i915_gem.c 102.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/shmem_fs.h>
35
#include <linux/slab.h>
36
#include <linux/swap.h>
J
Jesse Barnes 已提交
37
#include <linux/pci.h>
38

39
static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 43 44
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
						    unsigned alignment,
						    bool map_and_fenceable);
45 46
static void i915_gem_clear_fence_reg(struct drm_device *dev,
				     struct drm_i915_fence_reg *reg);
47 48
static int i915_gem_phys_pwrite(struct drm_device *dev,
				struct drm_i915_gem_object *obj,
49
				struct drm_i915_gem_pwrite *args,
50 51
				struct drm_file *file);
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
52

53 54 55 56 57 58
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

59
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60
				    struct shrink_control *sc);
61
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62

63 64 65 66 67 68 69 70 71 72 73 74
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
	obj->tiling_changed = false;
	obj->fence_reg = I915_FENCE_REG_NONE;
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

90 91
static int
i915_gem_wait_for_error(struct drm_device *dev)
92 93 94 95 96 97 98 99 100 101 102 103 104
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

105 106 107 108 109 110 111 112 113 114 115
	if (atomic_read(&dev_priv->mm.wedged)) {
		/* GPU is hung, bump the completion count to account for
		 * the token we just consumed so that we never hit zero and
		 * end up waiting upon a subsequent completion event that
		 * will never happen.
		 */
		spin_lock_irqsave(&x->wait.lock, flags);
		x->done++;
		spin_unlock_irqrestore(&x->wait.lock, flags);
	}
	return 0;
116 117
}

118
int i915_mutex_lock_interruptible(struct drm_device *dev)
119 120 121
{
	int ret;

122
	ret = i915_gem_wait_for_error(dev);
123 124 125 126 127 128 129
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

130
	WARN_ON(i915_verify_lists(dev));
131 132
	return 0;
}
133

134
static inline bool
135
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
136
{
137
	return obj->gtt_space && !obj->active && obj->pin_count == 0;
138 139
}

J
Jesse Barnes 已提交
140 141
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
142
		    struct drm_file *file)
J
Jesse Barnes 已提交
143 144
{
	struct drm_i915_gem_init *args = data;
145 146 147 148

	if (args->gtt_start >= args->gtt_end ||
	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
		return -EINVAL;
J
Jesse Barnes 已提交
149

150 151 152 153
	/* GEM with user mode setting was never supported on ilk and later. */
	if (INTEL_INFO(dev)->gen >= 5)
		return -ENODEV;

J
Jesse Barnes 已提交
154
	mutex_lock(&dev->struct_mutex);
155 156
	i915_gem_init_global_gtt(dev, args->gtt_start,
				 args->gtt_end, args->gtt_end);
157 158
	mutex_unlock(&dev->struct_mutex);

159
	return 0;
160 161
}

162 163
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164
			    struct drm_file *file)
165
{
166
	struct drm_i915_private *dev_priv = dev->dev_private;
167
	struct drm_i915_gem_get_aperture *args = data;
168 169
	struct drm_i915_gem_object *obj;
	size_t pinned;
170 171 172 173

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

174
	pinned = 0;
175
	mutex_lock(&dev->struct_mutex);
176 177
	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
		pinned += obj->gtt_space->size;
178
	mutex_unlock(&dev->struct_mutex);
179

180
	args->aper_size = dev_priv->mm.gtt_total;
181
	args->aper_available_size = args->aper_size - pinned;
182

183 184 185
	return 0;
}

186 187 188 189 190
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
191
{
192
	struct drm_i915_gem_object *obj;
193 194
	int ret;
	u32 handle;
195

196
	size = roundup(size, PAGE_SIZE);
197 198
	if (size == 0)
		return -EINVAL;
199 200

	/* Allocate the new object */
201
	obj = i915_gem_alloc_object(dev, size);
202 203 204
	if (obj == NULL)
		return -ENOMEM;

205
	ret = drm_gem_handle_create(file, &obj->base, &handle);
206
	if (ret) {
207 208
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
209
		kfree(obj);
210
		return ret;
211
	}
212

213
	/* drop reference from allocate - handle holds it now */
214
	drm_gem_object_unreference(&obj->base);
215 216
	trace_i915_gem_object_create(obj);

217
	*handle_p = handle;
218 219 220
	return 0;
}

221 222 223 224 225 226
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
227
	args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

int i915_gem_dumb_destroy(struct drm_file *file,
			  struct drm_device *dev,
			  uint32_t handle)
{
	return drm_gem_handle_delete(file, handle);
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
	return i915_gem_create(file, dev,
			       args->size, &args->handle);
}

252
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253
{
254
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255 256

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257
		obj->tiling_mode != I915_TILING_NONE;
258 259
}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static inline int
__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
			  const char *cpu_vaddr,
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

312 313 314
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
315
static int
316 317 318 319 320 321 322
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

323
	if (unlikely(page_do_bit17_swizzling))
324 325 326 327 328 329 330 331 332 333 334 335 336 337
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

	return ret;
}

338 339 340 341
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
342
	if (unlikely(swizzled)) {
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

360 361 362 363 364 365 366 367 368 369 370 371
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
372 373 374
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
375 376 377 378 379 380 381 382 383 384 385 386 387 388

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

	return ret;
}

389
static int
390 391 392 393
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
394
{
395
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
396
	char __user *user_data;
397
	ssize_t remain;
398
	loff_t offset;
399
	int shmem_page_offset, page_length, ret = 0;
400
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
401
	int hit_slowpath = 0;
402
	int prefaulted = 0;
403
	int needs_clflush = 0;
404
	int release_page;
405

406
	user_data = (char __user *) (uintptr_t) args->data_ptr;
407 408
	remain = args->size;

409
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
410

411 412 413 414 415 416 417 418 419 420 421
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
		if (ret)
			return ret;
	}
422

423
	offset = args->offset;
424 425

	while (remain > 0) {
426 427
		struct page *page;

428 429 430 431 432
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
433
		shmem_page_offset = offset_in_page(offset);
434 435 436 437
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

438 439 440 441 442 443 444 445 446 447
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
448
		}
449

450 451 452
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

453 454 455 456 457
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
458 459

		hit_slowpath = 1;
460
		page_cache_get(page);
461 462
		mutex_unlock(&dev->struct_mutex);

463
		if (!prefaulted) {
464
			ret = fault_in_multipages_writeable(user_data, remain);
465 466 467 468 469 470 471
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
472

473 474 475
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
476

477
		mutex_lock(&dev->struct_mutex);
478
		page_cache_release(page);
479
next_page:
480
		mark_page_accessed(page);
481 482
		if (release_page)
			page_cache_release(page);
483

484 485 486 487 488
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

489
		remain -= page_length;
490
		user_data += page_length;
491 492 493
		offset += page_length;
	}

494
out:
495 496 497 498 499
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
	}
500 501 502 503

	return ret;
}

504 505 506 507 508 509 510
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511
		     struct drm_file *file)
512 513
{
	struct drm_i915_gem_pread *args = data;
514
	struct drm_i915_gem_object *obj;
515
	int ret = 0;
516

517 518 519 520 521 522 523 524
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

525
	ret = i915_mutex_lock_interruptible(dev);
526
	if (ret)
527
		return ret;
528

529
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530
	if (&obj->base == NULL) {
531 532
		ret = -ENOENT;
		goto unlock;
533
	}
534

535
	/* Bounds check source.  */
536 537
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
538
		ret = -EINVAL;
539
		goto out;
C
Chris Wilson 已提交
540 541
	}

C
Chris Wilson 已提交
542 543
	trace_i915_gem_object_pread(obj, args->offset, args->size);

544
	ret = i915_gem_shmem_pread(dev, obj, args, file);
545

546
out:
547
	drm_gem_object_unreference(&obj->base);
548
unlock:
549
	mutex_unlock(&dev->struct_mutex);
550
	return ret;
551 552
}

553 554
/* This is the fast write path which cannot handle
 * page faults in the source data
555
 */
556 557 558 559 560 561

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
562 563
{
	char *vaddr_atomic;
564
	unsigned long unwritten;
565

P
Peter Zijlstra 已提交
566
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
567 568
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
569
	io_mapping_unmap_atomic(vaddr_atomic);
570
	return unwritten;
571 572
}

573 574 575 576
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
577
static int
578 579
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
580
			 struct drm_i915_gem_pwrite *args,
581
			 struct drm_file *file)
582
{
583
	drm_i915_private_t *dev_priv = dev->dev_private;
584
	ssize_t remain;
585
	loff_t offset, page_base;
586
	char __user *user_data;
D
Daniel Vetter 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599
	int page_offset, page_length, ret;

	ret = i915_gem_object_pin(obj, 0, true);
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
600 601 602 603

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

604
	offset = obj->gtt_offset + args->offset;
605 606 607 608

	while (remain > 0) {
		/* Operation in this page
		 *
609 610 611
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
612
		 */
613 614
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
615 616 617 618 619
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
620 621
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
622
		 */
623
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
D
Daniel Vetter 已提交
624 625 626 627
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
			goto out_unpin;
		}
628

629 630 631
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
632 633
	}

D
Daniel Vetter 已提交
634 635 636
out_unpin:
	i915_gem_object_unpin(obj);
out:
637
	return ret;
638 639
}

640 641 642 643
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
644
static int
645 646 647 648 649
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
650
{
651
	char *vaddr;
652
	int ret;
653

654
	if (unlikely(page_do_bit17_swizzling))
655
		return -EINVAL;
656

657 658 659 660 661 662 663 664 665 666 667
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
						user_data,
						page_length);
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
668 669 670 671

	return ret;
}

672 673
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
674
static int
675 676 677 678 679
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
680
{
681 682
	char *vaddr;
	int ret;
683

684
	vaddr = kmap(page);
685
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
686 687 688
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
689 690
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
691 692
						user_data,
						page_length);
693 694 695 696 697
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
698 699 700
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
701
	kunmap(page);
702

