workqueue.c 110.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
T
Tejun Heo 已提交
2
 * kernel/workqueue.c - generic async execution with shared worker pool
L
Linus Torvalds 已提交
3
 *
T
Tejun Heo 已提交
4
 * Copyright (C) 2002		Ingo Molnar
L
Linus Torvalds 已提交
5
 *
T
Tejun Heo 已提交
6 7 8 9 10
 *   Derived from the taskqueue/keventd code by:
 *     David Woodhouse <dwmw2@infradead.org>
 *     Andrew Morton
 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *     Theodore Ts'o <tytso@mit.edu>
L
Linus Torvalds 已提交
11
 *
T
Tejun Heo 已提交
12
 * Made to use alloc_percpu by Christoph Lameter.
L
Linus Torvalds 已提交
13
 *
T
Tejun Heo 已提交
14 15
 * Copyright (C) 2010		SUSE Linux Products GmbH
 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16
 *
T
Tejun Heo 已提交
17 18 19 20 21 22 23
 * This is the generic async execution mechanism.  Work items as are
 * executed in process context.  The worker pool is shared and
 * automatically managed.  There is one worker pool for each CPU and
 * one extra for works which are better served by workers which are
 * not bound to any specific CPU.
 *
 * Please read Documentation/workqueue.txt for details.
L
Linus Torvalds 已提交
24 25
 */

26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
37
#include <linux/hardirq.h>
38
#include <linux/mempolicy.h>
39
#include <linux/freezer.h>
40 41
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>
42
#include <linux/lockdep.h>
T
Tejun Heo 已提交
43
#include <linux/idr.h>
44
#include <linux/jhash.h>
45
#include <linux/hashtable.h>
46
#include <linux/rculist.h>
47

48
#include "workqueue_internal.h"
L
Linus Torvalds 已提交
49

T
Tejun Heo 已提交
50
enum {
51 52
	/*
	 * worker_pool flags
53
	 *
54
	 * A bound pool is either associated or disassociated with its CPU.
55 56 57 58 59 60
	 * While associated (!DISASSOCIATED), all workers are bound to the
	 * CPU and none has %WORKER_UNBOUND set and concurrency management
	 * is in effect.
	 *
	 * While DISASSOCIATED, the cpu may be offline and all workers have
	 * %WORKER_UNBOUND set and concurrency management disabled, and may
61
	 * be executing on any CPU.  The pool behaves as an unbound one.
62 63
	 *
	 * Note that DISASSOCIATED can be flipped only while holding
64 65
	 * assoc_mutex to avoid changing binding state while
	 * create_worker() is in progress.
66
	 */
67
	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
68
	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
69
	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
70

T
Tejun Heo 已提交
71 72 73 74
	/* worker flags */
	WORKER_STARTED		= 1 << 0,	/* started */
	WORKER_DIE		= 1 << 1,	/* die die die */
	WORKER_IDLE		= 1 << 2,	/* is idle */
75
	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76
	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77
	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78

79
	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
80
				  WORKER_CPU_INTENSIVE,
81

82
	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
83

84
	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
T
Tejun Heo 已提交
85
	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86

87 88 89
	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */

90 91 92
	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
						/* call for help after 10ms
						   (min two ticks) */
93 94 95 96 97 98 99 100
	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */

	/*
	 * Rescue workers are used only on emergencies and shared by
	 * all cpus.  Give -20.
	 */
	RESCUER_NICE_LEVEL	= -20,
101
	HIGHPRI_NICE_LEVEL	= -20,
T
Tejun Heo 已提交
102
};
L
Linus Torvalds 已提交
103 104

/*
T
Tejun Heo 已提交
105 106
 * Structure fields follow one of the following exclusion rules.
 *
107 108
 * I: Modifiable by initialization/destruction paths and read-only for
 *    everyone else.
T
Tejun Heo 已提交
109
 *
110 111 112
 * P: Preemption protected.  Disabling preemption is enough and should
 *    only be modified and accessed from the local cpu.
 *
113
 * L: pool->lock protected.  Access with pool->lock held.
T
Tejun Heo 已提交
114
 *
115 116 117 118
 * X: During normal operation, modification requires pool->lock and should
 *    be done only from local cpu.  Either disabling preemption on local
 *    cpu or grabbing pool->lock is enough for read access.  If
 *    POOL_DISASSOCIATED is set, it's identical to L.
119
 *
120 121
 * F: wq->flush_mutex protected.
 *
T
Tejun Heo 已提交
122
 * W: workqueue_lock protected.
123 124
 *
 * R: workqueue_lock protected for writes.  Sched-RCU protected for reads.
L
Linus Torvalds 已提交
125 126
 */

127
/* struct worker is defined in workqueue_internal.h */
T
Tejun Heo 已提交
128

129
struct worker_pool {
130
	spinlock_t		lock;		/* the pool lock */
131
	int			cpu;		/* I: the associated cpu */
T
Tejun Heo 已提交
132
	int			id;		/* I: pool ID */
133
	unsigned int		flags;		/* X: flags */
134 135 136

	struct list_head	worklist;	/* L: list of pending works */
	int			nr_workers;	/* L: total number of workers */
137 138

	/* nr_idle includes the ones off idle_list for rebinding */
139 140 141 142 143 144
	int			nr_idle;	/* L: currently idle ones */

	struct list_head	idle_list;	/* X: list of idle workers */
	struct timer_list	idle_timer;	/* L: worker idle timeout */
	struct timer_list	mayday_timer;	/* L: SOS timer for workers */

145 146 147 148
	/* workers are chained either in busy_hash or idle_list */
	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
						/* L: hash of busy workers */

149
	struct mutex		manager_arb;	/* manager arbitration */
150
	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
151
	struct ida		worker_ida;	/* L: for worker IDs */
152

T
Tejun Heo 已提交
153
	struct workqueue_attrs	*attrs;		/* I: worker attributes */
154 155
	struct hlist_node	hash_node;	/* R: unbound_pool_hash node */
	int			refcnt;		/* refcnt for unbound pools */
T
Tejun Heo 已提交
156

157 158 159 160 161 162
	/*
	 * The current concurrency level.  As it's likely to be accessed
	 * from other CPUs during try_to_wake_up(), put it in a separate
	 * cacheline.
	 */
	atomic_t		nr_running ____cacheline_aligned_in_smp;
163 164 165 166 167 168

	/*
	 * Destruction of pool is sched-RCU protected to allow dereferences
	 * from get_work_pool().
	 */
	struct rcu_head		rcu;
169 170
} ____cacheline_aligned_in_smp;

L
Linus Torvalds 已提交
171
/*
172 173 174 175
 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 * of work_struct->data are used for flags and the remaining high bits
 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 * number of flag bits.
L
Linus Torvalds 已提交
176
 */
177
struct pool_workqueue {
178
	struct worker_pool	*pool;		/* I: the associated pool */
T
Tejun Heo 已提交
179
	struct workqueue_struct *wq;		/* I: the owning workqueue */
180 181 182 183
	int			work_color;	/* L: current color */
	int			flush_color;	/* L: flushing color */
	int			nr_in_flight[WORK_NR_COLORS];
						/* L: nr of in_flight works */
184
	int			nr_active;	/* L: nr of active works */
185
	int			max_active;	/* L: max active works */
186
	struct list_head	delayed_works;	/* L: delayed works */
187
	struct list_head	pwqs_node;	/* R: node on wq->pwqs */
188
	struct list_head	mayday_node;	/* W: node on wq->maydays */
189
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
L
Linus Torvalds 已提交
190

191 192 193 194 195 196 197 198 199
/*
 * Structure used to wait for workqueue flush.
 */
struct wq_flusher {
	struct list_head	list;		/* F: list of flushers */
	int			flush_color;	/* F: flush color waiting for */
	struct completion	done;		/* flush completion */
};

L
Linus Torvalds 已提交
200 201 202 203 204
/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
205
	unsigned int		flags;		/* W: WQ_* flags */
206
	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
207
	struct list_head	pwqs;		/* R: all pwqs of this wq */
T
Tejun Heo 已提交
208
	struct list_head	list;		/* W: list of all workqueues */
209 210 211 212

	struct mutex		flush_mutex;	/* protects wq flushing */
	int			work_color;	/* F: current work color */
	int			flush_color;	/* F: current flush color */
213
	atomic_t		nr_pwqs_to_flush; /* flush in progress */
214 215 216 217
	struct wq_flusher	*first_flusher;	/* F: first flusher */
	struct list_head	flusher_queue;	/* F: flush waiters */
	struct list_head	flusher_overflow; /* F: flush overflow list */

218
	struct list_head	maydays;	/* W: pwqs requesting rescue */
219 220
	struct worker		*rescuer;	/* I: rescue worker */

221
	int			nr_drainers;	/* W: drain in progress */
222
	int			saved_max_active; /* W: saved pwq max_active */
223
#ifdef CONFIG_LOCKDEP
T
Tejun Heo 已提交
224
	struct lockdep_map	lockdep_map;
225
#endif
226
	char			name[];		/* I: workqueue name */
L
Linus Torvalds 已提交
227 228
};

229 230
static struct kmem_cache *pwq_cache;

231 232 233 234 235
/* hash of all unbound pools keyed by pool->attrs */
static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);

static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];

236 237
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL_GPL(system_wq);
V
Valentin Ilie 已提交
238
struct workqueue_struct *system_highpri_wq __read_mostly;
239
EXPORT_SYMBOL_GPL(system_highpri_wq);
V
Valentin Ilie 已提交
240
struct workqueue_struct *system_long_wq __read_mostly;
241
EXPORT_SYMBOL_GPL(system_long_wq);
V
Valentin Ilie 已提交
242
struct workqueue_struct *system_unbound_wq __read_mostly;
243
EXPORT_SYMBOL_GPL(system_unbound_wq);
V
Valentin Ilie 已提交
244
struct workqueue_struct *system_freezable_wq __read_mostly;
245
EXPORT_SYMBOL_GPL(system_freezable_wq);
246

247 248 249
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>

250 251 252 253 254
#define assert_rcu_or_wq_lock()						\
	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
			   lockdep_is_held(&workqueue_lock),		\
			   "sched RCU or workqueue lock should be held")

255 256 257
#define for_each_cpu_worker_pool(pool, cpu)				\
	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
258
	     (pool)++)
259

260 261
#define for_each_busy_worker(worker, i, pool)				\
	hash_for_each(pool->busy_hash, i, worker, hentry)
262

T
Tejun Heo 已提交
263 264 265 266
/**
 * for_each_pool - iterate through all worker_pools in the system
 * @pool: iteration cursor
 * @id: integer used for iteration
267 268 269 270 271 272 273
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pool needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pool stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
T
Tejun Heo 已提交
274 275
 */
#define for_each_pool(pool, id)						\
276 277 278
	idr_for_each_entry(&worker_pool_idr, pool, id)			\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
T
Tejun Heo 已提交
279

280 281 282 283
/**
 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 * @pwq: iteration cursor
 * @wq: the target workqueue
284 285 286 287 288 289 290
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 *
 * The if/else clause exists only for the lockdep assertion and can be
 * ignored.
291 292
 */
#define for_each_pwq(pwq, wq)						\
293 294 295
	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
		if (({ assert_rcu_or_wq_lock(); false; })) { }		\
		else
296

297 298 299 300
#ifdef CONFIG_DEBUG_OBJECTS_WORK

static struct debug_obj_descr work_debug_descr;

301 302 303 304 305
static void *work_debug_hint(void *addr)
{
	return ((struct work_struct *) addr)->func;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int work_fixup_init(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_init(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int work_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The work struct was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
341
		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
			debug_object_init(work, &work_debug_descr);
			debug_object_activate(work, &work_debug_descr);
			return 0;
		}
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int work_fixup_free(void *addr, enum debug_obj_state state)
{
	struct work_struct *work = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		cancel_work_sync(work);
		debug_object_free(work, &work_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr work_debug_descr = {
	.name		= "work_struct",
377
	.debug_hint	= work_debug_hint,
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	.fixup_init	= work_fixup_init,
	.fixup_activate	= work_fixup_activate,
	.fixup_free	= work_fixup_free,
};

static inline void debug_work_activate(struct work_struct *work)
{
	debug_object_activate(work, &work_debug_descr);
}

static inline void debug_work_deactivate(struct work_struct *work)
{
	debug_object_deactivate(work, &work_debug_descr);
}

void __init_work(struct work_struct *work, int onstack)
{
	if (onstack)
		debug_object_init_on_stack(work, &work_debug_descr);
	else
		debug_object_init(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(__init_work);

void destroy_work_on_stack(struct work_struct *work)
{
	debug_object_free(work, &work_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_work_on_stack);

#else
static inline void debug_work_activate(struct work_struct *work) { }
static inline void debug_work_deactivate(struct work_struct *work) { }
#endif

413 414
/* Serializes the accesses to the list of workqueues. */
static DEFINE_SPINLOCK(workqueue_lock);
L
Linus Torvalds 已提交
415
static LIST_HEAD(workqueues);
416
static bool workqueue_freezing;		/* W: have wqs started freezing? */
T
Tejun Heo 已提交
417

418
/*
419 420
 * The CPU and unbound standard worker pools.  The unbound ones have
 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
421
 */
422
static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
423
				     cpu_worker_pools);
424

425 426 427 428
/*
 * idr of all pools.  Modifications are protected by workqueue_lock.  Read
 * accesses are protected by sched-RCU protected.
 */
T
Tejun Heo 已提交
429 430
static DEFINE_IDR(worker_pool_idr);

T
Tejun Heo 已提交
431
static int worker_thread(void *__worker);
L
Linus Torvalds 已提交
432

T
Tejun Heo 已提交
433 434 435 436 437
/* allocate ID and assign it to @pool */
static int worker_pool_assign_id(struct worker_pool *pool)
{
	int ret;

438 439 440
	do {
		if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
			return -ENOMEM;
T
Tejun Heo 已提交
441

442 443 444 445
		spin_lock_irq(&workqueue_lock);
		ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
		spin_unlock_irq(&workqueue_lock);
	} while (ret == -EAGAIN);
T
Tejun Heo 已提交
446

447
	return ret;
448 449
}

450 451 452 453 454 455 456 457
/**
 * first_pwq - return the first pool_workqueue of the specified workqueue
 * @wq: the target workqueue
 *
 * This must be called either with workqueue_lock held or sched RCU read
 * locked.  If the pwq needs to be used beyond the locking in effect, the
 * caller is responsible for guaranteeing that the pwq stays online.
 */
458
static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
459
{
460 461 462
	assert_rcu_or_wq_lock();
	return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
				      pwqs_node);
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
static unsigned int work_color_to_flags(int color)
{
	return color << WORK_STRUCT_COLOR_SHIFT;
}

static int get_work_color(struct work_struct *work)
{
	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
		((1 << WORK_STRUCT_COLOR_BITS) - 1);
}

static int work_next_color(int color)
{
	return (color + 1) % WORK_NR_COLORS;
}
L
Linus Torvalds 已提交
480

481
/*
482 483
 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 * contain the pointer to the queued pwq.  Once execution starts, the flag
484
 * is cleared and the high bits contain OFFQ flags and pool ID.
485
 *
486 487
 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 * and clear_work_data() can be used to set the pwq, pool or clear
488 489
 * work->data.  These functions should only be called while the work is
 * owned - ie. while the PENDING bit is set.
490
 *
491
 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
492
 * corresponding to a work.  Pool is available once the work has been
493
 * queued anywhere after initialization until it is sync canceled.  pwq is
494
 * available only while the work item is queued.
495
 *
496 497 498 499
 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 * canceled.  While being canceled, a work item may have its PENDING set
 * but stay off timer and worklist for arbitrarily long and nobody should
 * try to steal the PENDING bit.
500
 */
501 502
static inline void set_work_data(struct work_struct *work, unsigned long data,
				 unsigned long flags)
503
{
504
	WARN_ON_ONCE(!work_pending(work));
505 506
	atomic_long_set(&work->data, data | flags | work_static(work));
}
507

508
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
509 510
			 unsigned long extra_flags)
{
511 512
	set_work_data(work, (unsigned long)pwq,
		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
513 514
}

515 516 517 518 519 520 521
static void set_work_pool_and_keep_pending(struct work_struct *work,
					   int pool_id)
{
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
		      WORK_STRUCT_PENDING);
}

522 523
static void set_work_pool_and_clear_pending(struct work_struct *work,
					    int pool_id)
524
{
525 526 527 528 529 530 531
	/*
	 * The following wmb is paired with the implied mb in
	 * test_and_set_bit(PENDING) and ensures all updates to @work made
	 * here are visible to and precede any updates by the next PENDING
	 * owner.
	 */
	smp_wmb();
532
	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
533
}
534

535
static void clear_work_data(struct work_struct *work)
L
Linus Torvalds 已提交
536
{
537 538
	smp_wmb();	/* see set_work_pool_and_clear_pending() */
	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
L
Linus Torvalds 已提交
539 540
}

