 99 100
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

101 102 103 104 105 106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
	ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
111
		return ret;
112
	}
113

114 115 116 117 118 119 120 121 122 123 124
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
125 126
}

127
int i915_mutex_lock_interruptible(struct drm_device *dev)
128 129 130
{
	int ret;

131
	ret = i915_gem_wait_for_error(dev);
132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

139
	WARN_ON(i915_verify_lists(dev));
140 141
	return 0;
}
142

143
static inline bool
144
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
145
{
C
Chris Wilson 已提交
146
	return obj->gtt_space && !obj->active;
147 148
}

J
Jesse Barnes 已提交
149 150
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
151
		    struct drm_file *file)
J
Jesse Barnes 已提交
152 153
{
	struct drm_i915_gem_init *args = data;
154

155 156 157
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

158 159 160
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
161

162 163 164 165
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
166
	mutex_lock(&dev->struct_mutex);
167 168
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
169 170
	mutex_unlock(&dev->struct_mutex);

171
	return 0;
172 173
}

174 175
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176
			    struct drm_file *file)
177
{
178
	struct drm_i915_private *dev_priv = dev->dev_private;
179
	struct drm_i915_gem_get_aperture *args = data;
180 181
	struct drm_i915_gem_object *obj;
	size_t pinned;
182

183
	pinned = 0;
184
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
185
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
186 187
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
188
	mutex_unlock(&dev->struct_mutex);
189

190
	args->aper_size = dev_priv->mm.gtt_total;
191
	args->aper_available_size = args->aper_size - pinned;
192

193 194 195
	return 0;
}

196 197 198 199 200
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
201
{
202
	struct drm_i915_gem_object *obj;
203 204
	int ret;
	u32 handle;
205

206
	size = roundup(size, PAGE_SIZE);
207 208
	if (size == 0)
		return -EINVAL;
209 210

	/* Allocate the new object */
211
	obj = i915_gem_alloc_object(dev, size);
212 213 214
	if (obj == NULL)
		return -ENOMEM;

215
	ret = drm_gem_handle_create(file, &obj->base, &handle);
216
	if (ret) {
217 218
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219
		kfree(obj);
220
		return ret;
221
	}
222

223
	/* drop reference from allocate - handle holds it now */
224
	drm_gem_object_unreference(&obj->base);
225 226
	trace_i915_gem_object_create(obj);

227
	*handle_p = handle;
228 229 230
	return 0;
}

231 232 233 234 235 236
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
237
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
258

259 260 261 262
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

263
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
264
{
265
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
266 267

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268
		obj->tiling_mode != I915_TILING_NONE;
269 270
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

297
static inline int
298 299
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

323 324 325
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
326
static int
327 328 329 330 331 332 333
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

334
	if (unlikely(page_do_bit17_swizzling))
335 336 337 338 339 340 341 342 343 344 345
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

346
	return ret ? -EFAULT : 0;
347 348
}

349 350 351 352
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
353
	if (unlikely(swizzled)) {
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

371 372 373 374 375 376 377 378 379 380 381 382
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
383 384 385
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
386 387 388 389 390 391 392 393 394 395 396

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

397
	return ret ? - EFAULT : 0;
398 399
}

400
static int
401 402 403 404
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
405
{
406
	char __user *user_data;
407
	ssize_t remain;
408
	loff_t offset;
409
	int shmem_page_offset, page_length, ret = 0;
410
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
411
	int hit_slowpath = 0;
412
	int prefaulted = 0;
413
	int needs_clflush = 0;
414 415
	struct scatterlist *sg;
	int i;
416

417
	user_data = (char __user *) (uintptr_t) args->data_ptr;
418 419
	remain = args->size;

420
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421

422 423 424 425 426 427 428
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
C
Chris Wilson 已提交
429 430 431 432 433
		if (obj->gtt_space) {
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
			if (ret)
				return ret;
		}
434
	}
435

436 437 438 439 440 441
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

442
	offset = args->offset;
443

444
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
445 446
		struct page *page;

447 448 449 450 451 452
		if (i < offset >> PAGE_SHIFT)
			continue;

		if (remain <= 0)
			break;

453 454 455 456 457
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
458
		shmem_page_offset = offset_in_page(offset);
459 460 461 462
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

463
		page = sg_page(sg);
464 465 466
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

467 468 469 470 471
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
472 473 474 475

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);

476
		if (!prefaulted) {
477
			ret = fault_in_multipages_writeable(user_data, remain);
478 479 480 481 482 483 484
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
485

486 487 488
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
489

490
		mutex_lock(&dev->struct_mutex);
491

492
next_page:
493 494
		mark_page_accessed(page);

495
		if (ret)
496 497
			goto out;

498
		remain -= page_length;
499
		user_data += page_length;
500 501 502
		offset += page_length;
	}

503
out:
504 505
	i915_gem_object_unpin_pages(obj);

506 507 508 509 510
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
511 512 513 514

	return ret;
}

515 516 517 518 519 520 521
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
522
		     struct drm_file *file)
523 524
{
	struct drm_i915_gem_pread *args = data;
525
	struct drm_i915_gem_object *obj;
526
	int ret = 0;
527

528 529 530 531 532 533 534 535
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

536
	ret = i915_mutex_lock_interruptible(dev);
537
	if (ret)
538
		return ret;
539

540
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
541
	if (&obj->base == NULL) {
542 543
		ret = -ENOENT;
		goto unlock;
544
	}
545

546
	/* Bounds check source.  */
547 548
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
549
		ret = -EINVAL;
550
		goto out;
C
Chris Wilson 已提交
551 552
	}

553 554 555 556 557 558 559 560
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
561 562
	trace_i915_gem_object_pread(obj, args->offset, args->size);

563
	ret = i915_gem_shmem_pread(dev, obj, args, file);
564

565
out:
566
	drm_gem_object_unreference(&obj->base);
567
unlock:
568
	mutex_unlock(&dev->struct_mutex);
569
	return ret;
570 571
}

572 573
/* This is the fast write path which cannot handle
 * page faults in the source data
574
 */
575 576 577 578 579 580

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
581
{
582 583
	void __iomem *vaddr_atomic;
	void *vaddr;
584
	unsigned long unwritten;
585

P
Peter Zijlstra 已提交
586
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
587 588 589
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
590
						      user_data, length);
P
Peter Zijlstra 已提交
591
	io_mapping_unmap_atomic(vaddr_atomic);
592
	return unwritten;
593 594
}

595 596 597 598
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
599
static int
600 601
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
602
			 struct drm_i915_gem_pwrite *args,
603
			 struct drm_file *file)
604
{
605
	drm_i915_private_t *dev_priv = dev->dev_private;
606
	ssize_t remain;
607
	loff_t offset, page_base;
608
	char __user *user_data;
D
Daniel Vetter 已提交
609 610
	int page_offset, page_length, ret;

611
	ret = i915_gem_object_pin(obj, 0, true, true);
D
Daniel Vetter 已提交
612 613 614 615 616 617 618 619 620 621
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
622 623 624 625

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

626
	offset = obj->gtt_offset + args->offset;
627 628 629 630

	while (remain > 0) {
		/* Operation in this page
		 *
631 632 633
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
634
		 */
635 636
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
637 638 639 640 641
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
642 643
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
644
		 */
645
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
646 647 648 649
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
650

651 652 653
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
654 655
	}

D
Daniel Vetter 已提交
656 657 658
out_unpin:
	i915_gem_object_unpin(obj);
out:
659
	return ret;
660 661
}

662 663 664 665
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
666
static int
667 668 669 670 671
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
672
{
673
	char *vaddr;
674
	int ret;
675

676
	if (unlikely(page_do_bit17_swizzling))
677
		return -EINVAL;
678

679 680 681 682 683 684 685 686 687 688 689
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
690

691
	return ret ? -EFAULT : 0;
692 693
}

694 695
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
696
static int
697 698 699 700 701
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
702
{
703 704
	char *vaddr;
	int ret;
705

706
	vaddr = kmap(page);
707
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
708 709 710
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
711 712
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
713 714
						user_data,
						page_length);
715 716 717 718 719
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
720 721 722
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
723
	kunmap(page);
724

725
	return ret ? -EFAULT : 0;
726 727 728
}

static int
729 730 731 732
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
733 734
{
	ssize_t remain;
735 736
	loff_t offset;
	char __user *user_data;
737
	int shmem_page_offset, page_length, ret = 0;
738
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
739
	int hit_slowpath = 0;
740 741
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
742 743
	int i;
	struct scatterlist *sg;
744

745
	user_data = (char __user *) (uintptr_t) args->data_ptr;
746 747
	remain = args->size;

