i915_gem.c 99.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
45 46
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
47
				struct drm_i915_gem_pwrite *args,
48
				struct drm_file *file);
49

50 51 52 53 54 55
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

56
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57
				    struct shrink_control *sc);
58
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
59

60 61 62 63 64 65 66 67
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
68
	obj->fence_dirty = false;
69 70 71
	obj->fence_reg = I915_FENCE_REG_NONE;
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

87 88
static int
i915_gem_wait_for_error(struct drm_device *dev)
89 90 91 92 93 94 95 96 97 98 99 100 101
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

102 103 104 105 106 107 108 109 110 111 112
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
113 114
}

115
int i915_mutex_lock_interruptible(struct drm_device *dev)
116 117 118
{
	int ret;

119
	ret = i915_gem_wait_for_error(dev);
120 121 122 123 124 125 126
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

127
	WARN_ON(i915_verify_lists(dev));
128 129
	return 0;
}
130

131
static inline bool
132
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
133
{
134
	return !obj->active;
135 136
}

J
Jesse Barnes 已提交
137 138
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
139
		    struct drm_file *file)
J
Jesse Barnes 已提交
140 141
{
	struct drm_i915_gem_init *args = data;
142

143 144 145
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return -ENODEV;

146 147 148
	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
149

150 151 152 153
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
154
	mutex_lock(&dev->struct_mutex);
155 156
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
157 158
	mutex_unlock(&dev->struct_mutex);

159
	return 0;
160 161
}

162 163
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164
			    struct drm_file *file)
165
{
166
	struct drm_i915_private *dev_priv = dev->dev_private;
167
	struct drm_i915_gem_get_aperture *args = data;
168 169
	struct drm_i915_gem_object *obj;
	size_t pinned;
170

171
	pinned = 0;
172
	mutex_lock(&dev->struct_mutex);
173 174 175
	list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
		if (obj->pin_count)
			pinned += obj->gtt_space->size;
176
	mutex_unlock(&dev->struct_mutex);
177

178
	args->aper_size = dev_priv->mm.gtt_total;
179
	args->aper_available_size = args->aper_size - pinned;
180

181 182 183
	return 0;
}

184 185 186 187 188
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
189
{
190
	struct drm_i915_gem_object *obj;
191 192
	int ret;
	u32 handle;
193

194
	size = roundup(size, PAGE_SIZE);
195 196
	if (size == 0)
		return -EINVAL;
197 198

	/* Allocate the new object */
199
	obj = i915_gem_alloc_object(dev, size);
200 201 202
	if (obj == NULL)
		return -ENOMEM;

203
	ret = drm_gem_handle_create(file, &obj->base, &handle);
204
	if (ret) {
205 206
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
207
		kfree(obj);
208
		return ret;
209
	}
210

211
	/* drop reference from allocate - handle holds it now */
212
	drm_gem_object_unreference(&obj->base);
213 214
	trace_i915_gem_object_create(obj);

215
	*handle_p = handle;
216 217 218
	return 0;
}

219 220 221 222 223 224
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
225
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
246

247 248 249 250
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

251
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
252
{
253
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
254 255

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
256
		obj->tiling_mode != I915_TILING_NONE;
257 258
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

285
static inline int
286 287
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

311 312 313
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
314
static int
315 316 317 318 319 320 321
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

322
	if (unlikely(page_do_bit17_swizzling))
323 324 325 326 327 328 329 330 331 332 333 334 335 336
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

337 338 339 340
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
341
	if (unlikely(swizzled)) {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

359 360 361 362 363 364 365 366 367 368 369 370
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
371 372 373
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
374 375 376 377 378 379 380 381 382 383 384 385 386 387

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

388
static int
389 390 391 392
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
393
{
394
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
395
	char __user *user_data;
396
	ssize_t remain;
397
	loff_t offset;
398
	int shmem_page_offset, page_length, ret = 0;
399
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
400
	int hit_slowpath = 0;
401
	int prefaulted = 0;
402
	int needs_clflush = 0;
403
	int release_page;
404

405
	user_data = (char __user *) (uintptr_t) args->data_ptr;
406 407
	remain = args->size;

408
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
409

410 411 412 413 414 415 416 417 418 419 420
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
421

422
	offset = args->offset;
423 424

	while (remain > 0) {
425 426
		struct page *page;

427 428 429 430 431
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
432
		shmem_page_offset = offset_in_page(offset);
433 434 435 436
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

437 438 439 440 441 442 443 444 445 446
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
447
		}
448

449 450 451
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

452 453 454 455 456
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
457 458

		hit_slowpath = 1;
459
		page_cache_get(page);
460 461
		mutex_unlock(&dev->struct_mutex);

462
		if (!prefaulted) {
463
			ret = fault_in_multipages_writeable(user_data, remain);
464 465 466 467 468 469 470
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
471

472 473 474
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
475

476
		mutex_lock(&dev->struct_mutex);
477
		page_cache_release(page);
478
next_page:
479
		mark_page_accessed(page);
480 481
		if (release_page)
			page_cache_release(page);
482

483 484 485 486 487
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

488
		remain -= page_length;
489
		user_data += page_length;
490 491 492
		offset += page_length;
	}

493
out:
494 495 496 497 498
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
499 500 501 502

	return ret;
}

503 504 505 506 507 508 509
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
510
		     struct drm_file *file)
511 512
{
	struct drm_i915_gem_pread *args = data;
513
	struct drm_i915_gem_object *obj;
514
	int ret = 0;
515

516 517 518 519 520 521 522 523
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

524
	ret = i915_mutex_lock_interruptible(dev);
525
	if (ret)
526
		return ret;
527

528
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
529
	if (&obj->base == NULL) {
530 531
		ret = -ENOENT;
		goto unlock;
532
	}
533

534
	/* Bounds check source.  */
535 536
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
537
		ret = -EINVAL;
538
		goto out;
C
Chris Wilson 已提交
539 540
	}

C
Chris Wilson 已提交
541 542
	trace_i915_gem_object_pread(obj, args->offset, args->size);

543
	ret = i915_gem_shmem_pread(dev, obj, args, file);
544

545
out:
546
	drm_gem_object_unreference(&obj->base);
547
unlock:
548
	mutex_unlock(&dev->struct_mutex);
549
	return ret;
550 551
}

552 553
/* This is the fast write path which cannot handle
 * page faults in the source data
554
 */
555 556 557 558 559 560

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
561
{
562 563
	void __iomem *vaddr_atomic;
	void *vaddr;
564
	unsigned long unwritten;
565

P
Peter Zijlstra 已提交
566
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
567 568 569
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
570
						      user_data, length);
P
Peter Zijlstra 已提交
571
	io_mapping_unmap_atomic(vaddr_atomic);
572
	return unwritten;
573 574
}

575 576 577 578
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
579
static int
580 581
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
582
			 struct drm_i915_gem_pwrite *args,
583
			 struct drm_file *file)
584
{
585
	drm_i915_private_t *dev_priv = dev->dev_private;
586
	ssize_t remain;
587
	loff_t offset, page_base;
588
	char __user *user_data;
D
Daniel Vetter 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
602 603 604 605

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

606
	offset = obj->gtt_offset + args->offset;
607 608 609 610

	while (remain > 0) {
		/* Operation in this page
		 *
611 612 613
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
614
		 */
615 616
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
617 618 619 620 621
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
622 623
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
624
		 */
625
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
626 627 628 629
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
630

631 632 633
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
634 635
	}

D
Daniel Vetter 已提交
636 637 638
out_unpin:
	i915_gem_object_unpin(obj);
out:
639
	return ret;
640 641
}