703
	return ret;
704 705 706
}

static int
707 708 709 710
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
711
{
712
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
713
	ssize_t remain;
714 715
	loff_t offset;
	char __user *user_data;
716
	int shmem_page_offset, page_length, ret = 0;
717
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
718
	int hit_slowpath = 0;
719 720
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
721
	int release_page;
722

723
	user_data = (char __user *) (uintptr_t) args->data_ptr;
724 725
	remain = args->size;

726
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
727

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
		if (obj->cache_level == I915_CACHE_NONE)
			needs_clflush_after = 1;
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
		if (ret)
			return ret;
	}
	/* Same trick applies for invalidate partially written cachelines before
	 * writing.  */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
	    && obj->cache_level == I915_CACHE_NONE)
		needs_clflush_before = 1;

745
	offset = args->offset;
746
	obj->dirty = 1;
747

748
	while (remain > 0) {
749
		struct page *page;
750
		int partial_cacheline_write;
751

752 753 754 755 756
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
757
		shmem_page_offset = offset_in_page(offset);
758 759 760 761 762

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

763 764 765 766 767 768 769
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

770 771 772 773 774 775 776 777 778 779
		if (obj->pages) {
			page = obj->pages[offset >> PAGE_SHIFT];
			release_page = 0;
		} else {
			page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
				goto out;
			}
			release_page = 1;
780 781
		}

782 783 784
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

785 786 787 788 789 790
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
791 792

		hit_slowpath = 1;
793
		page_cache_get(page);
794 795
		mutex_unlock(&dev->struct_mutex);

796 797 798 799
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
800

801
		mutex_lock(&dev->struct_mutex);
802
		page_cache_release(page);
803
next_page:
804 805
		set_page_dirty(page);
		mark_page_accessed(page);
806 807
		if (release_page)
			page_cache_release(page);
808

809 810 811 812 813
		if (ret) {
			ret = -EFAULT;
			goto out;
		}

814
		remain -= page_length;
815
		user_data += page_length;
816
		offset += page_length;
817 818
	}

819
out:
820 821 822 823 824 825 826 827 828 829
	if (hit_slowpath) {
		/* Fixup: Kill any reinstated backing storage pages */
		if (obj->madv == __I915_MADV_PURGED)
			i915_gem_object_truncate(obj);
		/* and flush dirty cachelines in case the object isn't in the cpu write
		 * domain anymore. */
		if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
			i915_gem_clflush_object(obj);
			intel_gtt_chipset_flush();
		}
830
	}
831

832 833 834
	if (needs_clflush_after)
		intel_gtt_chipset_flush();

835
	return ret;
836 837 838 839 840 841 842 843 844
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
845
		      struct drm_file *file)
846 847
{
	struct drm_i915_gem_pwrite *args = data;
848
	struct drm_i915_gem_object *obj;
849 850 851 852 853 854 855 856 857 858
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

859 860
	ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
					   args->size);
861 862
	if (ret)
		return -EFAULT;
863

864
	ret = i915_mutex_lock_interruptible(dev);
865
	if (ret)
866
		return ret;
867

868
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
869
	if (&obj->base == NULL) {
870 871
		ret = -ENOENT;
		goto unlock;
872
	}
873

874
	/* Bounds check destination. */
875 876
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
877
		ret = -EINVAL;
878
		goto out;
C
Chris Wilson 已提交
879 880
	}

C
Chris Wilson 已提交
881 882
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
883
	ret = -EFAULT;
884 885 886 887 888 889
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
890
	if (obj->phys_obj) {
891
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
892 893 894 895
		goto out;
	}

	if (obj->gtt_space &&
896
	    obj->cache_level == I915_CACHE_NONE &&
897
	    obj->tiling_mode == I915_TILING_NONE &&
898
	    obj->map_and_fenceable &&
899
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
900
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
901 902 903
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
904
	}
905

906
	if (ret == -EFAULT)
D
Daniel Vetter 已提交
907
		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
908

909
out:
910
	drm_gem_object_unreference(&obj->base);
911
unlock:
912
	mutex_unlock(&dev->struct_mutex);
913 914 915 916
	return ret;
}

/**
917 918
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
919 920 921
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
922
			  struct drm_file *file)
923 924
{
	struct drm_i915_gem_set_domain *args = data;
925
	struct drm_i915_gem_object *obj;
926 927
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
928 929 930 931 932
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

933
	/* Only handle setting domains to types used by the CPU. */
934
	if (write_domain & I915_GEM_GPU_DOMAINS)
935 936
		return -EINVAL;

937
	if (read_domains & I915_GEM_GPU_DOMAINS)
938 939 940 941 942 943 944 945
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

946
	ret = i915_mutex_lock_interruptible(dev);
947
	if (ret)
948
		return ret;
949

950
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
951
	if (&obj->base == NULL) {
952 953
		ret = -ENOENT;
		goto unlock;
954
	}
955

956 957
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
958 959 960 961 962 963 964

		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
965
	} else {
966
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
967 968
	}

969
	drm_gem_object_unreference(&obj->base);
970
unlock:
971 972 973 974 975 976 977 978 979
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
980
			 struct drm_file *file)
981 982
{
	struct drm_i915_gem_sw_finish *args = data;
983
	struct drm_i915_gem_object *obj;
984 985 986 987 988
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

989
	ret = i915_mutex_lock_interruptible(dev);
990
	if (ret)
991
		return ret;
992

993
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
994
	if (&obj->base == NULL) {
995 996
		ret = -ENOENT;
		goto unlock;
997 998 999
	}

	/* Pinned buffers may be scanout, so flush the cache */
1000
	if (obj->pin_count)
1001 1002
		i915_gem_object_flush_cpu_write_domain(obj);

1003
	drm_gem_object_unreference(&obj->base);
1004
unlock:
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1018
		    struct drm_file *file)
1019 1020 1021 1022 1023 1024 1025 1026
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1027
	obj = drm_gem_object_lookup(dev, file, args->handle);
1028
	if (obj == NULL)
1029
		return -ENOENT;
1030 1031 1032 1033 1034 1035

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1036
	drm_gem_object_unreference_unlocked(obj);
1037 1038 1039 1040 1041 1042 1043 1044
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1063 1064
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1065
	drm_i915_private_t *dev_priv = dev->dev_private;
1066 1067 1068
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1069
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1070 1071 1072 1073 1074

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1075 1076 1077
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1078

C
Chris Wilson 已提交
1079 1080
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1081
	/* Now bind it into the GTT if needed */
1082 1083 1084 1085
	if (!obj->map_and_fenceable) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			goto unlock;
1086
	}
1087
	if (!obj->gtt_space) {
1088
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1089 1090
		if (ret)
			goto unlock;
1091

1092 1093 1094 1095
		ret = i915_gem_object_set_to_gtt_domain(obj, write);
		if (ret)
			goto unlock;
	}
1096

1097 1098 1099
	if (!obj->has_global_gtt_mapping)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

1100
	ret = i915_gem_object_get_fence(obj);
1101 1102
	if (ret)
		goto unlock;
1103

1104 1105
	if (i915_gem_object_is_inactive(obj))
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1106

1107 1108
	obj->fault_mappable = true;

1109
	pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1110 1111 1112 1113
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1114
unlock:
1115
	mutex_unlock(&dev->struct_mutex);
1116
out:
1117
	switch (ret) {
1118
	case -EIO:
1119
	case -EAGAIN:
1120 1121 1122 1123 1124 1125 1126
		/* Give the error handler a chance to run and move the
		 * objects off the GPU active list. Next time we service the
		 * fault, we should be able to transition the page into the
		 * GTT without touching the GPU (and so avoid further
		 * EIO/EGAIN). If the GPU is wedged, then there is no issue
		 * with coherency, just lost writes.
		 */
1127
		set_need_resched();
1128 1129
	case 0:
	case -ERESTARTSYS:
1130
	case -EINTR:
1131
		return VM_FAULT_NOPAGE;
1132 1133 1134
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1135
		return VM_FAULT_SIGBUS;
1136 1137 1138
	}
}

1139 1140 1141 1142
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1143
 * Preserve the reservation of the mmapping with the DRM core code, but
1144 1145 1146 1147 1148 1149 1150 1151 1152
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1153
void
1154
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1155
{
1156 1157
	if (!obj->fault_mappable)
		return;
1158

1159 1160 1161 1162
	if (obj->base.dev->dev_mapping)
		unmap_mapping_range(obj->base.dev->dev_mapping,
				    (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
				    obj->base.size, 1);
1163

1164
	obj->fault_mappable = false;
1165 1166
}

1167
static uint32_t
1168
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1169
{
1170
	uint32_t gtt_size;
1171 1172

	if (INTEL_INFO(dev)->gen >= 4 ||
1173 1174
	    tiling_mode == I915_TILING_NONE)
		return size;
1175 1176 1177

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1178
		gtt_size = 1024*1024;
1179
	else
1180
		gtt_size = 512*1024;
1181

1182 1183
	while (gtt_size < size)
		gtt_size <<= 1;
1184

1185
	return gtt_size;
1186 1187
}

1188 1189 1190 1191 1192
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1193
 * potential fence register mapping.
1194 1195
 */
static uint32_t
1196 1197 1198
i915_gem_get_gtt_alignment(struct drm_device *dev,
			   uint32_t size,
			   int tiling_mode)
1199 1200 1201 1202 1203
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1204
	if (INTEL_INFO(dev)->gen >= 4 ||
1205
	    tiling_mode == I915_TILING_NONE)
1206 1207
		return 4096;

1208 1209 1210 1211
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1212
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1213 1214
}

1215 1216 1217
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
1218 1219 1220
 * @dev: the device
 * @size: size of the object
 * @tiling_mode: tiling mode of the object
1221 1222 1223 1224
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
1225
uint32_t
1226 1227 1228
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
				    uint32_t size,
				    int tiling_mode)
1229 1230 1231 1232 1233
{
	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1234
	    tiling_mode == I915_TILING_NONE)
1235 1236
		return 4096;

1237 1238 1239
	/* Previous hardware however needs to be aligned to a power-of-two
	 * tile height. The simplest method for determining this is to reuse
	 * the power-of-tile object size.
1240
	 */
1241
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1242 1243
}

