scrub.c 109.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41 42 43 44 45 46 47 48 49
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
50 51 52 53 54 55

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
56
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
57

58
struct scrub_recover {
59
	refcount_t		refs;
60 61 62 63
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
64
struct scrub_page {
65 66
	struct scrub_block	*sblock;
	struct page		*page;
67
	struct btrfs_device	*dev;
68
	struct list_head	list;
A
Arne Jansen 已提交
69 70
	u64			flags;  /* extent flags */
	u64			generation;
71 72
	u64			logical;
	u64			physical;
73
	u64			physical_for_dev_replace;
74
	atomic_t		refs;
75 76 77
	u8			mirror_num;
	int			have_csum:1;
	int			io_error:1;
A
Arne Jansen 已提交
78
	u8			csum[BTRFS_CSUM_SIZE];
79 80

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
81 82 83 84
};

struct scrub_bio {
	int			index;
85
	struct scrub_ctx	*sctx;
86
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
87
	struct bio		*bio;
88
	blk_status_t		status;
A
Arne Jansen 已提交
89 90
	u64			logical;
	u64			physical;
91 92 93 94 95
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
96
	int			page_count;
A
Arne Jansen 已提交
97 98 99 100
	int			next_free;
	struct btrfs_work	work;
};

101
struct scrub_block {
102
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 104
	int			page_count;
	atomic_t		outstanding_pages;
105
	refcount_t		refs; /* free mem on transition to zero */
106
	struct scrub_ctx	*sctx;
107
	struct scrub_parity	*sparity;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115 116

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
117
	};
118
	struct btrfs_work	work;
119 120
};

121 122 123 124 125 126 127 128 129 130 131 132
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

133
	u32			stripe_len;
134

135
	refcount_t		refs;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

151
	unsigned long		bitmap[];
152 153
};

154
struct scrub_ctx {
155
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
156
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
157 158
	int			first_free;
	int			curr;
159 160
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
161 162 163 164
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
165
	int			readonly;
166
	int			pages_per_rd_bio;
167 168

	int			is_dev_replace;
169 170 171 172 173

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
174
	bool                    flush_all_writes;
175

A
Arne Jansen 已提交
176 177 178 179 180
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
181 182 183 184 185 186 187 188

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
189
	refcount_t              refs;
A
Arne Jansen 已提交
190 191
};

192 193 194 195
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
196
	u64			physical;
197 198 199 200
	u64			logical;
	struct btrfs_device	*dev;
};

201 202 203 204 205 206 207
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

208 209
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
210
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
211
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
212
				     struct scrub_block *sblocks_for_recheck);
213
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
214 215
				struct scrub_block *sblock,
				int retry_failed_mirror);
216
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
217
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
218
					     struct scrub_block *sblock_good);
219 220 221
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
222 223 224
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
225 226 227 228 229
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
230 231
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
232 233
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
234 235
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
236
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
237
		       u64 physical, struct btrfs_device *dev, u64 flags,
238
		       u64 gen, int mirror_num, u8 *csum,
239
		       u64 physical_for_dev_replace);
240
static void scrub_bio_end_io(struct bio *bio);
241 242
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
243
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
244
			       u64 extent_logical, u32 extent_len,
245 246 247 248 249 250
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
251
static void scrub_wr_bio_end_io(struct bio *bio);
252
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
253
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
255
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
256

257
static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
258
{
259 260
	return spage->recover &&
	       (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
261
}
S
Stefan Behrens 已提交
262

263 264
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
265
	refcount_inc(&sctx->refs);
266 267 268 269 270 271 272
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
273
	scrub_put_ctx(sctx);
274 275
}

276
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
277 278 279 280 281 282 283 284 285
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

286
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
287 288 289
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
290
}
291

292 293
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
294 295 296 297 298 299 300 301
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

302 303 304 305 306 307
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

327
	lockdep_assert_held(&locks_root->lock);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

343 344 345
	/*
	 * Insert new lock.
	 */
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

371
	lockdep_assert_held(&locks_root->lock);
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
391
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
392 393 394 395 396 397 398 399 400 401 402 403 404
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
405 406
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
424
	struct btrfs_block_group *bg_cache;
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
471
	struct btrfs_block_group *bg_cache;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

525
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
526
{
527
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
528
		struct btrfs_ordered_sum *sum;
529
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
530 531 532 533 534 535
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

536
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
537 538 539
{
	int i;

540
	if (!sctx)
A
Arne Jansen 已提交
541 542
		return;

543
	/* this can happen when scrub is cancelled */
544 545
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
546 547

		for (i = 0; i < sbio->page_count; i++) {
548
			WARN_ON(!sbio->pagev[i]->page);
549 550 551 552 553
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

554
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
555
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
556 557 558 559 560 561

		if (!sbio)
			break;
		kfree(sbio);
	}

562
	kfree(sctx->wr_curr_bio);
563 564
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
565 566
}

567 568
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
569
	if (refcount_dec_and_test(&sctx->refs))
570 571 572
		scrub_free_ctx(sctx);
}

573 574
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
575
{
576
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
577 578
	int		i;

579
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
580
	if (!sctx)
A
Arne Jansen 已提交
581
		goto nomem;
582
	refcount_set(&sctx->refs, 1);
583
	sctx->is_dev_replace = is_dev_replace;
584
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
585
	sctx->curr = -1;
586
	sctx->fs_info = fs_info;
587
	INIT_LIST_HEAD(&sctx->csum_list);
588
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
589 590
		struct scrub_bio *sbio;

591
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
592 593
		if (!sbio)
			goto nomem;
594
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
595 596

		sbio->index = i;
597
		sbio->sctx = sctx;
598
		sbio->page_count = 0;
599 600
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
601

602
		if (i != SCRUB_BIOS_PER_SCTX - 1)
603
			sctx->bios[i]->next_free = i + 1;
604
		else
605 606 607
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
608 609
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
610 611 612 613 614
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
615

616 617 618
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
619
	if (is_dev_replace) {
620
		WARN_ON(!fs_info->dev_replace.tgtdev);
621
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
622
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
623
		sctx->flush_all_writes = false;
624
	}
625

626
	return sctx;
A
Arne Jansen 已提交
627 628

nomem:
629
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
630 631 632
	return ERR_PTR(-ENOMEM);
}

633 634
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
635 636 637 638 639
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
640
	unsigned nofs_flag;
641 642
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
643
	struct scrub_warning *swarn = warn_ctx;
644
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
645 646
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
647
	struct btrfs_key key;
648

D
David Sterba 已提交
649
	local_root = btrfs_get_fs_root(fs_info, root, true);
650 651 652 653 654
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

655 656 657
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
658 659 660 661 662
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
663
	if (ret) {
664
		btrfs_put_root(local_root);
665 666 667 668 669 670 671 672 673 674 675
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

676 677 678 679 680 681
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
682
	ipath = init_ipath(4096, local_root, swarn->path);
683
	memalloc_nofs_restore(nofs_flag);
684
	if (IS_ERR(ipath)) {
685
		btrfs_put_root(local_root);
686 687 688 689
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
690 691 692 693 694 695 696 697 698 699
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
700
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
701
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
702 703
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
704
				  swarn->physical,
J
Jeff Mahoney 已提交
705 706 707
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
708