642 643 644 645
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
646
static int
647 648 649 650 651
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
652
{
653
	char *vaddr;
654
	int ret;
655

656
	if (unlikely(page_do_bit17_swizzling))
657
		return -EINVAL;
658

659 660 661 662 663 664 665 666 667 668 669
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
670 671 672 673

	return ret;
}

674 675
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
676
static int
677 678 679 680 681
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
682
{
683 684
	char *vaddr;
	int ret;
685

686
	vaddr = kmap(page);
687
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
688 689 690
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
691 692
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
693 694
						user_data,
						page_length);
695 696 697 698 699
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
700 701 702
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
703
	kunmap(page);
704

705
	return ret;
706 707 708
}

static int
709 710 711 712
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
713
{
714
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
715
	ssize_t remain;
716 717
	loff_t offset;
	char __user *user_data;
718
	int shmem_page_offset, page_length, ret = 0;
719
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
720
	int hit_slowpath = 0;
721 722
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
723
	int release_page;
724

725
	user_data = (char __user *) (uintptr_t) args->data_ptr;
726 727
	remain = args->size;

728
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

747
	offset = args->offset;
748
	obj->dirty = 1;
749

750
	while (remain > 0) {
751
		struct page *page;
752
		int partial_cacheline_write;
753

754 755 756 757 758
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
759
		shmem_page_offset = offset_in_page(offset);
760 761 762 763 764

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

765 766 767 768 769 770 771
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

772 773 774 775 776 777 778 779 780 781
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
782 783
		}

784 785 786
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

787 788 789 790 791 792
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
793 794

		hit_slowpath = 1;
795
		page_cache_get(page);
796 797
		mutex_unlock(&dev->struct_mutex);

798 799 800 801
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
802

803
		mutex_lock(&dev->struct_mutex);
804
		page_cache_release(page);
805
next_page:
806 807
		set_page_dirty(page);
		mark_page_accessed(page);
808 809
		if (release_page)
			page_cache_release(page);
810

811 812 813 814 815
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

816
		remain -= page_length;
817
		user_data += page_length;
818
		offset += page_length;
819 820
	}

821
out:
822 823 824 825 826 827 828 829 830 831
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
832
	}
833

834 835 836
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

837
	return ret;
838 839 840 841 842 843 844 845 846
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
847
		      struct drm_file *file)
848 849
{
	struct drm_i915_gem_pwrite *args = data;
850
	struct drm_i915_gem_object *obj;
851 852 853 854 855 856 857 858 859 860
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

861 862
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
863 864
	if (ret)
		return -EFAULT;
865

866
	ret = i915_mutex_lock_interruptible(dev);
867
	if (ret)
868
		return ret;
869

870
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
871
	if (&obj->base == NULL) {
872 873
		ret = -ENOENT;
		goto unlock;
874
	}
875

876
	/* Bounds check destination. */
877 878
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
879
		ret = -EINVAL;
880
		goto out;
C
Chris Wilson 已提交
881 882
	}

C
Chris Wilson 已提交
883 884
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
885
	ret = -EFAULT;
886 887 888 889 890 891
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
892
	if (obj->phys_obj) {
893
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
894 895 896 897
		goto out;
	}

	if (obj->gtt_space &&
898
	    obj->cache_level == I915_CACHE_NONE &&
899
	    obj->tiling_mode == I915_TILING_NONE &&
900
	    obj->map_and_fenceable &&
901
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
902
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
903 904 905
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
906
	}
907

908
	if (ret == -EFAULT)
D
Daniel Vetter 已提交
909
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
910

911
out:
912
	drm_gem_object_unreference(&obj->base);
913
unlock:
914
	mutex_unlock(&dev->struct_mutex);
915 916 917 918
	return ret;
}

/**
919 920
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
921 922 923
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
924
			  struct drm_file *file)
925 926
{
	struct drm_i915_gem_set_domain *args = data;
927
	struct drm_i915_gem_object *obj;
928 929
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
930 931
	int ret;

932
	/* Only handle setting domains to types used by the CPU. */
933
	if (write_domain & I915_GEM_GPU_DOMAINS)
934 935
		return -EINVAL;

936
	if (read_domains & I915_GEM_GPU_DOMAINS)
937 938 939 940 941 942 943 944
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

945
	ret = i915_mutex_lock_interruptible(dev);
946
	if (ret)
947
		return ret;
948

949
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
950
	if (&obj->base == NULL) {
951 952
		ret = -ENOENT;
		goto unlock;
953
	}
954

955 956
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
957 958 959 960 961 962 963

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
964
	} else {
965
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
966 967
	}

968
	drm_gem_object_unreference(&obj->base);
969
unlock:
970 971 972 973 974 975 976 977 978
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
979
			 struct drm_file *file)
980 981
{
	struct drm_i915_gem_sw_finish *args = data;
982
	struct drm_i915_gem_object *obj;
983 984
	int ret = 0;

985
	ret = i915_mutex_lock_interruptible(dev);
986
	if (ret)
987
		return ret;
988

989
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
990
	if (&obj->base == NULL) {
991 992
		ret = -ENOENT;
		goto unlock;
993 994 995
	}

	/* Pinned buffers may be scanout, so flush the cache */
996
	if (obj->pin_count)
997 998
		i915_gem_object_flush_cpu_write_domain(obj);

999
	drm_gem_object_unreference(&obj->base);
1000
unlock:
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1014
		    struct drm_file *file)
1015 1016 1017 1018 1019
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1020
	obj = drm_gem_object_lookup(dev, file, args->handle);
1021
	if (obj == NULL)
1022
		return -ENOENT;
1023 1024 1025 1026 1027 1028

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1029
	drm_gem_object_unreference_unlocked(obj);
1030 1031 1032 1033 1034 1035 1036 1037
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1056 1057
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1058
	drm_i915_private_t *dev_priv = dev->dev_private;
1059 1060 1061
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1062
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1063 1064 1065 1066 1067

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1068 1069 1070
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1071

C
Chris Wilson 已提交
1072 1073
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1074
	/* Now bind it into the GTT if needed */
1075 1076 1077 1078
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1079
	}
1080
	if (!obj->gtt_space) {
1081
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1082 1083
		if (ret)
			goto unlock;
1084

1085 1086 1087 1088
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1089

1090 1091 1092
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1093
	ret = i915_gem_object_get_fence(obj);
1094 1095
	if (ret)
		goto unlock;
1096

1097 1098
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1099

1100 1101
	obj->fault_mappable = true;

1102
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1103 1104 1105 1106
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1107
unlock:
1108
	mutex_unlock(&dev->struct_mutex);
1109
out:
1110
	switch (ret) {
1111
	case -EIO:
1112
	case -EAGAIN:
1113 1114 1115 1116 1117 1118 1119
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1120
		set_need_resched();
1121 1122
	case 0:
	case -ERESTARTSYS:
1123
	case -EINTR:
1124
		return VM_FAULT_NOPAGE;
1125 1126 1127
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1128
		return VM_FAULT_SIGBUS;
1129 1130 1131
	}
}

1132 1133 1134 1135
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1136
 * Preserve the reservation of the mmapping with the DRM core code, but
1137 1138 1139 1140 1141 1142 1143 1144 1145
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1146
void
1147
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1148
{
1149 1150
	if (!obj->fault_mappable)
		return;
1151