541
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
542
{
543
	unsigned long data = atomic_long_read(&work->data);
544

545
	if (data & WORK_STRUCT_PWQ)
546 547 548
		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
	else
		return NULL;
549 550
}

551 552 553 554 555
/**
 * get_work_pool - return the worker_pool a given work was associated with
 * @work: the work item of interest
 *
 * Return the worker_pool @work was last associated with.  %NULL if none.
556 557 558 559 560 561 562 563 564
 *
 * Pools are created and destroyed under workqueue_lock, and allows read
 * access under sched-RCU read lock.  As such, this function should be
 * called under workqueue_lock or with preemption disabled.
 *
 * All fields of the returned pool are accessible as long as the above
 * mentioned locking is in effect.  If the returned pool needs to be used
 * beyond the critical section, the caller is responsible for ensuring the
 * returned pool is and stays online.
565 566
 */
static struct worker_pool *get_work_pool(struct work_struct *work)
567
{
568
	unsigned long data = atomic_long_read(&work->data);
569
	int pool_id;
570

571 572
	assert_rcu_or_wq_lock();

573 574
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
575
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
576

577 578
	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
	if (pool_id == WORK_OFFQ_POOL_NONE)
579 580
		return NULL;

581
	return idr_find(&worker_pool_idr, pool_id);
582 583 584 585 586 587 588 589 590 591 592
}

/**
 * get_work_pool_id - return the worker pool ID a given work is associated with
 * @work: the work item of interest
 *
 * Return the worker_pool ID @work was last associated with.
 * %WORK_OFFQ_POOL_NONE if none.
 */
static int get_work_pool_id(struct work_struct *work)
{
593 594
	unsigned long data = atomic_long_read(&work->data);

595 596
	if (data & WORK_STRUCT_PWQ)
		return ((struct pool_workqueue *)
597
			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
598

599
	return data >> WORK_OFFQ_POOL_SHIFT;
600 601
}

602 603
static void mark_work_canceling(struct work_struct *work)
{
604
	unsigned long pool_id = get_work_pool_id(work);
605

606 607
	pool_id <<= WORK_OFFQ_POOL_SHIFT;
	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
608 609 610 611 612 613
}

static bool work_is_canceling(struct work_struct *work)
{
	unsigned long data = atomic_long_read(&work->data);

614
	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
615 616
}

617
/*
618 619
 * Policy functions.  These define the policies on how the global worker
 * pools are managed.  Unless noted otherwise, these functions assume that
620
 * they're being called with pool->lock held.
621 622
 */

623
static bool __need_more_worker(struct worker_pool *pool)
624
{
625
	return !atomic_read(&pool->nr_running);
626 627
}

628
/*
629 630
 * Need to wake up a worker?  Called from anything but currently
 * running workers.
631 632
 *
 * Note that, because unbound workers never contribute to nr_running, this
633
 * function will always return %true for unbound pools as long as the
634
 * worklist isn't empty.
635
 */
636
static bool need_more_worker(struct worker_pool *pool)
637
{
638
	return !list_empty(&pool->worklist) && __need_more_worker(pool);
639
}
640

641
/* Can I start working?  Called from busy but !running workers. */
642
static bool may_start_working(struct worker_pool *pool)
643
{
644
	return pool->nr_idle;
645 646 647
}

/* Do I need to keep working?  Called from currently running workers. */
648
static bool keep_working(struct worker_pool *pool)
649
{
650 651
	return !list_empty(&pool->worklist) &&
		atomic_read(&pool->nr_running) <= 1;
652 653 654
}

/* Do we need a new worker?  Called from manager. */
655
static bool need_to_create_worker(struct worker_pool *pool)
656
{
657
	return need_more_worker(pool) && !may_start_working(pool);
658
}
659

660
/* Do I need to be the manager? */
661
static bool need_to_manage_workers(struct worker_pool *pool)
662
{
663
	return need_to_create_worker(pool) ||
664
		(pool->flags & POOL_MANAGE_WORKERS);
665 666 667
}

/* Do we have too many workers and should some go away? */
668
static bool too_many_workers(struct worker_pool *pool)
669
{
670
	bool managing = mutex_is_locked(&pool->manager_arb);
671 672
	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
	int nr_busy = pool->nr_workers - nr_idle;
673

674 675 676 677 678 679 680
	/*
	 * nr_idle and idle_list may disagree if idle rebinding is in
	 * progress.  Never return %true if idle_list is empty.
	 */
	if (list_empty(&pool->idle_list))
		return false;

681
	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
682 683
}

684
/*
685 686 687
 * Wake up functions.
 */

688
/* Return the first worker.  Safe with preemption disabled */
689
static struct worker *first_worker(struct worker_pool *pool)
690
{
691
	if (unlikely(list_empty(&pool->idle_list)))
692 693
		return NULL;

694
	return list_first_entry(&pool->idle_list, struct worker, entry);
695 696 697 698
}

/**
 * wake_up_worker - wake up an idle worker
699
 * @pool: worker pool to wake worker from
700
 *
701
 * Wake up the first idle worker of @pool.
702 703
 *
 * CONTEXT:
704
 * spin_lock_irq(pool->lock).
705
 */
706
static void wake_up_worker(struct worker_pool *pool)
707
{
708
	struct worker *worker = first_worker(pool);
709 710 711 712 713

	if (likely(worker))
		wake_up_process(worker->task);
}

714
/**
715 716 717 718 719 720 721 722 723 724
 * wq_worker_waking_up - a worker is waking up
 * @task: task waking up
 * @cpu: CPU @task is waking up to
 *
 * This function is called during try_to_wake_up() when a worker is
 * being awoken.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 */
725
void wq_worker_waking_up(struct task_struct *task, int cpu)
726 727 728
{
	struct worker *worker = kthread_data(task);

729
	if (!(worker->flags & WORKER_NOT_RUNNING)) {
730
		WARN_ON_ONCE(worker->pool->cpu != cpu);
731
		atomic_inc(&worker->pool->nr_running);
732
	}
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
}

/**
 * wq_worker_sleeping - a worker is going to sleep
 * @task: task going to sleep
 * @cpu: CPU in question, must be the current CPU number
 *
 * This function is called during schedule() when a busy worker is
 * going to sleep.  Worker on the same cpu can be woken up by
 * returning pointer to its task.
 *
 * CONTEXT:
 * spin_lock_irq(rq->lock)
 *
 * RETURNS:
 * Worker task on @cpu to wake up, %NULL if none.
 */
750
struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
751 752
{
	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
753
	struct worker_pool *pool;
754

755 756 757 758 759
	/*
	 * Rescuers, which may not have all the fields set up like normal
	 * workers, also reach here, let's not access anything before
	 * checking NOT_RUNNING.
	 */
760
	if (worker->flags & WORKER_NOT_RUNNING)
761 762
		return NULL;

763 764
	pool = worker->pool;

765
	/* this can only happen on the local cpu */
766 767
	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
		return NULL;
768 769 770 771 772 773

	/*
	 * The counterpart of the following dec_and_test, implied mb,
	 * worklist not empty test sequence is in insert_work().
	 * Please read comment there.
	 *
774 775 776
	 * NOT_RUNNING is clear.  This means that we're bound to and
	 * running on the local cpu w/ rq lock held and preemption
	 * disabled, which in turn means that none else could be
777
	 * manipulating idle_list, so dereferencing idle_list without pool
778
	 * lock is safe.
779
	 */
780 781
	if (atomic_dec_and_test(&pool->nr_running) &&
	    !list_empty(&pool->worklist))
782
		to_wakeup = first_worker(pool);
783 784 785 786 787
	return to_wakeup ? to_wakeup->task : NULL;
}

/**
 * worker_set_flags - set worker flags and adjust nr_running accordingly
788
 * @worker: self
789 790 791
 * @flags: flags to set
 * @wakeup: wakeup an idle worker if necessary
 *
792 793 794
 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 * nr_running becomes zero and @wakeup is %true, an idle worker is
 * woken up.
795
 *
796
 * CONTEXT:
797
 * spin_lock_irq(pool->lock)
798 799 800 801
 */
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
				    bool wakeup)
{
802
	struct worker_pool *pool = worker->pool;
803

804 805
	WARN_ON_ONCE(worker->task != current);

806 807 808 809 810 811 812 813
	/*
	 * If transitioning into NOT_RUNNING, adjust nr_running and
	 * wake up an idle worker as necessary if requested by
	 * @wakeup.
	 */
	if ((flags & WORKER_NOT_RUNNING) &&
	    !(worker->flags & WORKER_NOT_RUNNING)) {
		if (wakeup) {
814
			if (atomic_dec_and_test(&pool->nr_running) &&
815
			    !list_empty(&pool->worklist))
816
				wake_up_worker(pool);
817
		} else
818
			atomic_dec(&pool->nr_running);
819 820
	}

821 822 823 824
	worker->flags |= flags;
}

/**
825
 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
826
 * @worker: self
827 828
 * @flags: flags to clear
 *
829
 * Clear @flags in @worker->flags and adjust nr_running accordingly.
830
 *
831
 * CONTEXT:
832
 * spin_lock_irq(pool->lock)
833 834 835
 */
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
836
	struct worker_pool *pool = worker->pool;
837 838
	unsigned int oflags = worker->flags;

839 840
	WARN_ON_ONCE(worker->task != current);

841
	worker->flags &= ~flags;
842

843 844 845 846 847
	/*
	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
	 * of multiple flags, not a single flag.
	 */
848 849
	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
		if (!(worker->flags & WORKER_NOT_RUNNING))
850
			atomic_inc(&pool->nr_running);
851 852
}

853 854
/**
 * find_worker_executing_work - find worker which is executing a work
855
 * @pool: pool of interest
856 857
 * @work: work to find worker for
 *
858 859
 * Find a worker which is executing @work on @pool by searching
 * @pool->busy_hash which is keyed by the address of @work.  For a worker
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
 * to match, its current execution should match the address of @work and
 * its work function.  This is to avoid unwanted dependency between
 * unrelated work executions through a work item being recycled while still
 * being executed.
 *
 * This is a bit tricky.  A work item may be freed once its execution
 * starts and nothing prevents the freed area from being recycled for
 * another work item.  If the same work item address ends up being reused
 * before the original execution finishes, workqueue will identify the
 * recycled work item as currently executing and make it wait until the
 * current execution finishes, introducing an unwanted dependency.
 *
 * This function checks the work item address, work function and workqueue
 * to avoid false positives.  Note that this isn't complete as one may
 * construct a work function which can introduce dependency onto itself
 * through a recycled work item.  Well, if somebody wants to shoot oneself
 * in the foot that badly, there's only so much we can do, and if such
 * deadlock actually occurs, it should be easy to locate the culprit work
 * function.
879 880
 *
 * CONTEXT:
881
 * spin_lock_irq(pool->lock).
882 883 884 885
 *
 * RETURNS:
 * Pointer to worker which is executing @work if found, NULL
 * otherwise.
886
 */
887
static struct worker *find_worker_executing_work(struct worker_pool *pool,
888
						 struct work_struct *work)
889
{
890 891
	struct worker *worker;

892
	hash_for_each_possible(pool->busy_hash, worker, hentry,
893 894 895
			       (unsigned long)work)
		if (worker->current_work == work &&
		    worker->current_func == work->func)
896 897 898
			return worker;

	return NULL;
899 900
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/**
 * move_linked_works - move linked works to a list
 * @work: start of series of works to be scheduled
 * @head: target list to append @work to
 * @nextp: out paramter for nested worklist walking
 *
 * Schedule linked works starting from @work to @head.  Work series to
 * be scheduled starts at @work and includes any consecutive work with
 * WORK_STRUCT_LINKED set in its predecessor.
 *
 * If @nextp is not NULL, it's updated to point to the next work of
 * the last scheduled work.  This allows move_linked_works() to be
 * nested inside outer list_for_each_entry_safe().
 *
 * CONTEXT:
916
 * spin_lock_irq(pool->lock).
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
 */
static void move_linked_works(struct work_struct *work, struct list_head *head,
			      struct work_struct **nextp)
{
	struct work_struct *n;

	/*
	 * Linked worklist will always end before the end of the list,
	 * use NULL for list head.
	 */
	list_for_each_entry_safe_from(work, n, NULL, entry) {
		list_move_tail(&work->entry, head);
		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
			break;
	}

	/*
	 * If we're already inside safe list traversal and have moved
	 * multiple works to the scheduled queue, the next position
	 * needs to be updated.
	 */
	if (nextp)
		*nextp = n;
}

942
static void pwq_activate_delayed_work(struct work_struct *work)
943
{
944
	struct pool_workqueue *pwq = get_work_pwq(work);
945 946

	trace_workqueue_activate_work(work);
947
	move_linked_works(work, &pwq->pool->worklist, NULL);
948
	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
949
	pwq->nr_active++;
950 951
}

952
static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
953
{
954
	struct work_struct *work = list_first_entry(&pwq->delayed_works,
955 956
						    struct work_struct, entry);

957
	pwq_activate_delayed_work(work);
958 959
}

960
/**
961 962
 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
 * @pwq: pwq of interest
963 964 965
 * @color: color of work which left the queue
 *
 * A work either has completed or is removed from pending queue,
966
 * decrement nr_in_flight of its pwq and handle workqueue flushing.
967 968
 *
 * CONTEXT:
969
 * spin_lock_irq(pool->lock).
970
 */
971
static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
972 973 974 975 976
{
	/* ignore uncolored works */
	if (color == WORK_NO_COLOR)
		return;

977
	pwq->nr_in_flight[color]--;
978

979 980
	pwq->nr_active--;
	if (!list_empty(&pwq->delayed_works)) {
981
		/* one down, submit a delayed one */
982 983
		if (pwq->nr_active < pwq->max_active)
			pwq_activate_first_delayed(pwq);
984 985 986
	}

	/* is flush in progress and are we at the flushing tip? */
987
	if (likely(pwq->flush_color != color))
988 989 990
		return;

	/* are there still in-flight works? */
991
	if (pwq->nr_in_flight[color])
992 993
		return;

994 995
	/* this pwq is done, clear flush_color */
	pwq->flush_color = -1;
996 997

	/*
998
	 * If this was the last pwq, wake up the first flusher.  It
999 1000
	 * will handle the rest.
	 */
1001 1002
	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
		complete(&pwq->wq->first_flusher->done);
1003 1004
}

1005
/**
1006
 * try_to_grab_pending - steal work item from worklist and disable irq
1007 1008
 * @work: work item to steal
 * @is_dwork: @work is a delayed_work
1009
 * @flags: place to store irq state
1010 1011 1012 1013 1014 1015 1016
 *
 * Try to grab PENDING bit of @work.  This function can handle @work in any
 * stable state - idle, on timer or on worklist.  Return values are
 *
 *  1		if @work was pending and we successfully stole PENDING
 *  0		if @work was idle and we claimed PENDING
 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1017 1018
 *  -ENOENT	if someone else is canceling @work, this state may persist
 *		for arbitrarily long
1019
 *
1020
 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1021 1022 1023
 * interrupted while holding PENDING and @work off queue, irq must be
 * disabled on entry.  This, combined with delayed_work->timer being
 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1024 1025 1026 1027
 *
 * On successful return, >= 0, irq is disabled and the caller is
 * responsible for releasing it using local_irq_restore(*@flags).
 *
1028
 * This function is safe to call from any context including IRQ handler.
1029
 */
1030 1031
static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
			       unsigned long *flags)
1032
{
1033
	struct worker_pool *pool;
1034
	struct pool_workqueue *pwq;
1035

1036 1037
	local_irq_save(*flags);

1038 1039 1040 1041
	/* try to steal the timer if it exists */
	if (is_dwork) {
		struct delayed_work *dwork = to_delayed_work(work);

1042 1043 1044 1045 1046
		/*
		 * dwork->timer is irqsafe.  If del_timer() fails, it's
		 * guaranteed that the timer is not queued anywhere and not
		 * running on the local CPU.
		 */
1047 1048 1049 1050 1051
		if (likely(del_timer(&dwork->timer)))
			return 1;
	}

	/* try to claim PENDING the normal way */
1052 1053 1054 1055 1056 1057 1058
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */
1059 1060
	pool = get_work_pool(work);
	if (!pool)
1061
		goto fail;
1062

1063
	spin_lock(&pool->lock);
1064
	/*
1065 1066 1067 1068 1069
	 * work->data is guaranteed to point to pwq only while the work
	 * item is queued on pwq->wq, and both updating work->data to point
	 * to pwq on queueing and to pool on dequeueing are done under
	 * pwq->pool->lock.  This in turn guarantees that, if work->data
	 * points to pwq which is associated with a locked pool, the work
1070 1071
	 * item is currently queued on that pool.
	 */
1072 1073
	pwq = get_work_pwq(work);
	if (pwq && pwq->pool == pool) {
1074 1075 1076 1077 1078
		debug_work_deactivate(work);