709
	btrfs_put_root(local_root);
710 711 712 713
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
714
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
715
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
716 717
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
718
			  swarn->physical,
J
Jeff Mahoney 已提交
719
			  root, inum, offset, ret);
720 721 722 723 724

	free_ipath(ipath);
	return 0;
}

725
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
726
{
727 728
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
729 730 731 732 733
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
734 735 736
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
737
	u64 ref_root;
738
	u32 item_size;
739
	u8 ref_level = 0;
740
	int ret;
741

742
	WARN_ON(sblock->page_count < 1);
743
	dev = sblock->pagev[0]->dev;
744
	fs_info = sblock->sctx->fs_info;
745

746
	path = btrfs_alloc_path();
747 748
	if (!path)
		return;
749

D
David Sterba 已提交
750
	swarn.physical = sblock->pagev[0]->physical;
751
	swarn.logical = sblock->pagev[0]->logical;
752
	swarn.errstr = errstr;
753
	swarn.dev = NULL;
754

755 756
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
757 758 759
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
760
	extent_item_pos = swarn.logical - found_key.objectid;
761 762 763 764 765 766
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

767
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
768
		do {
769 770 771
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
772
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
773
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
774
				errstr, swarn.logical,
775
				rcu_str_deref(dev->name),
D
David Sterba 已提交
776
				swarn.physical,
777 778 779 780
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
781
		btrfs_release_path(path);
782
	} else {
783
		btrfs_release_path(path);
784
		swarn.path = path;
785
		swarn.dev = dev;
786 787
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
788
					scrub_print_warning_inode, &swarn, false);
789 790 791 792 793 794
	}

out:
	btrfs_free_path(path);
}

795 796
static inline void scrub_get_recover(struct scrub_recover *recover)
{
797
	refcount_inc(&recover->refs);
798 799
}

800 801
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
802
{
803
	if (refcount_dec_and_test(&recover->refs)) {
804
		btrfs_bio_counter_dec(fs_info);
805
		btrfs_put_bbio(recover->bbio);
806 807 808 809
		kfree(recover);
	}
}

A
Arne Jansen 已提交
810
/*
811 812 813 814 815 816
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
817
 */
818
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
819
{
820
	struct scrub_ctx *sctx = sblock_to_check->sctx;
821
	struct btrfs_device *dev;
822 823 824 825 826 827 828 829 830 831 832
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
833
	bool full_stripe_locked;
834
	unsigned int nofs_flag;
835
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
836 837 838
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
839
	fs_info = sctx->fs_info;
840 841 842 843 844 845 846 847 848 849 850
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
851 852 853 854
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
855
			BTRFS_EXTENT_FLAG_DATA);
856 857
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
858

859 860 861 862 863 864 865 866 867 868
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
869 870 871 872 873 874 875 876 877
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
878
		memalloc_nofs_restore(nofs_flag);
879 880 881 882 883 884 885 886 887
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

917
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
918
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
919
	if (!sblocks_for_recheck) {
920 921 922 923 924
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
925
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
926
		goto out;
A
Arne Jansen 已提交
927 928
	}

929
	/* setup the context, map the logical blocks and alloc the pages */
930
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
931
	if (ret) {
932 933 934 935
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
936
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
937 938 939 940
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
941

942
	/* build and submit the bios for the failed mirror, check checksums */
943
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
944

945 946 947 948 949 950 951 952 953 954
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
955 956
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
957
		sblock_to_check->data_corrected = 1;
958
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
959

960 961
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
962
		goto out;
A
Arne Jansen 已提交
963 964
	}

965
	if (!sblock_bad->no_io_error_seen) {
966 967 968
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
969
		if (__ratelimit(&rs))
970
			scrub_print_warning("i/o error", sblock_to_check);
971
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
972
	} else if (sblock_bad->checksum_error) {
973 974 975
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
976
		if (__ratelimit(&rs))
977
			scrub_print_warning("checksum error", sblock_to_check);
978
		btrfs_dev_stat_inc_and_print(dev,
979
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
980
	} else if (sblock_bad->header_error) {
981 982 983
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
984
		if (__ratelimit(&rs))
985 986
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
987
		if (sblock_bad->generation_error)
988
			btrfs_dev_stat_inc_and_print(dev,
989 990
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
991
			btrfs_dev_stat_inc_and_print(dev,
992
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
993
	}
A
Arne Jansen 已提交
994

995 996 997 998
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
999

1000 1001
	/*
	 * now build and submit the bios for the other mirrors, check
1002 1003
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1015
	for (mirror_index = 0; ;mirror_index++) {
1016
		struct scrub_block *sblock_other;
1017

1018 1019
		if (mirror_index == failed_mirror_index)
			continue;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1043 1044

		/* build and submit the bios, check checksums */
1045
		scrub_recheck_block(fs_info, sblock_other, 0);
1046 1047

		if (!sblock_other->header_error &&
1048 1049
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1050 1051
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1052
				goto corrected_error;
1053 1054
			} else {
				ret = scrub_repair_block_from_good_copy(
1055 1056 1057
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1058
			}
1059 1060
		}
	}
A
Arne Jansen 已提交
1061

1062 1063
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1064 1065 1066

	/*
	 * In case of I/O errors in the area that is supposed to be
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1079
	 * the final checksum succeeds. But this would be a rare
1080 1081 1082 1083 1084 1085 1086 1087
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1088
	 */
1089
	success = 1;
1090 1091
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1092
		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1093
		struct scrub_block *sblock_other = NULL;
1094

1095
		/* skip no-io-error page in scrub */
1096
		if (!spage_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1097
			continue;
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1108
		} else if (spage_bad->io_error) {
1109
			/* try to find no-io-error page in mirrors */
1110 1111 1112 1113 1114 1115 1116 1117 1118
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1119 1120
				}
			}
1121 1122
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1123
		}
A
Arne Jansen 已提交
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1138
				atomic64_inc(
1139
					&fs_info->dev_replace.num_write_errors);
1140 1141 1142 1143 1144 1145 1146
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
1147
				spage_bad->io_error = 0;
1148 1149
			else
				success = 0;
1150
		}
A
Arne Jansen 已提交
1151 1152
	}

1153
	if (success && !sctx->is_dev_replace) {
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1164
			scrub_recheck_block(fs_info, sblock_bad, 1);
1165
			if (!sblock_bad->header_error &&
1166 1167 1168 1169 1170 1171 1172
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1173 1174
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1175
			sblock_to_check->data_corrected = 1;
1176
			spin_unlock(&sctx->stat_lock);
1177 1178
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1179
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1180
		}
1181 1182
	} else {
did_not_correct_error:
1183 1184 1185
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1186 1187
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1188
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1189
	}
A
Arne Jansen 已提交
1190

1191 1192 1193 1194 1195 1196
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1197
			struct scrub_recover *recover;
1198 1199
			int page_index;

1200 1201 1202
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1203 1204
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1205
					scrub_put_recover(fs_info, recover);
1206 1207 1208
					sblock->pagev[page_index]->recover =
									NULL;
				}
1209 1210
				scrub_page_put(sblock->pagev[page_index]);
			}
1211 1212 1213
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1214

1215
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1216
	memalloc_nofs_restore(nofs_flag);
1217 1218
	if (ret < 0)
		return ret;
1219 1220
	return 0;
}
A
Arne Jansen 已提交
1221

1222
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1223
{
Z
Zhao Lei 已提交
1224 1225 1226 1227 1228
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1229 1230 1231
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1232 1233
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1234 1235 1236 1237 1238 1239 1240
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1241
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1262
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1263 1264
				     struct scrub_block *sblocks_for_recheck)
{
1265
	struct scrub_ctx *sctx = original_sblock->sctx;
1266
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1267 1268
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1269 1270 1271
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1272 1273 1274 1275 1276 1277
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1278
	int page_index = 0;
1279
	int mirror_index;
1280
	int nmirrors;
1281 1282 1283
	int ret;