1152 1153 1154 1155
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1156

1157
	obj->fault_mappable = false;
1158 1159
}

1160
static uint32_t
1161
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1162
{
1163
	uint32_t gtt_size;
1164 1165

	if (INTEL_INFO(dev)->gen >= 4 ||
1166 1167
	    tiling_mode == I915_TILING_NONE)
		return size;
1168 1169 1170

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1171
		gtt_size = 1024*1024;
1172
	else
1173
		gtt_size = 512*1024;
1174

1175 1176
	while (gtt_size < size)
		gtt_size <<= 1;
1177

1178
	return gtt_size;
1179 1180
}

1181 1182 1183 1184 1185
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1186
 * potential fence register mapping.
1187 1188
 */
static uint32_t
1189 1190 1191
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1192 1193 1194 1195 1196
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1197
	if (INTEL_INFO(dev)->gen >= 4 ||
1198
	    tiling_mode == I915_TILING_NONE)
1199 1200
		return 4096;

1201 1202 1203 1204
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1205
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1206 1207
}

1208 1209 1210
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1211 1212 1213
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1214 1215 1216 1217
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1218
uint32_t
1219 1220 1221
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1222 1223 1224 1225 1226
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1227
	    tiling_mode == I915_TILING_NONE)
1228 1229
		return 4096;

1230 1231 1232
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1233
	 */
1234
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1235 1236
}

1237
int
1238 1239 1240 1241
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1242
{
1243
	struct drm_i915_private *dev_priv = dev->dev_private;
1244
	struct drm_i915_gem_object *obj;
1245 1246
	int ret;

1247
	ret = i915_mutex_lock_interruptible(dev);
1248
	if (ret)
1249
		return ret;
1250

1251
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1252
	if (&obj->base == NULL) {
1253 1254 1255
		ret = -ENOENT;
		goto unlock;
	}
1256

1257
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1258
		ret = -E2BIG;
1259
		goto out;
1260 1261
	}

1262
	if (obj->madv != I915_MADV_WILLNEED) {
1263
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1264 1265
		ret = -EINVAL;
		goto out;
1266 1267
	}

1268
	if (!obj->base.map_list.map) {
1269
		ret = drm_gem_create_mmap_offset(&obj->base);
1270 1271
		if (ret)
			goto out;
1272 1273
	}

1274
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1275

1276
out:
1277
	drm_gem_object_unreference(&obj->base);
1278
unlock:
1279
	mutex_unlock(&dev->struct_mutex);
1280
	return ret;
1281 1282
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1308
static int
1309
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1320 1321 1322 1323
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1324 1325
		return -ENOMEM;

1326
	inode = obj->base.filp->f_path.dentry->d_inode;
1327
	mapping = inode->i_mapping;
1328 1329
	gfpmask |= mapping_gfp_mask(mapping);

1330
	for (i = 0; i < page_count; i++) {
1331
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1332 1333 1334
		if (IS_ERR(page))
			goto err_pages;

1335
		obj->pages[i] = page;
1336 1337
	}

1338
	if (i915_gem_object_needs_bit17_swizzle(obj))
1339 1340 1341 1342 1343 1344
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1345
		page_cache_release(obj->pages[i]);
1346

1347 1348
	drm_free_large(obj->pages);
	obj->pages = NULL;
1349 1350 1351
	return PTR_ERR(page);
}

1352
static void
1353
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1354
{
1355
	int page_count = obj->base.size / PAGE_SIZE;
1356 1357
	int i;

1358
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1359

1360
	if (i915_gem_object_needs_bit17_swizzle(obj))
1361 1362
		i915_gem_object_save_bit_17_swizzle(obj);

1363 1364
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1365 1366

	for (i = 0; i < page_count; i++) {
1367 1368
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1369

1370 1371
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1372

1373
		page_cache_release(obj->pages[i]);
1374
	}
1375
	obj->dirty = 0;
1376

1377 1378
	drm_free_large(obj->pages);
	obj->pages = NULL;
1379 1380
}

1381
void
1382
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1383 1384
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1385
{
1386
	struct drm_device *dev = obj->base.dev;
1387
	struct drm_i915_private *dev_priv = dev->dev_private;
1388

1389
	BUG_ON(ring == NULL);
1390
	obj->ring = ring;
1391 1392

	/* Add a reference if we're newly entering the active list. */
1393 1394 1395
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1396
	}
1397

1398
	/* Move from whatever list we were on to the tail of execution. */
1399 1400
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1401

1402
	obj->last_rendering_seqno = seqno;
1403

1404
	if (obj->fenced_gpu_access) {
1405 1406
		obj->last_fenced_seqno = seqno;

1407 1408 1409 1410 1411 1412 1413 1414
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1415 1416 1417 1418 1419 1420 1421 1422
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1423
	obj->last_fenced_seqno = 0;
1424 1425
}

1426
static void
1427
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1428
{
1429
	struct drm_device *dev = obj->base.dev;
1430 1431
	drm_i915_private_t *dev_priv = dev->dev_private;

1432 1433
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

1444
	list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1445 1446 1447 1448 1449 1450 1451 1452 1453

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1454
	obj->pending_gpu_write = false;
1455 1456 1457
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1458
}
1459

1460 1461
/* Immediately discard the backing storage */
static void
1462
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1463
{
C
Chris Wilson 已提交
1464
	struct inode *inode;
1465

1466 1467 1468
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1469
	 * backing pages, *now*.
1470
	 */
1471
	inode = obj->base.filp->f_path.dentry->d_inode;
1472
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1473

1474 1475 1476
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1477
	obj->madv = __I915_MADV_PURGED;
1478 1479 1480
}

static inline int
1481
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1482
{
1483
	return obj->madv == I915_MADV_DONTNEED;
1484 1485
}

1486
static void
C
Chris Wilson 已提交
1487 1488
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1489
{
1490
	struct drm_i915_gem_object *obj, *next;
1491

1492
	list_for_each_entry_safe(obj, next,
1493
				 &ring->gpu_write_list,
1494
				 gpu_write_list) {
1495 1496
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1497

1498 1499
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1500
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1501
						       i915_gem_next_request_seqno(ring));
1502 1503

			trace_i915_gem_object_change_domain(obj,
1504
							    obj->base.read_domains,
1505 1506 1507 1508
							    old_write_domain);
		}
	}
}
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1532
int
C
Chris Wilson 已提交
1533
i915_add_request(struct intel_ring_buffer *ring,
1534
		 struct drm_file *file,
C
Chris Wilson 已提交
1535
		 struct drm_i915_gem_request *request)
1536
{
C
Chris Wilson 已提交
1537
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1538
	uint32_t seqno;
1539
	u32 request_ring_position;
1540
	int was_empty;
1541 1542 1543
	int ret;

	BUG_ON(request == NULL);
1544
	seqno = i915_gem_next_request_seqno(ring);
1545

1546 1547 1548 1549 1550 1551 1552
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1553 1554 1555
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1556

C
Chris Wilson 已提交
1557
	trace_i915_gem_request_add(ring, seqno);
1558 1559

	request->seqno = seqno;
1560
	request->ring = ring;
1561
	request->tail = request_ring_position;
1562
	request->emitted_jiffies = jiffies;
1563 1564 1565
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1566 1567 1568
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1569
		spin_lock(&file_priv->mm.lock);
1570
		request->file_priv = file_priv;
1571
		list_add_tail(&request->client_list,
1572
			      &file_priv->mm.request_list);
1573
		spin_unlock(&file_priv->mm.lock);
1574
	}
1575

1576
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1577

B
Ben Gamari 已提交
1578
	if (!dev_priv->mm.suspended) {
1579 1580 1581 1582 1583
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1584
		if (was_empty)
1585 1586
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1587
	}
1588
	return 0;
1589 1590
}