1244
int
1245 1246 1247 1248
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
		  uint32_t handle,
		  uint64_t *offset)
1249
{
1250
	struct drm_i915_private *dev_priv = dev->dev_private;
1251
	struct drm_i915_gem_object *obj;
1252 1253 1254 1255 1256
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1257
	ret = i915_mutex_lock_interruptible(dev);
1258
	if (ret)
1259
		return ret;
1260

1261
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1262
	if (&obj->base == NULL) {
1263 1264 1265
		ret = -ENOENT;
		goto unlock;
	}
1266

1267
	if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1268
		ret = -E2BIG;
1269
		goto out;
1270 1271
	}

1272
	if (obj->madv != I915_MADV_WILLNEED) {
1273
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1274 1275
		ret = -EINVAL;
		goto out;
1276 1277
	}

1278
	if (!obj->base.map_list.map) {
1279
		ret = drm_gem_create_mmap_offset(&obj->base);
1280 1281
		if (ret)
			goto out;
1282 1283
	}

1284
	*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1285

1286
out:
1287
	drm_gem_object_unreference(&obj->base);
1288
unlock:
1289
	mutex_unlock(&dev->struct_mutex);
1290
	return ret;
1291 1292
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}


1321
static int
1322
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
			      gfp_t gfpmask)
{
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
1333 1334 1335 1336
	page_count = obj->base.size / PAGE_SIZE;
	BUG_ON(obj->pages != NULL);
	obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj->pages == NULL)
1337 1338
		return -ENOMEM;

1339
	inode = obj->base.filp->f_path.dentry->d_inode;
1340
	mapping = inode->i_mapping;
1341 1342
	gfpmask |= mapping_gfp_mask(mapping);

1343
	for (i = 0; i < page_count; i++) {
1344
		page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1345 1346 1347
		if (IS_ERR(page))
			goto err_pages;

1348
		obj->pages[i] = page;
1349 1350
	}

1351
	if (i915_gem_object_needs_bit17_swizzle(obj))
1352 1353 1354 1355 1356 1357
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
1358
		page_cache_release(obj->pages[i]);
1359

1360 1361
	drm_free_large(obj->pages);
	obj->pages = NULL;
1362 1363 1364
	return PTR_ERR(page);
}

1365
static void
1366
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1367
{
1368
	int page_count = obj->base.size / PAGE_SIZE;
1369 1370
	int i;

1371
	BUG_ON(obj->madv == __I915_MADV_PURGED);
1372

1373
	if (i915_gem_object_needs_bit17_swizzle(obj))
1374 1375
		i915_gem_object_save_bit_17_swizzle(obj);

1376 1377
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
1378 1379

	for (i = 0; i < page_count; i++) {
1380 1381
		if (obj->dirty)
			set_page_dirty(obj->pages[i]);
1382

1383 1384
		if (obj->madv == I915_MADV_WILLNEED)
			mark_page_accessed(obj->pages[i]);
1385

1386
		page_cache_release(obj->pages[i]);
1387
	}
1388
	obj->dirty = 0;
1389

1390 1391
	drm_free_large(obj->pages);
	obj->pages = NULL;
1392 1393
}

1394
void
1395
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1396 1397
			       struct intel_ring_buffer *ring,
			       u32 seqno)
1398
{
1399
	struct drm_device *dev = obj->base.dev;
1400
	struct drm_i915_private *dev_priv = dev->dev_private;
1401

1402
	BUG_ON(ring == NULL);
1403
	obj->ring = ring;
1404 1405

	/* Add a reference if we're newly entering the active list. */
1406 1407 1408
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
1409
	}
1410

1411
	/* Move from whatever list we were on to the tail of execution. */
1412 1413
	list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj->ring_list, &ring->active_list);
1414

1415
	obj->last_rendering_seqno = seqno;
1416

1417
	if (obj->fenced_gpu_access) {
1418 1419
		obj->last_fenced_seqno = seqno;

1420 1421 1422 1423 1424 1425 1426 1427
		/* Bump MRU to take account of the delayed flush */
		if (obj->fence_reg != I915_FENCE_REG_NONE) {
			struct drm_i915_fence_reg *reg;

			reg = &dev_priv->fence_regs[obj->fence_reg];
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
		}
1428 1429 1430 1431 1432 1433 1434 1435
	}
}

static void
i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
{
	list_del_init(&obj->ring_list);
	obj->last_rendering_seqno = 0;
1436
	obj->last_fenced_seqno = 0;
1437 1438
}

1439
static void
1440
i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1441
{
1442
	struct drm_device *dev = obj->base.dev;
1443 1444
	drm_i915_private_t *dev_priv = dev->dev_private;

1445 1446
	BUG_ON(!obj->active);
	list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	i915_gem_object_move_off_active(obj);
}

static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (obj->pin_count != 0)
		list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
	else
		list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);

	BUG_ON(!list_empty(&obj->gpu_write_list));
	BUG_ON(!obj->active);
	obj->ring = NULL;

	i915_gem_object_move_off_active(obj);
	obj->fenced_gpu_access = false;

	obj->active = 0;
1470
	obj->pending_gpu_write = false;
1471 1472 1473
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
1474
}
1475

1476 1477
/* Immediately discard the backing storage */
static void
1478
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1479
{
C
Chris Wilson 已提交
1480
	struct inode *inode;
1481

1482 1483 1484
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
1485
	 * backing pages, *now*.
1486
	 */
1487
	inode = obj->base.filp->f_path.dentry->d_inode;
1488
	shmem_truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1489

1490 1491 1492
	if (obj->base.map_list.map)
		drm_gem_free_mmap_offset(&obj->base);

1493
	obj->madv = __I915_MADV_PURGED;
1494 1495 1496
}

static inline int
1497
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1498
{
1499
	return obj->madv == I915_MADV_DONTNEED;
1500 1501
}

1502
static void
C
Chris Wilson 已提交
1503 1504
i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
			       uint32_t flush_domains)
1505
{
1506
	struct drm_i915_gem_object *obj, *next;
1507

1508
	list_for_each_entry_safe(obj, next,
1509
				 &ring->gpu_write_list,
1510
				 gpu_write_list) {
1511 1512
		if (obj->base.write_domain & flush_domains) {
			uint32_t old_write_domain = obj->base.write_domain;
1513

1514 1515
			obj->base.write_domain = 0;
			list_del_init(&obj->gpu_write_list);
1516
			i915_gem_object_move_to_active(obj, ring,
C
Chris Wilson 已提交
1517
						       i915_gem_next_request_seqno(ring));
1518 1519

			trace_i915_gem_object_change_domain(obj,
1520
							    obj->base.read_domains,
1521 1522 1523 1524
							    old_write_domain);
		}
	}
}
1525

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	u32 seqno = dev_priv->next_seqno;

	/* reserve 0 for non-seqno */
	if (++dev_priv->next_seqno == 0)
		dev_priv->next_seqno = 1;

	return seqno;
}

u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
	if (ring->outstanding_lazy_request == 0)
		ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);

	return ring->outstanding_lazy_request;
}

1548
int
C
Chris Wilson 已提交
1549
i915_add_request(struct intel_ring_buffer *ring,
1550
		 struct drm_file *file,
C
Chris Wilson 已提交
1551
		 struct drm_i915_gem_request *request)
1552
{
C
Chris Wilson 已提交
1553
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1554
	uint32_t seqno;
1555
	u32 request_ring_position;
1556
	int was_empty;
1557 1558 1559
	int ret;

	BUG_ON(request == NULL);
1560
	seqno = i915_gem_next_request_seqno(ring);
1561

1562 1563 1564 1565 1566 1567 1568
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	request_ring_position = intel_ring_get_tail(ring);

1569 1570 1571
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1572

C
Chris Wilson 已提交
1573
	trace_i915_gem_request_add(ring, seqno);
1574 1575

	request->seqno = seqno;
1576
	request->ring = ring;
1577
	request->tail = request_ring_position;
1578
	request->emitted_jiffies = jiffies;
1579 1580 1581
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

C
Chris Wilson 已提交
1582 1583 1584
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

1585
		spin_lock(&file_priv->mm.lock);
1586
		request->file_priv = file_priv;
1587
		list_add_tail(&request->client_list,
1588
			      &file_priv->mm.request_list);
1589
		spin_unlock(&file_priv->mm.lock);
1590
	}
1591

1592
	ring->outstanding_lazy_request = 0;
C
Chris Wilson 已提交
1593

B
Ben Gamari 已提交
1594
	if (!dev_priv->mm.suspended) {
1595 1596 1597 1598 1599
		if (i915_enable_hangcheck) {
			mod_timer(&dev_priv->hangcheck_timer,
				  jiffies +
				  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
		}
B
Ben Gamari 已提交
1600
		if (was_empty)
1601 1602
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1603
	}
1604
	return 0;
1605 1606
}

1607 1608
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1609
{
1610
	struct drm_i915_file_private *file_priv = request->file_priv;
1611

1612 1613
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1614

1615
	spin_lock(&file_priv->mm.lock);
1616 1617 1618 1619
	if (request->file_priv) {
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
1620
	spin_unlock(&file_priv->mm.lock);
1621 1622
}

1623 1624
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1625
{
1626 1627
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1628

1629 1630 1631
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1632

1633
		list_del(&request->list);
1634
		i915_gem_request_remove_from_client(request);
1635 1636
		kfree(request);
	}
1637

1638
	while (!list_empty(&ring->active_list)) {
1639
		struct drm_i915_gem_object *obj;
1640

1641 1642 1643
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
1644

1645 1646 1647
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1648 1649 1650
	}
}

1651 1652 1653 1654 1655
static void i915_gem_reset_fences(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

1656
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
1657
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1658 1659 1660 1661 1662 1663 1664 1665
		struct drm_i915_gem_object *obj = reg->obj;

		if (!obj)
			continue;

		if (obj->tiling_mode)
			i915_gem_release_mmap(obj);