		/*
		 * A delayed work item cannot be grabbed directly because
		 * it might have linked NO_COLOR work items which, if left
1079
		 * on the delayed_list, will confuse pwq->nr_active
1080 1081 1082 1083
		 * management later on and cause stall.  Make sure the work
		 * item is activated before grabbing.
		 */
		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1084
			pwq_activate_delayed_work(work);
1085 1086

		list_del_init(&work->entry);
1087
		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1088

1089
		/* work->data points to pwq iff queued, point to pool */
1090 1091 1092 1093
		set_work_pool_and_keep_pending(work, pool->id);

		spin_unlock(&pool->lock);
		return 1;
1094
	}
1095
	spin_unlock(&pool->lock);
1096 1097 1098 1099 1100
fail:
	local_irq_restore(*flags);
	if (work_is_canceling(work))
		return -ENOENT;
	cpu_relax();
1101
	return -EAGAIN;
1102 1103
}

T
Tejun Heo 已提交
1104
/**
1105
 * insert_work - insert a work into a pool
1106
 * @pwq: pwq @work belongs to
T
Tejun Heo 已提交
1107 1108 1109 1110
 * @work: work to insert
 * @head: insertion point
 * @extra_flags: extra WORK_STRUCT_* flags to set
 *
1111
 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1112
 * work_struct flags.
T
Tejun Heo 已提交
1113 1114
 *
 * CONTEXT:
1115
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1116
 */
1117 1118
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
			struct list_head *head, unsigned int extra_flags)
O
Oleg Nesterov 已提交
1119
{
1120
	struct worker_pool *pool = pwq->pool;
1121

T
Tejun Heo 已提交
1122
	/* we own @work, set data and link */
1123
	set_work_pwq(work, pwq, extra_flags);
1124
	list_add_tail(&work->entry, head);
1125 1126 1127 1128 1129 1130 1131 1132

	/*
	 * Ensure either worker_sched_deactivated() sees the above
	 * list_add_tail() or we see zero nr_running to avoid workers
	 * lying around lazily while there are works to be processed.
	 */
	smp_mb();

1133 1134
	if (__need_more_worker(pool))
		wake_up_worker(pool);
O
Oleg Nesterov 已提交
1135 1136
}

1137 1138
/*
 * Test whether @work is being queued from another work executing on the
1139
 * same workqueue.
1140 1141 1142
 */
static bool is_chained_work(struct workqueue_struct *wq)
{
1143 1144 1145 1146 1147 1148 1149
	struct worker *worker;

	worker = current_wq_worker();
	/*
	 * Return %true iff I'm a worker execuing a work item on @wq.  If
	 * I'm @worker, it's safe to dereference it without locking.
	 */
1150
	return worker && worker->current_pwq->wq == wq;
1151 1152
}

1153
static void __queue_work(int cpu, struct workqueue_struct *wq,
L
Linus Torvalds 已提交
1154 1155
			 struct work_struct *work)
{
1156
	struct pool_workqueue *pwq;
1157
	struct list_head *worklist;
1158
	unsigned int work_flags;
1159
	unsigned int req_cpu = cpu;
1160 1161 1162 1163 1164 1165 1166 1167

	/*
	 * While a work item is PENDING && off queue, a task trying to
	 * steal the PENDING will busy-loop waiting for it to either get
	 * queued or lose PENDING.  Grabbing PENDING and queueing should
	 * happen with IRQ disabled.
	 */
	WARN_ON_ONCE(!irqs_disabled());
L
Linus Torvalds 已提交
1168

1169
	debug_work_activate(work);
1170

1171
	/* if dying, only works from the same workqueue are allowed */
1172
	if (unlikely(wq->flags & WQ_DRAINING) &&
1173
	    WARN_ON_ONCE(!is_chained_work(wq)))
1174 1175
		return;

1176
	/* determine the pwq to use */
1177
	if (!(wq->flags & WQ_UNBOUND)) {
1178
		struct worker_pool *last_pool;
1179

1180
		if (cpu == WORK_CPU_UNBOUND)
1181 1182
			cpu = raw_smp_processor_id();

1183
		/*
1184 1185 1186 1187
		 * It's multi cpu.  If @work was previously on a different
		 * cpu, it might still be running there, in which case the
		 * work needs to be queued on that cpu to guarantee
		 * non-reentrancy.
1188
		 */
1189
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1190
		last_pool = get_work_pool(work);
1191

1192
		if (last_pool && last_pool != pwq->pool) {
1193 1194
			struct worker *worker;

1195
			spin_lock(&last_pool->lock);
1196

1197
			worker = find_worker_executing_work(last_pool, work);
1198

1199
			if (worker && worker->current_pwq->wq == wq) {
1200
				pwq = per_cpu_ptr(wq->cpu_pwqs, last_pool->cpu);
1201
			} else {
1202
				/* meh... not running there, queue here */
1203
				spin_unlock(&last_pool->lock);
1204
				spin_lock(&pwq->pool->lock);
1205
			}
1206
		} else {
1207
			spin_lock(&pwq->pool->lock);
1208
		}
1209
	} else {
1210
		pwq = first_pwq(wq);
1211
		spin_lock(&pwq->pool->lock);
1212 1213
	}

1214 1215
	/* pwq determined, queue */
	trace_workqueue_queue_work(req_cpu, pwq, work);
1216

1217
	if (WARN_ON(!list_empty(&work->entry))) {
1218
		spin_unlock(&pwq->pool->lock);
1219 1220
		return;
	}
1221

1222 1223
	pwq->nr_in_flight[pwq->work_color]++;
	work_flags = work_color_to_flags(pwq->work_color);
1224

1225
	if (likely(pwq->nr_active < pwq->max_active)) {
1226
		trace_workqueue_activate_work(work);
1227 1228
		pwq->nr_active++;
		worklist = &pwq->pool->worklist;
1229 1230
	} else {
		work_flags |= WORK_STRUCT_DELAYED;
1231
		worklist = &pwq->delayed_works;
1232
	}
1233

1234
	insert_work(pwq, work, worklist, work_flags);
1235

1236
	spin_unlock(&pwq->pool->lock);
L
Linus Torvalds 已提交
1237 1238
}

1239
/**
1240 1241
 * queue_work_on - queue work on specific cpu
 * @cpu: CPU number to execute work on
1242 1243 1244
 * @wq: workqueue to use
 * @work: work to queue
 *
1245
 * Returns %false if @work was already on a queue, %true otherwise.
L
Linus Torvalds 已提交
1246
 *
1247 1248
 * We queue the work to a specific CPU, the caller must ensure it
 * can't go away.
L
Linus Torvalds 已提交
1249
 */
1250 1251
bool queue_work_on(int cpu, struct workqueue_struct *wq,
		   struct work_struct *work)
L
Linus Torvalds 已提交
1252
{
1253
	bool ret = false;
1254
	unsigned long flags;
1255

1256
	local_irq_save(flags);
1257

1258
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
T
Tejun Heo 已提交
1259
		__queue_work(cpu, wq, work);
1260
		ret = true;
1261
	}
1262

1263
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1264 1265
	return ret;
}
1266
EXPORT_SYMBOL_GPL(queue_work_on);
L
Linus Torvalds 已提交
1267

1268
/**
1269
 * queue_work - queue work on a workqueue
1270 1271 1272
 * @wq: workqueue to use
 * @work: work to queue
 *
1273
 * Returns %false if @work was already on a queue, %true otherwise.
1274
 *
1275 1276
 * We queue the work to the CPU on which it was submitted, but if the CPU dies
 * it can be processed by another CPU.
1277
 */
1278
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1279
{
1280
	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1281
}
1282
EXPORT_SYMBOL_GPL(queue_work);
1283

1284
void delayed_work_timer_fn(unsigned long __data)
L
Linus Torvalds 已提交
1285
{
1286
	struct delayed_work *dwork = (struct delayed_work *)__data;
L
Linus Torvalds 已提交
1287

1288
	/* should have been called from irqsafe timer with irq already off */
1289
	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
L
Linus Torvalds 已提交
1290
}
1291
EXPORT_SYMBOL(delayed_work_timer_fn);
L
Linus Torvalds 已提交
1292

1293 1294
static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
				struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
1295
{
1296 1297 1298 1299 1300
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
		     timer->data != (unsigned long)dwork);
1301 1302
	WARN_ON_ONCE(timer_pending(timer));
	WARN_ON_ONCE(!list_empty(&work->entry));
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	/*
	 * If @delay is 0, queue @dwork->work immediately.  This is for
	 * both optimization and correctness.  The earliest @timer can
	 * expire is on the closest next tick and delayed_work users depend
	 * on that there's no such delay when @delay is 0.
	 */
	if (!delay) {
		__queue_work(cpu, wq, &dwork->work);
		return;
	}

1315
	timer_stats_timer_set_start_info(&dwork->timer);
L
Linus Torvalds 已提交
1316

1317
	dwork->wq = wq;
1318
	dwork->cpu = cpu;
1319 1320 1321 1322 1323 1324
	timer->expires = jiffies + delay;

	if (unlikely(cpu != WORK_CPU_UNBOUND))
		add_timer_on(timer, cpu);
	else
		add_timer(timer);
L
Linus Torvalds 已提交
1325 1326
}

1327 1328 1329 1330
/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
1331
 * @dwork: work to queue
1332 1333
 * @delay: number of jiffies to wait before queueing
 *
1334 1335 1336
 * Returns %false if @work was already on a queue, %true otherwise.  If
 * @delay is zero and @dwork is idle, it will be scheduled for immediate
 * execution.
1337
 */
1338 1339
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			   struct delayed_work *dwork, unsigned long delay)
1340
{
1341
	struct work_struct *work = &dwork->work;
1342
	bool ret = false;
1343
	unsigned long flags;
1344

1345 1346
	/* read the comment in __queue_work() */
	local_irq_save(flags);
1347

1348
	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1349
		__queue_delayed_work(cpu, wq, dwork, delay);
1350
		ret = true;
1351
	}
1352

1353
	local_irq_restore(flags);
1354 1355
	return ret;
}
1356
EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1357

1358 1359 1360 1361 1362 1363
/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
1364
 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1365
 */
1366
bool queue_delayed_work(struct workqueue_struct *wq,
1367 1368
			struct delayed_work *dwork, unsigned long delay)
{
1369
	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1370 1371
}
EXPORT_SYMBOL_GPL(queue_delayed_work);
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
/**
 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
 * modify @dwork's timer so that it expires after @delay.  If @delay is
 * zero, @work is guaranteed to be scheduled immediately regardless of its
 * current state.
 *
 * Returns %false if @dwork was idle and queued, %true if @dwork was
 * pending and its timer was modified.
 *
1388
 * This function is safe to call from any context including IRQ handler.
1389 1390 1391 1392 1393 1394 1395
 * See try_to_grab_pending() for details.
 */
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
			 struct delayed_work *dwork, unsigned long delay)
{
	unsigned long flags;
	int ret;
1396

1397 1398 1399
	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));
1400

1401 1402 1403
	if (likely(ret >= 0)) {
		__queue_delayed_work(cpu, wq, dwork, delay);
		local_irq_restore(flags);
1404
	}
1405 1406

	/* -ENOENT from try_to_grab_pending() becomes %true */
1407 1408
	return ret;
}
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
EXPORT_SYMBOL_GPL(mod_delayed_work_on);

/**
 * mod_delayed_work - modify delay of or queue a delayed work
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * mod_delayed_work_on() on local CPU.
 */
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
		      unsigned long delay)
{
	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(mod_delayed_work);
L
Linus Torvalds 已提交
1425

T
Tejun Heo 已提交
1426 1427 1428 1429 1430 1431 1432 1433
/**
 * worker_enter_idle - enter idle state
 * @worker: worker which is entering idle state
 *
 * @worker is entering idle state.  Update stats and idle timer if
 * necessary.
 *
 * LOCKING:
1434
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1435 1436
 */
static void worker_enter_idle(struct worker *worker)
L
Linus Torvalds 已提交
1437
{
1438
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1439

1440 1441 1442 1443
	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
			 (worker->hentry.next || worker->hentry.pprev)))
		return;
T
Tejun Heo 已提交
1444

1445 1446
	/* can't use worker_set_flags(), also called from start_worker() */
	worker->flags |= WORKER_IDLE;
1447
	pool->nr_idle++;
1448
	worker->last_active = jiffies;
T
Tejun Heo 已提交
1449 1450

	/* idle_list is LIFO */
1451
	list_add(&worker->entry, &pool->idle_list);
1452

1453 1454
	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1455

1456
	/*
1457
	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1458
	 * pool->lock between setting %WORKER_UNBOUND and zapping
1459 1460
	 * nr_running, the warning may trigger spuriously.  Check iff
	 * unbind is not in progress.
1461
	 */
1462
	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1463
		     pool->nr_workers == pool->nr_idle &&
1464
		     atomic_read(&pool->nr_running));
T
Tejun Heo 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473
}

/**
 * worker_leave_idle - leave idle state
 * @worker: worker which is leaving idle state
 *
 * @worker is leaving idle state.  Update stats.
 *
 * LOCKING:
1474
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1475 1476 1477
 */
static void worker_leave_idle(struct worker *worker)
{
1478
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1479

1480 1481
	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
		return;
1482
	worker_clr_flags(worker, WORKER_IDLE);
1483
	pool->nr_idle--;
T
Tejun Heo 已提交
1484 1485 1486
	list_del_init(&worker->entry);
}

1487
/**
1488 1489 1490 1491
 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
 * @pool: target worker_pool
 *
 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1492 1493 1494 1495 1496 1497
 *
 * Works which are scheduled while the cpu is online must at least be
 * scheduled to a worker which is bound to the cpu so that if they are
 * flushed from cpu callbacks while cpu is going down, they are
 * guaranteed to execute on the cpu.
 *
1498
 * This function is to be used by unbound workers and rescuers to bind
1499 1500 1501
 * themselves to the target cpu and may race with cpu going down or
 * coming online.  kthread_bind() can't be used because it may put the
 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1502
 * verbatim as it's best effort and blocking and pool may be
1503 1504
 * [dis]associated in the meantime.
 *
1505
 * This function tries set_cpus_allowed() and locks pool and verifies the
1506
 * binding against %POOL_DISASSOCIATED which is set during
1507 1508 1509
 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
 * enters idle state or fetches works without dropping lock, it can
 * guarantee the scheduling requirement described in the first paragraph.
1510 1511
 *
 * CONTEXT:
1512
 * Might sleep.  Called without any lock but returns with pool->lock
1513 1514 1515
 * held.
 *
 * RETURNS:
1516
 * %true if the associated pool is online (@worker is successfully
1517 1518
 * bound), %false if offline.
 */
1519
static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1520
__acquires(&pool->lock)
1521 1522
{
	while (true) {
1523
		/*
1524 1525 1526
		 * The following call may fail, succeed or succeed
		 * without actually migrating the task to the cpu if
		 * it races with cpu hotunplug operation.  Verify
1527
		 * against POOL_DISASSOCIATED.
1528
		 */
1529
		if (!(pool->flags & POOL_DISASSOCIATED))
T
Tejun Heo 已提交
1530
			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1531

1532
		spin_lock_irq(&pool->lock);
1533
		if (pool->flags & POOL_DISASSOCIATED)
1534
			return false;
1535
		if (task_cpu(current) == pool->cpu &&
T
Tejun Heo 已提交
1536
		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1537
			return true;
1538
		spin_unlock_irq(&pool->lock);
1539

1540 1541 1542 1543 1544 1545
		/*
		 * We've raced with CPU hot[un]plug.  Give it a breather
		 * and retry migration.  cond_resched() is required here;
		 * otherwise, we might deadlock against cpu_stop trying to
		 * bring down the CPU on non-preemptive kernel.
		 */
1546
		cpu_relax();
1547
		cond_resched();
1548 1549 1550
	}
}

1551
/*
1552
 * Rebind an idle @worker to its CPU.  worker_thread() will test
1553
 * list_empty(@worker->entry) before leaving idle and call this function.
1554 1555 1556
 */
static void idle_worker_rebind(struct worker *worker)
{
1557
	/* CPU may go down again inbetween, clear UNBOUND only on success */
1558
	if (worker_maybe_bind_and_lock(worker->pool))
1559
		worker_clr_flags(worker, WORKER_UNBOUND);
1560

1561 1562
	/* rebind complete, become available again */
	list_add(&worker->entry, &worker->pool->idle_list);
1563
	spin_unlock_irq(&worker->pool->lock);
1564 1565
}

1566
/*
1567
 * Function for @worker->rebind.work used to rebind unbound busy workers to
1568 1569 1570
 * the associated cpu which is coming back online.  This is scheduled by
 * cpu up but can race with other cpu hotplug operations and may be
 * executed twice without intervening cpu down.
1571
 */
1572
static void busy_worker_rebind_fn(struct work_struct *work)
1573 1574 1575
{
	struct worker *worker = container_of(work, struct worker, rebind_work);