1591 1592
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1593
{
1594
	struct drm_i915_file_private *file_priv = request->file_priv;
1595

1596 1597
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1598

1599
	spin_lock(&file_priv->mm.lock);
1600 1601 1602 1603
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1604
	spin_unlock(&file_priv->mm.lock);
1605 1606
}

1607 1608
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1609
{
1610 1611
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1612

1613 1614 1615
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1616

1617
		list_del(&request->list);
1618
		i915_gem_request_remove_from_client(request);
1619 1620
		kfree(request);
	}
1621

1622
	while (!list_empty(&ring->active_list)) {
1623
		struct drm_i915_gem_object *obj;
1624

1625 1626 1627
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1628

1629 1630 1631
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1632 1633 1634
	}
}

1635 1636 1637 1638 1639
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1640
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1641
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1642

1643
		i915_gem_write_fence(dev, i, NULL);
1644

1645 1646
		if (reg->obj)
			i915_gem_object_fence_lost(reg->obj);
1647

1648 1649 1650
		reg->pin_count = 0;
		reg->obj = NULL;
		INIT_LIST_HEAD(&reg->lru_list);
1651
	}
1652 1653

	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1654 1655
}

1656
void i915_gem_reset(struct drm_device *dev)
1657
{
1658
	struct drm_i915_private *dev_priv = dev->dev_private;
1659
	struct drm_i915_gem_object *obj;
1660
	int i;
1661

1662 1663
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1664 1665 1666 1667 1668 1669

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1670
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1671 1672
				      struct drm_i915_gem_object,
				      mm_list);
1673

1674 1675 1676
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1677 1678 1679 1680 1681
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1682
	list_for_each_entry(obj,
1683
			    &dev_priv->mm.inactive_list,
1684
			    mm_list)
1685
	{
1686
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1687
	}
1688 1689

	/* The fence registers are invalidated so clear them out */
1690
	i915_gem_reset_fences(dev);
1691 1692 1693 1694 1695
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1696
void
C
Chris Wilson 已提交
1697
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1698 1699
{
	uint32_t seqno;
1700
	int i;
1701

C
Chris Wilson 已提交
1702
	if (list_empty(&ring->request_list))
1703 1704
		return;

C
Chris Wilson 已提交
1705
	WARN_ON(i915_verify_lists(ring->dev));
1706

1707
	seqno = ring->get_seqno(ring);
1708

1709
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1710 1711 1712
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1713
	while (!list_empty(&ring->request_list)) {
1714 1715
		struct drm_i915_gem_request *request;

1716
		request = list_first_entry(&ring->request_list,
1717 1718 1719
					   struct drm_i915_gem_request,
					   list);

1720
		if (!i915_seqno_passed(seqno, request->seqno))
1721 1722
			break;

C
Chris Wilson 已提交
1723
		trace_i915_gem_request_retire(ring, request->seqno);
1724 1725 1726 1727 1728 1729
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1730 1731

		list_del(&request->list);
1732
		i915_gem_request_remove_from_client(request);
1733 1734
		kfree(request);
	}
1735

1736 1737 1738 1739
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1740
		struct drm_i915_gem_object *obj;
1741

1742
		obj = list_first_entry(&ring->active_list,
1743 1744
				      struct drm_i915_gem_object,
				      ring_list);
1745

1746
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1747
			break;
1748

1749
		if (obj->base.write_domain != 0)
1750 1751 1752
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1753
	}
1754

C
Chris Wilson 已提交
1755 1756
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1757
		ring->irq_put(ring);
C
Chris Wilson 已提交
1758
		ring->trace_irq_seqno = 0;
1759
	}
1760

C
Chris Wilson 已提交
1761
	WARN_ON(i915_verify_lists(ring->dev));
1762 1763
}

1764 1765 1766 1767
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1768
	int i;
1769

1770
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1771
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1772 1773
}

1774
static void
1775 1776 1777 1778
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1779 1780
	bool idle;
	int i;
1781 1782 1783 1784 1785

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1786 1787 1788 1789 1790 1791
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1792
	i915_gem_retire_requests(dev);
1793

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1805 1806
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1807 1808
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1809
			    i915_add_request(ring, NULL, request))
1810 1811 1812 1813 1814 1815 1816
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1817
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1818

1819 1820 1821
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
1822 1823 1824 1825
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1826
int
C
Chris Wilson 已提交
1827
i915_wait_request(struct intel_ring_buffer *ring,
1828
		  uint32_t seqno)
1829
{
C
Chris Wilson 已提交
1830
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1831 1832 1833 1834
	int ret = 0;

	BUG_ON(seqno == 0);

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
1847

1848
	if (seqno == ring->outstanding_lazy_request) {
1849 1850 1851 1852
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1853
			return -ENOMEM;
1854

C
Chris Wilson 已提交
1855
		ret = i915_add_request(ring, NULL, request);
1856 1857 1858 1859 1860 1861
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1862
	}
1863

1864
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
1865
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
1866

1867 1868
		if (WARN_ON(!ring->irq_get(ring)))
			return -ENODEV;
C
Chris Wilson 已提交
1869

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
		if (dev_priv->mm.interruptible)
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
		else
			wait_event(ring->irq_queue,
				   i915_seqno_passed(ring->get_seqno(ring), seqno)
				   || atomic_read(&dev_priv->mm.wedged));

		ring->irq_put(ring);
C
Chris Wilson 已提交
1880
		trace_i915_gem_request_wait_end(ring, seqno);
1881
	}
1882
	if (atomic_read(&dev_priv->mm.wedged))
1883
		ret = -EAGAIN;
1884 1885 1886 1887 1888 1889 1890 1891

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1892
int
1893
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1894 1895 1896
{
	int ret;

1897 1898
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1899
	 */
1900
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1901 1902 1903 1904

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
1905
	if (obj->active) {
1906
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
1907
		if (ret)
1908
			return ret;
1909
		i915_gem_retire_requests_ring(obj->ring);
1910 1911 1912 1913 1914
	}

	return 0;
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

1938
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
		return i915_gem_object_wait_rendering(obj);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(from, NULL, request);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}


1964
	ret = to->sync_to(to, from, seqno);
1965 1966
	if (!ret)
		from->sync_seqno[idx] = seqno;
1967

1968
	return ret;
1969 1970
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

1981 1982 1983
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

1995 1996 1997
/**
 * Unbinds an object from the GTT aperture.
 */
1998
int
1999
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2000
{
2001
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2002 2003
	int ret = 0;

2004
	if (obj->gtt_space == NULL)
2005 2006
		return 0;

2007
	if (obj->pin_count != 0) {
2008 2009 2010 2011
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2012
	ret = i915_gem_object_finish_gpu(obj);
2013
	if (ret)
2014 2015 2016 2017 2018 2019
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2020
	i915_gem_object_finish_gtt(obj);
2021

2022 2023
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2024
	 * are flushed when we go to remap it.
2025
	 */
2026 2027
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2028
	if (ret == -ERESTARTSYS)
2029
		return ret;
2030
	if (ret) {
2031 2032 2033
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2034
		i915_gem_clflush_object(obj);
2035
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2036
	}
2037

2038
	/* release the fence reg _after_ flushing */
2039
	ret = i915_gem_object_put_fence(obj);
2040
	if (ret)
2041
		return ret;
2042

C
Chris Wilson 已提交
2043 2044
	trace_i915_gem_object_unbind(obj);

2045 2046
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2047 2048 2049 2050
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2051
	i915_gem_gtt_finish_object(obj);
2052

