scrub.c 110.0 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	atomic_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127 128 129
	};
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

144
	atomic_t		refs;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

163 164 165 166 167 168 169 170
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

171
struct scrub_ctx {
172
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
173
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
174 175
	int			first_free;
	int			curr;
176 177
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
178 179 180 181 182
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
183
	int			readonly;
184
	int			pages_per_rd_bio;
185 186
	u32			sectorsize;
	u32			nodesize;
187 188

	int			is_dev_replace;
189
	struct scrub_wr_ctx	wr_ctx;
190

A
Arne Jansen 已提交
191 192 193 194 195
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
196 197 198 199 200 201 202 203 204

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
	atomic_t                refs;
A
Arne Jansen 已提交
205 206
};

207
struct scrub_fixup_nodatasum {
208
	struct scrub_ctx	*sctx;
209
	struct btrfs_device	*dev;
210 211 212 213 214 215
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

216 217 218 219 220 221 222
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

223 224 225 226 227 228
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
229
	struct list_head	inodes;
230 231 232
	struct btrfs_work	work;
};

233 234 235 236 237 238 239 240 241
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

242 243 244 245
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
246
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
247
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
248
				     struct scrub_block *sblocks_for_recheck);
249 250 251
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
252
				u16 csum_size, int retry_failed_mirror);
253 254 255 256 257 258
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
259
					     struct scrub_block *sblock_good);
260 261 262
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
263 264 265
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
266 267 268 269 270
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
271 272
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
273 274
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
275 276
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
277
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
278
		       u64 physical, struct btrfs_device *dev, u64 flags,
279 280
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
281
static void scrub_bio_end_io(struct bio *bio, int err);
282 283
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
303
				      struct scrub_copy_nocow_ctx *ctx);
304 305 306
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
307
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
308
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
309
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
310 311


312 313
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
314
	atomic_inc(&sctx->refs);
315 316 317 318 319 320 321
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
322
	scrub_put_ctx(sctx);
323 324
}

325
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
326 327 328 329 330 331 332 333 334
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

348 349 350 351 352 353 354 355
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

356
	atomic_inc(&sctx->refs);
357 358 359 360 361 362 363 364 365 366 367 368 369
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
370 371 372 373 374 375 376 377 378 379

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
395
	mutex_unlock(&fs_info->scrub_lock);
396 397 398
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
399
	scrub_put_ctx(sctx);
400 401
}

402
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
403
{
404
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
405
		struct btrfs_ordered_sum *sum;
406
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
407 408 409 410 411 412
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

413
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
414 415 416
{
	int i;

417
	if (!sctx)
A
Arne Jansen 已提交
418 419
		return;

420 421
	scrub_free_wr_ctx(&sctx->wr_ctx);

422
	/* this can happen when scrub is cancelled */
423 424
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
425 426

		for (i = 0; i < sbio->page_count; i++) {
427
			WARN_ON(!sbio->pagev[i]->page);
428 429 430 431 432
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

433
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
434
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
435 436 437 438 439 440

		if (!sbio)
			break;
		kfree(sbio);
	}

441 442
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
443 444
}

445 446 447 448 449 450
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
	if (atomic_dec_and_test(&sctx->refs))
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
451
static noinline_for_stack
452
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
453
{
454
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
455 456
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
457 458
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
459

460 461 462 463 464 465 466 467 468 469 470 471
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
472 473
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
474
		goto nomem;
475
	atomic_set(&sctx->refs, 1);
476
	sctx->is_dev_replace = is_dev_replace;
477
	sctx->pages_per_rd_bio = pages_per_rd_bio;
478
	sctx->curr = -1;
479
	sctx->dev_root = dev->dev_root;
480
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
481 482 483 484 485
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
486
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
487 488

		sbio->index = i;
489
		sbio->sctx = sctx;
490
		sbio->page_count = 0;
491 492
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
493

494
		if (i != SCRUB_BIOS_PER_SCTX - 1)
495
			sctx->bios[i]->next_free = i + 1;
496
		else
497 498 499 500 501
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
502 503
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
504 505 506 507 508 509 510
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
511 512 513 514 515 516 517

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
518
	return sctx;
A
Arne Jansen 已提交
519 520

nomem:
521
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
522 523 524
	return ERR_PTR(-ENOMEM);
}

525 526
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
527 528 529 530 531 532 533
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
534
	struct scrub_warning *swarn = warn_ctx;
535 536 537 538
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
539
	struct btrfs_key key;
540 541 542 543 544 545 546 547 548 549

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

550 551 552
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
553 554 555 556 557
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558 559 560 561 562 563 564 565 566 567 568 569 570
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
571 572 573 574 575
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
576 577 578 579 580 581 582 583 584 585
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
586
		printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
587 588
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
589
			swarn->logical, rcu_str_deref(swarn->dev->name),
590 591
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
592
			(char *)(unsigned long)ipath->fspath->val[i]);
593 594 595 596 597

	free_ipath(ipath);
	return 0;

err:
598
	printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
599 600
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
601
		swarn->logical, rcu_str_deref(swarn->dev->name),
602 603 604 605 606 607
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

608
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
609
{
610 611
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
612 613 614 615 616
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
617 618 619
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
620
	u64 ref_root;
621
	u32 item_size;
622
	u8 ref_level;
623
	int ret;
624

625
	WARN_ON(sblock->page_count < 1);
626
	dev = sblock->pagev[0]->dev;
627 628
	fs_info = sblock->sctx->dev_root->fs_info;