	/*
1284
	 * note: the two members refs and outstanding_pages
1285 1286 1287 1288 1289
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1290 1291 1292
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1293

1294 1295 1296 1297
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1298
		btrfs_bio_counter_inc_blocked(fs_info);
1299
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1300
				logical, &mapped_length, &bbio);
1301
		if (ret || !bbio || mapped_length < sublen) {
1302
			btrfs_put_bbio(bbio);
1303
			btrfs_bio_counter_dec(fs_info);
1304 1305
			return -EIO;
		}
A
Arne Jansen 已提交
1306

1307 1308
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1309
			btrfs_put_bbio(bbio);
1310
			btrfs_bio_counter_dec(fs_info);
1311 1312 1313
			return -ENOMEM;
		}

1314
		refcount_set(&recover->refs, 1);
1315 1316 1317
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1318
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1319

1320
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1321

1322
		for (mirror_index = 0; mirror_index < nmirrors;
1323 1324
		     mirror_index++) {
			struct scrub_block *sblock;
1325
			struct scrub_page *spage;
1326 1327

			sblock = sblocks_for_recheck + mirror_index;
1328
			sblock->sctx = sctx;
1329

1330 1331
			spage = kzalloc(sizeof(*spage), GFP_NOFS);
			if (!spage) {
1332
leave_nomem:
1333 1334 1335
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1336
				scrub_put_recover(fs_info, recover);
1337 1338
				return -ENOMEM;
			}
1339 1340 1341 1342 1343 1344 1345
			scrub_page_get(spage);
			sblock->pagev[page_index] = spage;
			spage->sblock = sblock;
			spage->flags = flags;
			spage->generation = generation;
			spage->logical = logical;
			spage->have_csum = have_csum;
1346
			if (have_csum)
1347
				memcpy(spage->csum,
1348
				       original_sblock->pagev[0]->csum,
1349
				       sctx->fs_info->csum_size);
1350

Z
Zhao Lei 已提交
1351 1352 1353
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1354
						      mapped_length,
1355 1356
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1357 1358 1359
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1360
			spage->physical = bbio->stripes[stripe_index].physical +
1361
					 stripe_offset;
1362
			spage->dev = bbio->stripes[stripe_index].dev;
1363

1364
			BUG_ON(page_index >= original_sblock->page_count);
1365
			spage->physical_for_dev_replace =
1366 1367
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1368
			/* for missing devices, dev->bdev is NULL */
1369
			spage->mirror_num = mirror_index + 1;
1370
			sblock->page_count++;
1371 1372
			spage->page = alloc_page(GFP_NOFS);
			if (!spage->page)
1373
				goto leave_nomem;
1374 1375

			scrub_get_recover(recover);
1376
			spage->recover = recover;
1377
		}
1378
		scrub_put_recover(fs_info, recover);
1379 1380 1381 1382 1383 1384
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1385 1386
}

1387
static void scrub_bio_wait_endio(struct bio *bio)
1388
{
1389
	complete(bio->bi_private);
1390 1391 1392 1393
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1394
					struct scrub_page *spage)
1395
{
1396
	DECLARE_COMPLETION_ONSTACK(done);
1397
	int ret;
1398
	int mirror_num;
1399

1400
	bio->bi_iter.bi_sector = spage->logical >> 9;
1401 1402 1403
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1404 1405 1406
	mirror_num = spage->sblock->pagev[0]->mirror_num;
	ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
				    spage->recover->map_length,
1407
				    mirror_num, 0);
1408 1409 1410
	if (ret)
		return ret;

1411 1412
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1413 1414
}

L
Liu Bo 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1431
		struct scrub_page *spage = sblock->pagev[page_num];
L
Liu Bo 已提交
1432

1433 1434
		WARN_ON(!spage->page);
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1454 1455 1456 1457 1458 1459 1460
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1461
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1462 1463
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1464
{
1465
	int page_num;
I
Ilya Dryomov 已提交
1466

1467
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1468

L
Liu Bo 已提交
1469 1470 1471 1472
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1473 1474
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1475
		struct scrub_page *spage = sblock->pagev[page_num];
1476

1477 1478
		if (spage->dev->bdev == NULL) {
			spage->io_error = 1;
1479 1480 1481 1482
			sblock->no_io_error_seen = 0;
			continue;
		}

1483
		WARN_ON(!spage->page);
1484
		bio = btrfs_io_bio_alloc(1);
1485
		bio_set_dev(bio, spage->dev->bdev);
1486

1487 1488
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
		bio->bi_iter.bi_sector = spage->physical >> 9;
L
Liu Bo 已提交
1489
		bio->bi_opf = REQ_OP_READ;
1490

L
Liu Bo 已提交
1491
		if (btrfsic_submit_bio_wait(bio)) {
1492
			spage->io_error = 1;
L
Liu Bo 已提交
1493
			sblock->no_io_error_seen = 0;
1494
		}
1495

1496 1497
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1498

1499
	if (sblock->no_io_error_seen)
1500
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1501 1502
}

M
Miao Xie 已提交
1503 1504 1505 1506 1507 1508
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1509
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1510 1511 1512
	return !ret;
}

1513
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1514
{
1515 1516 1517
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1518

1519 1520 1521 1522
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1523 1524
}

1525
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1526
					     struct scrub_block *sblock_good)
1527 1528 1529
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1530

1531 1532
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1533

1534 1535
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1536
							   page_num, 1);
1537 1538
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1539
	}
1540 1541 1542 1543 1544 1545 1546 1547

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1548 1549
	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1550
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1551

1552 1553
	BUG_ON(spage_bad->page == NULL);
	BUG_ON(spage_good->page == NULL);
1554
	if (force_write || sblock_bad->header_error ||
1555
	    sblock_bad->checksum_error || spage_bad->io_error) {
1556 1557 1558
		struct bio *bio;
		int ret;

1559
		if (!spage_bad->dev->bdev) {
1560
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1561
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1562 1563 1564
			return -EIO;
		}

1565
		bio = btrfs_io_bio_alloc(1);
1566 1567
		bio_set_dev(bio, spage_bad->dev->bdev);
		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
D
David Sterba 已提交
1568
		bio->bi_opf = REQ_OP_WRITE;
1569

1570
		ret = bio_add_page(bio, spage_good->page, PAGE_SIZE, 0);
1571 1572 1573
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1574
		}
1575

1576
		if (btrfsic_submit_bio_wait(bio)) {
1577
			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1578
				BTRFS_DEV_STAT_WRITE_ERRS);
1579
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1580 1581 1582
			bio_put(bio);
			return -EIO;
		}
1583
		bio_put(bio);
A
Arne Jansen 已提交
1584 1585
	}

1586 1587 1588
	return 0;
}

1589 1590
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1591
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1592 1593
	int page_num;

1594 1595 1596 1597 1598 1599 1600
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1601 1602 1603 1604 1605
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1606
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1607 1608 1609 1610 1611 1612 1613 1614 1615
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
1616 1617
	if (spage->io_error)
		clear_page(page_address(spage->page));
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627