2053
	i915_gem_object_put_pages_gtt(obj);
2054

2055
	list_del_init(&obj->gtt_list);
2056
	list_del_init(&obj->mm_list);
2057
	/* Avoid an unnecessary call to unbind on rebind. */
2058
	obj->map_and_fenceable = true;
2059

2060 2061 2062
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2063

2064
	if (i915_gem_object_is_purgeable(obj))
2065 2066
		i915_gem_object_truncate(obj);

2067
	return ret;
2068 2069
}

2070
int
C
Chris Wilson 已提交
2071
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2072 2073 2074
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2075 2076
	int ret;

2077 2078 2079
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2080 2081
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2082 2083 2084 2085
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2086 2087 2088
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2089
	return 0;
2090 2091
}

2092
static int i915_ring_idle(struct intel_ring_buffer *ring)
2093
{
2094 2095
	int ret;

2096
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2097 2098
		return 0;

2099
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2100
		ret = i915_gem_flush_ring(ring,
2101
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2102 2103 2104 2105
		if (ret)
			return ret;
	}

2106
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2107 2108
}

2109
int i915_gpu_idle(struct drm_device *dev)
2110 2111
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2112
	int ret, i;
2113 2114

	/* Flush everything onto the inactive list. */
2115
	for (i = 0; i < I915_NUM_RINGS; i++) {
2116
		ret = i915_ring_idle(&dev_priv->ring[i]);
2117 2118 2119
		if (ret)
			return ret;
	}
2120

2121
	return 0;
2122 2123
}

2124 2125
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2126 2127 2128 2129
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2130 2131
	if (obj) {
		u32 size = obj->gtt_space->size;
2132

2133 2134 2135 2136 2137
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2138

2139 2140 2141 2142 2143
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2144

2145 2146
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2147 2148
}

2149 2150
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2151 2152 2153 2154
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2155 2156
	if (obj) {
		u32 size = obj->gtt_space->size;
2157

2158 2159 2160 2161 2162 2163 2164 2165 2166
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2167

2168 2169
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2170 2171
}

2172 2173
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2174 2175
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2176
	u32 val;
2177

2178 2179 2180 2181
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2182

2183 2184 2185 2186 2187
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2188

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2214 2215
}

2216 2217
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2218 2219 2220 2221
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2222 2223 2224
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2225

2226 2227 2228 2229 2230
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2231

2232 2233
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2234

2235 2236 2237 2238 2239 2240 2241 2242
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2243

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2260 2261
}

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2288
static int
C
Chris Wilson 已提交
2289
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2290 2291 2292 2293
{
	int ret;

	if (obj->fenced_gpu_access) {
2294
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2295
			ret = i915_gem_flush_ring(obj->ring,
2296 2297 2298 2299
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2300 2301 2302 2303

		obj->fenced_gpu_access = false;
	}

2304
	if (obj->last_fenced_seqno) {
2305
		ret = i915_wait_request(obj->ring, obj->last_fenced_seqno);
2306 2307
		if (ret)
			return ret;
2308 2309 2310 2311

		obj->last_fenced_seqno = 0;
	}

2312 2313 2314 2315 2316 2317
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2318 2319 2320 2321 2322 2323
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2324
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2325 2326
	int ret;

C
Chris Wilson 已提交
2327
	ret = i915_gem_object_flush_fence(obj);
2328 2329 2330
	if (ret)
		return ret;

2331 2332
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2333

2334 2335 2336 2337
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2338 2339 2340 2341 2342

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2343
i915_find_fence_reg(struct drm_device *dev)
2344 2345
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2346
	struct drm_i915_fence_reg *reg, *avail;
2347
	int i;
2348 2349

	/* First try to find a free reg */
2350
	avail = NULL;
2351 2352 2353
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2354
			return reg;
2355

2356
		if (!reg->pin_count)
2357
			avail = reg;
2358 2359
	}

2360 2361
	if (avail == NULL)
		return NULL;
2362 2363

	/* None available, try to steal one or wait for a user to finish */
2364
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2365
		if (reg->pin_count)
2366 2367
			continue;

C
Chris Wilson 已提交
2368
		return reg;
2369 2370
	}

C
Chris Wilson 已提交
2371
	return NULL;
2372 2373
}

2374
/**
2375
 * i915_gem_object_get_fence - set up fencing for an object
2376 2377 2378 2379 2380 2381 2382 2383 2384
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2385 2386
 *
 * For an untiled surface, this removes any existing fence.
2387
 */
2388
int
2389
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2390
{
2391
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2392
	struct drm_i915_private *dev_priv = dev->dev_private;
2393
	bool enable = obj->tiling_mode != I915_TILING_NONE;
2394
	struct drm_i915_fence_reg *reg;
2395
	int ret;
2396

2397 2398 2399
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
2400
	if (obj->fence_dirty) {
2401 2402 2403 2404
		ret = i915_gem_object_flush_fence(obj);
		if (ret)
			return ret;
	}
2405

2406
	/* Just update our place in the LRU if our fence is getting reused. */
2407 2408
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2409
		if (!obj->fence_dirty) {
2410 2411 2412 2413 2414 2415 2416 2417
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
		reg = i915_find_fence_reg(dev);
		if (reg == NULL)
			return -EDEADLK;
2418

2419 2420 2421 2422
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

			ret = i915_gem_object_flush_fence(old);
2423 2424 2425
			if (ret)
				return ret;

2426
			i915_gem_object_fence_lost(old);
2427
		}
2428
	} else
2429 2430
		return 0;

2431
	i915_gem_object_update_fence(obj, reg, enable);
2432
	obj->fence_dirty = false;
2433

2434
	return 0;
2435 2436
}

2437 2438 2439 2440
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2441
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2442
			    unsigned alignment,
2443
			    bool map_and_fenceable)
2444
{
2445
	struct drm_device *dev = obj->base.dev;
2446 2447
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2448
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2449
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2450
	bool mappable, fenceable;
2451
	int ret;
2452

2453
	if (obj->madv != I915_MADV_WILLNEED) {
2454 2455 2456 2457
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2468

2469
	if (alignment == 0)
2470 2471
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2472
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2473 2474 2475 2476
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2477
	size = map_and_fenceable ? fence_size : obj->base.size;
2478

2479 2480 2481
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2482
	if (obj->base.size >
2483
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2484 2485 2486 2487
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2488
 search_free:
2489
	if (map_and_fenceable)
2490 2491
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2492
						    size, alignment, 0,
2493 2494 2495 2496
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2497
						size, alignment, 0);
2498 2499

	if (free_space != NULL) {
2500
		if (map_and_fenceable)
2501
			obj->gtt_space =
2502
				drm_mm_get_block_range_generic(free_space,
2503
							       size, alignment, 0,
2504 2505 2506
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2507
			obj->gtt_space =
2508
				drm_mm_get_block(free_space, size, alignment);
2509
	}
2510
	if (obj->gtt_space == NULL) {
2511 2512 2513
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2514 2515
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2516
		if (ret)
2517
			return ret;
2518

2519 2520 2521
		goto search_free;
	}

2522
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2523
	if (ret) {
2524 2525
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2526 2527

		if (ret == -ENOMEM) {
2528 2529
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2530 2531
			if (ret) {
				/* now try to shrink everyone else */
2532 2533 2534
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2535 2536
				}

2537
				return -ENOMEM;
2538 2539 2540 2541 2542
			}

			goto search_free;
		}

2543 2544 2545
		return ret;
	}

2546
	ret = i915_gem_gtt_prepare_object(obj);
2547
	if (ret) {
2548
		i915_gem_object_put_pages_gtt(obj);
2549 2550
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2551

