scrub.c 113.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
23
#include "zoned.h"
A
Arne Jansen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

38
struct scrub_block;
39
struct scrub_ctx;
A
Arne Jansen 已提交
40

41 42 43 44 45 46 47 48 49
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
50 51 52 53 54 55

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
56
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
57

58
struct scrub_recover {
59
	refcount_t		refs;
60 61 62 63
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
64
struct scrub_page {
65 66
	struct scrub_block	*sblock;
	struct page		*page;
67
	struct btrfs_device	*dev;
68
	struct list_head	list;
A
Arne Jansen 已提交
69 70
	u64			flags;  /* extent flags */
	u64			generation;
71 72
	u64			logical;
	u64			physical;
73
	u64			physical_for_dev_replace;
74
	atomic_t		refs;
75 76 77
	u8			mirror_num;
	int			have_csum:1;
	int			io_error:1;
A
Arne Jansen 已提交
78
	u8			csum[BTRFS_CSUM_SIZE];
79 80

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
81 82 83 84
};

struct scrub_bio {
	int			index;
85
	struct scrub_ctx	*sctx;
86
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
87
	struct bio		*bio;
88
	blk_status_t		status;
A
Arne Jansen 已提交
89 90
	u64			logical;
	u64			physical;
91 92 93 94 95
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
96
	int			page_count;
A
Arne Jansen 已提交
97 98 99 100
	int			next_free;
	struct btrfs_work	work;
};

101
struct scrub_block {
102
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
103 104
	int			page_count;
	atomic_t		outstanding_pages;
105
	refcount_t		refs; /* free mem on transition to zero */
106
	struct scrub_ctx	*sctx;
107
	struct scrub_parity	*sparity;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115 116

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
117
	};
118
	struct btrfs_work	work;
119 120
};

121 122 123 124 125 126 127 128 129 130 131 132
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

133
	u32			stripe_len;
134

135
	refcount_t		refs;
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

151
	unsigned long		bitmap[];
152 153
};

154
struct scrub_ctx {
155
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
156
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
157 158
	int			first_free;
	int			curr;
159 160
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
161 162 163 164
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
165
	int			readonly;
166
	int			pages_per_rd_bio;
167

168 169 170 171
	/* State of IO submission throttling affecting the associated device */
	ktime_t			throttle_deadline;
	u64			throttle_sent;

172
	int			is_dev_replace;
173
	u64			write_pointer;
174 175 176 177 178

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
179
	bool                    flush_all_writes;
180

A
Arne Jansen 已提交
181 182 183 184 185
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
186 187 188 189 190 191 192 193

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
194
	refcount_t              refs;
A
Arne Jansen 已提交
195 196
};

197 198 199 200
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
201
	u64			physical;
202 203 204 205
	u64			logical;
	struct btrfs_device	*dev;
};

206 207 208 209 210 211 212
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

213
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
214
				     struct scrub_block *sblocks_for_recheck);
215
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
216 217
				struct scrub_block *sblock,
				int retry_failed_mirror);
218
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
219
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
220
					     struct scrub_block *sblock_good);
221 222 223
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
224 225 226
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
227 228 229 230
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
231 232
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
233 234
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
235
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
236
		       u64 physical, struct btrfs_device *dev, u64 flags,
237
		       u64 gen, int mirror_num, u8 *csum,
238
		       u64 physical_for_dev_replace);
239
static void scrub_bio_end_io(struct bio *bio);
240 241
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
242
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243
			       u64 extent_logical, u32 extent_len,
244 245 246 247 248 249
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
250
static void scrub_wr_bio_end_io(struct bio *bio);
251
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
253

254
static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
255
{
256 257
	return spage->recover &&
	       (spage->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
258
}
S
Stefan Behrens 已提交
259

260 261
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
262
	refcount_inc(&sctx->refs);
263 264 265 266 267 268 269
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
270
	scrub_put_ctx(sctx);
271 272
}

273
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
274 275 276 277 278 279 280 281 282
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

283
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
284 285 286
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
287
}
288

289 290
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
291 292 293 294 295 296 297 298
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

299 300 301 302 303 304
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

324
	lockdep_assert_held(&locks_root->lock);
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

340 341 342
	/*
	 * Insert new lock.
	 */
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