1576
	if (worker_maybe_bind_and_lock(worker->pool))
1577
		worker_clr_flags(worker, WORKER_UNBOUND);
1578

1579
	spin_unlock_irq(&worker->pool->lock);
1580 1581
}

1582
/**
1583 1584
 * rebind_workers - rebind all workers of a pool to the associated CPU
 * @pool: pool of interest
1585
 *
1586
 * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1587 1588
 * is different for idle and busy ones.
 *
1589 1590 1591 1592
 * Idle ones will be removed from the idle_list and woken up.  They will
 * add themselves back after completing rebind.  This ensures that the
 * idle_list doesn't contain any unbound workers when re-bound busy workers
 * try to perform local wake-ups for concurrency management.
1593
 *
1594 1595 1596 1597
 * Busy workers can rebind after they finish their current work items.
 * Queueing the rebind work item at the head of the scheduled list is
 * enough.  Note that nr_running will be properly bumped as busy workers
 * rebind.
1598
 *
1599 1600 1601 1602
 * On return, all non-manager workers are scheduled for rebind - see
 * manage_workers() for the manager special case.  Any idle worker
 * including the manager will not appear on @idle_list until rebind is
 * complete, making local wake-ups safe.
1603
 */
1604
static void rebind_workers(struct worker_pool *pool)
1605
{
1606
	struct worker *worker, *n;
1607 1608
	int i;

1609 1610
	lockdep_assert_held(&pool->assoc_mutex);
	lockdep_assert_held(&pool->lock);
1611

1612
	/* dequeue and kick idle ones */
1613 1614 1615 1616 1617 1618
	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
		/*
		 * idle workers should be off @pool->idle_list until rebind
		 * is complete to avoid receiving premature local wake-ups.
		 */
		list_del_init(&worker->entry);
1619

1620 1621 1622 1623 1624 1625
		/*
		 * worker_thread() will see the above dequeuing and call
		 * idle_worker_rebind().
		 */
		wake_up_process(worker->task);
	}
1626

1627
	/* rebind busy workers */
1628
	for_each_busy_worker(worker, i, pool) {
1629 1630
		struct work_struct *rebind_work = &worker->rebind_work;
		struct workqueue_struct *wq;
1631

1632 1633 1634
		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
				     work_data_bits(rebind_work)))
			continue;
1635

1636
		debug_work_activate(rebind_work);
1637

1638 1639
		/*
		 * wq doesn't really matter but let's keep @worker->pool
1640
		 * and @pwq->pool consistent for sanity.
1641
		 */
T
Tejun Heo 已提交
1642
		if (worker->pool->attrs->nice < 0)
1643 1644 1645 1646
			wq = system_highpri_wq;
		else
			wq = system_wq;

1647
		insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
1648 1649
			    worker->scheduled.next,
			    work_color_to_flags(WORK_NO_COLOR));
1650
	}
1651 1652
}

T
Tejun Heo 已提交
1653 1654 1655 1656 1657
static struct worker *alloc_worker(void)
{
	struct worker *worker;

	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
T
Tejun Heo 已提交
1658 1659
	if (worker) {
		INIT_LIST_HEAD(&worker->entry);
1660
		INIT_LIST_HEAD(&worker->scheduled);
1661
		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1662 1663
		/* on creation a worker is in !idle && prep state */
		worker->flags = WORKER_PREP;
T
Tejun Heo 已提交
1664
	}
T
Tejun Heo 已提交
1665 1666 1667 1668 1669
	return worker;
}

/**
 * create_worker - create a new workqueue worker
1670
 * @pool: pool the new worker will belong to
T
Tejun Heo 已提交
1671
 *
1672
 * Create a new worker which is bound to @pool.  The returned worker
T
Tejun Heo 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681
 * can be started by calling start_worker() or destroyed using
 * destroy_worker().
 *
 * CONTEXT:
 * Might sleep.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
 * Pointer to the newly created worker.
 */
1682
static struct worker *create_worker(struct worker_pool *pool)
T
Tejun Heo 已提交
1683
{
T
Tejun Heo 已提交
1684
	const char *pri = pool->attrs->nice < 0  ? "H" : "";
T
Tejun Heo 已提交
1685
	struct worker *worker = NULL;
1686
	int id = -1;
T
Tejun Heo 已提交
1687

1688
	spin_lock_irq(&pool->lock);
1689
	while (ida_get_new(&pool->worker_ida, &id)) {
1690
		spin_unlock_irq(&pool->lock);
1691
		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
T
Tejun Heo 已提交
1692
			goto fail;
1693
		spin_lock_irq(&pool->lock);
T
Tejun Heo 已提交
1694
	}
1695
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1696 1697 1698 1699 1700

	worker = alloc_worker();
	if (!worker)
		goto fail;

1701
	worker->pool = pool;
T
Tejun Heo 已提交
1702 1703
	worker->id = id;

1704
	if (pool->cpu >= 0)
1705
		worker->task = kthread_create_on_node(worker_thread,
1706
					worker, cpu_to_node(pool->cpu),
1707
					"kworker/%d:%d%s", pool->cpu, id, pri);
1708 1709
	else
		worker->task = kthread_create(worker_thread, worker,
1710
					      "kworker/u:%d%s", id, pri);
T
Tejun Heo 已提交
1711 1712 1713
	if (IS_ERR(worker->task))
		goto fail;

T
Tejun Heo 已提交
1714 1715
	set_user_nice(worker->task, pool->attrs->nice);
	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1716

1717
	/*
T
Tejun Heo 已提交
1718 1719 1720
	 * %PF_THREAD_BOUND is used to prevent userland from meddling with
	 * cpumask of workqueue workers.  This is an abuse.  We need
	 * %PF_NO_SETAFFINITY.
1721
	 */
T
Tejun Heo 已提交
1722 1723 1724 1725 1726 1727 1728 1729
	worker->task->flags |= PF_THREAD_BOUND;

	/*
	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
	 * remains stable across this function.  See the comments above the
	 * flag definition for details.
	 */
	if (pool->flags & POOL_DISASSOCIATED)
1730
		worker->flags |= WORKER_UNBOUND;
T
Tejun Heo 已提交
1731 1732 1733 1734

	return worker;
fail:
	if (id >= 0) {
1735
		spin_lock_irq(&pool->lock);
1736
		ida_remove(&pool->worker_ida, id);
1737
		spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746
	}
	kfree(worker);
	return NULL;
}

/**
 * start_worker - start a newly created worker
 * @worker: worker to start
 *
1747
 * Make the pool aware of @worker and start it.
T
Tejun Heo 已提交
1748 1749
 *
 * CONTEXT:
1750
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
1751 1752 1753
 */
static void start_worker(struct worker *worker)
{
1754
	worker->flags |= WORKER_STARTED;
1755
	worker->pool->nr_workers++;
T
Tejun Heo 已提交
1756
	worker_enter_idle(worker);
T
Tejun Heo 已提交
1757 1758 1759 1760 1761 1762 1763
	wake_up_process(worker->task);
}

/**
 * destroy_worker - destroy a workqueue worker
 * @worker: worker to be destroyed
 *
1764
 * Destroy @worker and adjust @pool stats accordingly.
T
Tejun Heo 已提交
1765 1766
 *
 * CONTEXT:
1767
 * spin_lock_irq(pool->lock) which is released and regrabbed.
T
Tejun Heo 已提交
1768 1769 1770
 */
static void destroy_worker(struct worker *worker)
{
1771
	struct worker_pool *pool = worker->pool;
T
Tejun Heo 已提交
1772 1773 1774
	int id = worker->id;

	/* sanity check frenzy */
1775 1776 1777
	if (WARN_ON(worker->current_work) ||
	    WARN_ON(!list_empty(&worker->scheduled)))
		return;
T
Tejun Heo 已提交
1778

T
Tejun Heo 已提交
1779
	if (worker->flags & WORKER_STARTED)
1780
		pool->nr_workers--;
T
Tejun Heo 已提交
1781
	if (worker->flags & WORKER_IDLE)
1782
		pool->nr_idle--;
T
Tejun Heo 已提交
1783 1784

	list_del_init(&worker->entry);
1785
	worker->flags |= WORKER_DIE;
T
Tejun Heo 已提交
1786

1787
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
1788

T
Tejun Heo 已提交
1789 1790 1791
	kthread_stop(worker->task);
	kfree(worker);

1792
	spin_lock_irq(&pool->lock);
1793
	ida_remove(&pool->worker_ida, id);
T
Tejun Heo 已提交
1794 1795
}

1796
static void idle_worker_timeout(unsigned long __pool)
1797
{
1798
	struct worker_pool *pool = (void *)__pool;
1799

1800
	spin_lock_irq(&pool->lock);
1801

1802
	if (too_many_workers(pool)) {
1803 1804 1805 1806
		struct worker *worker;
		unsigned long expires;

		/* idle_list is kept in LIFO order, check the last one */
1807
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1808 1809 1810
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;

		if (time_before(jiffies, expires))
1811
			mod_timer(&pool->idle_timer, expires);
1812 1813
		else {
			/* it's been idle for too long, wake up manager */
1814
			pool->flags |= POOL_MANAGE_WORKERS;
1815
			wake_up_worker(pool);
1816
		}
1817 1818
	}

1819
	spin_unlock_irq(&pool->lock);
1820
}
1821

1822
static void send_mayday(struct work_struct *work)
1823
{
1824 1825
	struct pool_workqueue *pwq = get_work_pwq(work);
	struct workqueue_struct *wq = pwq->wq;
1826 1827

	lockdep_assert_held(&workqueue_lock);
1828 1829

	if (!(wq->flags & WQ_RESCUER))
1830
		return;
1831 1832

	/* mayday mayday mayday */
1833 1834
	if (list_empty(&pwq->mayday_node)) {
		list_add_tail(&pwq->mayday_node, &wq->maydays);
1835
		wake_up_process(wq->rescuer->task);
1836
	}
1837 1838
}

1839
static void pool_mayday_timeout(unsigned long __pool)
1840
{
1841
	struct worker_pool *pool = (void *)__pool;
1842 1843
	struct work_struct *work;

1844 1845
	spin_lock_irq(&workqueue_lock);		/* for wq->maydays */
	spin_lock(&pool->lock);
1846

1847
	if (need_to_create_worker(pool)) {
1848 1849 1850 1851 1852 1853
		/*
		 * We've been trying to create a new worker but
		 * haven't been successful.  We might be hitting an
		 * allocation deadlock.  Send distress signals to
		 * rescuers.
		 */
1854
		list_for_each_entry(work, &pool->worklist, entry)
1855
			send_mayday(work);
L
Linus Torvalds 已提交
1856
	}
1857

1858 1859
	spin_unlock(&pool->lock);
	spin_unlock_irq(&workqueue_lock);
1860

1861
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
L
Linus Torvalds 已提交
1862 1863
}

1864 1865
/**
 * maybe_create_worker - create a new worker if necessary
1866
 * @pool: pool to create a new worker for
1867
 *
1868
 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1869 1870
 * have at least one idle worker on return from this function.  If
 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1871
 * sent to all rescuers with works scheduled on @pool to resolve
1872 1873 1874 1875 1876 1877
 * possible allocation deadlock.
 *
 * On return, need_to_create_worker() is guaranteed to be false and
 * may_start_working() true.
 *
 * LOCKING:
1878
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1879 1880 1881 1882
 * multiple times.  Does GFP_KERNEL allocations.  Called only from
 * manager.
 *
 * RETURNS:
1883
 * false if no action was taken and pool->lock stayed locked, true
1884 1885
 * otherwise.
 */
1886
static bool maybe_create_worker(struct worker_pool *pool)
1887 1888
__releases(&pool->lock)
__acquires(&pool->lock)
L
Linus Torvalds 已提交
1889
{
1890
	if (!need_to_create_worker(pool))
1891 1892
		return false;
restart:
1893
	spin_unlock_irq(&pool->lock);
1894

1895
	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1896
	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1897 1898 1899 1900

	while (true) {
		struct worker *worker;

1901
		worker = create_worker(pool);
1902
		if (worker) {
1903
			del_timer_sync(&pool->mayday_timer);
1904
			spin_lock_irq(&pool->lock);
1905
			start_worker(worker);
1906 1907
			if (WARN_ON_ONCE(need_to_create_worker(pool)))
				goto restart;
1908 1909 1910
			return true;
		}

1911
		if (!need_to_create_worker(pool))
1912
			break;
L
Linus Torvalds 已提交
1913

1914 1915
		__set_current_state(TASK_INTERRUPTIBLE);
		schedule_timeout(CREATE_COOLDOWN);
1916

1917
		if (!need_to_create_worker(pool))
1918 1919 1920
			break;
	}

1921
	del_timer_sync(&pool->mayday_timer);
1922
	spin_lock_irq(&pool->lock);
1923
	if (need_to_create_worker(pool))
1924 1925 1926 1927 1928 1929
		goto restart;
	return true;
}

/**
 * maybe_destroy_worker - destroy workers which have been idle for a while
1930
 * @pool: pool to destroy workers for
1931
 *
1932
 * Destroy @pool workers which have been idle for longer than
1933 1934 1935
 * IDLE_WORKER_TIMEOUT.
 *
 * LOCKING:
1936
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1937 1938 1939
 * multiple times.  Called only from manager.
 *
 * RETURNS:
1940
 * false if no action was taken and pool->lock stayed locked, true
1941 1942
 * otherwise.
 */
1943
static bool maybe_destroy_workers(struct worker_pool *pool)
1944 1945
{
	bool ret = false;
L
Linus Torvalds 已提交
1946

1947
	while (too_many_workers(pool)) {
1948 1949
		struct worker *worker;
		unsigned long expires;
1950

1951
		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1952
		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1953

1954
		if (time_before(jiffies, expires)) {
1955
			mod_timer(&pool->idle_timer, expires);
1956
			break;
1957
		}
L
Linus Torvalds 已提交
1958

1959 1960
		destroy_worker(worker);
		ret = true;
L
Linus Torvalds 已提交
1961
	}
1962

1963
	return ret;
1964 1965
}

1966
/**
1967 1968
 * manage_workers - manage worker pool
 * @worker: self
1969
 *
1970
 * Assume the manager role and manage the worker pool @worker belongs
1971
 * to.  At any given time, there can be only zero or one manager per
1972
 * pool.  The exclusion is handled automatically by this function.
1973 1974 1975 1976
 *
 * The caller can safely start processing works on false return.  On
 * true return, it's guaranteed that need_to_create_worker() is false
 * and may_start_working() is true.
1977 1978
 *
 * CONTEXT:
1979
 * spin_lock_irq(pool->lock) which may be released and regrabbed
1980 1981 1982
 * multiple times.  Does GFP_KERNEL allocations.
 *
 * RETURNS:
1983 1984
 * spin_lock_irq(pool->lock) which may be released and regrabbed
 * multiple times.  Does GFP_KERNEL allocations.
1985
 */
1986
static bool manage_workers(struct worker *worker)
1987
{
1988
	struct worker_pool *pool = worker->pool;
1989
	bool ret = false;
1990

1991
	if (!mutex_trylock(&pool->manager_arb))
1992
		return ret;
1993

1994 1995 1996
	/*
	 * To simplify both worker management and CPU hotplug, hold off
	 * management while hotplug is in progress.  CPU hotplug path can't
1997 1998 1999 2000 2001
	 * grab @pool->manager_arb to achieve this because that can lead to
	 * idle worker depletion (all become busy thinking someone else is
	 * managing) which in turn can result in deadlock under extreme
	 * circumstances.  Use @pool->assoc_mutex to synchronize manager
	 * against CPU hotplug.
2002
	 *
2003
	 * assoc_mutex would always be free unless CPU hotplug is in
2004
	 * progress.  trylock first without dropping @pool->lock.
2005
	 */
2006
	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2007
		spin_unlock_irq(&pool->lock);
2008
		mutex_lock(&pool->assoc_mutex);
2009 2010
		/*
		 * CPU hotplug could have happened while we were waiting
2011
		 * for assoc_mutex.  Hotplug itself can't handle us
2012
		 * because manager isn't either on idle or busy list, and
2013
		 * @pool's state and ours could have deviated.
2014
		 *
2015
		 * As hotplug is now excluded via assoc_mutex, we can
2016
		 * simply try to bind.  It will succeed or fail depending
2017
		 * on @pool's current state.  Try it and adjust
2018 2019
		 * %WORKER_UNBOUND accordingly.
		 */
2020
		if (worker_maybe_bind_and_lock(pool))
2021 2022 2023
			worker->flags &= ~WORKER_UNBOUND;
		else
			worker->flags |= WORKER_UNBOUND;
2024