748
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
749

750 751 752 753 754 755 756
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
C
Chris Wilson 已提交
757 758 759 760 761
		if (obj->gtt_space) {
			ret = i915_gem_object_set_to_gtt_domain(obj, true);
			if (ret)
				return ret;
		}
762 763 764 765 766 767 768
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

769 770 771 772 773 774
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

775
	offset = args->offset;
776
	obj->dirty = 1;
777

778
	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
779
		struct page *page;
780
		int partial_cacheline_write;
781

782 783 784 785 786 787
		if (i < offset >> PAGE_SHIFT)
			continue;

		if (remain <= 0)
			break;

788 789 790 791 792
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
793
		shmem_page_offset = offset_in_page(offset);
794 795 796 797 798

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

799 800 801 802 803 804 805
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

806
		page = sg_page(sg);
807 808 809
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

810 811 812 813 814 815
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
816 817 818

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
819 820 821 822
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
823

824
		mutex_lock(&dev->struct_mutex);
825

826
next_page:
827 828 829
		set_page_dirty(page);
		mark_page_accessed(page);

830
		if (ret)
831 832
			goto out;

833
		remain -= page_length;
834
		user_data += page_length;
835
		offset += page_length;
836 837
	}

838
out:
839 840
	i915_gem_object_unpin_pages(obj);

841 842 843 844 845 846 847 848 849 850
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
851
	}
852

853 854 855
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

856
	return ret;
857 858 859 860 861 862 863 864 865
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
866
		      struct drm_file *file)
867 868
{
	struct drm_i915_gem_pwrite *args = data;
869
	struct drm_i915_gem_object *obj;
870 871 872 873 874 875 876 877 878 879
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

880 881
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
882 883
	if (ret)
		return -EFAULT;
884

885
	ret = i915_mutex_lock_interruptible(dev);
886
	if (ret)
887
		return ret;
888

889
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
890
	if (&obj->base == NULL) {
891 892
		ret = -ENOENT;
		goto unlock;
893
	}
894

895
	/* Bounds check destination. */
896 897
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
898
		ret = -EINVAL;
899
		goto out;
C
Chris Wilson 已提交
900 901
	}

902 903 904 905 906 907 908 909
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
910 911
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
912
	ret = -EFAULT;
913 914 915 916 917 918
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
919
	if (obj->phys_obj) {
920
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
921 922 923
		goto out;
	}

924
	if (obj->cache_level == I915_CACHE_NONE &&
925
	    obj->tiling_mode == I915_TILING_NONE &&
926
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
927
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
928 929 930
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
931
	}
932

933
	if (ret == -EFAULT || ret == -ENOSPC)
D
Daniel Vetter 已提交
934
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
935

936
out:
937
	drm_gem_object_unreference(&obj->base);
938
unlock:
939
	mutex_unlock(&dev->struct_mutex);
940 941 942
	return ret;
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
int
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
		     bool interruptible)
{
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

		/* Recovery complete, but still wedged means reset failure. */
		if (recovery_complete)
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

/*
 * Compare seqno against outstanding lazy request. Emit a request if they are
 * equal.
 */
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
	int ret;

	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	ret = 0;
	if (seqno == ring->outstanding_lazy_request)
		ret = i915_add_request(ring, NULL, NULL);

	return ret;
}

/**
 * __wait_seqno - wait until execution of seqno has finished
 * @ring: the ring expected to report seqno
 * @seqno: duh!
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
 * Returns 0 if the seqno was found within the alloted time. Else returns the
 * errno with remaining time filled in timeout argument.
 */
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
			bool interruptible, struct timespec *timeout)
{
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
	struct timespec before, now, wait_time={1,0};
	unsigned long timeout_jiffies;
	long end;
	bool wait_forever = true;
	int ret;

	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
		return 0;

	trace_i915_gem_request_wait_begin(ring, seqno);

	if (timeout != NULL) {
		wait_time = *timeout;
		wait_forever = false;
	}

	timeout_jiffies = timespec_to_jiffies(&wait_time);

	if (WARN_ON(!ring->irq_get(ring)))
		return -ENODEV;

	/* Record current time in case interrupted by signal, or wedged * */
	getrawmonotonic(&before);

#define EXIT_COND \
	(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
	atomic_read(&dev_priv->mm.wedged))
	do {
		if (interruptible)
			end = wait_event_interruptible_timeout(ring->irq_queue,
							       EXIT_COND,
							       timeout_jiffies);
		else
			end = wait_event_timeout(ring->irq_queue, EXIT_COND,
						 timeout_jiffies);

		ret = i915_gem_check_wedge(dev_priv, interruptible);
		if (ret)
			end = ret;
	} while (end == 0 && wait_forever);

	getrawmonotonic(&now);

	ring->irq_put(ring);
	trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND

	if (timeout) {
		struct timespec sleep_time = timespec_sub(now, before);
		*timeout = timespec_sub(*timeout, sleep_time);
	}

	switch (end) {
	case -EIO:
	case -EAGAIN: /* Wedged */
	case -ERESTARTSYS: /* Signal */
		return (int)end;
	case 0: /* Timeout */
		if (timeout)
			set_normalized_timespec(timeout, 0, 0);
		return -ETIME;
	default: /* Completed */
		WARN_ON(end < 0); /* We're not aware of other errors */
		return 0;
	}
}

/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
int
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool interruptible = dev_priv->mm.interruptible;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(seqno == 0);

	ret = i915_gem_check_wedge(dev_priv, interruptible);
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

	return __wait_seqno(ring, seqno, interruptible, NULL);
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
	struct intel_ring_buffer *ring = obj->ring;
	u32 seqno;
	int ret;

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_wait_seqno(ring, seqno);
	if (ret)
		return ret;

	i915_gem_retire_requests_ring(ring);

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
	}

	return 0;
}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
					    bool readonly)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring = obj->ring;
	u32 seqno;
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
	if (seqno == 0)
		return 0;

	ret = i915_gem_check_wedge(dev_priv, true);
	if (ret)
		return ret;

	ret = i915_gem_check_olr(ring, seqno);
	if (ret)
		return ret;

	mutex_unlock(&dev->struct_mutex);
	ret = __wait_seqno(ring, seqno, true, NULL);
	mutex_lock(&dev->struct_mutex);

	i915_gem_retire_requests_ring(ring);

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 */
	if (obj->last_write_seqno &&
	    i915_seqno_passed(seqno, obj->last_write_seqno)) {
		obj->last_write_seqno = 0;
		obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
	}

	return ret;
}

1177
/**
1178 1179
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1180 1181 1182
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1183
			  struct drm_file *file)
1184 1185
{
	struct drm_i915_gem_set_domain *args = data;
1186
	struct drm_i915_gem_object *obj;
1187 1188
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1189 1190
	int ret;

1191
	/* Only handle setting domains to types used by the CPU. */
1192
	if (write_domain & I915_GEM_GPU_DOMAINS)
1193 1194
		return -EINVAL;

1195
	if (read_domains & I915_GEM_GPU_DOMAINS)
1196 1197 1198 1199 1200 1201 1202 1203
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1204
	ret = i915_mutex_lock_interruptible(dev);
1205
	if (ret)
1206
		return ret;
1207

1208
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1209
	if (&obj->base == NULL) {
1210 1211
		ret = -ENOENT;
		goto unlock;
1212
	}
1213

1214 1215 1216 1217 1218 1219 1220 1221
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
	if (ret)
		goto unref;

1222 1223
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1224 1225 1226 1227 1228 1229 1230

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1231
	} else {
1232
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1233 1234
	}

1235
unref:
1236
	drm_gem_object_unreference(&obj->base);
1237
unlock:
1238 1239 1240 1241 1242 1243 1244 1245 1246
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1247
			 struct drm_file *file)
1248 1249
{
	struct drm_i915_gem_sw_finish *args = data;
1250
	struct drm_i915_gem_object *obj;
1251 1252
	int ret = 0;

1253
	ret = i915_mutex_lock_interruptible(dev);
1254
	if (ret)
1255
		return ret;
1256

1257
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1258
	if (&obj->base == NULL) {
1259 1260
		ret = -ENOENT;
		goto unlock;
1261 1262 1263
	}

	/* Pinned buffers may be scanout, so flush the cache */
1264
	if (obj->pin_count)
1265 1266
		i915_gem_object_flush_cpu_write_domain(obj);

1267
	drm_gem_object_unreference(&obj->base);
1268
unlock:
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1282
		    struct drm_file *file)
1283 1284 1285 1286 1287
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1288
	obj = drm_gem_object_lookup(dev, file, args->handle);
1289
	if (obj == NULL)
1290
		return -ENOENT;
1291