368
	lockdep_assert_held(&locks_root->lock);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
388
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
389 390 391 392 393 394 395 396 397 398 399 400 401
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
402 403
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
421
	struct btrfs_block_group *bg_cache;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
468
	struct btrfs_block_group *bg_cache;
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

522
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
523
{
524
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
525
		struct btrfs_ordered_sum *sum;
526
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
527 528 529 530 531 532
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

533
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
534 535 536
{
	int i;

537
	if (!sctx)
A
Arne Jansen 已提交
538 539
		return;

540
	/* this can happen when scrub is cancelled */
541 542
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
543 544

		for (i = 0; i < sbio->page_count; i++) {
545
			WARN_ON(!sbio->pagev[i]->page);
546 547 548 549 550
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

551
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
552
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
553 554 555 556 557 558

		if (!sbio)
			break;
		kfree(sbio);
	}

559
	kfree(sctx->wr_curr_bio);
560 561
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
562 563
}

564 565
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
566
	if (refcount_dec_and_test(&sctx->refs))
567 568 569
		scrub_free_ctx(sctx);
}

570 571
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
572
{
573
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
574 575
	int		i;

576
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
577
	if (!sctx)
A
Arne Jansen 已提交
578
		goto nomem;
579
	refcount_set(&sctx->refs, 1);
580
	sctx->is_dev_replace = is_dev_replace;
581
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
582
	sctx->curr = -1;
583
	sctx->fs_info = fs_info;
584
	INIT_LIST_HEAD(&sctx->csum_list);
585
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
586 587
		struct scrub_bio *sbio;

588
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
589 590
		if (!sbio)
			goto nomem;
591
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
592 593

		sbio->index = i;
594
		sbio->sctx = sctx;
595
		sbio->page_count = 0;
596 597
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
598

599
		if (i != SCRUB_BIOS_PER_SCTX - 1)
600
			sctx->bios[i]->next_free = i + 1;
601
		else
602 603 604
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
605 606
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
607 608 609 610 611
	atomic_set(&sctx->cancel_req, 0);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
612
	sctx->throttle_deadline = 0;
613

614 615 616
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
617
	if (is_dev_replace) {
618
		WARN_ON(!fs_info->dev_replace.tgtdev);
619
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
620
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
621
		sctx->flush_all_writes = false;
622
	}
623

624
	return sctx;
A
Arne Jansen 已提交
625 626

nomem:
627
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
628 629 630
	return ERR_PTR(-ENOMEM);
}

631 632
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
633 634 635 636 637
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
638
	unsigned nofs_flag;
639 640
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
641
	struct scrub_warning *swarn = warn_ctx;
642
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
643 644
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
645
	struct btrfs_key key;
646

D
David Sterba 已提交
647
	local_root = btrfs_get_fs_root(fs_info, root, true);
648 649 650 651 652
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

653 654 655
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
656 657 658 659 660
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
661
	if (ret) {
662
		btrfs_put_root(local_root);
663 664 665 666 667 668 669 670 671 672 673
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

674 675 676 677 678 679
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
680
	ipath = init_ipath(4096, local_root, swarn->path);
681
	memalloc_nofs_restore(nofs_flag);
682
	if (IS_ERR(ipath)) {
683
		btrfs_put_root(local_root);
684 685 686 687
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
688 689 690 691 692 693 694 695 696 697
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
698
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
699
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
700 701
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
702
				  swarn->physical,
J
Jeff Mahoney 已提交
703 704 705
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
706

707
	btrfs_put_root(local_root);
708 709 710 711
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
712
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
713
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
714 715
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
716
			  swarn->physical,
J
Jeff Mahoney 已提交
717
			  root, inum, offset, ret);
718 719 720 721 722

	free_ipath(ipath);
	return 0;
}

723
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
724
{
725 726
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
727 728 729 730 731
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
732 733 734
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
735
	u64 ref_root;
736
	u32 item_size;
737
	u8 ref_level = 0;
738
	int ret;
739

740
	WARN_ON(sblock->page_count < 1);
741
	dev = sblock->pagev[0]->dev;
742
	fs_info = sblock->sctx->fs_info;
743

744
	path = btrfs_alloc_path();
745 746
	if (!path)
		return;
747

D
David Sterba 已提交
748
	swarn.physical = sblock->pagev[0]->physical;
749
	swarn.logical = sblock->pagev[0]->logical;
750
	swarn.errstr = errstr;
751
	swarn.dev = NULL;
752