629
	path = btrfs_alloc_path();
630 631
	if (!path)
		return;
632

633 634
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
635
	swarn.errstr = errstr;
636
	swarn.dev = NULL;
637

638 639
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
640 641 642
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
643
	extent_item_pos = swarn.logical - found_key.objectid;
644 645 646 647 648 649
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

650
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
651
		do {
652 653 654
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
655
			printk_in_rcu(KERN_WARNING
656
				"BTRFS: %s at logical %llu on dev %s, "
657
				"sector %llu: metadata %s (level %d) in tree "
658 659
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
660 661 662 663 664
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
665
		btrfs_release_path(path);
666
	} else {
667
		btrfs_release_path(path);
668
		swarn.path = path;
669
		swarn.dev = dev;
670 671
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
672 673 674 675 676 677 678
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

679
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
680
{
681
	struct page *page = NULL;
682
	unsigned long index;
683
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
684
	int ret;
685
	int corrected = 0;
686
	struct btrfs_key key;
687
	struct inode *inode = NULL;
688
	struct btrfs_fs_info *fs_info;
689 690
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
691
	int srcu_index;
692 693 694 695

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
696 697 698 699 700 701 702

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
703
		return PTR_ERR(local_root);
704
	}
705 706 707 708

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
709 710
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
711 712 713 714 715 716
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
743
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
744
					fixup->logical, page,
745
					offset - page_offset(page),
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
780 781

	iput(inode);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
801
	struct scrub_ctx *sctx;
802 803 804 805 806
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
807
	sctx = fixup->sctx;
808 809 810

	path = btrfs_alloc_path();
	if (!path) {
811 812 813
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

842 843 844
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
845 846 847 848 849

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
850 851 852
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
853 854 855
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
856 857
		printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
		    "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
858
			fixup->logical, rcu_str_deref(fixup->dev->name));
859 860 861 862 863
	}

	btrfs_free_path(path);
	kfree(fixup);

864
	scrub_pending_trans_workers_dec(sctx);
865 866
}

867 868 869 870 871 872 873 874
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
875
		btrfs_put_bbio(recover->bbio);
876 877 878 879
		kfree(recover);
	}
}

A
Arne Jansen 已提交
880
/*
881 882 883 884 885 886
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
887
 */
888
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
889
{
890
	struct scrub_ctx *sctx = sblock_to_check->sctx;
891
	struct btrfs_device *dev;
892 893 894 895 896 897 898 899 900 901 902 903 904 905
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
906
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
907 908 909
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
910
	fs_info = sctx->dev_root->fs_info;
911 912 913 914 915 916 917 918 919 920 921
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
922
	length = sblock_to_check->page_count * PAGE_SIZE;
923 924 925 926 927
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
928
			BTRFS_EXTENT_FLAG_DATA);
929 930 931
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
932

933 934 935 936 937
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
971 972 973 974 975
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
976
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
977
		goto out;
A
Arne Jansen 已提交
978 979
	}

980
	/* setup the context, map the logical blocks and alloc the pages */
981
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
982
	if (ret) {
983 984 985 986
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
987
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
988 989 990 991
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
992

993
	/* build and submit the bios for the failed mirror, check checksums */
994
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
995
			    csum, generation, sctx->csum_size, 1);
A
Arne Jansen 已提交
996

997 998 999 1000 1001 1002 1003 1004 1005 1006
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
1007 1008
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
1009
		sblock_to_check->data_corrected = 1;
1010
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
1011

1012 1013
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1014
		goto out;
A
Arne Jansen 已提交
1015 1016
	}

1017
	if (!sblock_bad->no_io_error_seen) {
1018 1019 1020
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1021 1022
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1023
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1024
	} else if (sblock_bad->checksum_error) {
1025 1026 1027
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1028 1029
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1030
		btrfs_dev_stat_inc_and_print(dev,
1031
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1032
	} else if (sblock_bad->header_error) {
1033 1034 1035
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1036 1037 1038
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1039
		if (sblock_bad->generation_error)
1040
			btrfs_dev_stat_inc_and_print(dev,
1041 1042
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1043
			btrfs_dev_stat_inc_and_print(dev,
1044
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1045
	}
A
Arne Jansen 已提交
1046

1047 1048 1049 1050
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1051

1052 1053
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1054

1055 1056
		WARN_ON(sctx->is_dev_replace);

1057 1058
nodatasum_case:

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1069
		fixup_nodatasum->sctx = sctx;
1070
		fixup_nodatasum->dev = dev;
1071 1072 1073
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1074
		scrub_pending_trans_workers_inc(sctx);
1075 1076
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1077 1078
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1079
		goto out;
A
Arne Jansen 已提交
1080 1081
	}

1082 1083
	/*
	 * now build and submit the bios for the other mirrors, check
1084 1085
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1101
		struct scrub_block *sblock_other;
1102

1103 1104 1105 1106 1107
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1108 1109
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
1110
				    sctx->csum_size, 0);
1111 1112

		if (!sblock_other->header_error &&
1113 1114
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1115 1116
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1117
				goto corrected_error;
1118 1119
			} else {
				ret = scrub_repair_block_from_good_copy(
1120 1121 1122
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1123
			}
1124 1125
		}
	}
A
Arne Jansen 已提交
1126

1127 1128
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1129 1130 1131

	/*
	 * In case of I/O errors in the area that is supposed to be
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1153
	 */
1154
	success = 1;
1155 1156
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1157
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1158
		struct scrub_block *sblock_other = NULL;
1159

1160 1161
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1162
			continue;
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1175 1176
				}
			}
1177 1178
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1179
		}
A
Arne Jansen 已提交
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1208
		}
A
Arne Jansen 已提交
1209 1210
	}