2025 2026
		ret = true;
	}
2027

2028
	pool->flags &= ~POOL_MANAGE_WORKERS;
2029 2030

	/*
2031 2032
	 * Destroy and then create so that may_start_working() is true
	 * on return.
2033
	 */
2034 2035
	ret |= maybe_destroy_workers(pool);
	ret |= maybe_create_worker(pool);
2036

2037
	mutex_unlock(&pool->assoc_mutex);
2038
	mutex_unlock(&pool->manager_arb);
2039
	return ret;
2040 2041
}

2042 2043
/**
 * process_one_work - process single work
T
Tejun Heo 已提交
2044
 * @worker: self
2045 2046 2047 2048 2049 2050 2051 2052 2053
 * @work: work to process
 *
 * Process @work.  This function contains all the logics necessary to
 * process a single work including synchronization against and
 * interaction with other workers on the same cpu, queueing and
 * flushing.  As long as context requirement is met, any worker can
 * call this function to process a work.
 *
 * CONTEXT:
2054
 * spin_lock_irq(pool->lock) which is released and regrabbed.
2055
 */
T
Tejun Heo 已提交
2056
static void process_one_work(struct worker *worker, struct work_struct *work)
2057 2058
__releases(&pool->lock)
__acquires(&pool->lock)
2059
{
2060
	struct pool_workqueue *pwq = get_work_pwq(work);
2061
	struct worker_pool *pool = worker->pool;
2062
	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2063
	int work_color;
2064
	struct worker *collision;
2065 2066 2067 2068 2069 2070 2071 2072
#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the struct work_struct from
	 * inside the function that is called from it, this we need to
	 * take into account for lockdep too.  To avoid bogus "held
	 * lock freed" warnings as well as problems when looking into
	 * work->lockdep_map, make a copy and use that here.
	 */
2073 2074 2075
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2076
#endif
2077 2078 2079
	/*
	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
	 * necessary to avoid spurious warnings from rescuers servicing the
2080
	 * unbound or a disassociated pool.
2081
	 */
2082
	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2083
		     !(pool->flags & POOL_DISASSOCIATED) &&
2084
		     raw_smp_processor_id() != pool->cpu);
2085

2086 2087 2088 2089 2090 2091
	/*
	 * A single work shouldn't be executed concurrently by
	 * multiple workers on a single cpu.  Check whether anyone is
	 * already processing the work.  If so, defer the work to the
	 * currently executing one.
	 */
2092
	collision = find_worker_executing_work(pool, work);
2093 2094 2095 2096 2097
	if (unlikely(collision)) {
		move_linked_works(work, &collision->scheduled, NULL);
		return;
	}

2098
	/* claim and dequeue */
2099
	debug_work_deactivate(work);
2100
	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
T
Tejun Heo 已提交
2101
	worker->current_work = work;
2102
	worker->current_func = work->func;
2103
	worker->current_pwq = pwq;
2104
	work_color = get_work_color(work);
2105

2106 2107
	list_del_init(&work->entry);

2108 2109 2110 2111 2112 2113 2114
	/*
	 * CPU intensive works don't participate in concurrency
	 * management.  They're the scheduler's responsibility.
	 */
	if (unlikely(cpu_intensive))
		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);

2115
	/*
2116
	 * Unbound pool isn't concurrency managed and work items should be
2117 2118
	 * executed ASAP.  Wake up another worker if necessary.
	 */
2119 2120
	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
		wake_up_worker(pool);
2121

2122
	/*
2123
	 * Record the last pool and clear PENDING which should be the last
2124
	 * update to @work.  Also, do this inside @pool->lock so that
2125 2126
	 * PENDING and queued state changes happen together while IRQ is
	 * disabled.
2127
	 */
2128
	set_work_pool_and_clear_pending(work, pool->id);
2129

2130
	spin_unlock_irq(&pool->lock);
2131

2132
	lock_map_acquire_read(&pwq->wq->lockdep_map);
2133
	lock_map_acquire(&lockdep_map);
2134
	trace_workqueue_execute_start(work);
2135
	worker->current_func(work);
2136 2137 2138 2139 2140
	/*
	 * While we must be careful to not use "work" after this, the trace
	 * point will only record its address.
	 */
	trace_workqueue_execute_end(work);
2141
	lock_map_release(&lockdep_map);
2142
	lock_map_release(&pwq->wq->lockdep_map);
2143 2144

	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
V
Valentin Ilie 已提交
2145 2146
		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
		       "     last function: %pf\n",
2147 2148
		       current->comm, preempt_count(), task_pid_nr(current),
		       worker->current_func);
2149 2150 2151 2152
		debug_show_held_locks(current);
		dump_stack();
	}

2153
	spin_lock_irq(&pool->lock);
2154

2155 2156 2157 2158
	/* clear cpu intensive status */
	if (unlikely(cpu_intensive))
		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);

2159
	/* we're done with it, release */
2160
	hash_del(&worker->hentry);
T
Tejun Heo 已提交
2161
	worker->current_work = NULL;
2162
	worker->current_func = NULL;
2163 2164
	worker->current_pwq = NULL;
	pwq_dec_nr_in_flight(pwq, work_color);
2165 2166
}

2167 2168 2169 2170 2171 2172 2173 2174 2175
/**
 * process_scheduled_works - process scheduled works
 * @worker: self
 *
 * Process all scheduled works.  Please note that the scheduled list
 * may change while processing a work, so this function repeatedly
 * fetches a work from the top and executes it.
 *
 * CONTEXT:
2176
 * spin_lock_irq(pool->lock) which may be released and regrabbed
2177 2178 2179
 * multiple times.
 */
static void process_scheduled_works(struct worker *worker)
L
Linus Torvalds 已提交
2180
{
2181 2182
	while (!list_empty(&worker->scheduled)) {
		struct work_struct *work = list_first_entry(&worker->scheduled,
L
Linus Torvalds 已提交
2183
						struct work_struct, entry);
T
Tejun Heo 已提交
2184
		process_one_work(worker, work);
L
Linus Torvalds 已提交
2185 2186 2187
	}
}

T
Tejun Heo 已提交
2188 2189
/**
 * worker_thread - the worker thread function
T
Tejun Heo 已提交
2190
 * @__worker: self
T
Tejun Heo 已提交
2191
 *
2192 2193
 * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
 * of these per each cpu.  These workers process all works regardless of
2194 2195 2196
 * their specific target workqueue.  The only exception is works which
 * belong to workqueues with a rescuer which will be explained in
 * rescuer_thread().
T
Tejun Heo 已提交
2197
 */
T
Tejun Heo 已提交
2198
static int worker_thread(void *__worker)
L
Linus Torvalds 已提交
2199
{
T
Tejun Heo 已提交
2200
	struct worker *worker = __worker;
2201
	struct worker_pool *pool = worker->pool;
L
Linus Torvalds 已提交
2202

2203 2204
	/* tell the scheduler that this is a workqueue worker */
	worker->task->flags |= PF_WQ_WORKER;
T
Tejun Heo 已提交
2205
woke_up:
2206
	spin_lock_irq(&pool->lock);
L
Linus Torvalds 已提交
2207

2208 2209
	/* we are off idle list if destruction or rebind is requested */
	if (unlikely(list_empty(&worker->entry))) {
2210
		spin_unlock_irq(&pool->lock);
2211

2212
		/* if DIE is set, destruction is requested */
2213 2214 2215 2216 2217
		if (worker->flags & WORKER_DIE) {
			worker->task->flags &= ~PF_WQ_WORKER;
			return 0;
		}

2218
		/* otherwise, rebind */
2219 2220
		idle_worker_rebind(worker);
		goto woke_up;
T
Tejun Heo 已提交
2221
	}
2222

T
Tejun Heo 已提交
2223
	worker_leave_idle(worker);
2224
recheck:
2225
	/* no more worker necessary? */
2226
	if (!need_more_worker(pool))
2227 2228 2229
		goto sleep;

	/* do we need to manage? */
2230
	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2231 2232
		goto recheck;

T
Tejun Heo 已提交
2233 2234 2235 2236 2237
	/*
	 * ->scheduled list can only be filled while a worker is
	 * preparing to process a work or actually processing it.
	 * Make sure nobody diddled with it while I was sleeping.
	 */
2238
	WARN_ON_ONCE(!list_empty(&worker->scheduled));
T
Tejun Heo 已提交
2239

2240 2241 2242 2243 2244 2245 2246 2247
	/*
	 * When control reaches this point, we're guaranteed to have
	 * at least one idle worker or that someone else has already
	 * assumed the manager role.
	 */
	worker_clr_flags(worker, WORKER_PREP);

	do {
T
Tejun Heo 已提交
2248
		struct work_struct *work =
2249
			list_first_entry(&pool->worklist,
T
Tejun Heo 已提交
2250 2251 2252 2253 2254 2255
					 struct work_struct, entry);

		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
			/* optimization path, not strictly necessary */
			process_one_work(worker, work);
			if (unlikely(!list_empty(&worker->scheduled)))
2256
				process_scheduled_works(worker);
T
Tejun Heo 已提交
2257 2258 2259
		} else {
			move_linked_works(work, &worker->scheduled, NULL);
			process_scheduled_works(worker);
2260
		}
2261
	} while (keep_working(pool));
2262 2263

	worker_set_flags(worker, WORKER_PREP, false);
2264
sleep:
2265
	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2266
		goto recheck;
2267

T
Tejun Heo 已提交
2268
	/*
2269 2270 2271 2272 2273
	 * pool->lock is held and there's no work to process and no need to
	 * manage, sleep.  Workers are woken up only while holding
	 * pool->lock or from local cpu, so setting the current state
	 * before releasing pool->lock is enough to prevent losing any
	 * event.
T
Tejun Heo 已提交
2274 2275 2276
	 */
	worker_enter_idle(worker);
	__set_current_state(TASK_INTERRUPTIBLE);
2277
	spin_unlock_irq(&pool->lock);
T
Tejun Heo 已提交
2278 2279
	schedule();
	goto woke_up;
L
Linus Torvalds 已提交
2280 2281
}

2282 2283
/**
 * rescuer_thread - the rescuer thread function
2284
 * @__rescuer: self
2285 2286 2287 2288
 *
 * Workqueue rescuer thread function.  There's one rescuer for each
 * workqueue which has WQ_RESCUER set.
 *
2289
 * Regular work processing on a pool may block trying to create a new
2290 2291 2292 2293 2294
 * worker which uses GFP_KERNEL allocation which has slight chance of
 * developing into deadlock if some works currently on the same queue
 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
 * the problem rescuer solves.
 *
2295 2296
 * When such condition is possible, the pool summons rescuers of all
 * workqueues which have works queued on the pool and let them process
2297 2298 2299 2300
 * those works so that forward progress can be guaranteed.
 *
 * This should happen rarely.
 */
2301
static int rescuer_thread(void *__rescuer)
2302
{
2303 2304
	struct worker *rescuer = __rescuer;
	struct workqueue_struct *wq = rescuer->rescue_wq;
2305 2306 2307
	struct list_head *scheduled = &rescuer->scheduled;

	set_user_nice(current, RESCUER_NICE_LEVEL);
2308 2309 2310 2311 2312 2313

	/*
	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
	 * doesn't participate in concurrency management.
	 */
	rescuer->task->flags |= PF_WQ_WORKER;
2314 2315 2316
repeat:
	set_current_state(TASK_INTERRUPTIBLE);

2317 2318
	if (kthread_should_stop()) {
		__set_current_state(TASK_RUNNING);
2319
		rescuer->task->flags &= ~PF_WQ_WORKER;
2320
		return 0;
2321
	}
2322

2323 2324 2325 2326 2327 2328
	/* see whether any pwq is asking for help */
	spin_lock_irq(&workqueue_lock);

	while (!list_empty(&wq->maydays)) {
		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
					struct pool_workqueue, mayday_node);
2329
		struct worker_pool *pool = pwq->pool;
2330 2331 2332
		struct work_struct *work, *n;

		__set_current_state(TASK_RUNNING);
2333 2334 2335
		list_del_init(&pwq->mayday_node);

		spin_unlock_irq(&workqueue_lock);
2336 2337

		/* migrate to the target cpu if possible */
2338
		worker_maybe_bind_and_lock(pool);
2339
		rescuer->pool = pool;
2340 2341 2342 2343 2344

		/*
		 * Slurp in all works issued via this workqueue and
		 * process'em.
		 */
2345
		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2346
		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2347
			if (get_work_pwq(work) == pwq)
2348 2349 2350
				move_linked_works(work, scheduled, &n);

		process_scheduled_works(rescuer);
2351 2352

		/*
2353
		 * Leave this pool.  If keep_working() is %true, notify a
2354 2355 2356
		 * regular worker; otherwise, we end up with 0 concurrency
		 * and stalling the execution.
		 */
2357 2358
		if (keep_working(pool))
			wake_up_worker(pool);
2359

2360
		rescuer->pool = NULL;
2361 2362
		spin_unlock(&pool->lock);
		spin_lock(&workqueue_lock);
2363 2364
	}

2365 2366
	spin_unlock_irq(&workqueue_lock);

2367 2368
	/* rescuers should never participate in concurrency management */
	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2369 2370
	schedule();
	goto repeat;
L
Linus Torvalds 已提交
2371 2372
}

O
Oleg Nesterov 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

T
Tejun Heo 已提交
2384 2385
/**
 * insert_wq_barrier - insert a barrier work
2386
 * @pwq: pwq to insert barrier into
T
Tejun Heo 已提交
2387
 * @barr: wq_barrier to insert
2388 2389
 * @target: target work to attach @barr to
 * @worker: worker currently executing @target, NULL if @target is not executing
T
Tejun Heo 已提交
2390
 *
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
 * @barr is linked to @target such that @barr is completed only after
 * @target finishes execution.  Please note that the ordering
 * guarantee is observed only with respect to @target and on the local
 * cpu.
 *
 * Currently, a queued barrier can't be canceled.  This is because
 * try_to_grab_pending() can't determine whether the work to be
 * grabbed is at the head of the queue and thus can't clear LINKED
 * flag of the previous work while there must be a valid next work
 * after a work with LINKED flag set.
 *
 * Note that when @worker is non-NULL, @target may be modified
2403
 * underneath us, so we can't reliably determine pwq from @target.
T
Tejun Heo 已提交
2404 2405
 *
 * CONTEXT:
2406
 * spin_lock_irq(pool->lock).
T
Tejun Heo 已提交
2407
 */
2408
static void insert_wq_barrier(struct pool_workqueue *pwq,
2409 2410
			      struct wq_barrier *barr,
			      struct work_struct *target, struct worker *worker)
O
Oleg Nesterov 已提交
2411
{
2412 2413 2414
	struct list_head *head;
	unsigned int linked = 0;

2415
	/*
2416
	 * debugobject calls are safe here even with pool->lock locked
2417 2418 2419 2420
	 * as we know for sure that this will not trigger any of the
	 * checks and call back into the fixup functions where we
	 * might deadlock.
	 */
A
Andrew Morton 已提交
2421
	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2422
	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
O
Oleg Nesterov 已提交
2423
	init_completion(&barr->done);
2424

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	/*
	 * If @target is currently being executed, schedule the
	 * barrier to the worker; otherwise, put it after @target.
	 */
	if (worker)
		head = worker->scheduled.next;
	else {
		unsigned long *bits = work_data_bits(target);

		head = target->entry.next;
		/* there can already be other linked works, inherit and set */
		linked = *bits & WORK_STRUCT_LINKED;
		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
	}

2440
	debug_work_activate(&barr->work);
2441
	insert_work(pwq, &barr->work, head,
2442
		    work_color_to_flags(WORK_NO_COLOR) | linked);
O
Oleg Nesterov 已提交
2443 2444
}

2445
/**
2446
 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2447 2448 2449 2450
 * @wq: workqueue being flushed
 * @flush_color: new flush color, < 0 for no-op
 * @work_color: new work color, < 0 for no-op
 *
2451
 * Prepare pwqs for workqueue flushing.
2452
 *
2453 2454 2455 2456 2457
 * If @flush_color is non-negative, flush_color on all pwqs should be
 * -1.  If no pwq has in-flight commands at the specified color, all
 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
 * has in flight commands, its pwq->flush_color is set to
 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2458 2459 2460 2461 2462 2463 2464
 * wakeup logic is armed and %true is returned.
 *
 * The caller should have initialized @wq->first_flusher prior to
 * calling this function with non-negative @flush_color.  If
 * @flush_color is negative, no flush color update is done and %false
 * is returned.
 *
2465
 * If @work_color is non-negative, all pwqs should have the same
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
 * work_color which is previous to @work_color and all will be
 * advanced to @work_color.
 *
 * CONTEXT:
 * mutex_lock(wq->flush_mutex).
 *
 * RETURNS:
 * %true if @flush_color >= 0 and there's something to flush.  %false
 * otherwise.
 */
2476
static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2477
				      int flush_color, int work_color)
L
Linus Torvalds 已提交
2478
{
2479
	bool wait = false;
2480
	struct pool_workqueue *pwq;
L
Linus Torvalds 已提交
2481