753 754
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
755 756 757
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
758
	extent_item_pos = swarn.logical - found_key.objectid;
759 760 761 762 763 764
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

765
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
766
		do {
767 768 769
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
770
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
771
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
772
				errstr, swarn.logical,
773
				rcu_str_deref(dev->name),
D
David Sterba 已提交
774
				swarn.physical,
775 776 777 778
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
779
		btrfs_release_path(path);
780
	} else {
781
		btrfs_release_path(path);
782
		swarn.path = path;
783
		swarn.dev = dev;
784 785
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
786
					scrub_print_warning_inode, &swarn, false);
787 788 789 790 791 792
	}

out:
	btrfs_free_path(path);
}

793 794
static inline void scrub_get_recover(struct scrub_recover *recover)
{
795
	refcount_inc(&recover->refs);
796 797
}

798 799
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
800
{
801
	if (refcount_dec_and_test(&recover->refs)) {
802
		btrfs_bio_counter_dec(fs_info);
803
		btrfs_put_bbio(recover->bbio);
804 805 806 807
		kfree(recover);
	}
}

A
Arne Jansen 已提交
808
/*
809 810 811 812 813 814
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
815
 */
816
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
817
{
818
	struct scrub_ctx *sctx = sblock_to_check->sctx;
819
	struct btrfs_device *dev;
820 821 822 823 824 825 826 827 828 829 830
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
831
	bool full_stripe_locked;
832
	unsigned int nofs_flag;
833
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
834 835 836
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
837
	fs_info = sctx->fs_info;
838 839 840 841 842 843 844 845 846 847 848
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
849 850 851 852
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
853
			BTRFS_EXTENT_FLAG_DATA);
854 855
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
856

857 858 859
	if (btrfs_is_zoned(fs_info) && !sctx->is_dev_replace)
		return btrfs_repair_one_zone(fs_info, logical);

860 861 862 863 864 865 866 867 868 869
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
870 871 872 873 874 875 876 877 878
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
879
		memalloc_nofs_restore(nofs_flag);
880 881 882 883 884 885 886 887 888
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

918
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
919
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
920
	if (!sblocks_for_recheck) {
921 922 923 924 925
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
926
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
927
		goto out;
A
Arne Jansen 已提交
928 929
	}

930
	/* setup the context, map the logical blocks and alloc the pages */
931
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
932
	if (ret) {
933 934 935 936
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
937
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
938 939 940 941
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
942

943
	/* build and submit the bios for the failed mirror, check checksums */
944
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
945

946 947 948 949 950 951 952 953 954 955
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
956 957
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
958
		sblock_to_check->data_corrected = 1;
959
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
960

961 962
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
963
		goto out;
A
Arne Jansen 已提交
964 965
	}

966
	if (!sblock_bad->no_io_error_seen) {
967 968 969
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
970
		if (__ratelimit(&rs))
971
			scrub_print_warning("i/o error", sblock_to_check);
972
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
973
	} else if (sblock_bad->checksum_error) {
974 975 976
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
977
		if (__ratelimit(&rs))
978
			scrub_print_warning("checksum error", sblock_to_check);
979
		btrfs_dev_stat_inc_and_print(dev,
980
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
981
	} else if (sblock_bad->header_error) {
982 983 984
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
985
		if (__ratelimit(&rs))
986 987
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
988
		if (sblock_bad->generation_error)
989
			btrfs_dev_stat_inc_and_print(dev,
990 991
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
992
			btrfs_dev_stat_inc_and_print(dev,
993
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
994
	}
A
Arne Jansen 已提交
995

996 997 998 999
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1000

1001 1002
	/*
	 * now build and submit the bios for the other mirrors, check
1003 1004
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1016
	for (mirror_index = 0; ;mirror_index++) {
1017
		struct scrub_block *sblock_other;
1018

1019 1020
		if (mirror_index == failed_mirror_index)
			continue;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1044 1045

		/* build and submit the bios, check checksums */
1046
		scrub_recheck_block(fs_info, sblock_other, 0);
1047 1048

		if (!sblock_other->header_error &&
1049 1050
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1051 1052
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1053
				goto corrected_error;
1054 1055
			} else {
				ret = scrub_repair_block_from_good_copy(
1056 1057 1058
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1059
			}
1060 1061
		}
	}
A
Arne Jansen 已提交
1062