1292 1293 1294 1295 1296 1297 1298 1299
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1300
	addr = vm_mmap(obj->filp, 0, args->size,
1301 1302
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1303
	drm_gem_object_unreference_unlocked(obj);
1304 1305 1306 1307 1308 1309 1310 1311
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1330 1331
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1332
	drm_i915_private_t *dev_priv = dev->dev_private;
1333 1334 1335
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1336
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1337 1338 1339 1340 1341

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1342 1343 1344
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1345

C
Chris Wilson 已提交
1346 1347
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1348
	/* Now bind it into the GTT if needed */
1349 1350 1351 1352
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1353
	}
1354
	if (!obj->gtt_space) {
1355
		ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1356 1357
		if (ret)
			goto unlock;
1358

1359 1360 1361 1362
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1363

1364 1365 1366
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1367
	ret = i915_gem_object_get_fence(obj);
1368 1369
	if (ret)
		goto unlock;
1370

1371 1372
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1373

1374 1375
	obj->fault_mappable = true;

1376
	pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1377 1378 1379 1380
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1381
unlock:
1382
	mutex_unlock(&dev->struct_mutex);
1383
out:
1384
	switch (ret) {
1385
	case -EIO:
1386 1387 1388 1389 1390
		/* If this -EIO is due to a gpu hang, give the reset code a
		 * chance to clean up the mess. Otherwise return the proper
		 * SIGBUS. */
		if (!atomic_read(&dev_priv->mm.wedged))
			return VM_FAULT_SIGBUS;
1391
	case -EAGAIN:
1392 1393 1394 1395 1396 1397 1398
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1399
		set_need_resched();
1400 1401
	case 0:
	case -ERESTARTSYS:
1402
	case -EINTR:
1403 1404 1405 1406 1407
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1408
		return VM_FAULT_NOPAGE;
1409 1410 1411
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1412
		WARN_ON_ONCE(ret);
1413
		return VM_FAULT_SIGBUS;
1414 1415 1416
	}
}

1417 1418 1419 1420
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1421
 * Preserve the reservation of the mmapping with the DRM core code, but
1422 1423 1424 1425 1426 1427 1428 1429 1430
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1431
void
1432
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1433
{
1434 1435
	if (!obj->fault_mappable)
		return;
1436

1437 1438 1439 1440
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1441

1442
	obj->fault_mappable = false;
1443 1444
}

1445
static uint32_t
1446
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1447
{
1448
	uint32_t gtt_size;
1449 1450

	if (INTEL_INFO(dev)->gen >= 4 ||
1451 1452
	    tiling_mode == I915_TILING_NONE)
		return size;
1453 1454 1455

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1456
		gtt_size = 1024*1024;
1457
	else
1458
		gtt_size = 512*1024;
1459

1460 1461
	while (gtt_size < size)
		gtt_size <<= 1;
1462

1463
	return gtt_size;
1464 1465
}

1466 1467 1468 1469 1470
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1471
 * potential fence register mapping.
1472 1473
 */
static uint32_t
1474 1475 1476
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1477 1478 1479 1480 1481
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1482
	if (INTEL_INFO(dev)->gen >= 4 ||
1483
	    tiling_mode == I915_TILING_NONE)
1484 1485
		return 4096;

1486 1487 1488 1489
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1490
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1491 1492
}

1493 1494 1495
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1496 1497 1498
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1499 1500 1501 1502
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1503
uint32_t
1504 1505 1506
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1507 1508 1509 1510 1511
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1512
	    tiling_mode == I915_TILING_NONE)
1513 1514
		return 4096;

1515 1516 1517
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1518
	 */
1519
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1520 1521
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

	if (obj->base.map_list.map)
		return 0;

	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
		return ret;

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
		return ret;

	i915_gem_shrink_all(dev_priv);
	return drm_gem_create_mmap_offset(&obj->base);
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	if (!obj->base.map_list.map)
		return;

	drm_gem_free_mmap_offset(&obj->base);
}

1558
int
1559 1560 1561 1562
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1563
{
1564
	struct drm_i915_private *dev_priv = dev->dev_private;
1565
	struct drm_i915_gem_object *obj;
1566 1567
	int ret;

1568
	ret = i915_mutex_lock_interruptible(dev);
1569
	if (ret)
1570
		return ret;
1571

1572
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1573
	if (&obj->base == NULL) {
1574 1575 1576
		ret = -ENOENT;
		goto unlock;
	}
1577

1578
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1579
		ret = -E2BIG;
1580
		goto out;
1581 1582
	}

1583
	if (obj->madv != I915_MADV_WILLNEED) {
1584
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1585 1586
		ret = -EINVAL;
		goto out;
1587 1588
	}

1589 1590 1591
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1592

1593
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1594

1595
out:
1596
	drm_gem_object_unreference(&obj->base);
1597
unlock:
1598
	mutex_unlock(&dev->struct_mutex);
1599
	return ret;
1600 1601
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}

D
Daniel Vetter 已提交
1626 1627 1628
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1629 1630 1631
{
	struct inode *inode;

1632
	i915_gem_object_free_mmap_offset(obj);
1633

1634 1635
	if (obj->base.filp == NULL)
		return;
1636

D
Daniel Vetter 已提交
1637 1638 1639 1640 1641
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1642
	inode = obj->base.filp->f_path.dentry->d_inode;
D
Daniel Vetter 已提交
1643
	shmem_truncate_range(inode, 0, (loff_t)-1);
1644

D
Daniel Vetter 已提交
1645 1646
	obj->madv = __I915_MADV_PURGED;
}
1647

D
Daniel Vetter 已提交
1648 1649 1650 1651
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
	return obj->madv == I915_MADV_DONTNEED;
1652 1653
}

1654
static void
1655
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1656
{
1657
	int page_count = obj->base.size / PAGE_SIZE;
1658
	struct scatterlist *sg;
C
Chris Wilson 已提交
1659
	int ret, i;
1660

1661
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1662

C
Chris Wilson 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		i915_gem_clflush_object(obj);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

1673
	if (i915_gem_object_needs_bit17_swizzle(obj))
1674 1675
		i915_gem_object_save_bit_17_swizzle(obj);

1676 1677
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1678

1679 1680 1681
	for_each_sg(obj->pages->sgl, sg, page_count, i) {
		struct page *page = sg_page(sg);

1682
		if (obj->dirty)
1683
			set_page_dirty(page);
1684

1685
		if (obj->madv == I915_MADV_WILLNEED)
1686
			mark_page_accessed(page);
1687

1688
		page_cache_release(page);
1689
	}
1690
	obj->dirty = 0;
1691

1692 1693
	sg_free_table(obj->pages);
	kfree(obj->pages);
1694
}
C
Chris Wilson 已提交
1695

1696 1697 1698 1699 1700
static int
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

1701
	if (obj->pages == NULL)
1702 1703 1704
		return 0;

	BUG_ON(obj->gtt_space);
C
Chris Wilson 已提交
1705

1706 1707 1708
	if (obj->pages_pin_count)
		return -EBUSY;

1709
	ops->put_pages(obj);
1710
	obj->pages = NULL;
1711 1712

	list_del(&obj->gtt_list);
C
Chris Wilson 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	if (i915_gem_object_is_purgeable(obj))
		i915_gem_object_truncate(obj);

	return 0;
}

static long
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
	struct drm_i915_gem_object *obj, *next;
	long count = 0;

	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.unbound_list,
				 gtt_list) {
		if (i915_gem_object_is_purgeable(obj) &&
1729
		    i915_gem_object_put_pages(obj) == 0) {
C
Chris Wilson 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
			count += obj->base.size >> PAGE_SHIFT;
			if (count >= target)
				return count;
		}
	}

	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj) &&
		    i915_gem_object_unbind(obj) == 0 &&
1741
		    i915_gem_object_put_pages(obj) == 0) {
C
Chris Wilson 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
			count += obj->base.size >> PAGE_SHIFT;
			if (count >= target)
				return count;
		}
	}

	return count;
}

static void
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj, *next;

	i915_gem_evict_everything(dev_priv->dev);

	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1759
		i915_gem_object_put_pages(obj);
D
Daniel Vetter 已提交
1760 1761
}

1762
static int
C
Chris Wilson 已提交
1763
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1764
{
C
Chris Wilson 已提交
1765
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1766 1767
	int page_count, i;
	struct address_space *mapping;
1768 1769
	struct sg_table *st;
	struct scatterlist *sg;
1770
	struct page *page;
C
Chris Wilson 已提交
1771
	gfp_t gfp;
1772

C
Chris Wilson 已提交
1773 1774 1775 1776 1777 1778 1779
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