2482
	if (flush_color >= 0) {
2483
		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2484
		atomic_set(&wq->nr_pwqs_to_flush, 1);
L
Linus Torvalds 已提交
2485
	}
2486

2487 2488
	local_irq_disable();

2489
	for_each_pwq(pwq, wq) {
2490
		struct worker_pool *pool = pwq->pool;
O
Oleg Nesterov 已提交
2491

2492
		spin_lock(&pool->lock);
2493

2494
		if (flush_color >= 0) {
2495
			WARN_ON_ONCE(pwq->flush_color != -1);
O
Oleg Nesterov 已提交
2496

2497 2498 2499
			if (pwq->nr_in_flight[flush_color]) {
				pwq->flush_color = flush_color;
				atomic_inc(&wq->nr_pwqs_to_flush);
2500 2501 2502
				wait = true;
			}
		}
L
Linus Torvalds 已提交
2503

2504
		if (work_color >= 0) {
2505
			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2506
			pwq->work_color = work_color;
2507
		}
L
Linus Torvalds 已提交
2508

2509
		spin_unlock(&pool->lock);
L
Linus Torvalds 已提交
2510
	}
2511

2512 2513
	local_irq_enable();

2514
	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2515
		complete(&wq->first_flusher->done);
2516

2517
	return wait;
L
Linus Torvalds 已提交
2518 2519
}

2520
/**
L
Linus Torvalds 已提交
2521
 * flush_workqueue - ensure that any scheduled work has run to completion.
2522
 * @wq: workqueue to flush
L
Linus Torvalds 已提交
2523 2524 2525 2526
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
O
Oleg Nesterov 已提交
2527 2528
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
L
Linus Torvalds 已提交
2529
 */
2530
void flush_workqueue(struct workqueue_struct *wq)
L
Linus Torvalds 已提交
2531
{
2532 2533 2534 2535 2536 2537
	struct wq_flusher this_flusher = {
		.list = LIST_HEAD_INIT(this_flusher.list),
		.flush_color = -1,
		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
	};
	int next_color;
L
Linus Torvalds 已提交
2538

2539 2540
	lock_map_acquire(&wq->lockdep_map);
	lock_map_release(&wq->lockdep_map);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	mutex_lock(&wq->flush_mutex);

	/*
	 * Start-to-wait phase
	 */
	next_color = work_next_color(wq->work_color);

	if (next_color != wq->flush_color) {
		/*
		 * Color space is not full.  The current work_color
		 * becomes our flush_color and work_color is advanced
		 * by one.
		 */
2555
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2556 2557 2558 2559 2560
		this_flusher.flush_color = wq->work_color;
		wq->work_color = next_color;

		if (!wq->first_flusher) {
			/* no flush in progress, become the first flusher */
2561
			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2562 2563 2564

			wq->first_flusher = &this_flusher;

2565
			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2566 2567 2568 2569 2570 2571 2572 2573
						       wq->work_color)) {
				/* nothing to flush, done */
				wq->flush_color = next_color;
				wq->first_flusher = NULL;
				goto out_unlock;
			}
		} else {
			/* wait in queue */
2574
			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2575
			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2576
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		}
	} else {
		/*
		 * Oops, color space is full, wait on overflow queue.
		 * The next flush completion will assign us
		 * flush_color and transfer to flusher_queue.
		 */
		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
	}

	mutex_unlock(&wq->flush_mutex);

	wait_for_completion(&this_flusher.done);

	/*
	 * Wake-up-and-cascade phase
	 *
	 * First flushers are responsible for cascading flushes and
	 * handling overflow.  Non-first flushers can simply return.
	 */
	if (wq->first_flusher != &this_flusher)
		return;

	mutex_lock(&wq->flush_mutex);

2602 2603 2604 2605
	/* we might have raced, check again with mutex held */
	if (wq->first_flusher != &this_flusher)
		goto out_unlock;

2606 2607
	wq->first_flusher = NULL;

2608 2609
	WARN_ON_ONCE(!list_empty(&this_flusher.list));
	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621

	while (true) {
		struct wq_flusher *next, *tmp;

		/* complete all the flushers sharing the current flush color */
		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
			if (next->flush_color != wq->flush_color)
				break;
			list_del_init(&next->list);
			complete(&next->done);
		}

2622 2623
		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
			     wq->flush_color != work_next_color(wq->work_color));
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642

		/* this flush_color is finished, advance by one */
		wq->flush_color = work_next_color(wq->flush_color);

		/* one color has been freed, handle overflow queue */
		if (!list_empty(&wq->flusher_overflow)) {
			/*
			 * Assign the same color to all overflowed
			 * flushers, advance work_color and append to
			 * flusher_queue.  This is the start-to-wait
			 * phase for these overflowed flushers.
			 */
			list_for_each_entry(tmp, &wq->flusher_overflow, list)
				tmp->flush_color = wq->work_color;

			wq->work_color = work_next_color(wq->work_color);

			list_splice_tail_init(&wq->flusher_overflow,
					      &wq->flusher_queue);
2643
			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2644 2645 2646
		}

		if (list_empty(&wq->flusher_queue)) {
2647
			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2648 2649 2650 2651 2652
			break;
		}

		/*
		 * Need to flush more colors.  Make the next flusher
2653
		 * the new first flusher and arm pwqs.
2654
		 */
2655 2656
		WARN_ON_ONCE(wq->flush_color == wq->work_color);
		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2657 2658 2659 2660

		list_del_init(&next->list);
		wq->first_flusher = next;

2661
		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
			break;

		/*
		 * Meh... this color is already done, clear first
		 * flusher and repeat cascading.
		 */
		wq->first_flusher = NULL;
	}

out_unlock:
	mutex_unlock(&wq->flush_mutex);
L
Linus Torvalds 已提交
2673
}
2674
EXPORT_SYMBOL_GPL(flush_workqueue);
L
Linus Torvalds 已提交
2675

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
/**
 * drain_workqueue - drain a workqueue
 * @wq: workqueue to drain
 *
 * Wait until the workqueue becomes empty.  While draining is in progress,
 * only chain queueing is allowed.  IOW, only currently pending or running
 * work items on @wq can queue further work items on it.  @wq is flushed
 * repeatedly until it becomes empty.  The number of flushing is detemined
 * by the depth of chaining and should be relatively short.  Whine if it
 * takes too long.
 */
void drain_workqueue(struct workqueue_struct *wq)
{
	unsigned int flush_cnt = 0;
2690
	struct pool_workqueue *pwq;
2691 2692 2693 2694 2695 2696

	/*
	 * __queue_work() needs to test whether there are drainers, is much
	 * hotter than drain_workqueue() and already looks at @wq->flags.
	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
	 */
2697
	spin_lock_irq(&workqueue_lock);
2698 2699
	if (!wq->nr_drainers++)
		wq->flags |= WQ_DRAINING;
2700
	spin_unlock_irq(&workqueue_lock);
2701 2702 2703
reflush:
	flush_workqueue(wq);

2704 2705
	local_irq_disable();

2706
	for_each_pwq(pwq, wq) {
2707
		bool drained;
2708

2709
		spin_lock(&pwq->pool->lock);
2710
		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2711
		spin_unlock(&pwq->pool->lock);
2712 2713

		if (drained)
2714 2715 2716 2717
			continue;

		if (++flush_cnt == 10 ||
		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
V
Valentin Ilie 已提交
2718 2719
			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
				wq->name, flush_cnt);
2720 2721

		local_irq_enable();
2722 2723 2724
		goto reflush;
	}

2725
	spin_lock(&workqueue_lock);
2726 2727
	if (!--wq->nr_drainers)
		wq->flags &= ~WQ_DRAINING;
2728 2729 2730
	spin_unlock(&workqueue_lock);

	local_irq_enable();
2731 2732 2733
}
EXPORT_SYMBOL_GPL(drain_workqueue);

2734
static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2735
{
2736
	struct worker *worker = NULL;
2737
	struct worker_pool *pool;
2738
	struct pool_workqueue *pwq;
2739 2740

	might_sleep();
2741 2742

	local_irq_disable();
2743
	pool = get_work_pool(work);
2744 2745
	if (!pool) {
		local_irq_enable();
2746
		return false;
2747
	}
2748

2749
	spin_lock(&pool->lock);
2750
	/* see the comment in try_to_grab_pending() with the same code */
2751 2752 2753
	pwq = get_work_pwq(work);
	if (pwq) {
		if (unlikely(pwq->pool != pool))
T
Tejun Heo 已提交
2754
			goto already_gone;
2755
	} else {
2756
		worker = find_worker_executing_work(pool, work);
2757
		if (!worker)
T
Tejun Heo 已提交
2758
			goto already_gone;
2759
		pwq = worker->current_pwq;
2760
	}
2761

2762
	insert_wq_barrier(pwq, barr, work, worker);
2763
	spin_unlock_irq(&pool->lock);
2764

2765 2766 2767 2768 2769 2770
	/*
	 * If @max_active is 1 or rescuer is in use, flushing another work
	 * item on the same workqueue may lead to deadlock.  Make sure the
	 * flusher is not running on the same workqueue by verifying write
	 * access.
	 */
2771 2772
	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
		lock_map_acquire(&pwq->wq->lockdep_map);
2773
	else
2774 2775
		lock_map_acquire_read(&pwq->wq->lockdep_map);
	lock_map_release(&pwq->wq->lockdep_map);
2776

2777
	return true;
T
Tejun Heo 已提交
2778
already_gone:
2779
	spin_unlock_irq(&pool->lock);
2780
	return false;
2781
}
2782 2783 2784 2785 2786

/**
 * flush_work - wait for a work to finish executing the last queueing instance
 * @work: the work to flush
 *
2787 2788
 * Wait until @work has finished execution.  @work is guaranteed to be idle
 * on return if it hasn't been requeued since flush started.
2789 2790 2791 2792 2793 2794 2795 2796 2797
 *
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
 */
bool flush_work(struct work_struct *work)
{
	struct wq_barrier barr;

2798 2799 2800
	lock_map_acquire(&work->lockdep_map);
	lock_map_release(&work->lockdep_map);

2801
	if (start_flush_work(work, &barr)) {
2802 2803 2804
		wait_for_completion(&barr.done);
		destroy_work_on_stack(&barr.work);
		return true;
2805
	} else {
2806
		return false;
2807 2808
	}
}
2809
EXPORT_SYMBOL_GPL(flush_work);
2810

2811
static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2812
{
2813
	unsigned long flags;
2814 2815 2816
	int ret;

	do {
2817 2818 2819 2820 2821 2822
		ret = try_to_grab_pending(work, is_dwork, &flags);
		/*
		 * If someone else is canceling, wait for the same event it
		 * would be waiting for before retrying.
		 */
		if (unlikely(ret == -ENOENT))
2823
			flush_work(work);
2824 2825
	} while (unlikely(ret < 0));

2826 2827 2828 2829
	/* tell other tasks trying to grab @work to back off */
	mark_work_canceling(work);
	local_irq_restore(flags);

2830
	flush_work(work);
2831
	clear_work_data(work);
2832 2833 2834
	return ret;
}

2835
/**
2836 2837
 * cancel_work_sync - cancel a work and wait for it to finish
 * @work: the work to cancel
2838
 *
2839 2840 2841 2842
 * Cancel @work and wait for its execution to finish.  This function
 * can be used even if the work re-queues itself or migrates to
 * another workqueue.  On return from this function, @work is
 * guaranteed to be not pending or executing on any CPU.
2843
 *
2844 2845
 * cancel_work_sync(&delayed_work->work) must not be used for
 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2846
 *
2847
 * The caller must ensure that the workqueue on which @work was last
2848
 * queued can't be destroyed before this function returns.
2849 2850 2851
 *
 * RETURNS:
 * %true if @work was pending, %false otherwise.
2852
 */
2853
bool cancel_work_sync(struct work_struct *work)
2854
{
2855
	return __cancel_work_timer(work, false);
O
Oleg Nesterov 已提交
2856
}
2857
EXPORT_SYMBOL_GPL(cancel_work_sync);
O
Oleg Nesterov 已提交
2858

2859
/**
2860 2861
 * flush_delayed_work - wait for a dwork to finish executing the last queueing
 * @dwork: the delayed work to flush
2862
 *
2863 2864 2865
 * Delayed timer is cancelled and the pending work is queued for
 * immediate execution.  Like flush_work(), this function only
 * considers the last queueing instance of @dwork.
2866
 *
2867 2868 2869
 * RETURNS:
 * %true if flush_work() waited for the work to finish execution,
 * %false if it was already idle.
2870
 */
2871 2872
bool flush_delayed_work(struct delayed_work *dwork)
{
2873
	local_irq_disable();
2874
	if (del_timer_sync(&dwork->timer))
2875
		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2876
	local_irq_enable();
2877 2878 2879 2880
	return flush_work(&dwork->work);
}
EXPORT_SYMBOL(flush_delayed_work);

2881
/**
2882 2883
 * cancel_delayed_work - cancel a delayed work
 * @dwork: delayed_work to cancel
2884
 *
2885 2886 2887 2888 2889
 * Kill off a pending delayed_work.  Returns %true if @dwork was pending
 * and canceled; %false if wasn't pending.  Note that the work callback
 * function may still be running on return, unless it returns %true and the
 * work doesn't re-arm itself.  Explicitly flush or use
 * cancel_delayed_work_sync() to wait on it.
2890
 *
2891
 * This function is safe to call from any context including IRQ handler.
2892
 */
2893
bool cancel_delayed_work(struct delayed_work *dwork)
2894
{
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	unsigned long flags;
	int ret;

	do {
		ret = try_to_grab_pending(&dwork->work, true, &flags);
	} while (unlikely(ret == -EAGAIN));

	if (unlikely(ret < 0))
		return false;

2905 2906
	set_work_pool_and_clear_pending(&dwork->work,
					get_work_pool_id(&dwork->work));
2907
	local_irq_restore(flags);
2908
	return ret;
2909
}
2910
EXPORT_SYMBOL(cancel_delayed_work);
2911

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
/**
 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
 * @dwork: the delayed work cancel
 *
 * This is cancel_work_sync() for delayed works.
 *
 * RETURNS:
 * %true if @dwork was pending, %false otherwise.
 */
bool cancel_delayed_work_sync(struct delayed_work *dwork)
2922
{
2923
	return __cancel_work_timer(&dwork->work, true);
2924
}
2925
EXPORT_SYMBOL(cancel_delayed_work_sync);
L
Linus Torvalds 已提交
2926

2927
/**
2928 2929 2930 2931 2932 2933
 * schedule_work_on - put work task on a specific cpu
 * @cpu: cpu to put the work task on
 * @work: job to be done
 *
 * This puts a job on a specific cpu
 */
2934
bool schedule_work_on(int cpu, struct work_struct *work)
2935
{
2936
	return queue_work_on(cpu, system_wq, work);
2937 2938 2939
}
EXPORT_SYMBOL(schedule_work_on);

2940 2941 2942 2943
/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
2944 2945
 * Returns %false if @work was already on the kernel-global workqueue and
 * %true otherwise.
2946 2947 2948 2949
 *
 * This puts a job in the kernel-global workqueue if it was not already
 * queued and leaves it in the same position on the kernel-global
 * workqueue otherwise.
2950
 */
2951
bool schedule_work(struct work_struct *work)
L
Linus Torvalds 已提交
2952
{
2953
	return queue_work(system_wq, work);
L
Linus Torvalds 已提交
2954
}
2955
EXPORT_SYMBOL(schedule_work);
L
Linus Torvalds 已提交
2956

2957 2958 2959
/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
2960
 * @dwork: job to be done
2961 2962 2963 2964 2965
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
2966 2967
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
			      unsigned long delay)
L
Linus Torvalds 已提交
2968
{
2969
	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
L
Linus Torvalds 已提交
2970
}
2971
EXPORT_SYMBOL(schedule_delayed_work_on);
L
Linus Torvalds 已提交
2972

2973 2974
/**
 * schedule_delayed_work - put work task in global workqueue after delay
2975 2976
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
2977 2978 2979 2980
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
2981
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
L
Linus Torvalds 已提交
2982
{
2983
	return queue_delayed_work(system_wq, dwork, delay);
L
Linus Torvalds 已提交
2984
}
2985
EXPORT_SYMBOL(schedule_delayed_work);
L
Linus Torvalds 已提交
2986

2987
/**
2988
 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2989 2990
 * @func: the function to call
 *
2991 2992
 * schedule_on_each_cpu() executes @func on each online CPU using the
 * system workqueue and blocks until all CPUs have completed.
2993
 * schedule_on_each_cpu() is very slow.
2994 2995 2996
 *
 * RETURNS:
 * 0 on success, -errno on failure.
2997
 */
2998
int schedule_on_each_cpu(work_func_t func)
2999 3000
{
	int cpu;
3001
	struct work_struct __percpu *works;
3002