	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1628
	mutex_lock(&sctx->wr_lock);
1629
again:
1630 1631
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1632
					      GFP_KERNEL);
1633 1634
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1635 1636
			return -ENOMEM;
		}
1637 1638
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1639
	}
1640
	sbio = sctx->wr_curr_bio;
1641 1642 1643 1644 1645
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1646
		sbio->dev = sctx->wr_tgtdev;
1647 1648
		bio = sbio->bio;
		if (!bio) {
1649
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1650 1651 1652 1653 1654
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1655
		bio_set_dev(bio, sbio->dev->bdev);
1656
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1657
		bio->bi_opf = REQ_OP_WRITE;
1658
		sbio->status = 0;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1672
			mutex_unlock(&sctx->wr_lock);
1673 1674 1675 1676 1677 1678 1679 1680 1681
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1682
	if (sbio->page_count == sctx->pages_per_wr_bio)
1683
		scrub_wr_submit(sctx);
1684
	mutex_unlock(&sctx->wr_lock);
1685 1686 1687 1688 1689 1690 1691 1692

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1693
	if (!sctx->wr_curr_bio)
1694 1695
		return;

1696 1697
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1698
	WARN_ON(!sbio->bio->bi_disk);
1699 1700 1701 1702 1703
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1704
	btrfsic_submit_bio(sbio->bio);
1705 1706
}

1707
static void scrub_wr_bio_end_io(struct bio *bio)
1708 1709
{
	struct scrub_bio *sbio = bio->bi_private;
1710
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1711

1712
	sbio->status = bio->bi_status;
1713 1714
	sbio->bio = bio;

1715
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1716
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1717 1718 1719 1720 1721 1722 1723 1724 1725
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1726
	if (sbio->status) {
1727
		struct btrfs_dev_replace *dev_replace =
1728
			&sbio->sctx->fs_info->dev_replace;
1729 1730 1731 1732 1733

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1734
			atomic64_inc(&dev_replace->num_write_errors);
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1747 1748 1749 1750
{
	u64 flags;
	int ret;

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1763 1764
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1776 1777

	return ret;
A
Arne Jansen 已提交
1778 1779
}

1780
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1781
{
1782
	struct scrub_ctx *sctx = sblock->sctx;
1783 1784
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1785
	u8 csum[BTRFS_CSUM_SIZE];
1786
	struct scrub_page *spage;
1787
	char *kaddr;
A
Arne Jansen 已提交
1788

1789
	BUG_ON(sblock->page_count < 1);
1790 1791
	spage = sblock->pagev[0];
	if (!spage->have_csum)
A
Arne Jansen 已提交
1792 1793
		return 0;

1794
	kaddr = page_address(spage->page);
1795

1796 1797
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1798

1799 1800 1801 1802 1803
	/*
	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1804

1805 1806
	if (memcmp(csum, spage->csum, fs_info->csum_size))
		sblock->checksum_error = 1;
1807
	return sblock->checksum_error;
A
Arne Jansen 已提交
1808 1809
}

1810
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1811
{
1812
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1813
	struct btrfs_header *h;
1814
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1815
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1816 1817
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1818 1819 1820 1821 1822 1823 1824
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1825
	int i;
1826
	struct scrub_page *spage;
1827
	char *kaddr;
1828

1829
	BUG_ON(sblock->page_count < 1);
1830 1831 1832 1833

	/* Each member in pagev is just one block, not a full page */
	ASSERT(sblock->page_count == num_sectors);

1834 1835
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1836
	h = (struct btrfs_header *)kaddr;
1837
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1838 1839 1840 1841 1842 1843

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1844
	if (spage->logical != btrfs_stack_header_bytenr(h))
1845
		sblock->header_error = 1;
A
Arne Jansen 已提交
1846

1847
	if (spage->generation != btrfs_stack_header_generation(h)) {
1848 1849 1850
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1851

1852
	if (!scrub_check_fsid(h->fsid, spage))
1853
		sblock->header_error = 1;
A
Arne Jansen 已提交
1854 1855 1856

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1857
		sblock->header_error = 1;
A
Arne Jansen 已提交
1858

1859 1860 1861
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1862
			    sectorsize - BTRFS_CSUM_SIZE);
1863

1864
	for (i = 1; i < num_sectors; i++) {
1865
		kaddr = page_address(sblock->pagev[i]->page);
1866
		crypto_shash_update(shash, kaddr, sectorsize);
1867 1868
	}

1869
	crypto_shash_final(shash, calculated_csum);
1870
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1871
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1872

1873
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1874 1875
}

1876
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1877 1878
{
	struct btrfs_super_block *s;
1879
	struct scrub_ctx *sctx = sblock->sctx;
1880 1881
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1882
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1883
	struct scrub_page *spage;
1884
	char *kaddr;
1885 1886
	int fail_gen = 0;
	int fail_cor = 0;
1887

1888
	BUG_ON(sblock->page_count < 1);
1889 1890
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1891
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1892

1893
	if (spage->logical != btrfs_super_bytenr(s))
1894
		++fail_cor;
A
Arne Jansen 已提交
1895

1896
	if (spage->generation != btrfs_super_generation(s))
1897
		++fail_gen;
A
Arne Jansen 已提交
1898

1899
	if (!scrub_check_fsid(s->fsid, spage))
1900
		++fail_cor;
A
Arne Jansen 已提交
1901

1902 1903 1904 1905
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1906

1907
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1908
		++fail_cor;
A
Arne Jansen 已提交
1909

1910
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1911 1912 1913 1914 1915
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1916 1917 1918
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1919
		if (fail_cor)
1920
			btrfs_dev_stat_inc_and_print(spage->dev,
1921 1922
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1923
			btrfs_dev_stat_inc_and_print(spage->dev,
1924
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1925 1926
	}

1927
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1928 1929
}

1930 1931
static void scrub_block_get(struct scrub_block *sblock)
{
1932
	refcount_inc(&sblock->refs);
1933 1934 1935 1936
}

static void scrub_block_put(struct scrub_block *sblock)
{
1937
	if (refcount_dec_and_test(&sblock->refs)) {
1938 1939
		int i;

1940 1941 1942
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1943
		for (i = 0; i < sblock->page_count; i++)
1944
			scrub_page_put(sblock->pagev[i]);
1945 1946 1947 1948
		kfree(sblock);
	}
}

1949 1950
static void scrub_page_get(struct scrub_page *spage)
{
1951
	atomic_inc(&spage->refs);
1952 1953 1954 1955
}

static void scrub_page_put(struct scrub_page *spage)
{
1956
	if (atomic_dec_and_test(&spage->refs)) {
1957 1958 1959 1960 1961 1962
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1963
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
1964 1965 1966
{
	struct scrub_bio *sbio;

1967
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
1968
		return;
A
Arne Jansen 已提交
1969

1970 1971
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
1972
	scrub_pending_bio_inc(sctx);
1973
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
1974 1975
}

1976 1977
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
1978
{
1979
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
1980
	struct scrub_bio *sbio;
1981
	int ret;
A
Arne Jansen 已提交
1982 1983 1984 1985 1986

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
1987 1988 1989 1990 1991 1992 1993 1994
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
1995
		} else {
1996 1997
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
1998 1999
		}
	}
2000
	sbio = sctx->bios[sctx->curr];
2001
	if (sbio->page_count == 0) {
2002 2003
		struct bio *bio;

2004 2005
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2006
		sbio->dev = spage->dev;
2007 2008
		bio = sbio->bio;
		if (!bio) {
2009
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2010 2011
			sbio->bio = bio;
		}
2012 2013 2014