1780 1781 1782 1783
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

1784
	page_count = obj->base.size / PAGE_SIZE;
1785 1786 1787
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		sg_free_table(st);
		kfree(st);
1788
		return -ENOMEM;
1789
	}
1790

1791 1792 1793 1794 1795
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
C
Chris Wilson 已提交
1796 1797
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	gfp = mapping_gfp_mask(mapping);
S
Sedat Dilek 已提交
1798
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
C
Chris Wilson 已提交
1799
	gfp &= ~(__GFP_IO | __GFP_WAIT);
1800
	for_each_sg(st->sgl, sg, page_count, i) {
C
Chris Wilson 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
			i915_gem_purge(dev_priv, page_count);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
S
Sedat Dilek 已提交
1811
			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
C
Chris Wilson 已提交
1812 1813 1814 1815 1816 1817 1818
			gfp |= __GFP_IO | __GFP_WAIT;

			i915_gem_shrink_all(dev_priv);
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
			if (IS_ERR(page))
				goto err_pages;

S
Sedat Dilek 已提交
1819
			gfp |= __GFP_NORETRY | __GFP_NOWARN;
C
Chris Wilson 已提交
1820 1821
			gfp &= ~(__GFP_IO | __GFP_WAIT);
		}
1822

1823
		sg_set_page(sg, page, PAGE_SIZE, 0);
1824 1825
	}

1826
	if (i915_gem_object_needs_bit17_swizzle(obj))
1827 1828
		i915_gem_object_do_bit_17_swizzle(obj);

1829
	obj->pages = st;
1830 1831 1832
	return 0;

err_pages:
1833 1834 1835 1836
	for_each_sg(st->sgl, sg, i, page_count)
		page_cache_release(sg_page(sg));
	sg_free_table(st);
	kfree(st);
1837
	return PTR_ERR(page);
1838 1839
}

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

1854
	if (obj->pages)
1855 1856
		return 0;

1857 1858
	BUG_ON(obj->pages_pin_count);

1859 1860 1861 1862 1863 1864 1865 1866
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

	list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
	return 0;
}

1867
void
1868
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1869 1870
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1871
{
1872
	struct drm_device *dev = obj->base.dev;
1873
	struct drm_i915_private *dev_priv = dev->dev_private;
1874

1875
	BUG_ON(ring == NULL);
1876
	obj->ring = ring;
1877 1878

	/* Add a reference if we're newly entering the active list. */
1879 1880 1881
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1882
	}
1883

1884
	/* Move from whatever list we were on to the tail of execution. */
1885 1886
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1887

1888
	obj->last_read_seqno = seqno;
1889

1890
	if (obj->fenced_gpu_access) {
1891 1892
		obj->last_fenced_seqno = seqno;

1893 1894 1895 1896 1897 1898 1899 1900
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1901 1902 1903 1904 1905 1906 1907 1908 1909
	}
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1910
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1911
	BUG_ON(!obj->active);
1912

1913 1914 1915 1916 1917
	if (obj->pin_count) /* are we a framebuffer? */
		intel_mark_fb_idle(obj);

	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

1918
	list_del_init(&obj->ring_list);
1919 1920
	obj->ring = NULL;

1921 1922 1923 1924 1925
	obj->last_read_seqno = 0;
	obj->last_write_seqno = 0;
	obj->base.write_domain = 0;

	obj->last_fenced_seqno = 0;
1926 1927 1928 1929 1930 1931
	obj->fenced_gpu_access = false;

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1932
}
1933

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1956
int
C
Chris Wilson 已提交
1957
i915_add_request(struct intel_ring_buffer *ring,
1958
		 struct drm_file *file,
1959
		 u32 *out_seqno)
1960
{
C
Chris Wilson 已提交
1961
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1962
	struct drm_i915_gem_request *request;
1963
	u32 request_ring_position;
1964
	u32 seqno;
1965
	int was_empty;
1966 1967
	int ret;

1968 1969 1970 1971 1972 1973 1974
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
1975 1976 1977
	ret = intel_ring_flush_all_caches(ring);
	if (ret)
		return ret;
1978

1979 1980 1981
	request = kmalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL)
		return -ENOMEM;
1982

1983
	seqno = i915_gem_next_request_seqno(ring);
1984

1985 1986 1987 1988 1989 1990 1991
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1992
	ret = ring->add_request(ring, &seqno);
1993 1994 1995 1996
	if (ret) {
		kfree(request);
		return ret;
	}
1997

C
Chris Wilson 已提交
1998
	trace_i915_gem_request_add(ring, seqno);
1999 2000

	request->seqno = seqno;
2001
	request->ring = ring;
2002
	request->tail = request_ring_position;
2003
	request->emitted_jiffies = jiffies;
2004 2005
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);
2006
	request->file_priv = NULL;
2007

C
Chris Wilson 已提交
2008 2009 2010
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2011
		spin_lock(&file_priv->mm.lock);
2012
		request->file_priv = file_priv;
2013
		list_add_tail(&request->client_list,
2014
			      &file_priv->mm.request_list);
2015
		spin_unlock(&file_priv->mm.lock);
2016
	}
2017

2018
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
2019

B
Ben Gamari 已提交
2020
	if (!dev_priv->mm.suspended) {
2021 2022 2023 2024 2025
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
2026
		if (was_empty) {
2027 2028
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
2029 2030
			intel_mark_busy(dev_priv->dev);
		}
B
Ben Gamari 已提交
2031
	}
2032

2033 2034
	if (out_seqno)
		*out_seqno = seqno;
2035
	return 0;
2036 2037
}

2038 2039
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2040
{
2041
	struct drm_i915_file_private *file_priv = request->file_priv;
2042

2043 2044
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2045

2046
	spin_lock(&file_priv->mm.lock);
2047 2048 2049 2050
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
2051
	spin_unlock(&file_priv->mm.lock);
2052 2053
}

2054 2055
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
2056
{
2057 2058
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
2059

2060 2061 2062
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
2063

2064
		list_del(&request->list);
2065
		i915_gem_request_remove_from_client(request);
2066 2067
		kfree(request);
	}
2068

2069
	while (!list_empty(&ring->active_list)) {
2070
		struct drm_i915_gem_object *obj;
2071

2072 2073 2074
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2075

2076
		i915_gem_object_move_to_inactive(obj);
2077 2078 2079
	}
}

2080 2081 2082 2083 2084
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2085
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2086
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2087

2088
		i915_gem_write_fence(dev, i, NULL);
2089

2090 2091
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
2092

2093 2094 2095
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
2096
	}
2097 2098

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2099 2100
}

2101
void i915_gem_reset(struct drm_device *dev)
2102
{
2103
	struct drm_i915_private *dev_priv = dev->dev_private;
2104
	struct drm_i915_gem_object *obj;
2105
	struct intel_ring_buffer *ring;
2106
	int i;
2107

2108 2109
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_lists(dev_priv, ring);
2110 2111 2112 2113

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
2114
	list_for_each_entry(obj,
2115
			    &dev_priv->mm.inactive_list,
2116
			    mm_list)
2117
	{
2118
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2119
	}
2120 2121

	/* The fence registers are invalidated so clear them out */
2122
	i915_gem_reset_fences(dev);
2123 2124 2125 2126 2127
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2128
void
C
Chris Wilson 已提交
2129
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2130 2131
{
	uint32_t seqno;
2132
	int i;
2133

C
Chris Wilson 已提交
2134
	if (list_empty(&ring->request_list))
2135 2136
		return;

C
Chris Wilson 已提交
2137
	WARN_ON(i915_verify_lists(ring->dev));
2138

2139
	seqno = ring->get_seqno(ring, true);
2140

2141
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2142 2143
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;
2144

2145
	while (!list_empty(&ring->request_list)) {
2146
		struct drm_i915_gem_request *request;
2147

2148
		request = list_first_entry(&ring->request_list,
2149 2150
					   struct drm_i915_gem_request,
					   list);
2151

2152
		if (!i915_seqno_passed(seqno, request->seqno))
2153
			break;
2154

C
Chris Wilson 已提交
2155
		trace_i915_gem_request_retire(ring, request->seqno);
2156 2157 2158 2159 2160 2161
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
2162

2163
		list_del(&request->list);
2164
		i915_gem_request_remove_from_client(request);
2165
		kfree(request);
2166 2167
	}

2168 2169 2170 2171
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
2172
		struct drm_i915_gem_object *obj;
2173

2174
		obj = list_first_entry(&ring->active_list,
2175 2176
				      struct drm_i915_gem_object,
				      ring_list);
2177

2178
		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2179 2180
			break;