3003 3004
	works = alloc_percpu(struct work_struct);
	if (!works)
3005
		return -ENOMEM;
3006

3007 3008
	get_online_cpus();

3009
	for_each_online_cpu(cpu) {
3010 3011 3012
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
3013
		schedule_work_on(cpu, work);
3014
	}
3015 3016 3017 3018

	for_each_online_cpu(cpu)
		flush_work(per_cpu_ptr(works, cpu));

3019
	put_online_cpus();
3020
	free_percpu(works);
3021 3022 3023
	return 0;
}

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
/**
 * flush_scheduled_work - ensure that any scheduled work has run to completion.
 *
 * Forces execution of the kernel-global workqueue and blocks until its
 * completion.
 *
 * Think twice before calling this function!  It's very easy to get into
 * trouble if you don't take great care.  Either of the following situations
 * will lead to deadlock:
 *
 *	One of the work items currently on the workqueue needs to acquire
 *	a lock held by your code or its caller.
 *
 *	Your code is running in the context of a work routine.
 *
 * They will be detected by lockdep when they occur, but the first might not
 * occur very often.  It depends on what work items are on the workqueue and
 * what locks they need, which you have no control over.
 *
 * In most situations flushing the entire workqueue is overkill; you merely
 * need to know that a particular work item isn't queued and isn't running.
 * In such cases you should use cancel_delayed_work_sync() or
 * cancel_work_sync() instead.
 */
L
Linus Torvalds 已提交
3048 3049
void flush_scheduled_work(void)
{
3050
	flush_workqueue(system_wq);
L
Linus Torvalds 已提交
3051
}
3052
EXPORT_SYMBOL(flush_scheduled_work);
L
Linus Torvalds 已提交
3053

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
3066
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3067 3068
{
	if (!in_interrupt()) {
3069
		fn(&ew->work);
3070 3071 3072
		return 0;
	}

3073
	INIT_WORK(&ew->work, fn);
3074 3075 3076 3077 3078 3079
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

L
Linus Torvalds 已提交
3080 3081
int keventd_up(void)
{
3082
	return system_wq != NULL;
L
Linus Torvalds 已提交
3083 3084
}

T
Tejun Heo 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
/**
 * free_workqueue_attrs - free a workqueue_attrs
 * @attrs: workqueue_attrs to free
 *
 * Undo alloc_workqueue_attrs().
 */
void free_workqueue_attrs(struct workqueue_attrs *attrs)
{
	if (attrs) {
		free_cpumask_var(attrs->cpumask);
		kfree(attrs);
	}
}

/**
 * alloc_workqueue_attrs - allocate a workqueue_attrs
 * @gfp_mask: allocation mask to use
 *
 * Allocate a new workqueue_attrs, initialize with default settings and
 * return it.  Returns NULL on failure.
 */
struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
{
	struct workqueue_attrs *attrs;

	attrs = kzalloc(sizeof(*attrs), gfp_mask);
	if (!attrs)
		goto fail;
	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
		goto fail;

	cpumask_setall(attrs->cpumask);
	return attrs;
fail:
	free_workqueue_attrs(attrs);
	return NULL;
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
static void copy_workqueue_attrs(struct workqueue_attrs *to,
				 const struct workqueue_attrs *from)
{
	to->nice = from->nice;
	cpumask_copy(to->cpumask, from->cpumask);
}

/*
 * Hacky implementation of jhash of bitmaps which only considers the
 * specified number of bits.  We probably want a proper implementation in
 * include/linux/jhash.h.
 */
static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
{
	int nr_longs = bits / BITS_PER_LONG;
	int nr_leftover = bits % BITS_PER_LONG;
	unsigned long leftover = 0;

	if (nr_longs)
		hash = jhash(bitmap, nr_longs * sizeof(long), hash);
	if (nr_leftover) {
		bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
		hash = jhash(&leftover, sizeof(long), hash);
	}
	return hash;
}

/* hash value of the content of @attr */
static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
{
	u32 hash = 0;

	hash = jhash_1word(attrs->nice, hash);
	hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
	return hash;
}

/* content equality test */
static bool wqattrs_equal(const struct workqueue_attrs *a,
			  const struct workqueue_attrs *b)
{
	if (a->nice != b->nice)
		return false;
	if (!cpumask_equal(a->cpumask, b->cpumask))
		return false;
	return true;
}

T
Tejun Heo 已提交
3171 3172 3173 3174 3175
/**
 * init_worker_pool - initialize a newly zalloc'd worker_pool
 * @pool: worker_pool to initialize
 *
 * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3176 3177 3178
 * Returns 0 on success, -errno on failure.  Even on failure, all fields
 * inside @pool proper are initialized and put_unbound_pool() can be called
 * on @pool safely to release it.
T
Tejun Heo 已提交
3179 3180
 */
static int init_worker_pool(struct worker_pool *pool)
3181 3182
{
	spin_lock_init(&pool->lock);
3183 3184
	pool->id = -1;
	pool->cpu = -1;
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	pool->flags |= POOL_DISASSOCIATED;
	INIT_LIST_HEAD(&pool->worklist);
	INIT_LIST_HEAD(&pool->idle_list);
	hash_init(pool->busy_hash);

	init_timer_deferrable(&pool->idle_timer);
	pool->idle_timer.function = idle_worker_timeout;
	pool->idle_timer.data = (unsigned long)pool;

	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
		    (unsigned long)pool);

	mutex_init(&pool->manager_arb);
	mutex_init(&pool->assoc_mutex);
	ida_init(&pool->worker_ida);
T
Tejun Heo 已提交
3200

3201 3202 3203 3204
	INIT_HLIST_NODE(&pool->hash_node);
	pool->refcnt = 1;

	/* shouldn't fail above this point */
T
Tejun Heo 已提交
3205 3206 3207 3208
	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
	if (!pool->attrs)
		return -ENOMEM;
	return 0;
3209 3210
}

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
static void rcu_free_pool(struct rcu_head *rcu)
{
	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);

	ida_destroy(&pool->worker_ida);
	free_workqueue_attrs(pool->attrs);
	kfree(pool);
}

/**
 * put_unbound_pool - put a worker_pool
 * @pool: worker_pool to put
 *
 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
 * safe manner.
 */
static void put_unbound_pool(struct worker_pool *pool)
{
	struct worker *worker;

	spin_lock_irq(&workqueue_lock);
	if (--pool->refcnt) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* sanity checks */
	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
	    WARN_ON(!list_empty(&pool->worklist))) {
		spin_unlock_irq(&workqueue_lock);
		return;
	}

	/* release id and unhash */
	if (pool->id >= 0)
		idr_remove(&worker_pool_idr, pool->id);
	hash_del(&pool->hash_node);

	spin_unlock_irq(&workqueue_lock);

	/* lock out manager and destroy all workers */
	mutex_lock(&pool->manager_arb);
	spin_lock_irq(&pool->lock);

	while ((worker = first_worker(pool)))
		destroy_worker(worker);
	WARN_ON(pool->nr_workers || pool->nr_idle);

	spin_unlock_irq(&pool->lock);
	mutex_unlock(&pool->manager_arb);

	/* shut down the timers */
	del_timer_sync(&pool->idle_timer);
	del_timer_sync(&pool->mayday_timer);

	/* sched-RCU protected to allow dereferences from get_work_pool() */
	call_rcu_sched(&pool->rcu, rcu_free_pool);
}

/**
 * get_unbound_pool - get a worker_pool with the specified attributes
 * @attrs: the attributes of the worker_pool to get
 *
 * Obtain a worker_pool which has the same attributes as @attrs, bump the
 * reference count and return it.  If there already is a matching
 * worker_pool, it will be used; otherwise, this function attempts to
 * create a new one.  On failure, returns NULL.
 */
static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
{
	static DEFINE_MUTEX(create_mutex);
	u32 hash = wqattrs_hash(attrs);
	struct worker_pool *pool;
	struct worker *worker;

	mutex_lock(&create_mutex);

	/* do we already have a matching pool? */
	spin_lock_irq(&workqueue_lock);
	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
		if (wqattrs_equal(pool->attrs, attrs)) {
			pool->refcnt++;
			goto out_unlock;
		}
	}
	spin_unlock_irq(&workqueue_lock);

	/* nope, create a new one */
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool || init_worker_pool(pool) < 0)
		goto fail;

	copy_workqueue_attrs(pool->attrs, attrs);

	if (worker_pool_assign_id(pool) < 0)
		goto fail;

	/* create and start the initial worker */
	worker = create_worker(pool);
	if (!worker)
		goto fail;

	spin_lock_irq(&pool->lock);
	start_worker(worker);
	spin_unlock_irq(&pool->lock);

	/* install */
	spin_lock_irq(&workqueue_lock);
	hash_add(unbound_pool_hash, &pool->hash_node, hash);
out_unlock:
	spin_unlock_irq(&workqueue_lock);
	mutex_unlock(&create_mutex);
	return pool;
fail:
	mutex_unlock(&create_mutex);
	if (pool)
		put_unbound_pool(pool);
	return NULL;
}

3331
static int alloc_and_link_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3332
{
3333
	bool highpri = wq->flags & WQ_HIGHPRI;
3334 3335 3336
	int cpu;

	if (!(wq->flags & WQ_UNBOUND)) {
3337 3338
		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
		if (!wq->cpu_pwqs)
3339 3340 3341
			return -ENOMEM;

		for_each_possible_cpu(cpu) {
3342 3343
			struct pool_workqueue *pwq =
				per_cpu_ptr(wq->cpu_pwqs, cpu);
3344
			struct worker_pool *cpu_pools =
3345
				per_cpu(cpu_worker_pools, cpu);
3346

3347
			pwq->pool = &cpu_pools[highpri];
3348
			list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
3349 3350 3351 3352 3353 3354 3355 3356
		}
	} else {
		struct pool_workqueue *pwq;

		pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
		if (!pwq)
			return -ENOMEM;

3357 3358 3359 3360 3361 3362
		pwq->pool = get_unbound_pool(unbound_std_wq_attrs[highpri]);
		if (!pwq->pool) {
			kmem_cache_free(pwq_cache, pwq);
			return -ENOMEM;
		}

3363
		list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
3364 3365 3366
	}

	return 0;
T
Tejun Heo 已提交
3367 3368
}

3369
static void free_pwqs(struct workqueue_struct *wq)
T
Tejun Heo 已提交
3370
{
3371
	if (!(wq->flags & WQ_UNBOUND))
3372 3373 3374 3375
		free_percpu(wq->cpu_pwqs);
	else if (!list_empty(&wq->pwqs))
		kmem_cache_free(pwq_cache, list_first_entry(&wq->pwqs,
					struct pool_workqueue, pwqs_node));
T
Tejun Heo 已提交
3376 3377
}

3378 3379
static int wq_clamp_max_active(int max_active, unsigned int flags,
			       const char *name)
3380
{
3381 3382 3383
	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;

	if (max_active < 1 || max_active > lim)
V
Valentin Ilie 已提交
3384 3385
		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
			max_active, name, 1, lim);
3386

3387
	return clamp_val(max_active, 1, lim);
3388 3389
}

3390
struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3391 3392 3393
					       unsigned int flags,
					       int max_active,
					       struct lock_class_key *key,
3394
					       const char *lock_name, ...)
L
Linus Torvalds 已提交
3395
{
3396
	va_list args, args1;
L
Linus Torvalds 已提交
3397
	struct workqueue_struct *wq;
3398
	struct pool_workqueue *pwq;
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
	size_t namelen;

	/* determine namelen, allocate wq and format name */
	va_start(args, lock_name);
	va_copy(args1, args);
	namelen = vsnprintf(NULL, 0, fmt, args) + 1;

	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
	if (!wq)
		goto err;

	vsnprintf(wq->name, namelen, fmt, args1);
	va_end(args);
	va_end(args1);
L
Linus Torvalds 已提交
3413

3414 3415 3416 3417 3418 3419 3420
	/*
	 * Workqueues which may be used during memory reclaim should
	 * have a rescuer to guarantee forward progress.
	 */
	if (flags & WQ_MEM_RECLAIM)
		flags |= WQ_RESCUER;

3421
	max_active = max_active ?: WQ_DFL_ACTIVE;
3422
	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3423

3424
	/* init wq */
3425
	wq->flags = flags;
3426
	wq->saved_max_active = max_active;
3427
	mutex_init(&wq->flush_mutex);
3428
	atomic_set(&wq->nr_pwqs_to_flush, 0);
3429
	INIT_LIST_HEAD(&wq->pwqs);
3430 3431
	INIT_LIST_HEAD(&wq->flusher_queue);
	INIT_LIST_HEAD(&wq->flusher_overflow);
3432
	INIT_LIST_HEAD(&wq->maydays);
3433

3434
	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3435
	INIT_LIST_HEAD(&wq->list);
3436

3437
	if (alloc_and_link_pwqs(wq) < 0)
3438 3439
		goto err;

3440
	local_irq_disable();
3441
	for_each_pwq(pwq, wq) {
3442 3443 3444 3445 3446
		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
		pwq->wq = wq;
		pwq->flush_color = -1;
		pwq->max_active = max_active;
		INIT_LIST_HEAD(&pwq->delayed_works);
3447
		INIT_LIST_HEAD(&pwq->mayday_node);
3448
	}
3449
	local_irq_enable();
T
Tejun Heo 已提交
3450

3451 3452 3453 3454 3455 3456 3457
	if (flags & WQ_RESCUER) {
		struct worker *rescuer;

		wq->rescuer = rescuer = alloc_worker();
		if (!rescuer)
			goto err;

3458 3459
		rescuer->rescue_wq = wq;
		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3460
					       wq->name);
3461 3462 3463 3464 3465
		if (IS_ERR(rescuer->task))
			goto err;

		rescuer->task->flags |= PF_THREAD_BOUND;
		wake_up_process(rescuer->task);
3466 3467
	}

3468 3469 3470 3471 3472
	/*
	 * workqueue_lock protects global freeze state and workqueues
	 * list.  Grab it, set max_active accordingly and add the new
	 * workqueue to workqueues list.
	 */
3473
	spin_lock_irq(&workqueue_lock);
3474

3475
	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3476 3477
		for_each_pwq(pwq, wq)
			pwq->max_active = 0;
3478

T
Tejun Heo 已提交
3479
	list_add(&wq->list, &workqueues);
3480

3481
	spin_unlock_irq(&workqueue_lock);
T
Tejun Heo 已提交
3482

3483
	return wq;
T
Tejun Heo 已提交
3484 3485
err:
	if (wq) {
3486
		free_pwqs(wq);
3487
		kfree(wq->rescuer);
T
Tejun Heo 已提交
3488 3489 3490
		kfree(wq);
	}
	return NULL;
3491
}
3492
EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
L
Linus Torvalds 已提交
3493

3494 3495 3496 3497 3498 3499 3500 3501
/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
3502
	struct pool_workqueue *pwq;
3503

3504 3505
	/* drain it before proceeding with destruction */
	drain_workqueue(wq);
3506

3507 3508
	spin_lock_irq(&workqueue_lock);

3509
	/* sanity checks */
3510
	for_each_pwq(pwq, wq) {
3511 3512
		int i;

3513 3514 3515
		for (i = 0; i < WORK_NR_COLORS; i++) {
			if (WARN_ON(pwq->nr_in_flight[i])) {
				spin_unlock_irq(&workqueue_lock);
3516
				return;
3517 3518 3519
			}
		}

3520
		if (WARN_ON(pwq->nr_active) ||
3521 3522
		    WARN_ON(!list_empty(&pwq->delayed_works))) {
			spin_unlock_irq(&workqueue_lock);
3523
			return;
3524
		}
3525 3526
	}

3527 3528 3529 3530
	/*
	 * wq list is used to freeze wq, remove from list after
	 * flushing is complete in case freeze races us.
	 */
3531
	list_del(&wq->list);
3532

3533
	spin_unlock_irq(&workqueue_lock);
3534

3535 3536
	if (wq->flags & WQ_RESCUER) {
		kthread_stop(wq->rescuer->task);
3537
		kfree(wq->rescuer);
3538 3539
	}

3540 3541 3542 3543 3544 3545 3546 3547 3548
	/*
	 * We're the sole accessor of @wq at this point.  Directly access
	 * the first pwq and put its pool.
	 */
	if (wq->flags & WQ_UNBOUND) {
		pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
				       pwqs_node);
		put_unbound_pool(pwq->pool);
	}
3549
	free_pwqs(wq);
3550 3551 3552 3553
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