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2015
		bio_set_dev(bio, sbio->dev->bdev);
2016
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2017
		bio->bi_opf = REQ_OP_READ;
2018
		sbio->status = 0;
2019 2020 2021
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2022 2023
		   spage->logical ||
		   sbio->dev != spage->dev) {
2024
		scrub_submit(sctx);
A
Arne Jansen 已提交
2025 2026
		goto again;
	}
2027

2028 2029 2030 2031 2032 2033 2034 2035
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2036
		scrub_submit(sctx);
2037 2038 2039
		goto again;
	}

2040
	scrub_block_get(sblock); /* one for the page added to the bio */
2041 2042
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2043
	if (sbio->page_count == sctx->pages_per_rd_bio)
2044
		scrub_submit(sctx);
2045 2046 2047 2048

	return 0;
}

2049
static void scrub_missing_raid56_end_io(struct bio *bio)
2050 2051
{
	struct scrub_block *sblock = bio->bi_private;
2052
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2053

2054
	if (bio->bi_status)
2055 2056
		sblock->no_io_error_seen = 0;

2057 2058
	bio_put(bio);

2059 2060 2061 2062 2063 2064 2065
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2066
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2067 2068 2069 2070 2071 2072
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2073
	if (sblock->no_io_error_seen)
2074
		scrub_recheck_block_checksum(sblock);
2075 2076 2077 2078 2079

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2080
		btrfs_err_rl_in_rcu(fs_info,
2081
			"IO error rebuilding logical %llu for dev %s",
2082 2083 2084 2085 2086
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2087
		btrfs_err_rl_in_rcu(fs_info,
2088
			"failed to rebuild valid logical %llu for dev %s",
2089 2090 2091 2092 2093
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2094
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2095
		mutex_lock(&sctx->wr_lock);
2096
		scrub_wr_submit(sctx);
2097
		mutex_unlock(&sctx->wr_lock);
2098 2099
	}

2100
	scrub_block_put(sblock);
2101 2102 2103 2104 2105 2106
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2107
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2108 2109
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2110
	struct btrfs_bio *bbio = NULL;
2111 2112 2113 2114 2115
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2116
	btrfs_bio_counter_inc_blocked(fs_info);
2117
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2118
			&length, &bbio);
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2133
	bio = btrfs_io_bio_alloc(0);
2134 2135 2136 2137
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2138
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2139 2140 2141 2142 2143 2144 2145 2146 2147
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2148
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2149 2150 2151 2152 2153 2154 2155 2156
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2157
	btrfs_bio_counter_dec(fs_info);
2158 2159 2160 2161 2162 2163
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2164
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2165
		       u64 physical, struct btrfs_device *dev, u64 flags,
2166
		       u64 gen, int mirror_num, u8 *csum,
2167
		       u64 physical_for_dev_replace)
2168 2169
{
	struct scrub_block *sblock;
2170
	const u32 sectorsize = sctx->fs_info->sectorsize;
2171 2172
	int index;

2173
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2174
	if (!sblock) {
2175 2176 2177
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2178
		return -ENOMEM;
A
Arne Jansen 已提交
2179
	}
2180

2181 2182
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2183
	refcount_set(&sblock->refs, 1);
2184
	sblock->sctx = sctx;
2185 2186 2187
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2188
		struct scrub_page *spage;
2189 2190 2191 2192 2193 2194
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2195

2196
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2197 2198
		if (!spage) {
leave_nomem:
2199 2200 2201
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2202
			scrub_block_put(sblock);
2203 2204
			return -ENOMEM;
		}
2205 2206 2207
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2208
		spage->sblock = sblock;
2209
		spage->dev = dev;
2210 2211 2212 2213
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2214
		spage->physical_for_dev_replace = physical_for_dev_replace;
2215 2216 2217
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2218
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2219 2220 2221 2222
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2223
		spage->page = alloc_page(GFP_KERNEL);
2224 2225
		if (!spage->page)
			goto leave_nomem;
2226 2227 2228
		len -= l;
		logical += l;
		physical += l;
2229
		physical_for_dev_replace += l;
2230 2231
	}

2232
	WARN_ON(sblock->page_count == 0);
2233
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2234 2235 2236 2237 2238 2239 2240 2241 2242
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2243

2244 2245 2246 2247 2248
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2249
		}
A
Arne Jansen 已提交
2250

2251
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2252 2253
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2254

2255 2256
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2257 2258 2259
	return 0;
}

2260
static void scrub_bio_end_io(struct bio *bio)
2261 2262
{
	struct scrub_bio *sbio = bio->bi_private;
2263
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2264

2265
	sbio->status = bio->bi_status;
2266 2267
	sbio->bio = bio;

2268
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2269 2270 2271 2272 2273
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2274
	struct scrub_ctx *sctx = sbio->sctx;
2275 2276
	int i;

2277
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2278
	if (sbio->status) {
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2299 2300 2301 2302
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2303

2304
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2305
		mutex_lock(&sctx->wr_lock);
2306
		scrub_wr_submit(sctx);
2307
		mutex_unlock(&sctx->wr_lock);
2308 2309
	}

2310
	scrub_pending_bio_dec(sctx);
2311 2312
}

2313 2314
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2315
				       u64 start, u32 len)
2316
{
2317
	u64 offset;
2318
	u32 nsectors;
2319
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2320 2321 2322 2323 2324 2325 2326

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2327
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2328
	offset = offset >> sectorsize_bits;
2329
	nsectors = len >> sectorsize_bits;
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2341
						   u64 start, u32 len)
2342 2343 2344 2345 2346
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2347
						  u64 start, u32 len)
2348 2349 2350 2351
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2352 2353
static void scrub_block_complete(struct scrub_block *sblock)
{
2354 2355
	int corrupted = 0;

2356
	if (!sblock->no_io_error_seen) {
2357
		corrupted = 1;
2358
		scrub_handle_errored_block(sblock);
2359 2360 2361 2362 2363 2364
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2365 2366
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2367 2368
			scrub_write_block_to_dev_replace(sblock);
	}
2369 2370 2371 2372 2373 2374

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

2375
		ASSERT(end - start <= U32_MAX);
2376 2377 2378
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2379 2380
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
 * storing bytenr ordered csum ranges.  We're reponsible to cleanup any range
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2399
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2400
{
2401
	bool found = false;
A
Arne Jansen 已提交
2402

2403
	while (!list_empty(&sctx->csum_list)) {
2404 2405 2406 2407
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2408
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2409
				       struct btrfs_ordered_sum, list);
2410
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2411 2412 2413
		if (sum->bytenr > logical)
			break;

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2424

2425 2426 2427 2428
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2429

2430 2431 2432 2433 2434 2435 2436
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2437
	}
2438 2439
	if (!found)
		return 0;
2440
	return 1;
A
Arne Jansen 已提交
2441 2442 2443
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2444
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2445
			u64 logical, u32 len,
2446
			u64 physical, struct btrfs_device *dev, u64 flags,
2447
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2448 2449 2450
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2451 2452 2453
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2454 2455 2456 2457
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2458 2459 2460 2461
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2462
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2463 2464 2465 2466
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2467 2468 2469 2470
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2471
	} else {
2472
		blocksize = sctx->fs_info->sectorsize;
2473
		WARN_ON(1);
2474
	}
A
Arne Jansen 已提交
2475 2476

	while (len) {
2477
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2478 2479 2480 2481
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2482
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2483
			if (have_csum == 0)
2484
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2485
		}
2486
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2487
				  mirror_num, have_csum ? csum : NULL,
2488
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2489 2490 2491 2492 2493
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2494
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2495 2496 2497 2498
	}
	return 0;
}