1063 1064
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1065 1066 1067

	/*
	 * In case of I/O errors in the area that is supposed to be
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1080
	 * the final checksum succeeds. But this would be a rare
1081 1082 1083 1084 1085 1086 1087 1088
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1089
	 */
1090
	success = 1;
1091 1092
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1093
		struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1094
		struct scrub_block *sblock_other = NULL;
1095

1096
		/* skip no-io-error page in scrub */
1097
		if (!spage_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1098
			continue;
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
1109
		} else if (spage_bad->io_error) {
1110
			/* try to find no-io-error page in mirrors */
1111 1112 1113 1114 1115 1116 1117 1118 1119
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1120 1121
				}
			}
1122 1123
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1124
		}
A
Arne Jansen 已提交
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1139
				atomic64_inc(
1140
					&fs_info->dev_replace.num_write_errors);
1141 1142 1143 1144 1145 1146 1147
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
1148
				spage_bad->io_error = 0;
1149 1150
			else
				success = 0;
1151
		}
A
Arne Jansen 已提交
1152 1153
	}

1154
	if (success && !sctx->is_dev_replace) {
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1165
			scrub_recheck_block(fs_info, sblock_bad, 1);
1166
			if (!sblock_bad->header_error &&
1167 1168 1169 1170 1171 1172 1173
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1174 1175
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1176
			sblock_to_check->data_corrected = 1;
1177
			spin_unlock(&sctx->stat_lock);
1178 1179
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1180
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1181
		}
1182 1183
	} else {
did_not_correct_error:
1184 1185 1186
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1187 1188
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1189
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1190
	}
A
Arne Jansen 已提交
1191

1192 1193 1194 1195 1196 1197
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1198
			struct scrub_recover *recover;
1199 1200
			int page_index;

1201 1202 1203
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1204 1205
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1206
					scrub_put_recover(fs_info, recover);
1207 1208 1209
					sblock->pagev[page_index]->recover =
									NULL;
				}
1210 1211
				scrub_page_put(sblock->pagev[page_index]);
			}
1212 1213 1214
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1215

1216
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1217
	memalloc_nofs_restore(nofs_flag);
1218 1219
	if (ret < 0)
		return ret;
1220 1221
	return 0;
}
A
Arne Jansen 已提交
1222

1223
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1224
{
Z
Zhao Lei 已提交
1225 1226 1227 1228 1229
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1230 1231 1232
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1233 1234
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1235 1236 1237 1238 1239 1240 1241
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1242
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1263
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1264 1265
				     struct scrub_block *sblocks_for_recheck)
{
1266
	struct scrub_ctx *sctx = original_sblock->sctx;
1267
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1268 1269
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1270 1271 1272
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1273 1274 1275 1276 1277 1278
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1279
	int page_index = 0;
1280
	int mirror_index;
1281
	int nmirrors;
1282 1283 1284
	int ret;

	/*
1285
	 * note: the two members refs and outstanding_pages
1286 1287 1288 1289 1290
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1291 1292 1293
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1294

1295 1296 1297 1298
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1299
		btrfs_bio_counter_inc_blocked(fs_info);
1300
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1301
				logical, &mapped_length, &bbio);
1302
		if (ret || !bbio || mapped_length < sublen) {
1303
			btrfs_put_bbio(bbio);
1304
			btrfs_bio_counter_dec(fs_info);
1305 1306
			return -EIO;
		}
A
Arne Jansen 已提交
1307

1308 1309
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1310
			btrfs_put_bbio(bbio);
1311
			btrfs_bio_counter_dec(fs_info);
1312 1313 1314
			return -ENOMEM;
		}

1315
		refcount_set(&recover->refs, 1);
1316 1317 1318
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1319
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1320

1321
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1322

1323
		for (mirror_index = 0; mirror_index < nmirrors;
1324 1325
		     mirror_index++) {
			struct scrub_block *sblock;
1326
			struct scrub_page *spage;
1327 1328

			sblock = sblocks_for_recheck + mirror_index;
1329
			sblock->sctx = sctx;
1330

1331 1332
			spage = kzalloc(sizeof(*spage), GFP_NOFS);
			if (!spage) {
1333
leave_nomem:
1334 1335 1336
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1337
				scrub_put_recover(fs_info, recover);
1338 1339
				return -ENOMEM;
			}
1340 1341 1342 1343 1344 1345 1346
			scrub_page_get(spage);
			sblock->pagev[page_index] = spage;
			spage->sblock = sblock;
			spage->flags = flags;
			spage->generation = generation;
			spage->logical = logical;
			spage->have_csum = have_csum;
1347
			if (have_csum)
1348
				memcpy(spage->csum,
1349
				       original_sblock->pagev[0]->csum,
1350
				       sctx->fs_info->csum_size);
1351