1666 1667 1668 1669
		reg->obj->fence_reg = I915_FENCE_REG_NONE;
		reg->obj->fenced_gpu_access = false;
		reg->obj->last_fenced_seqno = 0;
		i915_gem_clear_fence_reg(dev, reg);
1670 1671 1672
	}
}

1673
void i915_gem_reset(struct drm_device *dev)
1674
{
1675
	struct drm_i915_private *dev_priv = dev->dev_private;
1676
	struct drm_i915_gem_object *obj;
1677
	int i;
1678

1679 1680
	for (i = 0; i < I915_NUM_RINGS; i++)
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1681 1682 1683 1684 1685 1686

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
1687
		obj = list_first_entry(&dev_priv->mm.flushing_list,
1688 1689
				      struct drm_i915_gem_object,
				      mm_list);
1690

1691 1692 1693
		obj->base.write_domain = 0;
		list_del_init(&obj->gpu_write_list);
		i915_gem_object_move_to_inactive(obj);
1694 1695 1696 1697 1698
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1699
	list_for_each_entry(obj,
1700
			    &dev_priv->mm.inactive_list,
1701
			    mm_list)
1702
	{
1703
		obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1704
	}
1705 1706

	/* The fence registers are invalidated so clear them out */
1707
	i915_gem_reset_fences(dev);
1708 1709 1710 1711 1712
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1713
void
C
Chris Wilson 已提交
1714
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1715 1716
{
	uint32_t seqno;
1717
	int i;
1718

C
Chris Wilson 已提交
1719
	if (list_empty(&ring->request_list))
1720 1721
		return;

C
Chris Wilson 已提交
1722
	WARN_ON(i915_verify_lists(ring->dev));
1723

1724
	seqno = ring->get_seqno(ring);
1725

1726
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1727 1728 1729
		if (seqno >= ring->sync_seqno[i])
			ring->sync_seqno[i] = 0;

1730
	while (!list_empty(&ring->request_list)) {
1731 1732
		struct drm_i915_gem_request *request;

1733
		request = list_first_entry(&ring->request_list,
1734 1735 1736
					   struct drm_i915_gem_request,
					   list);

1737
		if (!i915_seqno_passed(seqno, request->seqno))
1738 1739
			break;

C
Chris Wilson 已提交
1740
		trace_i915_gem_request_retire(ring, request->seqno);
1741 1742 1743 1744 1745 1746
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
		ring->last_retired_head = request->tail;
1747 1748

		list_del(&request->list);
1749
		i915_gem_request_remove_from_client(request);
1750 1751
		kfree(request);
	}
1752

1753 1754 1755 1756
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
1757
		struct drm_i915_gem_object *obj;
1758

1759
		obj = list_first_entry(&ring->active_list,
1760 1761
				      struct drm_i915_gem_object,
				      ring_list);
1762

1763
		if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1764
			break;
1765

1766
		if (obj->base.write_domain != 0)
1767 1768 1769
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1770
	}
1771

C
Chris Wilson 已提交
1772 1773
	if (unlikely(ring->trace_irq_seqno &&
		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1774
		ring->irq_put(ring);
C
Chris Wilson 已提交
1775
		ring->trace_irq_seqno = 0;
1776
	}
1777

C
Chris Wilson 已提交
1778
	WARN_ON(i915_verify_lists(ring->dev));
1779 1780
}

1781 1782 1783 1784
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1785
	int i;
1786

1787
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1788
	    struct drm_i915_gem_object *obj, *next;
1789 1790 1791 1792 1793 1794

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
1795
	    list_for_each_entry_safe(obj, next,
1796
				     &dev_priv->mm.deferred_free_list,
1797
				     mm_list)
1798
		    i915_gem_free_object_tail(obj);
1799 1800
	}

1801
	for (i = 0; i < I915_NUM_RINGS; i++)
C
Chris Wilson 已提交
1802
		i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1803 1804
}

1805
static void
1806 1807 1808 1809
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;
1810 1811
	bool idle;
	int i;
1812 1813 1814 1815 1816

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1817 1818 1819 1820 1821 1822
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1823
	i915_gem_retire_requests(dev);
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
	/* Send a periodic flush down the ring so we don't hold onto GEM
	 * objects indefinitely.
	 */
	idle = true;
	for (i = 0; i < I915_NUM_RINGS; i++) {
		struct intel_ring_buffer *ring = &dev_priv->ring[i];

		if (!list_empty(&ring->gpu_write_list)) {
			struct drm_i915_gem_request *request;
			int ret;

C
Chris Wilson 已提交
1836 1837
			ret = i915_gem_flush_ring(ring,
						  0, I915_GEM_GPU_DOMAINS);
1838 1839
			request = kzalloc(sizeof(*request), GFP_KERNEL);
			if (ret || request == NULL ||
C
Chris Wilson 已提交
1840
			    i915_add_request(ring, NULL, request))
1841 1842 1843 1844 1845 1846 1847
			    kfree(request);
		}

		idle &= list_empty(&ring->request_list);
	}

	if (!dev_priv->mm.suspended && !idle)
1848
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1849

1850 1851 1852
	mutex_unlock(&dev->struct_mutex);
}

C
Chris Wilson 已提交
1853 1854 1855 1856
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
1857
int
C
Chris Wilson 已提交
1858
i915_wait_request(struct intel_ring_buffer *ring,
1859 1860
		  uint32_t seqno,
		  bool do_retire)
1861
{
C
Chris Wilson 已提交
1862
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1863
	u32 ier;
1864 1865 1866 1867
	int ret = 0;

	BUG_ON(seqno == 0);

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	if (atomic_read(&dev_priv->mm.wedged)) {
		struct completion *x = &dev_priv->error_completion;
		bool recovery_complete;
		unsigned long flags;

		/* Give the error handler a chance to run. */
		spin_lock_irqsave(&x->wait.lock, flags);
		recovery_complete = x->done > 0;
		spin_unlock_irqrestore(&x->wait.lock, flags);

		return recovery_complete ? -EIO : -EAGAIN;
	}
1880

1881
	if (seqno == ring->outstanding_lazy_request) {
1882 1883 1884 1885
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
1886
			return -ENOMEM;
1887

C
Chris Wilson 已提交
1888
		ret = i915_add_request(ring, NULL, request);
1889 1890 1891 1892 1893 1894
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
1895
	}
1896

1897
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
C
Chris Wilson 已提交
1898
		if (HAS_PCH_SPLIT(ring->dev))
1899
			ier = I915_READ(DEIER) | I915_READ(GTIER);
1900 1901
		else if (IS_VALLEYVIEW(ring->dev))
			ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1902 1903
		else
			ier = I915_READ(IER);
1904 1905 1906
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
1907 1908
			ring->dev->driver->irq_preinstall(ring->dev);
			ring->dev->driver->irq_postinstall(ring->dev);
1909 1910
		}

C
Chris Wilson 已提交
1911
		trace_i915_gem_request_wait_begin(ring, seqno);
C
Chris Wilson 已提交
1912

1913
		ring->waiting_seqno = seqno;
1914
		if (ring->irq_get(ring)) {
1915
			if (dev_priv->mm.interruptible)
1916 1917 1918 1919 1920 1921 1922 1923 1924
				ret = wait_event_interruptible(ring->irq_queue,
							       i915_seqno_passed(ring->get_seqno(ring), seqno)
							       || atomic_read(&dev_priv->mm.wedged));
			else
				wait_event(ring->irq_queue,
					   i915_seqno_passed(ring->get_seqno(ring), seqno)
					   || atomic_read(&dev_priv->mm.wedged));

			ring->irq_put(ring);
1925 1926 1927
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
					   atomic_read(&dev_priv->mm.wedged), 3000))
1928
			ret = -EBUSY;
1929
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
1930

C
Chris Wilson 已提交
1931
		trace_i915_gem_request_wait_end(ring, seqno);
1932
	}
1933
	if (atomic_read(&dev_priv->mm.wedged))
1934
		ret = -EAGAIN;
1935 1936 1937 1938 1939 1940

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
1941
	if (ret == 0 && do_retire)
C
Chris Wilson 已提交
1942
		i915_gem_retire_requests_ring(ring);
1943 1944 1945 1946 1947 1948 1949 1950

	return ret;
}

/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
1951
int
1952
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1953 1954 1955
{
	int ret;

1956 1957
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1958
	 */
1959
	BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1960 1961 1962 1963

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
1964
	if (obj->active) {
1965 1966
		ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
					true);
1967
		if (ret)
1968 1969 1970 1971 1972 1973
			return ret;
	}

	return 0;
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

1997
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
		return i915_gem_object_wait_rendering(obj);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(from, NULL, request);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}


2023
	ret = to->sync_to(to, from, seqno);
2024 2025
	if (!ret)
		from->sync_seqno[idx] = seqno;
2026

2027
	return ret;
2028 2029
}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Act a barrier for all accesses through the GTT */
	mb();

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

2040 2041 2042
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

2054 2055 2056
/**
 * Unbinds an object from the GTT aperture.
 */
2057
int
2058
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2059
{
2060
	drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2061 2062
	int ret = 0;

2063
	if (obj->gtt_space == NULL)
2064 2065
		return 0;

2066
	if (obj->pin_count != 0) {
2067 2068 2069 2070
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2071 2072 2073 2074 2075 2076 2077 2078
	ret = i915_gem_object_finish_gpu(obj);
	if (ret == -ERESTARTSYS)
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

2079
	i915_gem_object_finish_gtt(obj);
2080

2081 2082
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
2083
	 * are flushed when we go to remap it.
2084
	 */
2085 2086
	if (ret == 0)
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2087
	if (ret == -ERESTARTSYS)
2088
		return ret;
2089
	if (ret) {
2090 2091 2092
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2093
		i915_gem_clflush_object(obj);
2094
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2095
	}
2096

2097
	/* release the fence reg _after_ flushing */
2098 2099 2100
	ret = i915_gem_object_put_fence(obj);
	if (ret == -ERESTARTSYS)
		return ret;
2101

C
Chris Wilson 已提交
2102 2103
	trace_i915_gem_object_unbind(obj);