1211
	if (success && !sctx->is_dev_replace) {
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1222 1223
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
1224
					    generation, sctx->csum_size, 1);
1225
			if (!sblock_bad->header_error &&
1226 1227 1228 1229 1230 1231 1232
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1233 1234
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1235
			sblock_to_check->data_corrected = 1;
1236
			spin_unlock(&sctx->stat_lock);
1237
			printk_ratelimited_in_rcu(KERN_ERR
1238
				"BTRFS: fixed up error at logical %llu on dev %s\n",
1239
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1240
		}
1241 1242
	} else {
did_not_correct_error:
1243 1244 1245
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1246
		printk_ratelimited_in_rcu(KERN_ERR
1247
			"BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1248
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1249
	}
A
Arne Jansen 已提交
1250

1251 1252 1253 1254 1255 1256
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1257
			struct scrub_recover *recover;
1258 1259
			int page_index;

1260 1261 1262
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1263 1264 1265 1266 1267 1268
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1269 1270
				scrub_page_put(sblock->pagev[page_index]);
			}
1271 1272 1273
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1274

1275 1276
	return 0;
}
A
Arne Jansen 已提交
1277

1278
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1279
{
Z
Zhao Lei 已提交
1280 1281 1282 1283 1284
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1285 1286 1287
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1288 1289
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1290 1291 1292 1293 1294 1295 1296
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1297
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1318
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1319 1320
				     struct scrub_block *sblocks_for_recheck)
{
1321 1322 1323 1324
	struct scrub_ctx *sctx = original_sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1325 1326 1327 1328 1329 1330
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1331
	int page_index = 0;
1332
	int mirror_index;
1333
	int nmirrors;
1334 1335 1336
	int ret;

	/*
1337
	 * note: the two members refs and outstanding_pages
1338 1339 1340 1341 1342
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1343 1344 1345
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1346

1347 1348 1349 1350
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1351
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1352
				       &mapped_length, &bbio, 0, 1);
1353
		if (ret || !bbio || mapped_length < sublen) {
1354
			btrfs_put_bbio(bbio);
1355 1356
			return -EIO;
		}
A
Arne Jansen 已提交
1357

1358 1359
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1360
			btrfs_put_bbio(bbio);
1361 1362 1363 1364 1365 1366 1367
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1368
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1369

1370
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1371

1372
		for (mirror_index = 0; mirror_index < nmirrors;
1373 1374 1375 1376 1377
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1378 1379 1380 1381
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1382 1383 1384
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1385
				scrub_put_recover(recover);
1386 1387
				return -ENOMEM;
			}
1388 1389 1390
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
1391

Z
Zhao Lei 已提交
1392 1393 1394
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1395
						      mapped_length,
1396 1397
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1398 1399 1400 1401 1402 1403 1404
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1405 1406 1407 1408
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1409 1410
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1411
			sblock->page_count++;
1412 1413 1414
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1415 1416 1417

			scrub_get_recover(recover);
			page->recover = recover;
1418
		}
1419
		scrub_put_recover(recover);
1420 1421 1422 1423 1424 1425
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1426 1427
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
struct scrub_bio_ret {
	struct completion event;
	int error;
};

static void scrub_bio_wait_endio(struct bio *bio, int error)
{
	struct scrub_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1443
	return page->recover &&
1444
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1462
				    page->mirror_num, 0);
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1473 1474 1475 1476 1477 1478 1479
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1480 1481 1482
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
1483
				u16 csum_size, int retry_failed_mirror)
I
Ilya Dryomov 已提交
1484
{
1485
	int page_num;
I
Ilya Dryomov 已提交
1486

1487 1488 1489
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1490

1491 1492
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1493
		struct scrub_page *page = sblock->pagev[page_num];
1494

1495
		if (page->dev->bdev == NULL) {
1496 1497 1498 1499 1500
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1501
		WARN_ON(!page->page);
1502
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1503 1504 1505 1506 1507
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1508
		bio->bi_bdev = page->dev->bdev;
1509

1510
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1511 1512 1513 1514 1515 1516 1517 1518 1519
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1520

1521 1522
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1523

1524 1525 1526 1527 1528
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1529
	return;
A
Arne Jansen 已提交
1530 1531
}

M
Miao Xie 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1542 1543 1544 1545 1546
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1547
{
1548 1549 1550 1551 1552
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1553
	WARN_ON(!sblock->pagev[0]->page);
1554 1555 1556
	if (is_metadata) {
		struct btrfs_header *h;

1557
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1558 1559
		h = (struct btrfs_header *)mapped_buffer;

1560
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
M
Miao Xie 已提交
1561
		    !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1562
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1563
			   BTRFS_UUID_SIZE)) {
1564
			sblock->header_error = 1;
1565
		} else if (generation != btrfs_stack_header_generation(h)) {
1566 1567 1568
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1569 1570 1571 1572
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1573

1574
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1575
	}
A
Arne Jansen 已提交
1576

1577 1578
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1579
			crc = btrfs_csum_data(
1580 1581 1582
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1583
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1584

1585
		kunmap_atomic(mapped_buffer);
1586 1587 1588
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1589
		WARN_ON(!sblock->pagev[page_num]->page);
1590

1591
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1592 1593 1594 1595 1596
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1597 1598
}

1599
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1600
					     struct scrub_block *sblock_good)
1601 1602 1603
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1604

1605 1606
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1607

1608 1609
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1610
							   page_num, 1);
1611 1612
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1613
	}
1614 1615 1616 1617 1618 1619 1620 1621