Z
Zhao Lei 已提交
1352 1353 1354
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1355
						      mapped_length,
1356 1357
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1358 1359 1360
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
1361
			spage->physical = bbio->stripes[stripe_index].physical +
1362
					 stripe_offset;
1363
			spage->dev = bbio->stripes[stripe_index].dev;
1364

1365
			BUG_ON(page_index >= original_sblock->page_count);
1366
			spage->physical_for_dev_replace =
1367 1368
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1369
			/* for missing devices, dev->bdev is NULL */
1370
			spage->mirror_num = mirror_index + 1;
1371
			sblock->page_count++;
1372 1373
			spage->page = alloc_page(GFP_NOFS);
			if (!spage->page)
1374
				goto leave_nomem;
1375 1376

			scrub_get_recover(recover);
1377
			spage->recover = recover;
1378
		}
1379
		scrub_put_recover(fs_info, recover);
1380 1381 1382 1383 1384 1385
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1386 1387
}

1388
static void scrub_bio_wait_endio(struct bio *bio)
1389
{
1390
	complete(bio->bi_private);
1391 1392 1393 1394
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
1395
					struct scrub_page *spage)
1396
{
1397
	DECLARE_COMPLETION_ONSTACK(done);
1398
	int ret;
1399
	int mirror_num;
1400

1401
	bio->bi_iter.bi_sector = spage->logical >> 9;
1402 1403 1404
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1405 1406 1407
	mirror_num = spage->sblock->pagev[0]->mirror_num;
	ret = raid56_parity_recover(fs_info, bio, spage->recover->bbio,
				    spage->recover->map_length,
1408
				    mirror_num, 0);
1409 1410 1411
	if (ret)
		return ret;

1412 1413
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1414 1415
}

L
Liu Bo 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

1428
	bio = btrfs_io_bio_alloc(BIO_MAX_VECS);
L
Liu Bo 已提交
1429 1430 1431
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1432
		struct scrub_page *spage = sblock->pagev[page_num];
L
Liu Bo 已提交
1433

1434 1435
		WARN_ON(!spage->page);
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1455 1456 1457 1458 1459 1460 1461
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1462
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1463 1464
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1465
{
1466
	int page_num;
I
Ilya Dryomov 已提交
1467

1468
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1469

L
Liu Bo 已提交
1470 1471 1472 1473
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1474 1475
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1476
		struct scrub_page *spage = sblock->pagev[page_num];
1477

1478 1479
		if (spage->dev->bdev == NULL) {
			spage->io_error = 1;
1480 1481 1482 1483
			sblock->no_io_error_seen = 0;
			continue;
		}

1484
		WARN_ON(!spage->page);
1485
		bio = btrfs_io_bio_alloc(1);
1486
		bio_set_dev(bio, spage->dev->bdev);
1487

1488 1489
		bio_add_page(bio, spage->page, PAGE_SIZE, 0);
		bio->bi_iter.bi_sector = spage->physical >> 9;
L
Liu Bo 已提交
1490
		bio->bi_opf = REQ_OP_READ;
1491

L
Liu Bo 已提交
1492
		if (btrfsic_submit_bio_wait(bio)) {
1493
			spage->io_error = 1;
L
Liu Bo 已提交
1494
			sblock->no_io_error_seen = 0;
1495
		}
1496

1497 1498
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1499

1500
	if (sblock->no_io_error_seen)
1501
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1502 1503
}

M
Miao Xie 已提交
1504 1505 1506 1507 1508 1509
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1510
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1511 1512 1513
	return !ret;
}

1514
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1515
{
1516 1517 1518
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1519

1520 1521 1522 1523
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1524 1525
}

1526
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1527
					     struct scrub_block *sblock_good)
1528 1529 1530
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1531

1532 1533
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1534

1535 1536
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1537
							   page_num, 1);
1538 1539
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1540
	}
1541 1542 1543 1544 1545 1546 1547 1548

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1549 1550
	struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
	struct scrub_page *spage_good = sblock_good->pagev[page_num];
1551
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1552