2552
		if (i915_gem_evict_everything(dev, false))
2553 2554 2555
			return ret;

		goto search_free;
2556 2557
	}

2558 2559
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2560

2561
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2562
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2563

2564 2565 2566 2567
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2568 2569
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2570

2571
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2572

2573
	fenceable =
2574
		obj->gtt_space->size == fence_size &&
2575
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2576

2577
	mappable =
2578
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2579

2580
	obj->map_and_fenceable = mappable && fenceable;
2581

C
Chris Wilson 已提交
2582
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2583 2584 2585 2586
	return 0;
}

void
2587
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2588 2589 2590 2591 2592
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2593
	if (obj->pages == NULL)
2594 2595
		return;

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2607
	trace_i915_gem_object_clflush(obj);
2608

2609
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2610 2611
}

2612
/** Flushes any GPU write domain for the object if it's dirty. */
2613
static int
2614
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2615
{
2616
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2617
		return 0;
2618 2619

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2620
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2621 2622 2623 2624
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2625
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2626
{
C
Chris Wilson 已提交
2627 2628
	uint32_t old_write_domain;

2629
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2630 2631
		return;

2632
	/* No actual flushing is required for the GTT write domain.  Writes
2633 2634
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2635 2636 2637 2638
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2639
	 */
2640 2641
	wmb();

2642 2643
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2644 2645

	trace_i915_gem_object_change_domain(obj,
2646
					    obj->base.read_domains,
C
Chris Wilson 已提交
2647
					    old_write_domain);
2648 2649 2650 2651
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2652
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2653
{
C
Chris Wilson 已提交
2654
	uint32_t old_write_domain;
2655

2656
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2657 2658 2659
		return;

	i915_gem_clflush_object(obj);
2660
	intel_gtt_chipset_flush();
2661 2662
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2663 2664

	trace_i915_gem_object_change_domain(obj,
2665
					    obj->base.read_domains,
C
Chris Wilson 已提交
2666
					    old_write_domain);
2667 2668
}

2669 2670 2671 2672 2673 2674
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2675
int
2676
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2677
{
2678
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
C
Chris Wilson 已提交
2679
	uint32_t old_write_domain, old_read_domains;
2680
	int ret;
2681

2682
	/* Not valid to be called on unbound objects. */
2683
	if (obj->gtt_space == NULL)
2684 2685
		return -EINVAL;

2686 2687 2688
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2689 2690 2691 2692
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2693
	if (obj->pending_gpu_write || write) {
2694
		ret = i915_gem_object_wait_rendering(obj);
2695 2696 2697
		if (ret)
			return ret;
	}
2698

2699
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2700

2701 2702
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2703

2704 2705 2706
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2707 2708
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2709
	if (write) {
2710 2711 2712
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2713 2714
	}

C
Chris Wilson 已提交
2715 2716 2717 2718
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2719 2720 2721 2722
	/* And bump the LRU for this access */
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

2723 2724 2725
	return 0;
}

2726 2727 2728
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2729 2730
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2758 2759
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2760 2761 2762
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

2792
/*
2793 2794 2795
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
2796 2797
 */
int
2798 2799
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
2800
				     struct intel_ring_buffer *pipelined)
2801
{
2802
	u32 old_read_domains, old_write_domain;
2803 2804
	int ret;

2805 2806 2807 2808
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2809
	if (pipelined != obj->ring) {
2810 2811
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
2812 2813 2814
			return ret;
	}

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

2828 2829 2830 2831 2832 2833 2834 2835
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

2836 2837
	i915_gem_object_flush_cpu_write_domain(obj);

2838
	old_write_domain = obj->base.write_domain;
2839
	old_read_domains = obj->base.read_domains;
2840 2841 2842 2843 2844

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2845
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2846 2847 2848

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2849
					    old_write_domain);
2850 2851 2852 2853

	return 0;
}

2854
int
2855
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2856
{
2857 2858
	int ret;

2859
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2860 2861
		return 0;

2862
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2863
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2864 2865 2866
		if (ret)
			return ret;
	}
2867

2868 2869 2870 2871
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

2872 2873
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2874
	return 0;
2875 2876
}

2877 2878 2879 2880 2881 2882
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
2883
int
2884
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2885
{
C
Chris Wilson 已提交
2886
	uint32_t old_write_domain, old_read_domains;
2887 2888
	int ret;

2889 2890 2891
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

2892 2893 2894 2895
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2896 2897 2898 2899 2900
	if (write || obj->pending_gpu_write) {
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;
	}
2901

2902
	i915_gem_object_flush_gtt_write_domain(obj);
2903

2904 2905
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2906

2907
	/* Flush the CPU cache if it's still invalid. */
2908
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2909 2910
		i915_gem_clflush_object(obj);

2911
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2912 2913 2914 2915 2916
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2917
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2918 2919 2920 2921 2922

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2923 2924
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2925
	}
2926

C
Chris Wilson 已提交
2927 2928 2929 2930
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2931 2932 2933
	return 0;
}

2934 2935 2936
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
2937 2938 2939 2940
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
2941 2942 2943
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
2944
static int
2945
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
2946
{
2947 2948
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
2949
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
2950 2951 2952 2953
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
2954

2955 2956 2957
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

2958
	spin_lock(&file_priv->mm.lock);
2959
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
2960 2961
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
2962

2963 2964
		ring = request->ring;
		seqno = request->seqno;
2965
	}
2966
	spin_unlock(&file_priv->mm.lock);
2967

2968 2969
	if (seqno == 0)
		return 0;
2970

2971
	ret = 0;
2972
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2973 2974 2975 2976 2977
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
2978 2979 2980 2981 2982
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
2983

2984 2985
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
2986 2987
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
2988 2989
				    atomic_read(&dev_priv->mm.wedged), 3000)) {
			ret = -EBUSY;
2990
		}
2991 2992
	}

2993 2994
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
2995 2996 2997 2998

	return ret;
}

2999
int
3000 3001
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3002
		    bool map_and_fenceable)
3003 3004 3005
{
	int ret;

3006
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3007

3008 3009 3010 3011
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3012
			     "bo is already pinned with incorrect alignment:"
3013 3014
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3015
			     obj->gtt_offset, alignment,
3016
			     map_and_fenceable,
3017
			     obj->map_and_fenceable);
3018 3019 3020 3021 3022 3023
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3024
	if (obj->gtt_space == NULL) {
3025
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3026
						  map_and_fenceable);
3027
		if (ret)
3028
			return ret;
3029
	}
J
Jesse Barnes 已提交
3030

3031 3032 3033
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3034
	obj->pin_count++;
3035
	obj->pin_mappable |= map_and_fenceable;
3036 3037 3038 3039 3040

	return 0;
}

void
3041
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3042
{
3043 3044
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3045

3046
	if (--obj->pin_count == 0)
3047
		obj->pin_mappable = false;
3048 3049 3050 3051
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3052
		   struct drm_file *file)
3053 3054
{
	struct drm_i915_gem_pin *args = data;
3055
	struct drm_i915_gem_object *obj;
3056 3057
	int ret;

3058 3059 3060
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3061

3062
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3063
	if (&obj->base == NULL) {
3064 3065
		ret = -ENOENT;
		goto unlock;
3066 3067
	}

3068
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3069
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3070 3071
		ret = -EINVAL;
		goto out;
3072 3073
	}

3074
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3075 3076
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3077 3078
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3079 3080
	}