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1622 1623
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1624

1625 1626
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1627 1628 1629 1630 1631
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1632
		if (!page_bad->dev->bdev) {
1633 1634 1635
			printk_ratelimited(KERN_WARNING "BTRFS: "
				"scrub_repair_page_from_good_copy(bdev == NULL) "
				"is unexpected!\n");
1636 1637 1638
			return -EIO;
		}

1639
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1640 1641
		if (!bio)
			return -EIO;
1642
		bio->bi_bdev = page_bad->dev->bdev;
1643
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1644 1645 1646 1647 1648

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1649
		}
1650

1651
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1652 1653
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1654 1655 1656
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1657 1658 1659
			bio_put(bio);
			return -EIO;
		}
1660
		bio_put(bio);
A
Arne Jansen 已提交
1661 1662
	}

1663 1664 1665
	return 0;
}

1666 1667 1668 1669
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1670 1671 1672 1673 1674 1675 1676
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1732
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1743
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

1802 1803
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1804
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1836 1837 1838 1839
{
	u64 flags;
	int ret;

1840 1841
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1853 1854

	return ret;
A
Arne Jansen 已提交
1855 1856
}

1857
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1858
{
1859
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1860
	u8 csum[BTRFS_CSUM_SIZE];
1861 1862 1863
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1864 1865
	u32 crc = ~(u32)0;
	int fail = 0;
1866 1867
	u64 len;
	int index;
A
Arne Jansen 已提交
1868

1869
	BUG_ON(sblock->page_count < 1);
1870
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1871 1872
		return 0;

1873 1874
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1875
	buffer = kmap_atomic(page);
1876

1877
	len = sctx->sectorsize;
1878 1879 1880 1881
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1882
		crc = btrfs_csum_data(buffer, crc, l);
1883
		kunmap_atomic(buffer);
1884 1885 1886 1887 1888
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1889 1890
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1891
		buffer = kmap_atomic(page);
1892 1893
	}

A
Arne Jansen 已提交
1894
	btrfs_csum_final(crc, csum);
1895
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1896 1897 1898 1899 1900
		fail = 1;

	return fail;
}

1901
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1902
{
1903
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1904
	struct btrfs_header *h;
1905
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1906
	struct btrfs_fs_info *fs_info = root->fs_info;
1907 1908 1909 1910 1911 1912
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1913 1914 1915
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1916 1917 1918 1919
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1920
	page = sblock->pagev[0]->page;
1921
	mapped_buffer = kmap_atomic(page);
1922
	h = (struct btrfs_header *)mapped_buffer;
1923
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1924 1925 1926 1927 1928 1929 1930

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1931
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1932 1933
		++fail;

1934
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1935 1936
		++fail;

M
Miao Xie 已提交
1937
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
A
Arne Jansen 已提交
1938 1939 1940 1941 1942 1943
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1944
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1945 1946 1947 1948 1949 1950
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1951
		crc = btrfs_csum_data(p, crc, l);
1952
		kunmap_atomic(mapped_buffer);
1953 1954 1955 1956 1957
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1958 1959
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1960
		mapped_buffer = kmap_atomic(page);
1961 1962 1963 1964 1965
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1966
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1967 1968 1969 1970 1971
		++crc_fail;

	return fail || crc_fail;
}

1972
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1973 1974
{
	struct btrfs_super_block *s;
1975
	struct scrub_ctx *sctx = sblock->sctx;
1976 1977 1978 1979 1980 1981
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1982
	u32 crc = ~(u32)0;
1983 1984
	int fail_gen = 0;
	int fail_cor = 0;
1985 1986
	u64 len;
	int index;
A
Arne Jansen 已提交
1987

1988
	BUG_ON(sblock->page_count < 1);
1989
	page = sblock->pagev[0]->page;
1990
	mapped_buffer = kmap_atomic(page);
1991
	s = (struct btrfs_super_block *)mapped_buffer;
1992
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1993

1994
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1995
		++fail_cor;
A
Arne Jansen 已提交
1996

1997
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1998
		++fail_gen;
A
Arne Jansen 已提交
1999

M
Miao Xie 已提交
2000
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2001
		++fail_cor;
A
Arne Jansen 已提交
2002

2003 2004 2005 2006 2007 2008 2009
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

2010
		crc = btrfs_csum_data(p, crc, l);
2011
		kunmap_atomic(mapped_buffer);
2012 2013 2014 2015 2016
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
2017 2018
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
2019
		mapped_buffer = kmap_atomic(page);
2020 2021 2022 2023 2024
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
2025
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2026
		++fail_cor;
A
Arne Jansen 已提交
2027

2028
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
2029 2030 2031 2032 2033
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
2034 2035 2036
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
2037
		if (fail_cor)
2038
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2039 2040
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
2041
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2042
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
2043 2044
	}

2045
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
2046 2047
}

2048 2049
static void scrub_block_get(struct scrub_block *sblock)
{
2050
	atomic_inc(&sblock->refs);
2051 2052 2053 2054
}

static void scrub_block_put(struct scrub_block *sblock)
{
2055
	if (atomic_dec_and_test(&sblock->refs)) {
2056 2057
		int i;

2058 2059 2060
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2061
		for (i = 0; i < sblock->page_count; i++)
2062
			scrub_page_put(sblock->pagev[i]);
2063 2064 2065 2066
		kfree(sblock);
	}
}