2181
		i915_gem_object_move_to_inactive(obj);
2182
	}
2183

C
Chris Wilson 已提交
2184 2185
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2186
		ring->irq_put(ring);
C
Chris Wilson 已提交
2187
		ring->trace_irq_seqno = 0;
2188
	}
2189

C
Chris Wilson 已提交
2190
	WARN_ON(i915_verify_lists(ring->dev));
2191
}
2192

2193 2194 2195 2196
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2197
	struct intel_ring_buffer *ring;
2198
	int i;
2199

2200 2201
	for_each_ring(ring, dev_priv, i)
		i915_gem_retire_requests_ring(ring);
2202 2203
}

2204
static void
2205 2206 2207 2208
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
2209
	struct intel_ring_buffer *ring;
2210 2211
	bool idle;
	int i;
2212 2213 2214 2215

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;
2216

2217 2218 2219 2220 2221 2222
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

2223
	i915_gem_retire_requests(dev);
2224

2225 2226
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
2227
	 */
2228
	idle = true;
2229
	for_each_ring(ring, dev_priv, i) {
2230 2231
		if (ring->gpu_caches_dirty)
			i915_add_request(ring, NULL, NULL);
2232 2233

		idle &= list_empty(&ring->request_list);
2234 2235
	}

2236
	if (!dev_priv->mm.suspended && !idle)
2237
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2238 2239
	if (idle)
		intel_mark_idle(dev);
2240

2241 2242 2243
	mutex_unlock(&dev->struct_mutex);
}

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
	int ret;

	if (obj->active) {
2255
		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2256 2257
		if (ret)
			return ret;
2258

2259 2260 2261 2262 2263 2264
		i915_gem_retire_requests_ring(obj->ring);
	}

	return 0;
}

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
	struct intel_ring_buffer *ring = NULL;
2293
	struct timespec timeout_stack, *timeout = NULL;
2294 2295 2296
	u32 seqno = 0;
	int ret = 0;

2297 2298 2299 2300
	if (args->timeout_ns >= 0) {
		timeout_stack = ns_to_timespec(args->timeout_ns);
		timeout = &timeout_stack;
	}
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2312 2313
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2314 2315 2316 2317
	if (ret)
		goto out;

	if (obj->active) {
2318
		seqno = obj->last_read_seqno;
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
		ring = obj->ring;
	}

	if (seqno == 0)
		 goto out;

	/* Do this after OLR check to make sure we make forward progress polling
	 * on this IOCTL with a 0 timeout (like busy ioctl)
	 */
	if (!args->timeout_ns) {
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

2336 2337 2338 2339 2340
	ret = __wait_seqno(ring, seqno, true, timeout);
	if (timeout) {
		WARN_ON(!timespec_valid(timeout));
		args->timeout_ns = timespec_to_ns(timeout);
	}
2341 2342 2343 2344 2345 2346 2347 2348
	return ret;

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

2372
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2373
		return i915_gem_object_wait_rendering(obj, false);
2374 2375 2376

	idx = intel_ring_sync_index(from, to);

2377
	seqno = obj->last_read_seqno;
2378 2379 2380
	if (seqno <= from->sync_seqno[idx])
		return 0;

2381 2382 2383
	ret = i915_gem_check_olr(obj->ring, seqno);
	if (ret)
		return ret;
2384

2385
	ret = to->sync_to(to, from, seqno);
2386 2387
	if (!ret)
		from->sync_seqno[idx] = seqno;
2388

2389
	return ret;
2390 2391
}

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2402 2403 2404
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2416 2417 2418
/**
 * Unbinds an object from the GTT aperture.
 */
2419
int
2420
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2421
{
2422
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2423 2424
	int ret = 0;

2425
	if (obj->gtt_space == NULL)
2426 2427
		return 0;

2428 2429
	if (obj->pin_count)
		return -EBUSY;
2430

2431 2432
	BUG_ON(obj->pages == NULL);

2433
	ret = i915_gem_object_finish_gpu(obj);
2434
	if (ret)
2435 2436 2437 2438 2439 2440
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2441
	i915_gem_object_finish_gtt(obj);
2442

2443
	/* release the fence reg _after_ flushing */
2444
	ret = i915_gem_object_put_fence(obj);
2445
	if (ret)
2446
		return ret;
2447

C
Chris Wilson 已提交
2448 2449
	trace_i915_gem_object_unbind(obj);

2450 2451
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2452 2453 2454 2455
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2456
	i915_gem_gtt_finish_object(obj);
2457

C
Chris Wilson 已提交
2458 2459
	list_del(&obj->mm_list);
	list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2460
	/* Avoid an unnecessary call to unbind on rebind. */
2461
	obj->map_and_fenceable = true;
2462

2463 2464 2465
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2466

C
Chris Wilson 已提交
2467
	return 0;
2468 2469
}

2470
static int i915_ring_idle(struct intel_ring_buffer *ring)
2471
{
2472
	if (list_empty(&ring->active_list))
2473 2474
		return 0;

2475
	return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2476 2477
}

2478
int i915_gpu_idle(struct drm_device *dev)
2479 2480
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2481
	struct intel_ring_buffer *ring;
2482
	int ret, i;
2483 2484

	/* Flush everything onto the inactive list. */
2485
	for_each_ring(ring, dev_priv, i) {
2486
		ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2487 2488
		if (ret)
			return ret;
2489 2490

		ret = i915_ring_idle(ring);
2491 2492
		if (ret)
			return ret;
2493
	}
2494

2495
	return 0;
2496 2497
}

2498 2499
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2500 2501 2502 2503
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2504 2505
	if (obj) {
		u32 size = obj->gtt_space->size;
2506

2507 2508 2509 2510 2511
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2512

2513 2514 2515 2516 2517
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2518

2519 2520
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2521 2522
}

2523 2524
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2525 2526 2527 2528
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2529 2530
	if (obj) {
		u32 size = obj->gtt_space->size;
2531

2532 2533 2534 2535 2536 2537 2538 2539 2540
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2541

2542 2543
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2544 2545
}

2546 2547
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2548 2549
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2550
	u32 val;
2551

2552 2553 2554 2555
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2556

2557 2558 2559 2560 2561
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2562

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2588 2589
}

2590 2591
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2592 2593 2594 2595
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2596 2597 2598
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2599

2600 2601 2602 2603 2604
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2605

2606 2607
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2608

2609 2610 2611 2612 2613 2614 2615 2616
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2617

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2634 2635
}

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2662
static int
C
Chris Wilson 已提交
2663
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2664
{
2665
	if (obj->last_fenced_seqno) {
2666
		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2667 2668
		if (ret)
			return ret;
2669 2670 2671 2672

		obj->last_fenced_seqno = 0;
	}

2673 2674 2675 2676 2677 2678
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2679
	obj->fenced_gpu_access = false;
2680 2681 2682 2683 2684 2685
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2686
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2687 2688
	int ret;

C
Chris Wilson 已提交
2689
	ret = i915_gem_object_flush_fence(obj);
2690 2691 2692
	if (ret)
		return ret;

2693 2694
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2695

2696 2697 2698 2699
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2700 2701 2702 2703 2704

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2705
i915_find_fence_reg(struct drm_device *dev)
2706 2707
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2708
	struct drm_i915_fence_reg *reg, *avail;
2709
	int i;
2710 2711

	/* First try to find a free reg */
2712
	avail = NULL;
2713 2714 2715
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2716
			return reg;
2717

2718
		if (!reg->pin_count)
2719
			avail = reg;
2720 2721
	}

2722 2723
	if (avail == NULL)
		return NULL;
2724 2725

	/* None available, try to steal one or wait for a user to finish */
2726
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2727
		if (reg->pin_count)
2728 2729
			continue;

C
Chris Wilson 已提交
2730
		return reg;
2731 2732
	}

C
Chris Wilson 已提交
2733
	return NULL;
2734 2735
}

2736
/**
2737
 * i915_gem_object_get_fence - set up fencing for an object
2738 2739 2740 2741 2742 2743 2744 2745 2746
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2747 2748
 *
 * For an untiled surface, this removes any existing fence.
2749
 */
2750
int
2751
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2752
{
2753
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2754
	struct drm_i915_private *dev_priv = dev->dev_private;
2755
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2756
	struct drm_i915_fence_reg *reg;
2757
	int ret;
2758

2759 2760 2761
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2762
	if (obj->fence_dirty) {
2763 2764 2765 2766
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2767

2768
	/* Just update our place in the LRU if our fence is getting reused. */
2769 2770
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2771
		if (!obj->fence_dirty) {
2772 2773 2774 2775 2776 2777 2778 2779
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2780

2781 2782 2783 2784
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2785 2786 2787
			if (ret)
				return ret;

2788
			i915_gem_object_fence_lost(old);
2789
		}
2790
	} else
2791 2792
		return 0;