1553 1554
	BUG_ON(spage_bad->page == NULL);
	BUG_ON(spage_good->page == NULL);
1555
	if (force_write || sblock_bad->header_error ||
1556
	    sblock_bad->checksum_error || spage_bad->io_error) {
1557 1558 1559
		struct bio *bio;
		int ret;

1560
		if (!spage_bad->dev->bdev) {
1561
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1562
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1563 1564 1565
			return -EIO;
		}

1566
		bio = btrfs_io_bio_alloc(1);
1567 1568
		bio_set_dev(bio, spage_bad->dev->bdev);
		bio->bi_iter.bi_sector = spage_bad->physical >> 9;
D
David Sterba 已提交
1569
		bio->bi_opf = REQ_OP_WRITE;
1570

1571
		ret = bio_add_page(bio, spage_good->page, PAGE_SIZE, 0);
1572 1573 1574
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1575
		}
1576

1577
		if (btrfsic_submit_bio_wait(bio)) {
1578
			btrfs_dev_stat_inc_and_print(spage_bad->dev,
1579
				BTRFS_DEV_STAT_WRITE_ERRS);
1580
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1581 1582 1583
			bio_put(bio);
			return -EIO;
		}
1584
		bio_put(bio);
A
Arne Jansen 已提交
1585 1586
	}

1587 1588 1589
	return 0;
}

1590 1591
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1592
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1593 1594
	int page_num;

1595 1596 1597 1598 1599 1600 1601
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1602 1603 1604 1605 1606
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1607
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1608 1609 1610 1611 1612 1613 1614 1615 1616
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
1617 1618
	if (spage->io_error)
		clear_page(page_address(spage->page));
1619 1620 1621 1622

	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

1623 1624 1625 1626 1627 1628 1629 1630
static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
{
	int ret = 0;
	u64 length;

	if (!btrfs_is_zoned(sctx->fs_info))
		return 0;

1631 1632 1633
	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
		return 0;

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	if (sctx->write_pointer < physical) {
		length = physical - sctx->write_pointer;

		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
						sctx->write_pointer, length);
		if (!ret)
			sctx->write_pointer = physical;
	}
	return ret;
}

1645 1646 1647 1648 1649 1650
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1651
	mutex_lock(&sctx->wr_lock);
1652
again:
1653 1654
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1655
					      GFP_KERNEL);
1656 1657
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1658 1659
			return -ENOMEM;
		}
1660 1661
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1662
	}
1663
	sbio = sctx->wr_curr_bio;
1664 1665 1666
	if (sbio->page_count == 0) {
		struct bio *bio;

1667 1668 1669 1670 1671 1672 1673
		ret = fill_writer_pointer_gap(sctx,
					      spage->physical_for_dev_replace);
		if (ret) {
			mutex_unlock(&sctx->wr_lock);
			return ret;
		}

1674 1675
		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1676
		sbio->dev = sctx->wr_tgtdev;
1677 1678
		bio = sbio->bio;
		if (!bio) {
1679
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1680 1681 1682 1683 1684
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1685
		bio_set_dev(bio, sbio->dev->bdev);
1686
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1687
		bio->bi_opf = REQ_OP_WRITE;
1688
		sbio->status = 0;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1702
			mutex_unlock(&sctx->wr_lock);
1703 1704 1705 1706 1707 1708 1709 1710 1711
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1712
	if (sbio->page_count == sctx->pages_per_wr_bio)
1713
		scrub_wr_submit(sctx);
1714
	mutex_unlock(&sctx->wr_lock);
1715 1716 1717 1718 1719 1720 1721 1722

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1723
	if (!sctx->wr_curr_bio)
1724 1725
		return;

1726 1727
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1728
	WARN_ON(!sbio->bio->bi_bdev);
1729 1730 1731 1732 1733
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1734
	btrfsic_submit_bio(sbio->bio);
1735 1736 1737

	if (btrfs_is_zoned(sctx->fs_info))
		sctx->write_pointer = sbio->physical + sbio->page_count * PAGE_SIZE;
1738 1739
}

1740
static void scrub_wr_bio_end_io(struct bio *bio)
1741 1742
{
	struct scrub_bio *sbio = bio->bi_private;
1743
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1744

1745
	sbio->status = bio->bi_status;
1746 1747
	sbio->bio = bio;