2499
static int scrub_pages_for_parity(struct scrub_parity *sparity,
2500
				  u64 logical, u32 len,
2501 2502 2503 2504 2505
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2506
	const u32 sectorsize = sctx->fs_info->sectorsize;
2507 2508
	int index;

2509 2510
	ASSERT(IS_ALIGNED(len, sectorsize));

2511
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2512 2513 2514 2515 2516 2517 2518 2519 2520
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2521
	refcount_set(&sblock->refs, 1);
2522 2523 2524 2525 2526 2527 2528 2529
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;

2530
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2555
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2556 2557 2558 2559
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2560
		spage->page = alloc_page(GFP_KERNEL);
2561 2562
		if (!spage->page)
			goto leave_nomem;
2563 2564 2565 2566 2567 2568


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2589
				   u64 logical, u32 len,
2590 2591 2592 2593 2594 2595 2596 2597
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2598
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2599 2600 2601 2602
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2603
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2604
		blocksize = sparity->stripe_len;
2605
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2606
		blocksize = sparity->stripe_len;
2607
	} else {
2608
		blocksize = sctx->fs_info->sectorsize;
2609 2610 2611 2612
		WARN_ON(1);
	}

	while (len) {
2613
		u32 l = min(len, blocksize);
2614 2615 2616 2617
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2618
			have_csum = scrub_find_csum(sctx, logical, csum);
2619 2620 2621 2622 2623 2624 2625 2626
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2627
skip:
2628 2629 2630 2631 2632 2633 2634
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2635 2636 2637 2638 2639 2640 2641 2642
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2643 2644
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2645 2646 2647 2648 2649
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2650 2651
	u32 stripe_index;
	u32 rot;
2652
	const int data_stripes = nr_data_stripes(map);
2653

2654
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2655 2656 2657
	if (stripe_start)
		*stripe_start = last_offset;

2658
	*offset = last_offset;
2659
	for (i = 0; i < data_stripes; i++) {
2660 2661
		*offset = last_offset + i * map->stripe_len;

2662
		stripe_nr = div64_u64(*offset, map->stripe_len);
2663
		stripe_nr = div_u64(stripe_nr, data_stripes);
2664 2665

		/* Work out the disk rotation on this stripe-set */
2666
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2667 2668
		/* calculate which stripe this data locates */
		rot += i;
2669
		stripe_index = rot % map->num_stripes;
2670 2671 2672 2673 2674 2675 2676 2677 2678
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2711
static void scrub_parity_bio_endio(struct bio *bio)
2712 2713
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2714
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2715

2716
	if (bio->bi_status)
2717 2718 2719 2720
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2721

2722 2723
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2724
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2725 2726 2727 2728 2729
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2730
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2741
	length = sparity->logic_end - sparity->logic_start;
2742 2743

	btrfs_bio_counter_inc_blocked(fs_info);
2744
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2745
			       &length, &bbio);
2746
	if (ret || !bbio || !bbio->raid_map)
2747 2748
		goto bbio_out;

2749
	bio = btrfs_io_bio_alloc(0);
2750 2751 2752 2753
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2754
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2755
					      length, sparity->scrub_dev,
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2768
	btrfs_bio_counter_dec(fs_info);
2769
	btrfs_put_bbio(bbio);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2781
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2782 2783 2784 2785
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2786
	refcount_inc(&sparity->refs);
2787 2788 2789 2790
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2791
	if (!refcount_dec_and_test(&sparity->refs))
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2804
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2805 2806 2807
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2808
	struct btrfs_bio *bbio = NULL;
2809 2810 2811 2812 2813 2814 2815 2816
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
2817 2818
	/* Check the comment in scrub_stripe() for why u32 is enough here */
	u32 extent_len;
2819
	u64 mapped_length;
2820 2821 2822 2823 2824 2825 2826
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2827
	ASSERT(map->stripe_len <= U32_MAX);
2828
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

2839
	ASSERT(map->stripe_len <= U32_MAX);
2840 2841 2842 2843 2844 2845
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2846
	refcount_set(&sparity->refs, 1);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2895 2896 2897 2898
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2899
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2900
				bytes = fs_info->nodesize;
2901 2902 2903 2904 2905 2906
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2907
			if (key.objectid >= logic_end) {
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2920 2921 2922 2923
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2924 2925
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2926
					  key.objectid, logic_start);
2927 2928 2929
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2930 2931 2932 2933
				goto next;
			}
again:
			extent_logical = key.objectid;
2934
			ASSERT(bytes <= U32_MAX);
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2950
			mapped_length = extent_len;
2951
			bbio = NULL;
2952 2953 2954
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
2981 2982 2983

			scrub_free_csums(sctx);

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
3013 3014
	if (ret < 0) {
		ASSERT(logic_end - logic_start <= U32_MAX);
3015
		scrub_parity_mark_sectors_error(sparity, logic_start,
3016
						logic_end - logic_start);
3017
	}
3018 3019
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3020
	mutex_lock(&sctx->wr_lock);
3021
	scrub_wr_submit(sctx);
3022
	mutex_unlock(&sctx->wr_lock);
3023 3024 3025 3026 3027

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3028
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3029 3030
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3031 3032
					   int num, u64 base, u64 length,
					   struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3033
{
3034
	struct btrfs_path *path, *ppath;
3035
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3036 3037 3038
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3039
	struct blk_plug plug;
A
Arne Jansen 已提交
3040 3041 3042 3043 3044 3045 3046
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3047
	u64 logic_end;
3048
	u64 physical_end;
A
Arne Jansen 已提交
3049
	u64 generation;
3050
	int mirror_num;
A
Arne Jansen 已提交
3051 3052
	struct reada_control *reada1;
	struct reada_control *reada2;
3053
	struct btrfs_key key;
A
Arne Jansen 已提交
3054
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3055 3056
	u64 increment = map->stripe_len;
	u64 offset;
3057 3058
	u64 extent_logical;
	u64 extent_physical;
3059 3060 3061 3062 3063
	/*
	 * Unlike chunk length, extent length should never go beyond
	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
	 */
	u32 extent_len;
3064 3065
	u64 stripe_logical;
	u64 stripe_end;
3066 3067
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3068
	int stop_loop = 0;
D
David Woodhouse 已提交
3069

3070
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3071
	offset = 0;
3072
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3073 3074 3075
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3076
		mirror_num = 1;
A
Arne Jansen 已提交
3077 3078 3079 3080
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3081
		mirror_num = num % map->sub_stripes + 1;
3082
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
A
Arne Jansen 已提交
3083
		increment = map->stripe_len;
3084
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3085 3086
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3087
		mirror_num = num % map->num_stripes + 1;
3088
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3089
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3090 3091
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3092 3093
	} else {
		increment = map->stripe_len;
3094
		mirror_num = 1;
A
Arne Jansen 已提交
3095 3096 3097 3098 3099 3100
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3101 3102
	ppath = btrfs_alloc_path();
	if (!ppath) {
3103
		btrfs_free_path(path);
3104 3105 3106
		return -ENOMEM;
	}

3107 3108 3109 3110 3111
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3112 3113 3114
	path->search_commit_root = 1;
	path->skip_locking = 1;