3554
/**
3555 3556
 * pwq_set_max_active - adjust max_active of a pwq
 * @pwq: target pool_workqueue
3557 3558
 * @max_active: new max_active value.
 *
3559
 * Set @pwq->max_active to @max_active and activate delayed works if
3560 3561 3562
 * increased.
 *
 * CONTEXT:
3563
 * spin_lock_irq(pool->lock).
3564
 */
3565
static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3566
{
3567
	pwq->max_active = max_active;
3568

3569 3570 3571
	while (!list_empty(&pwq->delayed_works) &&
	       pwq->nr_active < pwq->max_active)
		pwq_activate_first_delayed(pwq);
3572 3573
}

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
/**
 * workqueue_set_max_active - adjust max_active of a workqueue
 * @wq: target workqueue
 * @max_active: new max_active value.
 *
 * Set max_active of @wq to @max_active.
 *
 * CONTEXT:
 * Don't call from IRQ context.
 */
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
3586
	struct pool_workqueue *pwq;
3587

3588
	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3589

3590
	spin_lock_irq(&workqueue_lock);
3591 3592 3593

	wq->saved_max_active = max_active;

3594
	for_each_pwq(pwq, wq) {
3595
		struct worker_pool *pool = pwq->pool;
3596

3597
		spin_lock(&pool->lock);
3598

3599
		if (!(wq->flags & WQ_FREEZABLE) ||
3600
		    !(pool->flags & POOL_FREEZING))
3601
			pwq_set_max_active(pwq, max_active);
3602

3603
		spin_unlock(&pool->lock);
3604
	}
3605

3606
	spin_unlock_irq(&workqueue_lock);
3607
}
3608
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3609

3610
/**
3611 3612 3613
 * workqueue_congested - test whether a workqueue is congested
 * @cpu: CPU in question
 * @wq: target workqueue
3614
 *
3615 3616 3617
 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
 * no synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
3618
 *
3619 3620
 * RETURNS:
 * %true if congested, %false otherwise.
3621
 */
3622
bool workqueue_congested(int cpu, struct workqueue_struct *wq)
L
Linus Torvalds 已提交
3623
{
3624
	struct pool_workqueue *pwq;
3625 3626 3627
	bool ret;

	preempt_disable();
3628 3629 3630 3631 3632

	if (!(wq->flags & WQ_UNBOUND))
		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
	else
		pwq = first_pwq(wq);
3633

3634 3635 3636 3637
	ret = !list_empty(&pwq->delayed_works);
	preempt_enable();

	return ret;
L
Linus Torvalds 已提交
3638
}
3639
EXPORT_SYMBOL_GPL(workqueue_congested);
L
Linus Torvalds 已提交
3640

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
/**
 * work_busy - test whether a work is currently pending or running
 * @work: the work to be tested
 *
 * Test whether @work is currently pending or running.  There is no
 * synchronization around this function and the test result is
 * unreliable and only useful as advisory hints or for debugging.
 *
 * RETURNS:
 * OR'd bitmask of WORK_BUSY_* bits.
 */
unsigned int work_busy(struct work_struct *work)
L
Linus Torvalds 已提交
3653
{
3654
	struct worker_pool *pool;
3655 3656
	unsigned long flags;
	unsigned int ret = 0;
L
Linus Torvalds 已提交
3657

3658 3659
	if (work_pending(work))
		ret |= WORK_BUSY_PENDING;
L
Linus Torvalds 已提交
3660

3661 3662
	local_irq_save(flags);
	pool = get_work_pool(work);
3663
	if (pool) {
3664
		spin_lock(&pool->lock);
3665 3666
		if (find_worker_executing_work(pool, work))
			ret |= WORK_BUSY_RUNNING;
3667
		spin_unlock(&pool->lock);
3668
	}
3669
	local_irq_restore(flags);
L
Linus Torvalds 已提交
3670

3671
	return ret;
L
Linus Torvalds 已提交
3672
}
3673
EXPORT_SYMBOL_GPL(work_busy);
L
Linus Torvalds 已提交
3674

3675 3676 3677
/*
 * CPU hotplug.
 *
3678
 * There are two challenges in supporting CPU hotplug.  Firstly, there
3679
 * are a lot of assumptions on strong associations among work, pwq and
3680
 * pool which make migrating pending and scheduled works very
3681
 * difficult to implement without impacting hot paths.  Secondly,
3682
 * worker pools serve mix of short, long and very long running works making
3683 3684
 * blocked draining impractical.
 *
3685
 * This is solved by allowing the pools to be disassociated from the CPU
3686 3687
 * running as an unbound one and allowing it to be reattached later if the
 * cpu comes back online.
3688
 */
L
Linus Torvalds 已提交
3689

3690
static void wq_unbind_fn(struct work_struct *work)
3691
{
3692
	int cpu = smp_processor_id();
3693
	struct worker_pool *pool;
3694 3695
	struct worker *worker;
	int i;
3696

3697
	for_each_cpu_worker_pool(pool, cpu) {
3698
		WARN_ON_ONCE(cpu != smp_processor_id());
3699

3700 3701
		mutex_lock(&pool->assoc_mutex);
		spin_lock_irq(&pool->lock);
3702

3703 3704 3705 3706 3707 3708 3709
		/*
		 * We've claimed all manager positions.  Make all workers
		 * unbound and set DISASSOCIATED.  Before this, all workers
		 * except for the ones which are still executing works from
		 * before the last CPU down must be on the cpu.  After
		 * this, they may become diasporas.
		 */
3710
		list_for_each_entry(worker, &pool->idle_list, entry)
3711
			worker->flags |= WORKER_UNBOUND;
3712

3713
		for_each_busy_worker(worker, i, pool)
3714
			worker->flags |= WORKER_UNBOUND;
3715

3716
		pool->flags |= POOL_DISASSOCIATED;
3717

3718 3719 3720
		spin_unlock_irq(&pool->lock);
		mutex_unlock(&pool->assoc_mutex);
	}
3721

3722
	/*
3723
	 * Call schedule() so that we cross rq->lock and thus can guarantee
3724 3725
	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
	 * as scheduler callbacks may be invoked from other cpus.
3726 3727
	 */
	schedule();
3728

3729
	/*
3730 3731
	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
	 * nr_running stays zero and need_more_worker() and keep_working()
3732 3733 3734
	 * are always true as long as the worklist is not empty.  Pools on
	 * @cpu now behave as unbound (in terms of concurrency management)
	 * pools which are served by workers tied to the CPU.
3735 3736 3737 3738
	 *
	 * On return from this function, the current worker would trigger
	 * unbound chain execution of pending work items if other workers
	 * didn't already.
3739
	 */
3740
	for_each_cpu_worker_pool(pool, cpu)
3741
		atomic_set(&pool->nr_running, 0);
3742 3743
}

T
Tejun Heo 已提交
3744 3745 3746 3747
/*
 * Workqueues should be brought up before normal priority CPU notifiers.
 * This will be registered high priority CPU notifier.
 */
3748
static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
T
Tejun Heo 已提交
3749 3750
					       unsigned long action,
					       void *hcpu)
3751
{
3752
	int cpu = (unsigned long)hcpu;
3753
	struct worker_pool *pool;
3754

T
Tejun Heo 已提交
3755
	switch (action & ~CPU_TASKS_FROZEN) {
3756
	case CPU_UP_PREPARE:
3757
		for_each_cpu_worker_pool(pool, cpu) {
3758 3759 3760 3761 3762 3763 3764 3765 3766
			struct worker *worker;

			if (pool->nr_workers)
				continue;

			worker = create_worker(pool);
			if (!worker)
				return NOTIFY_BAD;

3767
			spin_lock_irq(&pool->lock);
3768
			start_worker(worker);
3769
			spin_unlock_irq(&pool->lock);
3770
		}
T
Tejun Heo 已提交
3771
		break;
3772

3773 3774
	case CPU_DOWN_FAILED:
	case CPU_ONLINE:
3775
		for_each_cpu_worker_pool(pool, cpu) {
3776 3777 3778
			mutex_lock(&pool->assoc_mutex);
			spin_lock_irq(&pool->lock);

3779
			pool->flags &= ~POOL_DISASSOCIATED;
3780 3781 3782 3783 3784
			rebind_workers(pool);

			spin_unlock_irq(&pool->lock);
			mutex_unlock(&pool->assoc_mutex);
		}
3785
		break;
3786
	}
3787 3788 3789 3790 3791 3792 3793
	return NOTIFY_OK;
}

/*
 * Workqueues should be brought down after normal priority CPU notifiers.
 * This will be registered as low priority CPU notifier.
 */
3794
static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3795 3796 3797
						 unsigned long action,
						 void *hcpu)
{
3798
	int cpu = (unsigned long)hcpu;
T
Tejun Heo 已提交
3799 3800
	struct work_struct unbind_work;

3801 3802
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
T
Tejun Heo 已提交
3803
		/* unbinding should happen on the local CPU */
3804
		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3805
		queue_work_on(cpu, system_highpri_wq, &unbind_work);
T
Tejun Heo 已提交
3806 3807
		flush_work(&unbind_work);
		break;
3808 3809 3810 3811
	}
	return NOTIFY_OK;
}

3812
#ifdef CONFIG_SMP
3813

3814
struct work_for_cpu {
3815
	struct work_struct work;
3816 3817 3818 3819 3820
	long (*fn)(void *);
	void *arg;
	long ret;
};

3821
static void work_for_cpu_fn(struct work_struct *work)
3822
{
3823 3824
	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);

3825 3826 3827 3828 3829 3830 3831 3832 3833
	wfc->ret = wfc->fn(wfc->arg);
}

/**
 * work_on_cpu - run a function in user context on a particular cpu
 * @cpu: the cpu to run on
 * @fn: the function to run
 * @arg: the function arg
 *
3834 3835
 * This will return the value @fn returns.
 * It is up to the caller to ensure that the cpu doesn't go offline.
3836
 * The caller must not hold any locks which would prevent @fn from completing.
3837
 */
3838
long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
3839
{
3840
	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3841

3842 3843 3844
	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
	schedule_work_on(cpu, &wfc.work);
	flush_work(&wfc.work);
3845 3846 3847 3848 3849
	return wfc.ret;
}
EXPORT_SYMBOL_GPL(work_on_cpu);
#endif /* CONFIG_SMP */

3850 3851 3852 3853 3854
#ifdef CONFIG_FREEZER

/**
 * freeze_workqueues_begin - begin freezing workqueues
 *
3855 3856
 * Start freezing workqueues.  After this function returns, all freezable
 * workqueues will queue new works to their frozen_works list instead of
3857
 * pool->worklist.
3858 3859
 *
 * CONTEXT:
3860
 * Grabs and releases workqueue_lock and pool->lock's.
3861 3862 3863
 */
void freeze_workqueues_begin(void)
{
T
Tejun Heo 已提交
3864
	struct worker_pool *pool;
3865 3866
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
T
Tejun Heo 已提交
3867
	int id;
3868

3869
	spin_lock_irq(&workqueue_lock);
3870

3871
	WARN_ON_ONCE(workqueue_freezing);
3872 3873
	workqueue_freezing = true;

3874
	/* set FREEZING */
T
Tejun Heo 已提交
3875 3876 3877 3878
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
		pool->flags |= POOL_FREEZING;
3879 3880
		spin_unlock(&pool->lock);
	}
3881

3882 3883 3884 3885
	/* suppress further executions by setting max_active to zero */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3886

3887 3888 3889 3890
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq->max_active = 0;
			spin_unlock(&pwq->pool->lock);
3891
		}
3892 3893
	}

3894
	spin_unlock_irq(&workqueue_lock);
3895 3896 3897
}

/**
3898
 * freeze_workqueues_busy - are freezable workqueues still busy?
3899 3900 3901 3902 3903 3904 3905 3906
 *
 * Check whether freezing is complete.  This function must be called
 * between freeze_workqueues_begin() and thaw_workqueues().
 *
 * CONTEXT:
 * Grabs and releases workqueue_lock.
 *
 * RETURNS:
3907 3908
 * %true if some freezable workqueues are still busy.  %false if freezing
 * is complete.
3909 3910 3911 3912
 */
bool freeze_workqueues_busy(void)
{
	bool busy = false;
3913 3914
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
3915

3916
	spin_lock_irq(&workqueue_lock);
3917

3918
	WARN_ON_ONCE(!workqueue_freezing);
3919

3920 3921 3922
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3923 3924 3925 3926
		/*
		 * nr_active is monotonically decreasing.  It's safe
		 * to peek without lock.
		 */
3927
		for_each_pwq(pwq, wq) {
3928
			WARN_ON_ONCE(pwq->nr_active < 0);
3929
			if (pwq->nr_active) {
3930 3931 3932 3933 3934 3935
				busy = true;
				goto out_unlock;
			}
		}
	}
out_unlock:
3936
	spin_unlock_irq(&workqueue_lock);
3937 3938 3939 3940 3941 3942 3943
	return busy;
}

/**
 * thaw_workqueues - thaw workqueues
 *
 * Thaw workqueues.  Normal queueing is restored and all collected
3944
 * frozen works are transferred to their respective pool worklists.
3945 3946
 *
 * CONTEXT:
3947
 * Grabs and releases workqueue_lock and pool->lock's.
3948 3949 3950
 */
void thaw_workqueues(void)
{
3951 3952 3953 3954
	struct workqueue_struct *wq;
	struct pool_workqueue *pwq;
	struct worker_pool *pool;
	int id;
3955

3956
	spin_lock_irq(&workqueue_lock);
3957 3958 3959 3960

	if (!workqueue_freezing)
		goto out_unlock;

3961 3962 3963 3964 3965 3966 3967
	/* clear FREEZING */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
		pool->flags &= ~POOL_FREEZING;
		spin_unlock(&pool->lock);
	}
3968

3969 3970 3971 3972
	/* restore max_active and repopulate worklist */
	list_for_each_entry(wq, &workqueues, list) {
		if (!(wq->flags & WQ_FREEZABLE))
			continue;
3973

3974 3975 3976 3977
		for_each_pwq(pwq, wq) {
			spin_lock(&pwq->pool->lock);
			pwq_set_max_active(pwq, wq->saved_max_active);
			spin_unlock(&pwq->pool->lock);
3978
		}
3979 3980
	}

3981 3982 3983 3984 3985 3986 3987
	/* kick workers */
	for_each_pool(pool, id) {
		spin_lock(&pool->lock);
		wake_up_worker(pool);
		spin_unlock(&pool->lock);
	}

3988 3989
	workqueue_freezing = false;
out_unlock:
3990
	spin_unlock_irq(&workqueue_lock);
3991 3992 3993
}
#endif /* CONFIG_FREEZER */

3994
static int __init init_workqueues(void)
L
Linus Torvalds 已提交
3995
{
T
Tejun Heo 已提交
3996 3997
	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
	int i, cpu;
T
Tejun Heo 已提交
3998

3999 4000
	/* make sure we have enough bits for OFFQ pool ID */
	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4001
		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4002

4003 4004 4005 4006
	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));

	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);

4007
	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4008
	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4009

4010
	/* initialize CPU pools */
4011
	for_each_possible_cpu(cpu) {
4012
		struct worker_pool *pool;
4013

T
Tejun Heo 已提交
4014
		i = 0;
4015
		for_each_cpu_worker_pool(pool, cpu) {
T
Tejun Heo 已提交
4016
			BUG_ON(init_worker_pool(pool));
4017
			pool->cpu = cpu;
4018
			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
T
Tejun Heo 已提交
4019 4020
			pool->attrs->nice = std_nice[i++];

T
Tejun Heo 已提交
4021 4022
			/* alloc pool ID */
			BUG_ON(worker_pool_assign_id(pool));
4023
		}
4024 4025
	}

4026
	/* create the initial worker */
4027
	for_each_online_cpu(cpu) {
4028
		struct worker_pool *pool;
4029

4030
		for_each_cpu_worker_pool(pool, cpu) {
4031 4032
			struct worker *worker;

4033
			pool->flags &= ~POOL_DISASSOCIATED;
4034

4035
			worker = create_worker(pool);
4036
			BUG_ON(!worker);
4037
			spin_lock_irq(&pool->lock);
4038
			start_worker(worker);
4039
			spin_unlock_irq(&pool->lock);
4040
		}
4041 4042
	}

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	/* create default unbound wq attrs */
	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
		struct workqueue_attrs *attrs;

		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));

		attrs->nice = std_nice[i];
		cpumask_setall(attrs->cpumask);

		unbound_std_wq_attrs[i] = attrs;
	}

4055
	system_wq = alloc_workqueue("events", 0, 0);
4056
	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
4057
	system_long_wq = alloc_workqueue("events_long", 0, 0);
4058 4059
	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
					    WQ_UNBOUND_MAX_ACTIVE);
4060 4061
	system_freezable_wq = alloc_workqueue("events_freezable",
					      WQ_FREEZABLE, 0);
4062
	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
4063
	       !system_unbound_wq || !system_freezable_wq);
4064
	return 0;
L
Linus Torvalds 已提交
4065
}
4066
early_initcall(init_workqueues);