2793
	i915_gem_object_update_fence(obj, reg, enable);
2794
	obj->fence_dirty = false;
2795

2796
	return 0;
2797 2798
}

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
				     struct drm_mm_node *gtt_space,
				     unsigned long cache_level)
{
	struct drm_mm_node *other;

	/* On non-LLC machines we have to be careful when putting differing
	 * types of snoopable memory together to avoid the prefetcher
	 * crossing memory domains and dieing.
	 */
	if (HAS_LLC(dev))
		return true;

	if (gtt_space == NULL)
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj;
	int err = 0;

	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
		if (obj->gtt_space == NULL) {
			printk(KERN_ERR "object found on GTT list with no space reserved\n");
			err++;
			continue;
		}

		if (obj->cache_level != obj->gtt_space->color) {
			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
			       obj->gtt_space->start,
			       obj->gtt_space->start + obj->gtt_space->size,
			       obj->cache_level,
			       obj->gtt_space->color);
			err++;
			continue;
		}

		if (!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level)) {
			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
			       obj->gtt_space->start,
			       obj->gtt_space->start + obj->gtt_space->size,
			       obj->cache_level);
			err++;
			continue;
		}
	}

	WARN_ON(err);
#endif
}

2869 2870 2871 2872
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2873
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2874
			    unsigned alignment,
2875 2876
			    bool map_and_fenceable,
			    bool nonblocking)
2877
{
2878
	struct drm_device *dev = obj->base.dev;
2879 2880
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2881
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2882
	bool mappable, fenceable;
2883
	int ret;
2884

2885
	if (obj->madv != I915_MADV_WILLNEED) {
2886 2887 2888 2889
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2900

2901
	if (alignment == 0)
2902 2903
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2904
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2905 2906 2907 2908
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2909
	size = map_and_fenceable ? fence_size : obj->base.size;
2910

2911 2912 2913
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2914
	if (obj->base.size >
2915
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2916 2917 2918 2919
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2920
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
2921 2922 2923
	if (ret)
		return ret;

2924
 search_free:
2925
	if (map_and_fenceable)
2926
		free_space =
2927 2928 2929 2930
			drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
							  size, alignment, obj->cache_level,
							  0, dev_priv->mm.gtt_mappable_end,
							  false);
2931
	else
2932 2933 2934
		free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
						      size, alignment, obj->cache_level,
						      false);
2935 2936

	if (free_space != NULL) {
2937
		if (map_and_fenceable)
2938
			obj->gtt_space =
2939
				drm_mm_get_block_range_generic(free_space,
2940
							       size, alignment, obj->cache_level,
2941
							       0, dev_priv->mm.gtt_mappable_end,
2942
							       false);
2943
		else
2944
			obj->gtt_space =
2945 2946 2947
				drm_mm_get_block_generic(free_space,
							 size, alignment, obj->cache_level,
							 false);
2948
	}
2949
	if (obj->gtt_space == NULL) {
2950
		ret = i915_gem_evict_something(dev, size, alignment,
2951
					       obj->cache_level,
2952 2953
					       map_and_fenceable,
					       nonblocking);
2954
		if (ret)
2955
			return ret;
2956

2957 2958
		goto search_free;
	}
2959 2960 2961 2962 2963 2964 2965
	if (WARN_ON(!i915_gem_valid_gtt_space(dev,
					      obj->gtt_space,
					      obj->cache_level))) {
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
		return -EINVAL;
	}
2966 2967


2968
	ret = i915_gem_gtt_prepare_object(obj);
2969
	if (ret) {
2970 2971
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
C
Chris Wilson 已提交
2972
		return ret;
2973 2974
	}

2975 2976
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2977

C
Chris Wilson 已提交
2978
	list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2979
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2980

2981
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2982

2983
	fenceable =
2984
		obj->gtt_space->size == fence_size &&
2985
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2986

2987
	mappable =
2988
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2989

2990
	obj->map_and_fenceable = mappable && fenceable;
2991

C
Chris Wilson 已提交
2992
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2993
	i915_gem_verify_gtt(dev);
2994 2995 2996 2997
	return 0;
}

void
2998
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2999 3000 3001 3002 3003
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3004
	if (obj->pages == NULL)
3005 3006
		return;

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
3018
	trace_i915_gem_object_clflush(obj);
3019

3020
	drm_clflush_sg(obj->pages);
3021 3022
}

3023 3024
/** Flushes the GTT write domain for the object if it's dirty. */
static void
3025
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3026
{
C
Chris Wilson 已提交
3027 3028
	uint32_t old_write_domain;

3029
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3030 3031
		return;

3032
	/* No actual flushing is required for the GTT write domain.  Writes
3033 3034
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3035 3036 3037 3038
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3039
	 */
3040 3041
	wmb();

3042 3043
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3044 3045

	trace_i915_gem_object_change_domain(obj,
3046
					    obj->base.read_domains,
C
Chris Wilson 已提交
3047
					    old_write_domain);
3048 3049 3050 3051
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3052
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3053
{
C
Chris Wilson 已提交
3054
	uint32_t old_write_domain;
3055

3056
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3057 3058 3059
		return;

	i915_gem_clflush_object(obj);
3060
	intel_gtt_chipset_flush();
3061 3062
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3063 3064

	trace_i915_gem_object_change_domain(obj,
3065
					    obj->base.read_domains,
C
Chris Wilson 已提交
3066
					    old_write_domain);
3067 3068
}

3069 3070 3071 3072 3073 3074
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3075
int
3076
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3077
{
3078
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
3079
	uint32_t old_write_domain, old_read_domains;
3080
	int ret;
3081

3082
	/* Not valid to be called on unbound objects. */
3083
	if (obj->gtt_space == NULL)
3084 3085
		return -EINVAL;

3086 3087 3088
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3089 3090 3091
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
3092

3093
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3094

3095 3096
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3097

3098 3099 3100
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3101 3102
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3103
	if (write) {
3104 3105 3106
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3107 3108
	}

C
Chris Wilson 已提交
3109 3110 3111 3112
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3113 3114 3115 3116
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

3117 3118 3119
	return 0;
}

3120 3121 3122
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3123 3124
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3135 3136 3137 3138 3139 3140
	if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3152
		if (INTEL_INFO(dev)->gen < 6) {
3153 3154 3155 3156 3157
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3158 3159
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
3160 3161 3162
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
3163 3164

		obj->gtt_space->color = cache_level;
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
3191
	i915_gem_verify_gtt(dev);
3192 3193 3194
	return 0;
}

B
Ben Widawsky 已提交
3195 3196
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3197
{
B
Ben Widawsky 已提交
3198
	struct drm_i915_gem_caching *args = data;
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
	struct drm_i915_gem_object *obj;
	int ret;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

B
Ben Widawsky 已提交
3212
	args->caching = obj->cache_level != I915_CACHE_NONE;
3213 3214 3215 3216 3217 3218 3219

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

B
Ben Widawsky 已提交
3220 3221
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3222
{
B
Ben Widawsky 已提交
3223
	struct drm_i915_gem_caching *args = data;
3224 3225 3226 3227
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3228 3229
	switch (args->caching) {
	case I915_CACHING_NONE:
3230 3231
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3232
	case I915_CACHING_CACHED:
3233 3234 3235 3236 3237 3238
		level = I915_CACHE_LLC;
		break;
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3239 3240 3241 3242
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3257
/*
3258 3259 3260
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3261 3262
 */
int
3263 3264
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3265
				     struct intel_ring_buffer *pipelined)
3266
{
3267
	u32 old_read_domains, old_write_domain;
3268 3269
	int ret;

3270
	if (pipelined != obj->ring) {
3271 3272
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3273 3274 3275
			return ret;
	}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

3289 3290 3291 3292
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
3293
	ret = i915_gem_object_pin(obj, alignment, true, false);
3294 3295 3296
	if (ret)
		return ret;

3297 3298
	i915_gem_object_flush_cpu_write_domain(obj);

3299
	old_write_domain = obj->base.write_domain;
3300
	old_read_domains = obj->base.read_domains;
3301 3302 3303 3304

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3305
	obj->base.write_domain = 0;
3306
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3307 3308 3309

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3310
					    old_write_domain);
3311 3312 3313 3314

	return 0;
}

3315
int
3316
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3317
{
3318 3319
	int ret;

3320
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3321 3322
		return 0;

3323
	ret = i915_gem_object_wait_rendering(obj, false);
3324 3325 3326
	if (ret)
		return ret;

3327 3328
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3329
	return 0;
3330 3331
}