2104 2105
	if (obj->has_global_gtt_mapping)
		i915_gem_gtt_unbind_object(obj);
2106 2107 2108 2109
	if (obj->has_aliasing_ppgtt_mapping) {
		i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
		obj->has_aliasing_ppgtt_mapping = 0;
	}
2110
	i915_gem_gtt_finish_object(obj);
2111

2112
	i915_gem_object_put_pages_gtt(obj);
2113

2114
	list_del_init(&obj->gtt_list);
2115
	list_del_init(&obj->mm_list);
2116
	/* Avoid an unnecessary call to unbind on rebind. */
2117
	obj->map_and_fenceable = true;
2118

2119 2120 2121
	drm_mm_put_block(obj->gtt_space);
	obj->gtt_space = NULL;
	obj->gtt_offset = 0;
2122

2123
	if (i915_gem_object_is_purgeable(obj))
2124 2125
		i915_gem_object_truncate(obj);

2126
	return ret;
2127 2128
}

2129
int
C
Chris Wilson 已提交
2130
i915_gem_flush_ring(struct intel_ring_buffer *ring,
2131 2132 2133
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2134 2135
	int ret;

2136 2137 2138
	if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
		return 0;

C
Chris Wilson 已提交
2139 2140
	trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);

2141 2142 2143 2144
	ret = ring->flush(ring, invalidate_domains, flush_domains);
	if (ret)
		return ret;

2145 2146 2147
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		i915_gem_process_flushing_list(ring, flush_domains);

2148
	return 0;
2149 2150
}

2151
static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
2152
{
2153 2154
	int ret;

2155
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2156 2157
		return 0;

2158
	if (!list_empty(&ring->gpu_write_list)) {
C
Chris Wilson 已提交
2159
		ret = i915_gem_flush_ring(ring,
2160
				    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2161 2162 2163 2164
		if (ret)
			return ret;
	}

2165 2166
	return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
				 do_retire);
2167 2168
}

2169
int i915_gpu_idle(struct drm_device *dev, bool do_retire)
2170 2171
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2172
	int ret, i;
2173 2174

	/* Flush everything onto the inactive list. */
2175
	for (i = 0; i < I915_NUM_RINGS; i++) {
2176
		ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
2177 2178 2179
		if (ret)
			return ret;
	}
2180

2181
	return 0;
2182 2183
}

2184 2185
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
					struct drm_i915_gem_object *obj)
2186 2187 2188 2189
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2190 2191
	if (obj) {
		u32 size = obj->gtt_space->size;
2192

2193 2194 2195 2196 2197
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= (uint64_t)((obj->stride / 128) - 1) <<
			SANDYBRIDGE_FENCE_PITCH_SHIFT;
2198

2199 2200 2201 2202 2203
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2204

2205 2206
	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2207 2208
}

2209 2210
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2211 2212 2213 2214
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint64_t val;

2215 2216
	if (obj) {
		u32 size = obj->gtt_space->size;
2217

2218 2219 2220 2221 2222 2223 2224 2225 2226
		val = (uint64_t)((obj->gtt_offset + size - 4096) &
				 0xfffff000) << 32;
		val |= obj->gtt_offset & 0xfffff000;
		val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
	} else
		val = 0;
2227

2228 2229
	I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
	POSTING_READ(FENCE_REG_965_0 + reg * 8);
2230 2231
}

2232 2233
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
2234 2235
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2236
	u32 val;
2237

2238 2239 2240 2241
	if (obj) {
		u32 size = obj->gtt_space->size;
		int pitch_val;
		int tile_width;
2242

2243 2244 2245 2246 2247
		WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     obj->gtt_offset, obj->map_and_fenceable, size);
2248

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
2274 2275
}

2276 2277
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
2278 2279 2280 2281
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t val;

2282 2283 2284
	if (obj) {
		u32 size = obj->gtt_space->size;
		uint32_t pitch_val;
2285

2286 2287 2288 2289 2290
		WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
		     (size & -size) != size ||
		     (obj->gtt_offset & (size - 1)),
		     "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
		     obj->gtt_offset, size);
2291

2292 2293
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
2294

2295 2296 2297 2298 2299 2300 2301 2302
		val = obj->gtt_offset;
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
2303

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
	switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
	case 5:
	case 4: i965_write_fence_reg(dev, reg, obj); break;
	case 3: i915_write_fence_reg(dev, reg, obj); break;
	case 2: i830_write_fence_reg(dev, reg, obj); break;
	default: break;
	}
2320 2321
}

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);

	if (enable) {
		obj->fence_reg = reg;
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
}

2348
static int
C
Chris Wilson 已提交
2349
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2350 2351 2352 2353
{
	int ret;

	if (obj->fenced_gpu_access) {
2354
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2355
			ret = i915_gem_flush_ring(obj->ring,
2356 2357 2358 2359
						  0, obj->base.write_domain);
			if (ret)
				return ret;
		}
2360 2361 2362 2363

		obj->fenced_gpu_access = false;
	}

2364
	if (obj->last_fenced_seqno) {
2365 2366 2367 2368 2369
		ret = i915_wait_request(obj->ring,
					obj->last_fenced_seqno,
					true);
		if (ret)
			return ret;
2370 2371 2372 2373

		obj->last_fenced_seqno = 0;
	}

2374 2375 2376 2377 2378 2379
	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
		mb();

2380 2381 2382 2383 2384 2385
	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
2386
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2387 2388
	int ret;

C
Chris Wilson 已提交
2389
	ret = i915_gem_object_flush_fence(obj);
2390 2391 2392
	if (ret)
		return ret;

2393 2394
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
2395

2396 2397 2398 2399
	i915_gem_object_update_fence(obj,
				     &dev_priv->fence_regs[obj->fence_reg],
				     false);
	i915_gem_object_fence_lost(obj);
2400 2401 2402 2403 2404

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
2405
i915_find_fence_reg(struct drm_device *dev)
2406 2407
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
2408
	struct drm_i915_fence_reg *reg, *avail;
2409
	int i;
2410 2411

	/* First try to find a free reg */
2412
	avail = NULL;
2413 2414 2415
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
2416
			return reg;
2417

2418
		if (!reg->pin_count)
2419
			avail = reg;
2420 2421
	}

2422 2423
	if (avail == NULL)
		return NULL;
2424 2425

	/* None available, try to steal one or wait for a user to finish */
2426
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2427
		if (reg->pin_count)
2428 2429
			continue;

C
Chris Wilson 已提交
2430
		return reg;
2431 2432
	}

C
Chris Wilson 已提交
2433
	return NULL;
2434 2435
}

2436
/**
2437
 * i915_gem_object_get_fence - set up fencing for an object
2438 2439 2440 2441 2442 2443 2444 2445 2446
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
2447 2448
 *
 * For an untiled surface, this removes any existing fence.
2449
 */
2450
int
2451
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2452
{
2453
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
2454
	struct drm_i915_private *dev_priv = dev->dev_private;
2455
	struct drm_i915_fence_reg *reg;
2456
	int ret;
2457

2458 2459 2460
	if (obj->tiling_mode == I915_TILING_NONE)
		return i915_gem_object_put_fence(obj);

2461
	/* Just update our place in the LRU if our fence is getting reused. */
2462 2463
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
2464
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2465

2466
		if (obj->tiling_changed) {
C
Chris Wilson 已提交
2467
			ret = i915_gem_object_flush_fence(obj);
2468 2469 2470 2471 2472
			if (ret)
				return ret;

			goto update;
		}
2473

2474 2475 2476
		return 0;
	}

C
Chris Wilson 已提交
2477
	reg = i915_find_fence_reg(dev);
2478
	if (reg == NULL)
2479
		return -EDEADLK;
2480

C
Chris Wilson 已提交
2481
	ret = i915_gem_object_flush_fence(obj);
2482
	if (ret)
2483
		return ret;
2484

2485 2486 2487 2488 2489 2490 2491 2492
	if (reg->obj) {
		struct drm_i915_gem_object *old = reg->obj;

		drm_gem_object_reference(&old->base);

		if (old->tiling_mode)
			i915_gem_release_mmap(old);

C
Chris Wilson 已提交
2493
		ret = i915_gem_object_flush_fence(old);
2494 2495 2496 2497 2498 2499
		if (ret) {
			drm_gem_object_unreference(&old->base);
			return ret;
		}

		old->fence_reg = I915_FENCE_REG_NONE;
C
Chris Wilson 已提交
2500
		old->last_fenced_seqno = 0;
2501 2502

		drm_gem_object_unreference(&old->base);
C
Chris Wilson 已提交
2503
	}
2504

2505
	reg->obj = obj;
2506 2507
	list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
	obj->fence_reg = reg - dev_priv->fence_regs;
2508

2509 2510
update:
	obj->tiling_changed = false;
2511 2512
	i915_gem_write_fence(dev, reg - dev_priv->fence_regs, obj);
	return 0;
2513 2514 2515 2516 2517 2518 2519
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
2520
 * data structures in dev_priv and obj.
2521 2522
 */
static void
2523 2524
i915_gem_clear_fence_reg(struct drm_device *dev,
			 struct drm_i915_fence_reg *reg)
2525
{
J
Jesse Barnes 已提交
2526
	drm_i915_private_t *dev_priv = dev->dev_private;
2527
	uint32_t fence_reg = reg - dev_priv->fence_regs;
2528

2529
	switch (INTEL_INFO(dev)->gen) {
2530
	case 7:
2531
	case 6:
2532
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2533 2534 2535
		break;
	case 5:
	case 4:
2536
		I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2537 2538
		break;
	case 3:
2539 2540
		if (fence_reg >= 8)
			fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2541
		else
2542
	case 2:
2543
			fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2544 2545

		I915_WRITE(fence_reg, 0);
2546
		break;
2547
	}
2548

2549
	list_del_init(&reg->lru_list);
2550
	reg->obj = NULL;
2551
	reg->pin_count = 0;
2552 2553
}

2554 2555 2556 2557
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2558
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2559
			    unsigned alignment,
2560
			    bool map_and_fenceable)
2561
{
2562
	struct drm_device *dev = obj->base.dev;
2563 2564
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_mm_node *free_space;
2565
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2566
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2567
	bool mappable, fenceable;
2568
	int ret;
2569