3115 3116
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3117
	/*
A
Arne Jansen 已提交
3118 3119 3120
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3121 3122
	 */
	logical = base + offset;
3123
	physical_end = physical + nstripes * map->stripe_len;
3124
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3125
		get_raid56_logic_offset(physical_end, num,
3126
					map, &logic_end, NULL);
3127 3128 3129 3130
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3131
	wait_event(sctx->list_wait,
3132
		   atomic_read(&sctx->bios_in_flight) == 0);
3133
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3134 3135

	/* FIXME it might be better to start readahead at commit root */
3136 3137 3138
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3139
	key_end.objectid = logic_end;
3140 3141
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3142
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3143

3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key.type = BTRFS_EXTENT_CSUM_KEY;
		key.offset = logical;
		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key_end.type = BTRFS_EXTENT_CSUM_KEY;
		key_end.offset = logic_end;
		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
	} else {
		reada2 = NULL;
	}
A
Arne Jansen 已提交
3155 3156 3157

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
3158
	if (!IS_ERR_OR_NULL(reada2))
A
Arne Jansen 已提交
3159 3160
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3161 3162 3163 3164 3165

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3166
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3167 3168 3169 3170 3171

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3172
	while (physical < physical_end) {
A
Arne Jansen 已提交
3173 3174 3175 3176
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3177
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3178 3179 3180 3181 3182 3183 3184 3185
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3186
			sctx->flush_all_writes = true;
3187
			scrub_submit(sctx);
3188
			mutex_lock(&sctx->wr_lock);
3189
			scrub_wr_submit(sctx);
3190
			mutex_unlock(&sctx->wr_lock);
3191
			wait_event(sctx->list_wait,
3192
				   atomic_read(&sctx->bios_in_flight) == 0);
3193
			sctx->flush_all_writes = false;
3194
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3195 3196
		}

3197 3198 3199 3200 3201 3202
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3203
				/* it is parity strip */
3204
				stripe_logical += base;
3205
				stripe_end = stripe_logical + increment;
3206 3207 3208 3209 3210 3211 3212 3213 3214
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3215 3216 3217 3218
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3219
		key.objectid = logical;
L
Liu Bo 已提交
3220
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3221 3222 3223 3224

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3225

3226
		if (ret > 0) {
3227
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3228 3229
			if (ret < 0)
				goto out;
3230 3231 3232 3233 3234 3235 3236 3237 3238
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3239 3240
		}

L
Liu Bo 已提交
3241
		stop_loop = 0;
A
Arne Jansen 已提交
3242
		while (1) {
3243 3244
			u64 bytes;

A
Arne Jansen 已提交
3245 3246 3247 3248 3249 3250 3251 3252 3253
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3254
				stop_loop = 1;
A
Arne Jansen 已提交
3255 3256 3257 3258
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3259 3260 3261 3262
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3263
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3264
				bytes = fs_info->nodesize;
3265 3266 3267 3268
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3269 3270
				goto next;

L
Liu Bo 已提交
3271 3272 3273 3274 3275 3276
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3277

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
			spin_lock(&cache->lock);
			if (cache->removed) {
				spin_unlock(&cache->lock);
				ret = 0;
				goto out;
			}
			spin_unlock(&cache->lock);

A
Arne Jansen 已提交
3292 3293 3294 3295 3296
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3297 3298 3299 3300
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3301
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3302
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3303
				       key.objectid, logical);
3304 3305 3306
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3307 3308 3309
				goto next;
			}

L
Liu Bo 已提交
3310 3311
again:
			extent_logical = key.objectid;
3312
			ASSERT(bytes <= U32_MAX);
L
Liu Bo 已提交
3313 3314
			extent_len = bytes;

A
Arne Jansen 已提交
3315 3316 3317
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3318 3319 3320
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3321
			}
L
Liu Bo 已提交
3322
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3323
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3324 3325
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3326 3327
			}

L
Liu Bo 已提交
3328
			extent_physical = extent_logical - logical + physical;
3329 3330
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3331
			if (sctx->is_dev_replace)
3332 3333 3334 3335
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3336

3337 3338 3339 3340 3341 3342 3343 3344
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3345

L
Liu Bo 已提交
3346
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3347 3348
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3349
					   extent_logical - logical + physical);
3350 3351 3352

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3353 3354 3355
			if (ret)
				goto out;

L
Liu Bo 已提交
3356 3357
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3358
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3359 3360 3361 3362
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3373
								increment;
3374 3375 3376 3377 3378 3379 3380 3381
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3382 3383 3384 3385
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3386 3387 3388 3389 3390
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3391
				if (physical >= physical_end) {
L
Liu Bo 已提交
3392 3393 3394 3395
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3396 3397 3398
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3399
		btrfs_release_path(path);
3400
skip:
A
Arne Jansen 已提交
3401 3402
		logical += increment;
		physical += map->stripe_len;
3403
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3404 3405 3406 3407 3408
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3409
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3410 3411
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3412
	}
3413
out:
A
Arne Jansen 已提交
3414
	/* push queued extents */
3415
	scrub_submit(sctx);
3416
	mutex_lock(&sctx->wr_lock);
3417
	scrub_wr_submit(sctx);
3418
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3419

3420
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3421
	btrfs_free_path(path);
3422
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3423 3424 3425
	return ret < 0 ? ret : 0;
}

3426
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3427 3428
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3429
					  u64 dev_offset,
3430
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3431
{
3432
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3433
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3434 3435 3436
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3437
	int ret = 0;
A
Arne Jansen 已提交
3438

3439 3440 3441
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3442

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3455

3456
	map = em->map_lookup;
A
Arne Jansen 已提交
3457 3458 3459 3460 3461 3462 3463
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3464
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3465
		    map->stripes[i].physical == dev_offset) {
3466
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3467
					   chunk_offset, length, cache);
A
Arne Jansen 已提交
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3479
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3480
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3481 3482 3483
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3484 3485
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3486 3487
	u64 length;
	u64 chunk_offset;
3488
	int ret = 0;
3489
	int ro_set;
A
Arne Jansen 已提交
3490 3491 3492 3493
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3494
	struct btrfs_block_group *cache;
3495
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3496 3497 3498 3499 3500

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3501
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3502 3503 3504
	path->search_commit_root = 1;
	path->skip_locking = 1;

3505
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3506 3507 3508 3509 3510 3511
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3512 3513 3514 3515 3516
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3517 3518 3519 3520
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3521
					break;
3522 3523 3524
				}
			} else {
				ret = 0;
3525 3526
			}
		}
A
Arne Jansen 已提交
3527 3528 3529 3530 3531 3532

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3533
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3534 3535
			break;

3536
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3548 3549
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3550 3551 3552 3553 3554 3555 3556 3557

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3558 3559 3560 3561 3562 3563

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3578
		btrfs_freeze_block_group(cache);
3579 3580
		spin_unlock(&cache->lock);

3581 3582 3583 3584 3585 3586 3587 3588 3589
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3620
		 */
3621
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3622 3623
		if (ret == 0) {
			ro_set = 1;
3624
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3625 3626 3627
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3628
			 * It is not a problem for scrub, because
3629 3630 3631 3632 3633
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3634
			btrfs_warn(fs_info,
3635
				   "failed setting block group ro: %d", ret);
3636
			btrfs_unfreeze_block_group(cache);
3637
			btrfs_put_block_group(cache);
3638
			scrub_pause_off(fs_info);
3639 3640 3641
			break;
		}

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3654
		down_write(&dev_replace->rwsem);
3655 3656 3657
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3658 3659
		up_write(&dev_replace->rwsem);