3332 3333 3334 3335 3336 3337
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3338
int
3339
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3340
{
C
Chris Wilson 已提交
3341
	uint32_t old_write_domain, old_read_domains;
3342 3343
	int ret;

3344 3345 3346
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3347 3348 3349
	ret = i915_gem_object_wait_rendering(obj, !write);
	if (ret)
		return ret;
3350

3351
	i915_gem_object_flush_gtt_write_domain(obj);
3352

3353 3354
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3355

3356
	/* Flush the CPU cache if it's still invalid. */
3357
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3358 3359
		i915_gem_clflush_object(obj);

3360
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3361 3362 3363 3364 3365
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3366
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3367 3368 3369 3370 3371

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3372 3373
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3374
	}
3375

C
Chris Wilson 已提交
3376 3377 3378 3379
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3380 3381 3382
	return 0;
}

3383 3384 3385
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3386 3387 3388 3389
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3390 3391 3392
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3393
static int
3394
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3395
{
3396 3397
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3398
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3399 3400 3401 3402
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3403

3404 3405 3406
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3407
	spin_lock(&file_priv->mm.lock);
3408
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3409 3410
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3411

3412 3413
		ring = request->ring;
		seqno = request->seqno;
3414
	}
3415
	spin_unlock(&file_priv->mm.lock);
3416

3417 3418
	if (seqno == 0)
		return 0;
3419

3420
	ret = __wait_seqno(ring, seqno, true, NULL);
3421 3422
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3423 3424 3425 3426

	return ret;
}

3427
int
3428 3429
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3430 3431
		    bool map_and_fenceable,
		    bool nonblocking)
3432 3433 3434
{
	int ret;

3435 3436
	if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
		return -EBUSY;
3437

3438 3439 3440 3441
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3442
			     "bo is already pinned with incorrect alignment:"
3443 3444
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3445
			     obj->gtt_offset, alignment,
3446
			     map_and_fenceable,
3447
			     obj->map_and_fenceable);
3448 3449 3450 3451 3452 3453
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3454
	if (obj->gtt_space == NULL) {
3455
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3456 3457
						  map_and_fenceable,
						  nonblocking);
3458
		if (ret)
3459
			return ret;
3460
	}
J
Jesse Barnes 已提交
3461

3462 3463 3464
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3465
	obj->pin_count++;
3466
	obj->pin_mappable |= map_and_fenceable;
3467 3468 3469 3470 3471

	return 0;
}

void
3472
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3473
{
3474 3475
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3476

3477
	if (--obj->pin_count == 0)
3478
		obj->pin_mappable = false;
3479 3480 3481 3482
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3483
		   struct drm_file *file)
3484 3485
{
	struct drm_i915_gem_pin *args = data;
3486
	struct drm_i915_gem_object *obj;
3487 3488
	int ret;

3489 3490 3491
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3492

3493
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3494
	if (&obj->base == NULL) {
3495 3496
		ret = -ENOENT;
		goto unlock;
3497 3498
	}

3499
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3500
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3501 3502
		ret = -EINVAL;
		goto out;
3503 3504
	}

3505
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3506 3507
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3508 3509
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3510 3511
	}

3512 3513 3514
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3515
		ret = i915_gem_object_pin(obj, args->alignment, true, false);
3516 3517
		if (ret)
			goto out;
3518 3519 3520 3521 3522
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3523
	i915_gem_object_flush_cpu_write_domain(obj);
3524
	args->offset = obj->gtt_offset;
3525
out:
3526
	drm_gem_object_unreference(&obj->base);
3527
unlock:
3528
	mutex_unlock(&dev->struct_mutex);
3529
	return ret;
3530 3531 3532 3533
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3534
		     struct drm_file *file)
3535 3536
{
	struct drm_i915_gem_pin *args = data;
3537
	struct drm_i915_gem_object *obj;
3538
	int ret;
3539

3540 3541 3542
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3543

3544
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3545
	if (&obj->base == NULL) {
3546 3547
		ret = -ENOENT;
		goto unlock;
3548
	}
3549

3550
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3551 3552
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3553 3554
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3555
	}
3556 3557 3558
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3559 3560
		i915_gem_object_unpin(obj);
	}
3561

3562
out:
3563
	drm_gem_object_unreference(&obj->base);
3564
unlock:
3565
	mutex_unlock(&dev->struct_mutex);
3566
	return ret;
3567 3568 3569 3570
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3571
		    struct drm_file *file)
3572 3573
{
	struct drm_i915_gem_busy *args = data;
3574
	struct drm_i915_gem_object *obj;
3575 3576
	int ret;

3577
	ret = i915_mutex_lock_interruptible(dev);
3578
	if (ret)
3579
		return ret;
3580

3581
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3582
	if (&obj->base == NULL) {
3583 3584
		ret = -ENOENT;
		goto unlock;
3585
	}
3586

3587 3588 3589 3590
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3591
	 */
3592
	ret = i915_gem_object_flush_active(obj);
3593

3594
	args->busy = obj->active;
3595 3596 3597 3598
	if (obj->ring) {
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
		args->busy |= intel_ring_flag(obj->ring) << 16;
	}
3599

3600
	drm_gem_object_unreference(&obj->base);
3601
unlock:
3602
	mutex_unlock(&dev->struct_mutex);
3603
	return ret;
3604 3605 3606 3607 3608 3609
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3610
	return i915_gem_ring_throttle(dev, file_priv);
3611 3612
}

3613 3614 3615 3616 3617
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3618
	struct drm_i915_gem_object *obj;
3619
	int ret;
3620 3621 3622 3623 3624 3625 3626 3627 3628

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3629 3630 3631 3632
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3633
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3634
	if (&obj->base == NULL) {
3635 3636
		ret = -ENOENT;
		goto unlock;
3637 3638
	}

3639
	if (obj->pin_count) {
3640 3641
		ret = -EINVAL;
		goto out;
3642 3643
	}

3644 3645
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3646

C
Chris Wilson 已提交
3647 3648
	/* if the object is no longer attached, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3649 3650
		i915_gem_object_truncate(obj);

3651
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3652

3653
out:
3654
	drm_gem_object_unreference(&obj->base);
3655
unlock:
3656
	mutex_unlock(&dev->struct_mutex);
3657
	return ret;
3658 3659
}

3660 3661
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3662 3663 3664 3665 3666 3667
{
	INIT_LIST_HEAD(&obj->mm_list);
	INIT_LIST_HEAD(&obj->gtt_list);
	INIT_LIST_HEAD(&obj->ring_list);
	INIT_LIST_HEAD(&obj->exec_list);

3668 3669
	obj->ops = ops;

3670 3671 3672 3673 3674 3675 3676 3677
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

3678 3679 3680 3681 3682
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3683 3684
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3685
{
3686
	struct drm_i915_gem_object *obj;
3687
	struct address_space *mapping;
3688
	u32 mask;
3689

3690 3691 3692
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3693

3694 3695 3696 3697
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3698

3699 3700 3701 3702 3703 3704 3705
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3706
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3707
	mapping_set_gfp_mask(mapping, mask);
3708

3709
	i915_gem_object_init(obj, &i915_gem_object_ops);
3710

3711 3712
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3713

3714 3715
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3731
	return obj;
3732 3733 3734 3735 3736
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3737

3738 3739 3740
	return 0;
}

3741
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3742
{
3743
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3744
	struct drm_device *dev = obj->base.dev;
3745
	drm_i915_private_t *dev_priv = dev->dev_private;
3746

3747 3748
	trace_i915_gem_object_destroy(obj);

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3764
	obj->pages_pin_count = 0;
3765
	i915_gem_object_put_pages(obj);
3766
	i915_gem_object_free_mmap_offset(obj);
3767

3768 3769
	BUG_ON(obj->pages);

3770 3771 3772
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);

3773 3774
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3775

3776 3777
	kfree(obj->bit_17);
	kfree(obj);
3778 3779
}

3780 3781 3782 3783 3784
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3785

3786
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3787

3788
	if (dev_priv->mm.suspended) {
3789 3790
		mutex_unlock(&dev->struct_mutex);
		return 0;
3791 3792
	}

3793
	ret = i915_gpu_idle(dev);
3794 3795
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3796
		return ret;
3797
	}
3798
	i915_gem_retire_requests(dev);
3799

3800
	/* Under UMS, be paranoid and evict. */
3801
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
C
Chris Wilson 已提交
3802
		i915_gem_evict_everything(dev);
3803

3804 3805
	i915_gem_reset_fences(dev);

3806 3807 3808 3809 3810
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3811
	del_timer_sync(&dev_priv->hangcheck_timer);
3812 3813

	i915_kernel_lost_context(dev);
3814
	i915_gem_cleanup_ringbuffer(dev);
3815

3816 3817
	mutex_unlock(&dev->struct_mutex);