2570
	if (obj->madv != I915_MADV_WILLNEED) {
2571 2572 2573 2574
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	fence_size = i915_gem_get_gtt_size(dev,
					   obj->base.size,
					   obj->tiling_mode);
	fence_alignment = i915_gem_get_gtt_alignment(dev,
						     obj->base.size,
						     obj->tiling_mode);
	unfenced_alignment =
		i915_gem_get_unfenced_gtt_alignment(dev,
						    obj->base.size,
						    obj->tiling_mode);
2585

2586
	if (alignment == 0)
2587 2588
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2589
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2590 2591 2592 2593
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2594
	size = map_and_fenceable ? fence_size : obj->base.size;
2595

2596 2597 2598
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2599
	if (obj->base.size >
2600
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2601 2602 2603 2604
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2605
 search_free:
2606
	if (map_and_fenceable)
2607 2608
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2609
						    size, alignment, 0,
2610 2611 2612 2613
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2614
						size, alignment, 0);
2615 2616

	if (free_space != NULL) {
2617
		if (map_and_fenceable)
2618
			obj->gtt_space =
2619
				drm_mm_get_block_range_generic(free_space,
2620
							       size, alignment, 0,
2621 2622 2623
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
2624
			obj->gtt_space =
2625
				drm_mm_get_block(free_space, size, alignment);
2626
	}
2627
	if (obj->gtt_space == NULL) {
2628 2629 2630
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2631 2632
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2633
		if (ret)
2634
			return ret;
2635

2636 2637 2638
		goto search_free;
	}

2639
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2640
	if (ret) {
2641 2642
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2643 2644

		if (ret == -ENOMEM) {
2645 2646
			/* first try to reclaim some memory by clearing the GTT */
			ret = i915_gem_evict_everything(dev, false);
2647 2648
			if (ret) {
				/* now try to shrink everyone else */
2649 2650 2651
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2652 2653
				}

2654
				return -ENOMEM;
2655 2656 2657 2658 2659
			}

			goto search_free;
		}

2660 2661 2662
		return ret;
	}

2663
	ret = i915_gem_gtt_prepare_object(obj);
2664
	if (ret) {
2665
		i915_gem_object_put_pages_gtt(obj);
2666 2667
		drm_mm_put_block(obj->gtt_space);
		obj->gtt_space = NULL;
2668

2669
		if (i915_gem_evict_everything(dev, false))
2670 2671 2672
			return ret;

		goto search_free;
2673 2674
	}

2675 2676
	if (!dev_priv->mm.aliasing_ppgtt)
		i915_gem_gtt_bind_object(obj, obj->cache_level);
2677

2678
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2679
	list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2680

2681 2682 2683 2684
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2685 2686
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2687

2688
	obj->gtt_offset = obj->gtt_space->start;
C
Chris Wilson 已提交
2689

2690
	fenceable =
2691
		obj->gtt_space->size == fence_size &&
2692
		(obj->gtt_space->start & (fence_alignment - 1)) == 0;
2693

2694
	mappable =
2695
		obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2696

2697
	obj->map_and_fenceable = mappable && fenceable;
2698

C
Chris Wilson 已提交
2699
	trace_i915_gem_object_bind(obj, map_and_fenceable);
2700 2701 2702 2703
	return 0;
}

void
2704
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2705 2706 2707 2708 2709
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2710
	if (obj->pages == NULL)
2711 2712
		return;

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
	if (obj->cache_level != I915_CACHE_NONE)
		return;

C
Chris Wilson 已提交
2724
	trace_i915_gem_object_clflush(obj);
2725

2726
	drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2727 2728
}

2729
/** Flushes any GPU write domain for the object if it's dirty. */
2730
static int
2731
i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2732
{
2733
	if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2734
		return 0;
2735 2736

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2737
	return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2738 2739 2740 2741
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2742
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2743
{
C
Chris Wilson 已提交
2744 2745
	uint32_t old_write_domain;

2746
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2747 2748
		return;

2749
	/* No actual flushing is required for the GTT write domain.  Writes
2750 2751
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
2752 2753 2754 2755
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
2756
	 */
2757 2758
	wmb();

2759 2760
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2761 2762

	trace_i915_gem_object_change_domain(obj,
2763
					    obj->base.read_domains,
C
Chris Wilson 已提交
2764
					    old_write_domain);
2765 2766 2767 2768
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
2769
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2770
{
C
Chris Wilson 已提交
2771
	uint32_t old_write_domain;
2772

2773
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2774 2775 2776
		return;

	i915_gem_clflush_object(obj);
2777
	intel_gtt_chipset_flush();
2778 2779
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
2780 2781

	trace_i915_gem_object_change_domain(obj,
2782
					    obj->base.read_domains,
C
Chris Wilson 已提交
2783
					    old_write_domain);
2784 2785
}

2786 2787 2788 2789 2790 2791
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2792
int
2793
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2794
{
C
Chris Wilson 已提交
2795
	uint32_t old_write_domain, old_read_domains;
2796
	int ret;
2797

2798
	/* Not valid to be called on unbound objects. */
2799
	if (obj->gtt_space == NULL)
2800 2801
		return -EINVAL;

2802 2803 2804
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

2805 2806 2807 2808
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2809
	if (obj->pending_gpu_write || write) {
2810
		ret = i915_gem_object_wait_rendering(obj);
2811 2812 2813
		if (ret)
			return ret;
	}
2814

2815
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2816

2817 2818
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
2819

2820 2821 2822
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2823 2824
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2825
	if (write) {
2826 2827 2828
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
2829 2830
	}

C
Chris Wilson 已提交
2831 2832 2833 2834
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2835 2836 2837
	return 0;
}

2838 2839 2840
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
2841 2842
	struct drm_device *dev = obj->base.dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

	if (obj->pin_count) {
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

	if (obj->gtt_space) {
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
		if (INTEL_INFO(obj->base.dev)->gen < 6) {
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

2870 2871
		if (obj->has_global_gtt_mapping)
			i915_gem_gtt_bind_object(obj, cache_level);
2872 2873 2874
		if (obj->has_aliasing_ppgtt_mapping)
			i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
					       obj, cache_level);
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
	}

	if (cache_level == I915_CACHE_NONE) {
		u32 old_read_domains, old_write_domain;

		/* If we're coming from LLC cached, then we haven't
		 * actually been tracking whether the data is in the
		 * CPU cache or not, since we only allow one bit set
		 * in obj->write_domain and have been skipping the clflushes.
		 * Just set it to the CPU cache for now.
		 */
		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
		WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);

		old_read_domains = obj->base.read_domains;
		old_write_domain = obj->base.write_domain;

		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;

		trace_i915_gem_object_change_domain(obj,
						    old_read_domains,
						    old_write_domain);
	}

	obj->cache_level = cache_level;
	return 0;
}

2904
/*
2905 2906 2907
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
2908 2909
 */
int
2910 2911
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
2912
				     struct intel_ring_buffer *pipelined)
2913
{
2914
	u32 old_read_domains, old_write_domain;
2915 2916
	int ret;

2917 2918 2919 2920
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2921
	if (pipelined != obj->ring) {
2922 2923
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
2924 2925 2926
			return ret;
	}

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
	if (ret)
		return ret;

2940 2941 2942 2943 2944 2945 2946 2947
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
	ret = i915_gem_object_pin(obj, alignment, true);
	if (ret)
		return ret;

2948 2949
	i915_gem_object_flush_cpu_write_domain(obj);

2950
	old_write_domain = obj->base.write_domain;
2951
	old_read_domains = obj->base.read_domains;
2952 2953 2954 2955 2956

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2957
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2958 2959 2960

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2961
					    old_write_domain);
2962 2963 2964 2965

	return 0;
}

2966
int
2967
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2968
{
2969 2970
	int ret;

2971
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2972 2973
		return 0;

2974
	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
2975
		ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2976 2977 2978
		if (ret)
			return ret;
	}
2979

2980 2981 2982 2983
	ret = i915_gem_object_wait_rendering(obj);
	if (ret)
		return ret;

2984 2985
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2986
	return 0;
2987 2988
}

2989 2990 2991 2992 2993 2994
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
2995
int
2996
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2997
{
C
Chris Wilson 已提交
2998
	uint32_t old_write_domain, old_read_domains;
2999 3000
	int ret;

3001 3002 3003
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3004 3005 3006 3007
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3008 3009 3010 3011 3012
	if (write || obj->pending_gpu_write) {
		ret = i915_gem_object_wait_rendering(obj);
		if (ret)
			return ret;
	}
3013

3014
	i915_gem_object_flush_gtt_write_domain(obj);
3015

3016 3017
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3018

3019
	/* Flush the CPU cache if it's still invalid. */
3020
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3021 3022
		i915_gem_clflush_object(obj);

3023
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3024 3025 3026 3027 3028
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3029
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3030 3031 3032 3033 3034

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3035 3036
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3037
	}
3038

C
Chris Wilson 已提交
3039 3040 3041 3042
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3043 3044 3045
	return 0;
}

3046 3047 3048
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3049 3050 3051 3052
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3053 3054 3055
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3056
static int
3057
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3058
{
3059 3060
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3061
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3062 3063 3064 3065
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3066

3067 3068 3069
	if (atomic_read(&dev_priv->mm.wedged))
		return -EIO;

3070
	spin_lock(&file_priv->mm.lock);
3071
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3072 3073
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3074

3075 3076
		ring = request->ring;
		seqno = request->seqno;
3077
	}
3078
	spin_unlock(&file_priv->mm.lock);
3079

3080 3081
	if (seqno == 0)
		return 0;
3082

3083
	ret = 0;
3084
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3085 3086 3087 3088 3089
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3090 3091 3092 3093 3094
		if (ring->irq_get(ring)) {
			ret = wait_event_interruptible(ring->irq_queue,
						       i915_seqno_passed(ring->get_seqno(ring), seqno)
						       || atomic_read(&dev_priv->mm.wedged));
			ring->irq_put(ring);
3095