3081 3082 3083
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3084
		ret = i915_gem_object_pin(obj, args->alignment, true);
3085 3086
		if (ret)
			goto out;
3087 3088 3089 3090 3091
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3092
	i915_gem_object_flush_cpu_write_domain(obj);
3093
	args->offset = obj->gtt_offset;
3094
out:
3095
	drm_gem_object_unreference(&obj->base);
3096
unlock:
3097
	mutex_unlock(&dev->struct_mutex);
3098
	return ret;
3099 3100 3101 3102
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3103
		     struct drm_file *file)
3104 3105
{
	struct drm_i915_gem_pin *args = data;
3106
	struct drm_i915_gem_object *obj;
3107
	int ret;
3108

3109 3110 3111
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3112

3113
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3114
	if (&obj->base == NULL) {
3115 3116
		ret = -ENOENT;
		goto unlock;
3117
	}
3118

3119
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3120 3121
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3122 3123
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3124
	}
3125 3126 3127
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3128 3129
		i915_gem_object_unpin(obj);
	}
3130

3131
out:
3132
	drm_gem_object_unreference(&obj->base);
3133
unlock:
3134
	mutex_unlock(&dev->struct_mutex);
3135
	return ret;
3136 3137 3138 3139
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3140
		    struct drm_file *file)
3141 3142
{
	struct drm_i915_gem_busy *args = data;
3143
	struct drm_i915_gem_object *obj;
3144 3145
	int ret;

3146
	ret = i915_mutex_lock_interruptible(dev);
3147
	if (ret)
3148
		return ret;
3149

3150
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3151
	if (&obj->base == NULL) {
3152 3153
		ret = -ENOENT;
		goto unlock;
3154
	}
3155

3156 3157 3158 3159
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3160
	 */
3161
	args->busy = obj->active;
3162 3163 3164 3165 3166 3167
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3168
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3169
			ret = i915_gem_flush_ring(obj->ring,
3170
						  0, obj->base.write_domain);
3171 3172 3173 3174
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3175 3176 3177
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3178
			request = kzalloc(sizeof(*request), GFP_KERNEL);
3179
			if (request) {
3180
				ret = i915_add_request(obj->ring, NULL, request);
3181 3182 3183
				if (ret)
					kfree(request);
			} else
3184 3185
				ret = -ENOMEM;
		}
3186 3187 3188 3189 3190 3191

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3192
		i915_gem_retire_requests_ring(obj->ring);
3193

3194
		args->busy = obj->active;
3195
	}
3196

3197
	drm_gem_object_unreference(&obj->base);
3198
unlock:
3199
	mutex_unlock(&dev->struct_mutex);
3200
	return ret;
3201 3202 3203 3204 3205 3206
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3207
	return i915_gem_ring_throttle(dev, file_priv);
3208 3209
}

3210 3211 3212 3213 3214
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3215
	struct drm_i915_gem_object *obj;
3216
	int ret;
3217 3218 3219 3220 3221 3222 3223 3224 3225

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3226 3227 3228 3229
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3230
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3231
	if (&obj->base == NULL) {
3232 3233
		ret = -ENOENT;
		goto unlock;
3234 3235
	}

3236
	if (obj->pin_count) {
3237 3238
		ret = -EINVAL;
		goto out;
3239 3240
	}

3241 3242
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3243

3244
	/* if the object is no longer bound, discard its backing storage */
3245 3246
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3247 3248
		i915_gem_object_truncate(obj);

3249
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3250

3251
out:
3252
	drm_gem_object_unreference(&obj->base);
3253
unlock:
3254
	mutex_unlock(&dev->struct_mutex);
3255
	return ret;
3256 3257
}

3258 3259
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3260
{
3261
	struct drm_i915_private *dev_priv = dev->dev_private;
3262
	struct drm_i915_gem_object *obj;
3263
	struct address_space *mapping;
3264

3265 3266 3267
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3268

3269 3270 3271 3272
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3273

3274 3275 3276
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3277 3278
	i915_gem_info_add_obj(dev_priv, size);

3279 3280
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3281

3282 3283
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3299
	obj->base.driver_private = NULL;
3300
	obj->fence_reg = I915_FENCE_REG_NONE;
3301
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3302
	INIT_LIST_HEAD(&obj->gtt_list);
3303
	INIT_LIST_HEAD(&obj->ring_list);
3304
	INIT_LIST_HEAD(&obj->exec_list);
3305 3306
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3307 3308
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3309

3310
	return obj;
3311 3312 3313 3314 3315
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3316

3317 3318 3319
	return 0;
}

3320
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3321
{
3322
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3323
	struct drm_device *dev = obj->base.dev;
3324
	drm_i915_private_t *dev_priv = dev->dev_private;
3325

3326 3327
	trace_i915_gem_object_destroy(obj);

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
	if (obj->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	obj->pin_count = 0;
	if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
		bool was_interruptible;

		was_interruptible = dev_priv->mm.interruptible;
		dev_priv->mm.interruptible = false;

		WARN_ON(i915_gem_object_unbind(obj));

		dev_priv->mm.interruptible = was_interruptible;
	}

3343
	if (obj->base.map_list.map)
3344
		drm_gem_free_mmap_offset(&obj->base);
3345

3346 3347
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3348

3349 3350
	kfree(obj->bit_17);
	kfree(obj);
3351 3352
}

3353 3354 3355 3356 3357
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3358

3359
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3360

3361
	if (dev_priv->mm.suspended) {
3362 3363
		mutex_unlock(&dev->struct_mutex);
		return 0;
3364 3365
	}

3366
	ret = i915_gpu_idle(dev);
3367 3368
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3369
		return ret;
3370
	}
3371
	i915_gem_retire_requests(dev);
3372

3373
	/* Under UMS, be paranoid and evict. */
3374 3375
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		i915_gem_evict_everything(dev, false);
3376

3377 3378
	i915_gem_reset_fences(dev);

3379 3380 3381 3382 3383
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3384
	del_timer_sync(&dev_priv->hangcheck_timer);
3385 3386

	i915_kernel_lost_context(dev);
3387
	i915_gem_cleanup_ringbuffer(dev);
3388

3389 3390
	mutex_unlock(&dev->struct_mutex);

3391 3392 3393
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3394 3395 3396
	return 0;
}

3397 3398 3399 3400
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3401
	if (INTEL_INFO(dev)->gen < 5 ||
3402 3403 3404 3405 3406 3407
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3408 3409 3410
	if (IS_GEN5(dev))
		return;

3411 3412
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
3413
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3414
	else
3415
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3416
}
D
Daniel Vetter 已提交
3417 3418 3419 3420 3421 3422

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3423 3424 3425
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3426 3427 3428 3429 3430
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3449 3450 3451 3452
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3453 3454 3455 3456
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3457 3458 3459 3460 3461

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3462 3463
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
3464
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

	for (i = 0; i < I915_NUM_RINGS; i++) {
		ring = &dev_priv->ring[i];

		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
3475
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
D
Daniel Vetter 已提交
3476 3477 3478 3479 3480 3481

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3482
int
3483
i915_gem_init_hw(struct drm_device *dev)
3484 3485 3486
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3487

3488 3489
	i915_gem_init_swizzling(dev);

3490
	ret = intel_init_render_ring_buffer(dev);
3491
	if (ret)
3492
		return ret;
3493 3494

	if (HAS_BSD(dev)) {
3495
		ret = intel_init_bsd_ring_buffer(dev);
3496 3497
		if (ret)
			goto cleanup_render_ring;
3498
	}
3499