3818 3819 3820
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3821 3822 3823
	return 0;
}

B
Ben Widawsky 已提交
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
void i915_gem_l3_remap(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 misccpctl;
	int i;

	if (!IS_IVYBRIDGE(dev))
		return;

	if (!dev_priv->mm.l3_remap_info)
		return;

	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	POSTING_READ(GEN7_MISCCPCTL);

	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
		u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
		if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG("0x%x was already programmed to %x\n",
				  GEN7_L3LOG_BASE + i, remap);
		if (remap && !dev_priv->mm.l3_remap_info[i/4])
			DRM_DEBUG_DRIVER("Clearing remapped register\n");
		I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
	}

	/* Make sure all the writes land before disabling dop clock gating */
	POSTING_READ(GEN7_L3LOG_BASE);

	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}

3856 3857 3858 3859
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3860
	if (INTEL_INFO(dev)->gen < 5 ||
3861 3862 3863 3864 3865 3866
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3867 3868 3869
	if (IS_GEN5(dev))
		return;

3870 3871
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3872
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3873
	else
3874
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3875
}
D
Daniel Vetter 已提交
3876 3877 3878 3879 3880 3881

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3882 3883 3884
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3885 3886 3887 3888 3889
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3908 3909 3910 3911
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3912 3913 3914 3915
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3916 3917 3918 3919 3920

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3921 3922
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3923
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3924 3925 3926 3927 3928
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

3929
	for_each_ring(ring, dev_priv, i) {
D
Daniel Vetter 已提交
3930 3931
		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3932
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3933 3934 3935 3936 3937 3938

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

3955
int
3956
i915_gem_init_hw(struct drm_device *dev)
3957 3958 3959
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3960

D
Daniel Vetter 已提交
3961 3962 3963
	if (!intel_enable_gtt())
		return -EIO;

B
Ben Widawsky 已提交
3964 3965
	i915_gem_l3_remap(dev);

3966 3967
	i915_gem_init_swizzling(dev);

3968
	ret = intel_init_render_ring_buffer(dev);
3969
	if (ret)
3970
		return ret;
3971 3972

	if (HAS_BSD(dev)) {
3973
		ret = intel_init_bsd_ring_buffer(dev);
3974 3975
		if (ret)
			goto cleanup_render_ring;
3976
	}
3977

3978
	if (intel_enable_blt(dev)) {
3979 3980 3981 3982 3983
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3984 3985
	dev_priv->next_seqno = 1;

3986 3987 3988 3989 3990
	/*
	 * XXX: There was some w/a described somewhere suggesting loading
	 * contexts before PPGTT.
	 */
	i915_gem_context_init(dev);
D
Daniel Vetter 已提交
3991 3992
	i915_gem_init_ppgtt(dev);

3993 3994
	return 0;

3995
cleanup_bsd_ring:
3996
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3997
cleanup_render_ring:
3998
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3999 4000 4001
	return ret;
}

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

4061 4062 4063
	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->dri1.allow_batchbuffer = 1;
4064 4065 4066
	return 0;
}

4067 4068 4069 4070
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4071
	struct intel_ring_buffer *ring;
4072
	int i;
4073

4074 4075
	for_each_ring(ring, dev_priv, i)
		intel_cleanup_ring_buffer(ring);
4076 4077
}

4078 4079 4080 4081 4082
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
4083
	int ret;
4084

J
Jesse Barnes 已提交
4085 4086 4087
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4088
	if (atomic_read(&dev_priv->mm.wedged)) {
4089
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4090
		atomic_set(&dev_priv->mm.wedged, 0);
4091 4092 4093
	}

	mutex_lock(&dev->struct_mutex);
4094 4095
	dev_priv->mm.suspended = 0;

4096
	ret = i915_gem_init_hw(dev);
4097 4098
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4099
		return ret;
4100
	}
4101

4102
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4103
	mutex_unlock(&dev->struct_mutex);
4104

4105 4106 4107
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4108

4109
	return 0;
4110 4111 4112 4113 4114 4115 4116 4117

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4118 4119 4120 4121 4122 4123
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4124 4125 4126
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4127
	drm_irq_uninstall(dev);
4128
	return i915_gem_idle(dev);
4129 4130 4131 4132 4133 4134 4135
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4136 4137 4138
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4139 4140 4141
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4142 4143
}

4144 4145 4146 4147 4148 4149 4150
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

4151 4152 4153
void
i915_gem_load(struct drm_device *dev)
{
4154
	int i;
4155 4156
	drm_i915_private_t *dev_priv = dev->dev_private;

4157
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4158
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4159 4160
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4161
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4162 4163
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
4164
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4165
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4166 4167
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4168
	init_completion(&dev_priv->error_completion);
4169

4170 4171
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
4172 4173
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4174 4175
	}

4176 4177
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4178
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4179 4180
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4181

4182
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4183 4184 4185 4186
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4187
	/* Initialize fence registers to zero */
4188
	i915_gem_reset_fences(dev);
4189

4190
	i915_gem_detect_bit_6_swizzle(dev);
4191
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4192

4193 4194
	dev_priv->mm.interruptible = true;

4195 4196 4197
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
4198
}
4199 4200 4201 4202 4203

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4204 4205
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4206 4207 4208 4209 4210 4211 4212 4213
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4214
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4215 4216 4217 4218 4219
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4220
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4233
	kfree(phys_obj);
4234 4235 4236
	return ret;
}

4237
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4262
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4263 4264 4265 4266
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
4267
				 struct drm_i915_gem_object *obj)
4268
{
4269
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4270
	char *vaddr;
4271 4272 4273
	int i;
	int page_count;

4274
	if (!obj->phys_obj)
4275
		return;
4276
	vaddr = obj->phys_obj->handle->vaddr;
4277

4278
	page_count = obj->base.size / PAGE_SIZE;
4279
	for (i = 0; i < page_count; i++) {
4280
		struct page *page = shmem_read_mapping_page(mapping, i);
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
4292
	}
4293
	intel_gtt_chipset_flush();
4294

4295 4296
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
4297 4298 4299 4300
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4301
			    struct drm_i915_gem_object *obj,
4302 4303
			    int id,
			    int align)
4304
{
4305
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4306 4307 4308 4309 4310 4311 4312 4313
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4314 4315
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
4316 4317 4318 4319 4320 4321 4322
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4323
						obj->base.size, align);
4324
		if (ret) {
4325 4326
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
4327
			return ret;
4328 4329 4330 4331
		}
	}

	/* bind to the object */
4332 4333
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
4334

4335
	page_count = obj->base.size / PAGE_SIZE;
4336 4337

	for (i = 0; i < page_count; i++) {
4338 4339 4340
		struct page *page;
		char *dst, *src;

4341
		page = shmem_read_mapping_page(mapping, i);
4342 4343
		if (IS_ERR(page))
			return PTR_ERR(page);
4344

4345
		src = kmap_atomic(page);
4346
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4347
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
4348
		kunmap_atomic(src);
4349

4350 4351 4352
		mark_page_accessed(page);
		page_cache_release(page);
	}
4353

4354 4355 4356 4357
	return 0;
}

static int
4358 4359
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
4360 4361 4362
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4363
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4364
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4365

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
4379

4380
	intel_gtt_chipset_flush();
4381 4382
	return 0;
}
4383

4384
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4385
{
4386
	struct drm_i915_file_private *file_priv = file->driver_priv;
4387 4388 4389 4390 4391

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4392
	spin_lock(&file_priv->mm.lock);
4393 4394 4395 4396 4397 4398 4399 4400 4401
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4402
	spin_unlock(&file_priv->mm.lock);
4403
}
4404 4405

static int
4406
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4407
{
4408 4409 4410 4411 4412
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
C
Chris Wilson 已提交
4413
	struct drm_i915_gem_object *obj;
4414
	int nr_to_scan = sc->nr_to_scan;
4415 4416 4417
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4418
		return 0;
4419

C
Chris Wilson 已提交
4420 4421 4422 4423
	if (nr_to_scan) {
		nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
		if (nr_to_scan > 0)
			i915_gem_shrink_all(dev_priv);
4424 4425
	}

4426
	cnt = 0;
C
Chris Wilson 已提交
4427
	list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4428 4429
		if (obj->pages_pin_count == 0)
			cnt += obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
4430
	list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4431
		if (obj->pin_count == 0 && obj->pages_pin_count == 0)
C
Chris Wilson 已提交
4432
			cnt += obj->base.size >> PAGE_SHIFT;
4433 4434

	mutex_unlock(&dev->struct_mutex);
C
Chris Wilson 已提交
4435
	return cnt;
4436
}