3660
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3661
				  found_key.offset, cache);
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3673
		sctx->flush_all_writes = true;
3674
		scrub_submit(sctx);
3675
		mutex_lock(&sctx->wr_lock);
3676
		scrub_wr_submit(sctx);
3677
		mutex_unlock(&sctx->wr_lock);
3678 3679 3680

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3681 3682

		scrub_pause_on(fs_info);
3683 3684 3685 3686 3687 3688

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3689 3690
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3691
		sctx->flush_all_writes = false;
3692

3693
		scrub_pause_off(fs_info);
3694

3695
		down_write(&dev_replace->rwsem);
3696 3697
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3698
		up_write(&dev_replace->rwsem);
3699

3700
		if (ro_set)
3701
			btrfs_dec_block_group_ro(cache);
3702

3703 3704 3705 3706 3707 3708 3709 3710 3711
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3712
		    cache->used == 0) {
3713
			spin_unlock(&cache->lock);
3714 3715 3716 3717 3718
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3719 3720 3721 3722
		} else {
			spin_unlock(&cache->lock);
		}

3723
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3724 3725 3726
		btrfs_put_block_group(cache);
		if (ret)
			break;
3727
		if (sctx->is_dev_replace &&
3728
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3729 3730 3731 3732 3733 3734 3735
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3736
skip:
A
Arne Jansen 已提交
3737
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3738
		btrfs_release_path(path);
A
Arne Jansen 已提交
3739 3740 3741
	}

	btrfs_free_path(path);
3742

3743
	return ret;
A
Arne Jansen 已提交
3744 3745
}

3746 3747
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3748 3749 3750 3751 3752
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3753
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3754

3755
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3756
		return -EROFS;
3757

3758
	/* Seed devices of a new filesystem has their own generation. */
3759
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3760 3761
		gen = scrub_dev->generation;
	else
3762
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3763 3764 3765

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3766 3767
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3768
			break;
3769 3770
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
3771

3772
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3773
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3774
				  NULL, bytenr);
A
Arne Jansen 已提交
3775 3776 3777
		if (ret)
			return ret;
	}
3778
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3779 3780 3781 3782

	return 0;
}

3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
		struct btrfs_workqueue *scrub_workers = NULL;
		struct btrfs_workqueue *scrub_wr_comp = NULL;
		struct btrfs_workqueue *scrub_parity = NULL;

		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

		btrfs_destroy_workqueue(scrub_workers);
		btrfs_destroy_workqueue(scrub_wr_comp);
		btrfs_destroy_workqueue(scrub_parity);
	}
}

A
Arne Jansen 已提交
3806 3807 3808
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3809 3810
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3811
{
3812 3813 3814
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
3815
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3816
	int max_active = fs_info->thread_pool_size;
3817
	int ret = -ENOMEM;
A
Arne Jansen 已提交
3818

3819 3820
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
3821

3822 3823 3824 3825
	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
					      is_dev_replace ? 1 : max_active, 4);
	if (!scrub_workers)
		goto fail_scrub_workers;
3826

3827
	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3828
					      max_active, 2);
3829 3830
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
3831

3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
					     max_active, 2);
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
3845
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
3846 3847
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
3848
	}
3849 3850 3851
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
3852

3853 3854
	ret = 0;
	btrfs_destroy_workqueue(scrub_parity);
3855
fail_scrub_parity_workers:
3856
	btrfs_destroy_workqueue(scrub_wr_comp);
3857
fail_scrub_wr_completion_workers:
3858
	btrfs_destroy_workqueue(scrub_workers);
3859
fail_scrub_workers:
3860
	return ret;
A
Arne Jansen 已提交
3861 3862
}

3863 3864
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3865
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3866
{
3867
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3868 3869
	int ret;
	struct btrfs_device *dev;
3870
	unsigned int nofs_flag;
A
Arne Jansen 已提交
3871

3872
	if (btrfs_fs_closing(fs_info))
3873
		return -EAGAIN;
A
Arne Jansen 已提交
3874

3875
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3876 3877 3878 3879 3880
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3881 3882
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3883 3884
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
3885 3886 3887
		return -EINVAL;
	}

3888
	if (fs_info->nodesize >
3889
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3890
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3891 3892 3893 3894
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
3895 3896
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3897
		       fs_info->nodesize,
3898
		       SCRUB_MAX_PAGES_PER_BLOCK,
3899
		       fs_info->sectorsize,
3900 3901 3902 3903
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

3904 3905 3906 3907
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3908

3909 3910 3911 3912
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

3913
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3914
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
3915 3916
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
3917
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3918
		ret = -ENODEV;
3919
		goto out;
A
Arne Jansen 已提交
3920 3921
	}

3922 3923
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3924
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3925 3926 3927
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
3928
		ret = -EROFS;
3929
		goto out;
3930 3931
	}

3932
	mutex_lock(&fs_info->scrub_lock);
3933
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3934
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
3935
		mutex_unlock(&fs_info->scrub_lock);
3936
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3937
		ret = -EIO;
3938
		goto out;
A
Arne Jansen 已提交
3939 3940
	}

3941
	down_read(&fs_info->dev_replace.rwsem);
3942
	if (dev->scrub_ctx ||
3943 3944
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3945
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
3946
		mutex_unlock(&fs_info->scrub_lock);
3947
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3948
		ret = -EINPROGRESS;
3949
		goto out;
A
Arne Jansen 已提交
3950
	}
3951
	up_read(&fs_info->dev_replace.rwsem);
3952

3953
	sctx->readonly = readonly;
3954
	dev->scrub_ctx = sctx;
3955
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3956

3957 3958 3959 3960
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3961
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3962 3963 3964
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
3975
	if (!is_dev_replace) {
3976
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3977 3978 3979 3980
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3981
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3982
		ret = scrub_supers(sctx, dev);
3983
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3984
	}
A
Arne Jansen 已提交
3985 3986

	if (!ret)
3987
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3988
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
3989

3990
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3991 3992 3993
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3994
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3995

A
Arne Jansen 已提交
3996
	if (progress)
3997
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3998

3999 4000 4001 4002
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4003
	mutex_lock(&fs_info->scrub_lock);
4004
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4005 4006
	mutex_unlock(&fs_info->scrub_lock);

4007
	scrub_workers_put(fs_info);
4008
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4009

4010
	return ret;
4011 4012
out:
	scrub_workers_put(fs_info);
4013 4014 4015
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4016 4017 4018
	return ret;
}

4019
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4034
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4035 4036 4037 4038 4039
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4040
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4061
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4062
{
4063
	struct btrfs_fs_info *fs_info = dev->fs_info;
4064
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4065 4066

	mutex_lock(&fs_info->scrub_lock);
4067
	sctx = dev->scrub_ctx;
4068
	if (!sctx) {
A
Arne Jansen 已提交
4069 4070 4071
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4072
	atomic_inc(&sctx->cancel_req);
4073
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4074 4075
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4076
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4077 4078 4079 4080 4081 4082
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4083

4084
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4085 4086 4087
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4088
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4089

4090
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4091
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
A
Arne Jansen 已提交
4092
	if (dev)
4093
		sctx = dev->scrub_ctx;
4094 4095
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4096
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4097

4098
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4099
}
4100 4101

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4102
			       u64 extent_logical, u32 extent_len,
4103 4104 4105 4106 4107 4108 4109 4110 4111
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4112
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4113 4114 4115
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4116
		btrfs_put_bbio(bbio);
4117 4118 4119 4120 4121 4122
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4123
	btrfs_put_bbio(bbio);
4124
}