2067 2068
static void scrub_page_get(struct scrub_page *spage)
{
2069
	atomic_inc(&spage->refs);
2070 2071 2072 2073
}

static void scrub_page_put(struct scrub_page *spage)
{
2074
	if (atomic_dec_and_test(&spage->refs)) {
2075 2076 2077 2078 2079 2080
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2081
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2082 2083 2084
{
	struct scrub_bio *sbio;

2085
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2086
		return;
A
Arne Jansen 已提交
2087

2088 2089
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2090
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
2101
			"BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2102 2103 2104 2105
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
2106 2107
}

2108 2109
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2110
{
2111
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2112
	struct scrub_bio *sbio;
2113
	int ret;
A
Arne Jansen 已提交
2114 2115 2116 2117 2118

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2119 2120 2121 2122 2123 2124 2125 2126
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2127
		} else {
2128 2129
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2130 2131
		}
	}
2132
	sbio = sctx->bios[sctx->curr];
2133
	if (sbio->page_count == 0) {
2134 2135
		struct bio *bio;

2136 2137
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2138
		sbio->dev = spage->dev;
2139 2140
		bio = sbio->bio;
		if (!bio) {
2141
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2142 2143 2144 2145
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2146 2147 2148

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2149
		bio->bi_bdev = sbio->dev->bdev;
2150
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2151
		sbio->err = 0;
2152 2153 2154
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2155 2156
		   spage->logical ||
		   sbio->dev != spage->dev) {
2157
		scrub_submit(sctx);
A
Arne Jansen 已提交
2158 2159
		goto again;
	}
2160

2161 2162 2163 2164 2165 2166 2167 2168
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2169
		scrub_submit(sctx);
2170 2171 2172
		goto again;
	}

2173
	scrub_block_get(sblock); /* one for the page added to the bio */
2174 2175
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2176
	if (sbio->page_count == sctx->pages_per_rd_bio)
2177
		scrub_submit(sctx);
2178 2179 2180 2181

	return 0;
}

2182
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2183
		       u64 physical, struct btrfs_device *dev, u64 flags,
2184 2185
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2186 2187 2188 2189 2190 2191
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2192 2193 2194
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2195
		return -ENOMEM;
A
Arne Jansen 已提交
2196
	}
2197

2198 2199
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2200
	atomic_set(&sblock->refs, 1);
2201
	sblock->sctx = sctx;
2202 2203 2204
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2205
		struct scrub_page *spage;
2206 2207
		u64 l = min_t(u64, len, PAGE_SIZE);

2208 2209 2210
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2211 2212 2213
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2214
			scrub_block_put(sblock);
2215 2216
			return -ENOMEM;
		}
2217 2218 2219
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2220
		spage->sblock = sblock;
2221
		spage->dev = dev;
2222 2223 2224 2225
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2226
		spage->physical_for_dev_replace = physical_for_dev_replace;
2227 2228 2229
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2230
			memcpy(spage->csum, csum, sctx->csum_size);
2231 2232 2233 2234
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2235 2236 2237
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2238 2239 2240
		len -= l;
		logical += l;
		physical += l;
2241
		physical_for_dev_replace += l;
2242 2243
	}

2244
	WARN_ON(sblock->page_count == 0);
2245
	for (index = 0; index < sblock->page_count; index++) {
2246
		struct scrub_page *spage = sblock->pagev[index];
2247 2248
		int ret;

2249
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2250 2251
		if (ret) {
			scrub_block_put(sblock);
2252
			return ret;
2253
		}
2254
	}
A
Arne Jansen 已提交
2255

2256
	if (force)
2257
		scrub_submit(sctx);
A
Arne Jansen 已提交
2258

2259 2260
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2261 2262 2263
	return 0;
}

2264 2265 2266
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2267
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2268 2269 2270 2271

	sbio->err = err;
	sbio->bio = bio;

2272
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2273 2274 2275 2276 2277
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2278
	struct scrub_ctx *sctx = sbio->sctx;
2279 2280
	int i;

2281
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2303 2304 2305 2306
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2307 2308 2309 2310 2311 2312 2313 2314

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2315
	scrub_pending_bio_dec(sctx);
2316 2317
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
	int offset;
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
	offset = (int)do_div(start, sparity->stripe_len);
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2357 2358
static void scrub_block_complete(struct scrub_block *sblock)
{
2359 2360
	int corrupted = 0;

2361
	if (!sblock->no_io_error_seen) {
2362
		corrupted = 1;
2363
		scrub_handle_errored_block(sblock);
2364 2365 2366 2367 2368 2369
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2370 2371
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2372 2373
			scrub_write_block_to_dev_replace(sblock);
	}
2374 2375 2376 2377 2378 2379 2380 2381 2382

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2383 2384
}

2385
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2386 2387 2388
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2389
	unsigned long index;
A
Arne Jansen 已提交
2390 2391
	unsigned long num_sectors;

2392 2393
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2394 2395 2396 2397 2398 2399
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2400
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2401 2402 2403 2404 2405 2406 2407
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2408
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2409
	num_sectors = sum->len / sctx->sectorsize;
2410 2411
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2412 2413 2414
		list_del(&sum->list);
		kfree(sum);
	}
2415
	return 1;
A
Arne Jansen 已提交
2416 2417 2418
}