1748
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1749
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1750 1751 1752 1753 1754 1755 1756 1757 1758
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1759
	if (sbio->status) {
1760
		struct btrfs_dev_replace *dev_replace =
1761
			&sbio->sctx->fs_info->dev_replace;
1762 1763 1764 1765 1766

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1767
			atomic64_inc(&dev_replace->num_write_errors);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1780 1781 1782 1783
{
	u64 flags;
	int ret;

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1796 1797
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1809 1810

	return ret;
A
Arne Jansen 已提交
1811 1812
}

1813
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1814
{
1815
	struct scrub_ctx *sctx = sblock->sctx;
1816 1817
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1818
	u8 csum[BTRFS_CSUM_SIZE];
1819
	struct scrub_page *spage;
1820
	char *kaddr;
A
Arne Jansen 已提交
1821

1822
	BUG_ON(sblock->page_count < 1);
1823 1824
	spage = sblock->pagev[0];
	if (!spage->have_csum)
A
Arne Jansen 已提交
1825 1826
		return 0;

1827
	kaddr = page_address(spage->page);
1828

1829 1830
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
1831

1832 1833 1834 1835 1836
	/*
	 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
	 * only contains one sector of data.
	 */
	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
A
Arne Jansen 已提交
1837

1838 1839
	if (memcmp(csum, spage->csum, fs_info->csum_size))
		sblock->checksum_error = 1;
1840
	return sblock->checksum_error;
A
Arne Jansen 已提交
1841 1842
}

1843
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1844
{
1845
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1846
	struct btrfs_header *h;
1847
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1848
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1849 1850
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1851 1852 1853 1854 1855 1856 1857
	/*
	 * This is done in sectorsize steps even for metadata as there's a
	 * constraint for nodesize to be aligned to sectorsize. This will need
	 * to change so we don't misuse data and metadata units like that.
	 */
	const u32 sectorsize = sctx->fs_info->sectorsize;
	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
1858
	int i;
1859
	struct scrub_page *spage;
1860
	char *kaddr;
1861

1862
	BUG_ON(sblock->page_count < 1);
1863 1864 1865 1866

	/* Each member in pagev is just one block, not a full page */
	ASSERT(sblock->page_count == num_sectors);

1867 1868
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1869
	h = (struct btrfs_header *)kaddr;
1870
	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
A
Arne Jansen 已提交
1871 1872 1873 1874 1875 1876

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1877
	if (spage->logical != btrfs_stack_header_bytenr(h))
1878
		sblock->header_error = 1;
A
Arne Jansen 已提交
1879

1880
	if (spage->generation != btrfs_stack_header_generation(h)) {
1881 1882 1883
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1884

1885
	if (!scrub_check_fsid(h->fsid, spage))
1886
		sblock->header_error = 1;
A
Arne Jansen 已提交
1887 1888 1889

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1890
		sblock->header_error = 1;
A
Arne Jansen 已提交
1891

1892 1893 1894
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
1895
			    sectorsize - BTRFS_CSUM_SIZE);
1896

1897
	for (i = 1; i < num_sectors; i++) {
1898
		kaddr = page_address(sblock->pagev[i]->page);
1899
		crypto_shash_update(shash, kaddr, sectorsize);
1900 1901
	}

1902
	crypto_shash_final(shash, calculated_csum);
1903
	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
1904
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1905

1906
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1907 1908
}

1909
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1910 1911
{
	struct btrfs_super_block *s;
1912
	struct scrub_ctx *sctx = sblock->sctx;
1913 1914
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1915
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1916
	struct scrub_page *spage;
1917
	char *kaddr;
1918 1919
	int fail_gen = 0;
	int fail_cor = 0;
1920

1921
	BUG_ON(sblock->page_count < 1);
1922 1923
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1924
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1925

1926
	if (spage->logical != btrfs_super_bytenr(s))
1927
		++fail_cor;
A
Arne Jansen 已提交
1928

1929
	if (spage->generation != btrfs_super_generation(s))
1930
		++fail_gen;
A
Arne Jansen 已提交
1931

1932
	if (!scrub_check_fsid(s->fsid, spage))
1933
		++fail_cor;
A
Arne Jansen 已提交
1934

1935 1936 1937 1938
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1939

1940
	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
1941
		++fail_cor;
A
Arne Jansen 已提交
1942