3500 3501 3502 3503 3504 3505
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3506 3507
	dev_priv->next_seqno = 1;

D
Daniel Vetter 已提交
3508 3509
	i915_gem_init_ppgtt(dev);

3510 3511
	return 0;

3512
cleanup_bsd_ring:
3513
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3514
cleanup_render_ring:
3515
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3516 3517 3518
	return ret;
}

3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
	if (i915_enable_ppgtt >= 0)
		return i915_enable_ppgtt;

#ifdef CONFIG_INTEL_IOMMU
	/* Disable ppgtt on SNB if VT-d is on. */
	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long gtt_size, mappable_size;
	int ret;

	gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
	mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;

	mutex_lock(&dev->struct_mutex);
	if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
		/* PPGTT pdes are stolen from global gtt ptes, so shrink the
		 * aperture accordingly when using aliasing ppgtt. */
		gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;

		i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);

		ret = i915_gem_init_aliasing_ppgtt(dev);
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	} else {
		/* Let GEM Manage all of the aperture.
		 *
		 * However, leave one page at the end still bound to the scratch
		 * page.  There are a number of places where the hardware
		 * apparently prefetches past the end of the object, and we've
		 * seen multiple hangs with the GPU head pointer stuck in a
		 * batchbuffer bound at the last page of the aperture.  One page
		 * should be enough to keep any prefetching inside of the
		 * aperture.
		 */
		i915_gem_init_global_gtt(dev, 0, mappable_size,
					 gtt_size);
	}

	ret = i915_gem_init_hw(dev);
	mutex_unlock(&dev->struct_mutex);
	if (ret) {
		i915_gem_cleanup_aliasing_ppgtt(dev);
		return ret;
	}

	/* Allow hardware batchbuffers unless told otherwise. */
	dev_priv->allow_batchbuffer = 1;
	return 0;
}

3583 3584 3585 3586
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3587
	int i;
3588

3589 3590
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3591 3592
}

3593 3594 3595 3596 3597
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3598
	int ret, i;
3599

J
Jesse Barnes 已提交
3600 3601 3602
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3603
	if (atomic_read(&dev_priv->mm.wedged)) {
3604
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3605
		atomic_set(&dev_priv->mm.wedged, 0);
3606 3607 3608
	}

	mutex_lock(&dev->struct_mutex);
3609 3610
	dev_priv->mm.suspended = 0;

3611
	ret = i915_gem_init_hw(dev);
3612 3613
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3614
		return ret;
3615
	}
3616

3617
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3618 3619
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3620 3621 3622 3623
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3624
	mutex_unlock(&dev->struct_mutex);
3625

3626 3627 3628
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3629

3630
	return 0;
3631 3632 3633 3634 3635 3636 3637 3638

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3639 3640 3641 3642 3643 3644
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3645 3646 3647
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3648
	drm_irq_uninstall(dev);
3649
	return i915_gem_idle(dev);
3650 3651 3652 3653 3654 3655 3656
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3657 3658 3659
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3660 3661 3662
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3663 3664
}

3665 3666 3667 3668 3669 3670 3671 3672
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3673 3674 3675
void
i915_gem_load(struct drm_device *dev)
{
3676
	int i;
3677 3678
	drm_i915_private_t *dev_priv = dev->dev_private;

3679
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3680 3681
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3682
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
D
Daniel Vetter 已提交
3683
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3684 3685
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3686
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3687
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3688 3689
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3690
	init_completion(&dev_priv->error_completion);
3691

3692 3693
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
3694 3695
		I915_WRITE(MI_ARB_STATE,
			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3696 3697
	}

3698 3699
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3700
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3701 3702
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3703

3704
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3705 3706 3707 3708
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3709
	/* Initialize fence registers to zero */
3710
	i915_gem_reset_fences(dev);
3711

3712
	i915_gem_detect_bit_6_swizzle(dev);
3713
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3714

3715 3716
	dev_priv->mm.interruptible = true;

3717 3718 3719
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3720
}
3721 3722 3723 3724 3725

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3726 3727
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3728 3729 3730 3731 3732 3733 3734 3735
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3736
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3737 3738 3739 3740 3741
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3742
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3755
	kfree(phys_obj);
3756 3757 3758
	return ret;
}

3759
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3784
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3785 3786 3787 3788
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3789
				 struct drm_i915_gem_object *obj)
3790
{
3791
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3792
	char *vaddr;
3793 3794 3795
	int i;
	int page_count;

3796
	if (!obj->phys_obj)
3797
		return;
3798
	vaddr = obj->phys_obj->handle->vaddr;
3799

3800
	page_count = obj->base.size / PAGE_SIZE;
3801
	for (i = 0; i < page_count; i++) {
3802
		struct page *page = shmem_read_mapping_page(mapping, i);
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3814
	}
3815
	intel_gtt_chipset_flush();
3816

3817 3818
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3819 3820 3821 3822
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3823
			    struct drm_i915_gem_object *obj,
3824 3825
			    int id,
			    int align)
3826
{
3827
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3828 3829 3830 3831 3832 3833 3834 3835
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3836 3837
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3838 3839 3840 3841 3842 3843 3844
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3845
						obj->base.size, align);
3846
		if (ret) {
3847 3848
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3849
			return ret;
3850 3851 3852 3853
		}
	}

	/* bind to the object */
3854 3855
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3856

3857
	page_count = obj->base.size / PAGE_SIZE;
3858 3859

	for (i = 0; i < page_count; i++) {
3860 3861 3862
		struct page *page;
		char *dst, *src;

3863
		page = shmem_read_mapping_page(mapping, i);
3864 3865
		if (IS_ERR(page))
			return PTR_ERR(page);
3866

3867
		src = kmap_atomic(page);
3868
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3869
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
3870
		kunmap_atomic(src);
3871

3872 3873 3874
		mark_page_accessed(page);
		page_cache_release(page);
	}
3875

3876 3877 3878 3879
	return 0;
}

static int
3880 3881
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
3882 3883 3884
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
3885
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3886
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3887

3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
3901

3902
	intel_gtt_chipset_flush();
3903 3904
	return 0;
}
3905

3906
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3907
{
3908
	struct drm_i915_file_private *file_priv = file->driver_priv;
3909 3910 3911 3912 3913

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
3914
	spin_lock(&file_priv->mm.lock);
3915 3916 3917 3918 3919 3920 3921 3922 3923
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
3924
	spin_unlock(&file_priv->mm.lock);
3925
}
3926

3927 3928 3929 3930 3931 3932 3933
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
3934
		      list_empty(&dev_priv->mm.active_list);
3935 3936 3937 3938

	return !lists_empty;
}

3939
static int
3940
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
3941
{
3942 3943 3944 3945 3946 3947
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
3948
	int nr_to_scan = sc->nr_to_scan;
3949 3950 3951
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
3952
		return 0;
3953 3954 3955

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
3956 3957 3958 3959 3960 3961 3962
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
3963 3964
	}

3965
rescan:
3966
	/* first scan for clean buffers */
3967
	i915_gem_retire_requests(dev);
3968

3969 3970 3971 3972
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
3973 3974
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
3975
				break;
3976 3977 3978 3979
		}
	}

	/* second pass, evict/count anything still on the inactive list */
3980 3981 3982 3983
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
3984 3985
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
3986
			nr_to_scan--;
3987
		else
3988 3989 3990 3991
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
3992 3993 3994 3995 3996 3997
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
3998
		if (i915_gpu_idle(dev) == 0)
3999 4000
			goto rescan;
	}
4001 4002
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4003
}