3096 3097
			if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
				ret = -EIO;
3098 3099
		} else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
							     seqno) ||
3100 3101
				    atomic_read(&dev_priv->mm.wedged), 3000)) {
			ret = -EBUSY;
3102
		}
3103 3104
	}

3105 3106
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3107 3108 3109 3110

	return ret;
}

3111
int
3112 3113
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    uint32_t alignment,
3114
		    bool map_and_fenceable)
3115
{
3116
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
3117
	struct drm_i915_private *dev_priv = dev->dev_private;
3118 3119
	int ret;

3120
	BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3121
	WARN_ON(i915_verify_lists(dev));
3122

3123 3124 3125 3126
	if (obj->gtt_space != NULL) {
		if ((alignment && obj->gtt_offset & (alignment - 1)) ||
		    (map_and_fenceable && !obj->map_and_fenceable)) {
			WARN(obj->pin_count,
3127
			     "bo is already pinned with incorrect alignment:"
3128 3129
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
3130
			     obj->gtt_offset, alignment,
3131
			     map_and_fenceable,
3132
			     obj->map_and_fenceable);
3133 3134 3135 3136 3137 3138
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

3139
	if (obj->gtt_space == NULL) {
3140
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
3141
						  map_and_fenceable);
3142
		if (ret)
3143
			return ret;
3144
	}
J
Jesse Barnes 已提交
3145

3146 3147 3148
	if (!obj->has_global_gtt_mapping && map_and_fenceable)
		i915_gem_gtt_bind_object(obj, obj->cache_level);

3149 3150 3151
	if (obj->pin_count++ == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
C
Chris Wilson 已提交
3152
				       &dev_priv->mm.pinned_list);
3153
	}
3154
	obj->pin_mappable |= map_and_fenceable;
3155

3156
	WARN_ON(i915_verify_lists(dev));
3157 3158 3159 3160
	return 0;
}

void
3161
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3162
{
3163
	struct drm_device *dev = obj->base.dev;
3164 3165
	drm_i915_private_t *dev_priv = dev->dev_private;

3166
	WARN_ON(i915_verify_lists(dev));
3167 3168
	BUG_ON(obj->pin_count == 0);
	BUG_ON(obj->gtt_space == NULL);
3169

3170 3171 3172
	if (--obj->pin_count == 0) {
		if (!obj->active)
			list_move_tail(&obj->mm_list,
3173
				       &dev_priv->mm.inactive_list);
3174
		obj->pin_mappable = false;
3175
	}
3176
	WARN_ON(i915_verify_lists(dev));
3177 3178 3179 3180
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3181
		   struct drm_file *file)
3182 3183
{
	struct drm_i915_gem_pin *args = data;
3184
	struct drm_i915_gem_object *obj;
3185 3186
	int ret;

3187 3188 3189
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3190

3191
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3192
	if (&obj->base == NULL) {
3193 3194
		ret = -ENOENT;
		goto unlock;
3195 3196
	}

3197
	if (obj->madv != I915_MADV_WILLNEED) {
C
Chris Wilson 已提交
3198
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
3199 3200
		ret = -EINVAL;
		goto out;
3201 3202
	}

3203
	if (obj->pin_filp != NULL && obj->pin_filp != file) {
J
Jesse Barnes 已提交
3204 3205
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3206 3207
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3208 3209
	}

3210 3211 3212
	obj->user_pin_count++;
	obj->pin_filp = file;
	if (obj->user_pin_count == 1) {
3213
		ret = i915_gem_object_pin(obj, args->alignment, true);
3214 3215
		if (ret)
			goto out;
3216 3217 3218 3219 3220
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
3221
	i915_gem_object_flush_cpu_write_domain(obj);
3222
	args->offset = obj->gtt_offset;
3223
out:
3224
	drm_gem_object_unreference(&obj->base);
3225
unlock:
3226
	mutex_unlock(&dev->struct_mutex);
3227
	return ret;
3228 3229 3230 3231
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3232
		     struct drm_file *file)
3233 3234
{
	struct drm_i915_gem_pin *args = data;
3235
	struct drm_i915_gem_object *obj;
3236
	int ret;
3237

3238 3239 3240
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
3241

3242
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3243
	if (&obj->base == NULL) {
3244 3245
		ret = -ENOENT;
		goto unlock;
3246
	}
3247

3248
	if (obj->pin_filp != file) {
J
Jesse Barnes 已提交
3249 3250
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
3251 3252
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
3253
	}
3254 3255 3256
	obj->user_pin_count--;
	if (obj->user_pin_count == 0) {
		obj->pin_filp = NULL;
J
Jesse Barnes 已提交
3257 3258
		i915_gem_object_unpin(obj);
	}
3259

3260
out:
3261
	drm_gem_object_unreference(&obj->base);
3262
unlock:
3263
	mutex_unlock(&dev->struct_mutex);
3264
	return ret;
3265 3266 3267 3268
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3269
		    struct drm_file *file)
3270 3271
{
	struct drm_i915_gem_busy *args = data;
3272
	struct drm_i915_gem_object *obj;
3273 3274
	int ret;

3275
	ret = i915_mutex_lock_interruptible(dev);
3276
	if (ret)
3277
		return ret;
3278

3279
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3280
	if (&obj->base == NULL) {
3281 3282
		ret = -ENOENT;
		goto unlock;
3283
	}
3284

3285 3286 3287 3288
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
3289
	 */
3290
	args->busy = obj->active;
3291 3292 3293 3294 3295 3296
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
3297
		if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
C
Chris Wilson 已提交
3298
			ret = i915_gem_flush_ring(obj->ring,
3299
						  0, obj->base.write_domain);
3300 3301 3302 3303
		} else if (obj->ring->outstanding_lazy_request ==
			   obj->last_rendering_seqno) {
			struct drm_i915_gem_request *request;

3304 3305 3306
			/* This ring is not being cleared by active usage,
			 * so emit a request to do so.
			 */
3307
			request = kzalloc(sizeof(*request), GFP_KERNEL);
3308
			if (request) {
3309
				ret = i915_add_request(obj->ring, NULL, request);
3310 3311 3312
				if (ret)
					kfree(request);
			} else
3313 3314
				ret = -ENOMEM;
		}
3315 3316 3317 3318 3319 3320

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
C
Chris Wilson 已提交
3321
		i915_gem_retire_requests_ring(obj->ring);
3322

3323
		args->busy = obj->active;
3324
	}
3325

3326
	drm_gem_object_unreference(&obj->base);
3327
unlock:
3328
	mutex_unlock(&dev->struct_mutex);
3329
	return ret;
3330 3331 3332 3333 3334 3335
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3336
	return i915_gem_ring_throttle(dev, file_priv);
3337 3338
}

3339 3340 3341 3342 3343
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
3344
	struct drm_i915_gem_object *obj;
3345
	int ret;
3346 3347 3348 3349 3350 3351 3352 3353 3354

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3355 3356 3357 3358
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3359
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3360
	if (&obj->base == NULL) {
3361 3362
		ret = -ENOENT;
		goto unlock;
3363 3364
	}

3365
	if (obj->pin_count) {
3366 3367
		ret = -EINVAL;
		goto out;
3368 3369
	}

3370 3371
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
3372

3373
	/* if the object is no longer bound, discard its backing storage */
3374 3375
	if (i915_gem_object_is_purgeable(obj) &&
	    obj->gtt_space == NULL)
3376 3377
		i915_gem_object_truncate(obj);

3378
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
3379

3380
out:
3381
	drm_gem_object_unreference(&obj->base);
3382
unlock:
3383
	mutex_unlock(&dev->struct_mutex);
3384
	return ret;
3385 3386
}

3387 3388
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
3389
{
3390
	struct drm_i915_private *dev_priv = dev->dev_private;
3391
	struct drm_i915_gem_object *obj;
3392
	struct address_space *mapping;
3393

3394 3395 3396
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
3397

3398 3399 3400 3401
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
3402

3403 3404 3405
	mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
	mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);

3406 3407
	i915_gem_info_add_obj(dev_priv, size);

3408 3409
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3410

3411 3412
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3428
	obj->base.driver_private = NULL;
3429
	obj->fence_reg = I915_FENCE_REG_NONE;
3430
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
3431
	INIT_LIST_HEAD(&obj->gtt_list);
3432
	INIT_LIST_HEAD(&obj->ring_list);
3433
	INIT_LIST_HEAD(&obj->exec_list);
3434 3435
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
3436 3437
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
3438

3439
	return obj;
3440 3441 3442 3443 3444
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
3445

3446 3447 3448
	return 0;
}

3449
static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3450
{
3451
	struct drm_device *dev = obj->base.dev;
3452 3453
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3454

3455 3456
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
3457
		list_move(&obj->mm_list,
3458 3459 3460
			  &dev_priv->mm.deferred_free_list);
		return;
	}
3461

3462 3463
	trace_i915_gem_object_destroy(obj);

3464
	if (obj->base.map_list.map)
3465
		drm_gem_free_mmap_offset(&obj->base);
3466

3467 3468
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
3469

3470 3471
	kfree(obj->bit_17);
	kfree(obj);
3472 3473
}

3474
void i915_gem_free_object(struct drm_gem_object *gem_obj)
3475
{
3476 3477
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
	struct drm_device *dev = obj->base.dev;
3478

3479
	while (obj->pin_count > 0)
3480 3481
		i915_gem_object_unpin(obj);

3482
	if (obj->phys_obj)
3483 3484 3485 3486 3487
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

3488 3489 3490 3491 3492
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3493

3494
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
3495

3496
	if (dev_priv->mm.suspended) {
3497 3498
		mutex_unlock(&dev->struct_mutex);
		return 0;
3499 3500
	}

3501
	ret = i915_gpu_idle(dev, true);
3502 3503
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
3504
		return ret;
3505
	}
3506

3507 3508
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3509
		ret = i915_gem_evict_inactive(dev, false);
3510 3511 3512 3513 3514 3515
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

3516 3517
	i915_gem_reset_fences(dev);