/* scrub extent tries to collect up to 64 kB for each bio */
2419
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2420
			u64 physical, struct btrfs_device *dev, u64 flags,
2421
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2422 2423 2424
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2425 2426 2427
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2428 2429 2430 2431 2432
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2433
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2434 2435 2436 2437 2438
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2439
	} else {
2440
		blocksize = sctx->sectorsize;
2441
		WARN_ON(1);
2442
	}
A
Arne Jansen 已提交
2443 2444

	while (len) {
2445
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2446 2447 2448 2449
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2450
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2451
			if (have_csum == 0)
2452
				++sctx->stat.no_csum;
2453 2454 2455 2456 2457 2458
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2459
		}
2460
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2461 2462 2463
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2464 2465 2466 2467 2468
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2469
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2470 2471 2472 2473
	}
	return 0;
}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2493
	atomic_set(&sblock->refs, 1);
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
			have_csum = scrub_find_csum(sctx, logical, l, csum);
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2592
skip:
2593 2594 2595 2596 2597 2598 2599
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2600 2601 2602 2603 2604 2605 2606 2607
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2608 2609
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
	int stripe_index;
	int rot;

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2620 2621 2622
	if (stripe_start)
		*stripe_start = last_offset;

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

		stripe_nr = *offset;
		do_div(stripe_nr, map->stripe_len);
		do_div(stripe_nr, nr_data_stripes(map));

		/* Work out the disk rotation on this stripe-set */
		rot = do_div(stripe_nr, map->num_stripes);
		/* calculate which stripe this data locates */
		rot += i;
2635
		stripe_index = rot % map->num_stripes;
2636 2637 2638 2639 2640 2641 2642 2643 2644
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

static void scrub_parity_bio_endio(struct bio *bio, int error)
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
	struct scrub_ctx *sctx = sparity->sctx;

	if (error)
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
	bio_put(bio);
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

	length = sparity->logic_end - sparity->logic_start + 1;
2696
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2697
			       sparity->logic_start,
2698 2699
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2711
					      length, sparity->scrub_dev,
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
		raid56_parity_add_scrub_pages(rbio, spage->page,
					      spage->logical);

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2728
	btrfs_put_bbio(bbio);
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2745
	atomic_inc(&sparity->refs);
2746 2747 2748 2749
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2750
	if (!atomic_dec_and_test(&sparity->refs))
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2800
	atomic_set(&sparity->refs, 1);
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

			if (key.objectid > logic_end) {
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logic_start &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					   key.objectid, logic_start);
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

			scrub_remap_extent(fs_info, extent_logical,
					   extent_len, &extent_physical,
					   &extent_dev,
					   &extent_mirror_num);

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
			if (ret)
				goto out;

			scrub_free_csums(sctx);
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
						logic_end - logic_start + 1);
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

2959
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2960 2961
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2962 2963
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2964
{
2965
	struct btrfs_path *path, *ppath;
2966
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2967 2968 2969
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2970
	struct blk_plug plug;
A
Arne Jansen 已提交
2971 2972 2973 2974 2975 2976 2977 2978
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2979
	u64 logic_end;
2980
	u64 physical_end;
A
Arne Jansen 已提交
2981
	u64 generation;
2982
	int mirror_num;
A
Arne Jansen 已提交
2983 2984 2985 2986
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2987 2988
	u64 increment = map->stripe_len;
	u64 offset;
2989 2990 2991
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2992 2993
	u64 stripe_logical;
	u64 stripe_end;
2994 2995
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
2996
	int stop_loop = 0;
D
David Woodhouse 已提交
2997

A
Arne Jansen 已提交
2998
	nstripes = length;
2999
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3000 3001 3002 3003 3004
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3005
		mirror_num = 1;
A
Arne Jansen 已提交
3006 3007 3008 3009
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3010
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3011 3012
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3013
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3014 3015
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3016
		mirror_num = num % map->num_stripes + 1;
3017
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3018
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3019 3020
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3021 3022
	} else {
		increment = map->stripe_len;
3023
		mirror_num = 1;
A
Arne Jansen 已提交
3024 3025 3026 3027 3028 3029
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3030 3031 3032 3033 3034 3035
	ppath = btrfs_alloc_path();
	if (!ppath) {
		btrfs_free_path(ppath);
		return -ENOMEM;
	}

3036 3037 3038 3039 3040
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3041 3042 3043 3044
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
3045 3046 3047
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3048 3049
	 */
	logical = base + offset;
3050
	physical_end = physical + nstripes * map->stripe_len;
3051
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3052
		get_raid56_logic_offset(physical_end, num,
3053
					map, &logic_end, NULL);
3054 3055 3056 3057
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3058
	wait_event(sctx->list_wait,
3059
		   atomic_read(&sctx->bios_in_flight) == 0);
3060
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3061 3062 3063 3064 3065

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3066
	key_end.objectid = logic_end;
3067 3068
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3069 3070 3071 3072 3073 3074 3075
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3076
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3077 3078 3079 3080 3081 3082 3083
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3084 3085 3086 3087 3088

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3089
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3090 3091 3092 3093 3094

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3095 3096
	while (physical < physical_end) {
		/* for raid56, we skip parity stripe */
3097
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3098
			ret = get_raid56_logic_offset(physical, num,
3099
					map, &logical, &stripe_logical);
3100
			logical += base;
3101 3102 3103 3104 3105 3106 3107 3108
			if (ret) {
				stripe_logical += base;
				stripe_end = stripe_logical + increment - 1;
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
						ppath, stripe_logical,
						stripe_end);
				if (ret)
					goto out;
3109
				goto skip;
3110
			}
3111
		}
A
Arne Jansen 已提交
3112 3113 3114 3115
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3116
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3117 3118 3119 3120 3121 3122 3123 3124
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3125
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3126
			scrub_submit(sctx);
3127 3128 3129
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3130
			wait_event(sctx->list_wait,
3131
				   atomic_read(&sctx->bios_in_flight) == 0);
3132
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3133
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3134 3135
		}