3518 3519 3520 3521 3522
	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
3523
	del_timer_sync(&dev_priv->hangcheck_timer);
3524 3525

	i915_kernel_lost_context(dev);
3526
	i915_gem_cleanup_ringbuffer(dev);
3527

3528 3529
	mutex_unlock(&dev->struct_mutex);

3530 3531 3532
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

3533 3534 3535
	return 0;
}

3536 3537 3538 3539
void i915_gem_init_swizzling(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

3540
	if (INTEL_INFO(dev)->gen < 5 ||
3541 3542 3543 3544 3545 3546
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

3547 3548 3549
	if (IS_GEN5(dev))
		return;

3550 3551 3552 3553 3554 3555
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
		I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
	else
		I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
}
D
Daniel Vetter 已提交
3556 3557 3558 3559 3560 3561

void i915_gem_init_ppgtt(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t pd_offset;
	struct intel_ring_buffer *ring;
3562 3563 3564
	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
	uint32_t __iomem *pd_addr;
	uint32_t pd_entry;
D
Daniel Vetter 已提交
3565 3566 3567 3568 3569
	int i;

	if (!dev_priv->mm.aliasing_ppgtt)
		return;

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587

	pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
	for (i = 0; i < ppgtt->num_pd_entries; i++) {
		dma_addr_t pt_addr;

		if (dev_priv->mm.gtt->needs_dmar)
			pt_addr = ppgtt->pt_dma_addr[i];
		else
			pt_addr = page_to_phys(ppgtt->pt_pages[i]);

		pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
		pd_entry |= GEN6_PDE_VALID;

		writel(pd_entry, pd_addr + i);
	}
	readl(pd_addr);

	pd_offset = ppgtt->pd_offset;
D
Daniel Vetter 已提交
3588 3589 3590 3591
	pd_offset /= 64; /* in cachelines, */
	pd_offset <<= 16;

	if (INTEL_INFO(dev)->gen == 6) {
3592 3593 3594 3595
		uint32_t ecochk, gab_ctl, ecobits;

		ecobits = I915_READ(GAC_ECO_BITS); 
		I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3596 3597 3598 3599 3600

		gab_ctl = I915_READ(GAB_CTL);
		I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

		ecochk = I915_READ(GAM_ECOCHK);
D
Daniel Vetter 已提交
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
		I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
				       ECOCHK_PPGTT_CACHE64B);
		I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
	} else if (INTEL_INFO(dev)->gen >= 7) {
		I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
		/* GFX_MODE is per-ring on gen7+ */
	}

	for (i = 0; i < I915_NUM_RINGS; i++) {
		ring = &dev_priv->ring[i];

		if (INTEL_INFO(dev)->gen >= 7)
			I915_WRITE(RING_MODE_GEN7(ring),
				   GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));

		I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
		I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
	}
}

3621
int
3622
i915_gem_init_hw(struct drm_device *dev)
3623 3624 3625
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
3626

3627 3628
	i915_gem_init_swizzling(dev);

3629
	ret = intel_init_render_ring_buffer(dev);
3630
	if (ret)
3631
		return ret;
3632 3633

	if (HAS_BSD(dev)) {
3634
		ret = intel_init_bsd_ring_buffer(dev);
3635 3636
		if (ret)
			goto cleanup_render_ring;
3637
	}
3638

3639 3640 3641 3642 3643 3644
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

3645 3646
	dev_priv->next_seqno = 1;

D
Daniel Vetter 已提交
3647 3648
	i915_gem_init_ppgtt(dev);

3649 3650
	return 0;

3651
cleanup_bsd_ring:
3652
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3653
cleanup_render_ring:
3654
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3655 3656 3657 3658 3659 3660 3661
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3662
	int i;
3663

3664 3665
	for (i = 0; i < I915_NUM_RINGS; i++)
		intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3666 3667
}

3668 3669 3670 3671 3672
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
3673
	int ret, i;
3674

J
Jesse Barnes 已提交
3675 3676 3677
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3678
	if (atomic_read(&dev_priv->mm.wedged)) {
3679
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
3680
		atomic_set(&dev_priv->mm.wedged, 0);
3681 3682 3683
	}

	mutex_lock(&dev->struct_mutex);
3684 3685
	dev_priv->mm.suspended = 0;

3686
	ret = i915_gem_init_hw(dev);
3687 3688
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
3689
		return ret;
3690
	}
3691

3692
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
3693 3694
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3695 3696 3697 3698
	for (i = 0; i < I915_NUM_RINGS; i++) {
		BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
		BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
	}
3699
	mutex_unlock(&dev->struct_mutex);
3700

3701 3702 3703
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
3704

3705
	return 0;
3706 3707 3708 3709 3710 3711 3712 3713

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
3714 3715 3716 3717 3718 3719
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
3720 3721 3722
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

3723
	drm_irq_uninstall(dev);
3724
	return i915_gem_idle(dev);
3725 3726 3727 3728 3729 3730 3731
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

3732 3733 3734
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

3735 3736 3737
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
3738 3739
}

3740 3741 3742 3743 3744 3745 3746 3747
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

3748 3749 3750
void
i915_gem_load(struct drm_device *dev)
{
3751
	int i;
3752 3753
	drm_i915_private_t *dev_priv = dev->dev_private;

3754
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
3755 3756
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
3757
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3758
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3759
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
3760
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3761 3762
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
3763
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3764
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3765 3766
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
3767
	init_completion(&dev_priv->error_completion);
3768

3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

3779 3780
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

3781
	/* Old X drivers will take 0-2 for front, back, depth buffers */
3782 3783
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
3784

3785
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3786 3787 3788 3789
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

3790
	/* Initialize fence registers to zero */
3791 3792
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3793
	}
3794

3795
	i915_gem_detect_bit_6_swizzle(dev);
3796
	init_waitqueue_head(&dev_priv->pending_flip_queue);
3797

3798 3799
	dev_priv->mm.interruptible = true;

3800 3801 3802
	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
3803
}
3804 3805 3806 3807 3808

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
3809 3810
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
3811 3812 3813 3814 3815 3816 3817 3818
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

3819
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3820 3821 3822 3823 3824
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

3825
	phys_obj->handle = drm_pci_alloc(dev, size, align);
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
3838
	kfree(phys_obj);
3839 3840 3841
	return ret;
}

3842
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

3867
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3868 3869 3870 3871
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
3872
				 struct drm_i915_gem_object *obj)
3873
{
3874
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3875
	char *vaddr;
3876 3877 3878
	int i;
	int page_count;

3879
	if (!obj->phys_obj)
3880
		return;
3881
	vaddr = obj->phys_obj->handle->vaddr;
3882

3883
	page_count = obj->base.size / PAGE_SIZE;
3884
	for (i = 0; i < page_count; i++) {
3885
		struct page *page = shmem_read_mapping_page(mapping, i);
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
3897
	}
3898
	intel_gtt_chipset_flush();
3899

3900 3901
	obj->phys_obj->cur_obj = NULL;
	obj->phys_obj = NULL;
3902 3903 3904 3905
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
3906
			    struct drm_i915_gem_object *obj,
3907 3908
			    int id,
			    int align)
3909
{
3910
	struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3911 3912 3913 3914 3915 3916 3917 3918
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

3919 3920
	if (obj->phys_obj) {
		if (obj->phys_obj->id == id)
3921 3922 3923 3924 3925 3926 3927
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
3928
						obj->base.size, align);
3929
		if (ret) {
3930 3931
			DRM_ERROR("failed to init phys object %d size: %zu\n",
				  id, obj->base.size);
3932
			return ret;
3933 3934 3935 3936
		}
	}

	/* bind to the object */
3937 3938
	obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj->phys_obj->cur_obj = obj;
3939

3940
	page_count = obj->base.size / PAGE_SIZE;
3941 3942

	for (i = 0; i < page_count; i++) {
3943 3944 3945
		struct page *page;
		char *dst, *src;

3946
		page = shmem_read_mapping_page(mapping, i);
3947 3948
		if (IS_ERR(page))
			return PTR_ERR(page);
3949

3950
		src = kmap_atomic(page);
3951
		dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3952
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
3953
		kunmap_atomic(src);
3954

3955 3956 3957
		mark_page_accessed(page);
		page_cache_release(page);
	}
3958

3959 3960 3961 3962
	return 0;
}

static int
3963 3964
i915_gem_phys_pwrite(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
3965 3966 3967
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
3968
	void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3969
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3970

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
3984

3985
	intel_gtt_chipset_flush();
3986 3987
	return 0;
}
3988

3989
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3990
{
3991
	struct drm_i915_file_private *file_priv = file->driver_priv;
3992 3993 3994 3995 3996

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
3997
	spin_lock(&file_priv->mm.lock);
3998 3999 4000 4001 4002 4003 4004 4005 4006
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
4007
	spin_unlock(&file_priv->mm.lock);
4008
}
4009

4010 4011 4012 4013 4014 4015 4016
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4017
		      list_empty(&dev_priv->mm.active_list);
4018 4019 4020 4021

	return !lists_empty;
}

4022
static int
4023
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4024
{
4025 4026 4027 4028 4029 4030
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
4031
	int nr_to_scan = sc->nr_to_scan;
4032 4033 4034
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
4035
		return 0;
4036 4037 4038

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
4039 4040 4041 4042 4043 4044 4045
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
4046 4047
	}

4048
rescan:
4049
	/* first scan for clean buffers */
4050
	i915_gem_retire_requests(dev);
4051

4052 4053 4054 4055
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
4056 4057
			if (i915_gem_object_unbind(obj) == 0 &&
			    --nr_to_scan == 0)
4058
				break;
4059 4060 4061 4062
		}
	}

	/* second pass, evict/count anything still on the inactive list */
4063 4064 4065 4066
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
4067 4068
		if (nr_to_scan &&
		    i915_gem_object_unbind(obj) == 0)
4069
			nr_to_scan--;
4070
		else
4071 4072 4073 4074
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
4075 4076 4077 4078 4079 4080
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
4081
		if (i915_gpu_idle(dev, true) == 0)
4082 4083
			goto rescan;
	}
4084 4085
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
4086
}