3136 3137 3138 3139
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3140
		key.objectid = logical;
L
Liu Bo 已提交
3141
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3142 3143 3144 3145

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3146

3147
		if (ret > 0) {
3148
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3149 3150
			if (ret < 0)
				goto out;
3151 3152 3153 3154 3155 3156 3157 3158 3159
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3160 3161
		}

L
Liu Bo 已提交
3162
		stop_loop = 0;
A
Arne Jansen 已提交
3163
		while (1) {
3164 3165
			u64 bytes;

A
Arne Jansen 已提交
3166 3167 3168 3169 3170 3171 3172 3173 3174
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3175
				stop_loop = 1;
A
Arne Jansen 已提交
3176 3177 3178 3179
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3180
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3181
				bytes = root->nodesize;
3182 3183 3184 3185
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3186 3187
				goto next;

L
Liu Bo 已提交
3188 3189 3190
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
3191

L
Liu Bo 已提交
3192 3193 3194 3195 3196 3197
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3198 3199 3200 3201 3202 3203 3204 3205

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3206 3207 3208
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3209
				       key.objectid, logical);
A
Arne Jansen 已提交
3210 3211 3212
				goto next;
			}

L
Liu Bo 已提交
3213 3214 3215 3216
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3217 3218 3219
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3220 3221 3222
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3223
			}
L
Liu Bo 已提交
3224
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3225
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3226 3227
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3228 3229
			}

L
Liu Bo 已提交
3230
			extent_physical = extent_logical - logical + physical;
3231 3232 3233 3234 3235 3236 3237
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3238 3239 3240 3241 3242 3243 3244

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

3245 3246 3247
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3248
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
3249 3250 3251
			if (ret)
				goto out;

3252
			scrub_free_csums(sctx);
L
Liu Bo 已提交
3253 3254
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3255
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3256 3257 3258 3259
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
								increment - 1;
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3279 3280 3281 3282
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3283 3284 3285 3286 3287
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3288
				if (physical >= physical_end) {
L
Liu Bo 已提交
3289 3290 3291 3292
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3293 3294 3295
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3296
		btrfs_release_path(path);
3297
skip:
A
Arne Jansen 已提交
3298 3299
		logical += increment;
		physical += map->stripe_len;
3300
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3301 3302 3303 3304 3305
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3306
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3307 3308
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3309
	}
3310
out:
A
Arne Jansen 已提交
3311
	/* push queued extents */
3312
	scrub_submit(sctx);
3313 3314 3315
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3316

3317
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3318
	btrfs_free_path(path);
3319
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3320 3321 3322
	return ret < 0 ? ret : 0;
}

3323
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3324 3325 3326
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
3327
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
3328 3329
{
	struct btrfs_mapping_tree *map_tree =
3330
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3331 3332 3333
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3334
	int ret = 0;
A
Arne Jansen 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3351
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3352
		    map->stripes[i].physical == dev_offset) {
3353
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3354 3355
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3367
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3368 3369
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3370 3371 3372
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3373
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3385
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3395
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3396 3397 3398 3399 3400 3401
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3402 3403 3404 3405 3406 3407 3408 3409 3410
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
3411 3412 3413 3414 3415 3416

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3417
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3418 3419
			break;

3420
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3432 3433
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3444 3445 3446 3447 3448 3449

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3450 3451 3452
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3453
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3475 3476 3477 3478 3479 3480 3481 3482
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3483 3484
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3485 3486 3487 3488 3489 3490 3491
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

		mutex_lock(&fs_info->scrub_lock);
		__scrub_blocked_if_needed(fs_info);
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);
3492

A
Arne Jansen 已提交
3493 3494 3495
		btrfs_put_block_group(cache);
		if (ret)
			break;
3496 3497
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3498 3499 3500 3501 3502 3503 3504
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3505

3506 3507
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3508
skip:
A
Arne Jansen 已提交
3509
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3510
		btrfs_release_path(path);
A
Arne Jansen 已提交
3511 3512 3513
	}

	btrfs_free_path(path);
3514 3515 3516 3517 3518 3519

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
3520 3521
}

3522 3523
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3524 3525 3526 3527 3528
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3529
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3530

3531
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3532 3533
		return -EIO;

3534 3535 3536 3537 3538
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3539 3540 3541

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3542 3543
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3544 3545
			break;

3546
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3547
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3548
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3549 3550 3551
		if (ret)
			return ret;
	}
3552
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3553 3554 3555 3556 3557 3558 3559

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3560 3561
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3562
{
3563
	int ret = 0;
3564 3565
	int flags = WQ_FREEZABLE | WQ_UNBOUND;
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3566

A
Arne Jansen 已提交
3567
	if (fs_info->scrub_workers_refcnt == 0) {
3568
		if (is_dev_replace)
3569 3570 3571
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3572
		else
3573 3574 3575 3576 3577
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
		if (!fs_info->scrub_workers) {
			ret = -ENOMEM;
3578
			goto out;
3579 3580 3581 3582 3583 3584
		}
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
		if (!fs_info->scrub_wr_completion_workers) {
			ret = -ENOMEM;
3585
			goto out;
3586 3587 3588 3589 3590
		}
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
		if (!fs_info->scrub_nocow_workers) {
			ret = -ENOMEM;
3591
			goto out;
3592
		}
A
Arne Jansen 已提交
3593
	}
A
Arne Jansen 已提交
3594
	++fs_info->scrub_workers_refcnt;
3595 3596
out:
	return ret;
A
Arne Jansen 已提交
3597 3598
}

3599
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3600
{
3601
	if (--fs_info->scrub_workers_refcnt == 0) {
3602 3603 3604
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3605
	}
A
Arne Jansen 已提交
3606 3607 3608
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3609 3610
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3611
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3612
{
3613
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3614 3615
	int ret;
	struct btrfs_device *dev;
3616
	struct rcu_string *name;
A
Arne Jansen 已提交
3617

3618
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3619 3620
		return -EINVAL;

3621
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3622 3623 3624 3625 3626
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3627 3628
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3629
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3630 3631 3632
		return -EINVAL;
	}

3633
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3634
		/* not supported for data w/o checksums */
3635 3636 3637
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3638
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3639 3640 3641
		return -EINVAL;
	}

3642 3643 3644 3645 3646 3647 3648 3649
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3650 3651
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3652 3653 3654 3655 3656 3657 3658
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3659

3660 3661
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3662
	if (!dev || (dev->missing && !is_dev_replace)) {
3663
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3664 3665 3666
		return -ENODEV;
	}

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3677
	mutex_lock(&fs_info->scrub_lock);
3678
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3679
		mutex_unlock(&fs_info->scrub_lock);
3680 3681
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3682 3683
	}

3684 3685 3686 3687 3688
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3689
		mutex_unlock(&fs_info->scrub_lock);
3690
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3691 3692
		return -EINPROGRESS;
	}
3693
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3694 3695 3696 3697 3698 3699 3700 3701

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3702
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3703
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3704
		mutex_unlock(&fs_info->scrub_lock);
3705 3706
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3707
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3708
	}
3709 3710
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3711
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3712

3713 3714 3715 3716
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3717
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3718 3719 3720
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3721
	if (!is_dev_replace) {
3722 3723 3724 3725
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3726
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3727
		ret = scrub_supers(sctx, dev);
3728
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3729
	}
A
Arne Jansen 已提交
3730 3731

	if (!ret)
3732 3733
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3734

3735
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3736 3737 3738
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3739
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3740

A
Arne Jansen 已提交
3741
	if (progress)
3742
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3743 3744 3745

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3746
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3747 3748
	mutex_unlock(&fs_info->scrub_lock);

3749
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3750 3751 3752 3753

	return ret;
}

3754
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3771
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3772 3773 3774 3775 3776 3777 3778
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3779
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3800 3801
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3802
{
3803
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3804 3805

	mutex_lock(&fs_info->scrub_lock);
3806 3807
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3808 3809 3810
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3811
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3822

A
Arne Jansen 已提交
3823 3824 3825 3826
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3827
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3828 3829

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3830
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3831
	if (dev)
3832 3833 3834
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3835 3836
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3837
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3838
}
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
3855
		btrfs_put_bbio(bbio);
3856 3857 3858 3859 3860 3861
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
3862
	btrfs_put_bbio(bbio);
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3915 3916
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
3917
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3918 3919
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
3920 3921 3922 3923

	return 0;
}

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
3976
					  record_inode_for_nocow, nocow_ctx);
3977
	if (ret != 0 && ret != -ENOENT) {
3978 3979
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
3980 3981
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
3982 3983 3984 3985
		not_written = 1;
		goto out;
	}

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4004
out:
4005 4006 4007 4008 4009 4010 4011 4012
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4069 4070
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4071
{
4072
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4073
	struct btrfs_key key;
4074 4075
	struct inode *inode;
	struct page *page;
4076
	struct btrfs_root *local_root;
4077
	struct extent_io_tree *io_tree;
4078
	u64 physical_for_dev_replace;
4079
	u64 nocow_ctx_logical;
4080
	u64 len = nocow_ctx->len;
4081
	unsigned long index;
4082
	int srcu_index;
4083 4084
	int ret = 0;
	int err = 0;
4085 4086 4087 4088

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4089 4090 4091

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4092
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4093 4094
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4095
		return PTR_ERR(local_root);
4096
	}
4097 4098 4099 4100 4101

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4102
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4103 4104 4105
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4106 4107 4108 4109
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4110
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4111
	io_tree = &BTRFS_I(inode)->io_tree;
4112
	nocow_ctx_logical = nocow_ctx->logical;
4113

4114 4115 4116 4117
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4118 4119
	}

4120 4121
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4122
again:
4123 4124
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4125
			btrfs_err(fs_info, "find_or_create_page() failed");
4126
			ret = -ENOMEM;
4127
			goto out;
4128 4129 4130 4131 4132 4133 4134
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4135
			err = extent_read_full_page(io_tree, page,
4136 4137
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4138 4139
			if (err) {
				ret = err;
4140 4141
				goto next_page;
			}
4142

4143
			lock_page(page);
4144 4145 4146 4147 4148 4149 4150
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4151
				unlock_page(page);
4152 4153 4154
				page_cache_release(page);
				goto again;
			}
4155 4156 4157 4158 4159
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4160 4161 4162 4163 4164 4165 4166 4167

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4168 4169 4170 4171
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4172
next_page:
4173 4174 4175 4176 4177 4178
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4179 4180
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4181
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4182 4183
		len -= PAGE_CACHE_SIZE;
	}
4184
	ret = COPY_COMPLETE;
4185
out:
4186
	mutex_unlock(&inode->i_mutex);
4187
	iput(inode);
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
4203
			"BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4204 4205
		return -EIO;
	}
4206
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4207 4208 4209 4210 4211 4212
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4213 4214
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4215 4216 4217 4218 4219 4220 4221 4222 4223
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4224
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4225 4226 4227 4228 4229
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}