1943
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1944 1945 1946 1947 1948
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1949 1950 1951
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1952
		if (fail_cor)
1953
			btrfs_dev_stat_inc_and_print(spage->dev,
1954 1955
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1956
			btrfs_dev_stat_inc_and_print(spage->dev,
1957
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1958 1959
	}

1960
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1961 1962
}

1963 1964
static void scrub_block_get(struct scrub_block *sblock)
{
1965
	refcount_inc(&sblock->refs);
1966 1967 1968 1969
}

static void scrub_block_put(struct scrub_block *sblock)
{
1970
	if (refcount_dec_and_test(&sblock->refs)) {
1971 1972
		int i;

1973 1974 1975
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1976
		for (i = 0; i < sblock->page_count; i++)
1977
			scrub_page_put(sblock->pagev[i]);
1978 1979 1980 1981
		kfree(sblock);
	}
}

1982 1983
static void scrub_page_get(struct scrub_page *spage)
{
1984
	atomic_inc(&spage->refs);
1985 1986 1987 1988
}

static void scrub_page_put(struct scrub_page *spage)
{
1989
	if (atomic_dec_and_test(&spage->refs)) {
1990 1991 1992 1993 1994 1995
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
/*
 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
 * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
 */
static void scrub_throttle(struct scrub_ctx *sctx)
{
	const int time_slice = 1000;
	struct scrub_bio *sbio;
	struct btrfs_device *device;
	s64 delta;
	ktime_t now;
	u32 div;
	u64 bwlimit;

	sbio = sctx->bios[sctx->curr];
	device = sbio->dev;
	bwlimit = READ_ONCE(device->scrub_speed_max);
	if (bwlimit == 0)
		return;

	/*
	 * Slice is divided into intervals when the IO is submitted, adjust by
	 * bwlimit and maximum of 64 intervals.
	 */
	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
	div = min_t(u32, 64, div);

	/* Start new epoch, set deadline */
	now = ktime_get();
	if (sctx->throttle_deadline == 0) {
		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
		sctx->throttle_sent = 0;
	}

	/* Still in the time to send? */
	if (ktime_before(now, sctx->throttle_deadline)) {
		/* If current bio is within the limit, send it */
		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
		if (sctx->throttle_sent <= div_u64(bwlimit, div))
			return;

		/* We're over the limit, sleep until the rest of the slice */
		delta = ktime_ms_delta(sctx->throttle_deadline, now);
	} else {
		/* New request after deadline, start new epoch */
		delta = 0;
	}

	if (delta) {
		long timeout;

		timeout = div_u64(delta * HZ, 1000);
		schedule_timeout_interruptible(timeout);
	}

	/* Next call will start the deadline period */
	sctx->throttle_deadline = 0;
}

2055
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2056 2057 2058
{
	struct scrub_bio *sbio;

2059
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2060
		return;
A
Arne Jansen 已提交
2061

2062 2063
	scrub_throttle(sctx);

2064 2065
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2066
	scrub_pending_bio_inc(sctx);
2067
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
2068 2069
}

2070 2071
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2072
{
2073
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2074
	struct scrub_bio *sbio;
2075
	int ret;
A
Arne Jansen 已提交
2076 2077 2078 2079 2080

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2081 2082 2083 2084 2085 2086 2087 2088
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2089
		} else {
2090 2091
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2092 2093
		}
	}
2094
	sbio = sctx->bios[sctx->curr];
2095
	if (sbio->page_count == 0) {
2096 2097
		struct bio *bio;

2098 2099
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2100
		sbio->dev = spage->dev;
2101 2102
		bio = sbio->bio;
		if (!bio) {
2103
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2104 2105
			sbio->bio = bio;
		}
2106 2107 2108

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2109
		bio_set_dev(bio, sbio->dev->bdev);
2110
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2111
		bio->bi_opf = REQ_OP_READ;
2112
		sbio->status = 0;
2113 2114 2115
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2116 2117
		   spage->logical ||
		   sbio->dev != spage->dev) {
2118
		scrub_submit(sctx);
A
Arne Jansen 已提交
2119 2120
		goto again;
	}
2121

2122 2123 2124 2125 2126 2127 2128 2129
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2130
		scrub_submit(sctx);
2131 2132 2133
		goto again;
	}

2134
	scrub_block_get(sblock); /* one for the page added to the bio */
2135 2136
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2137
	if (sbio->page_count == sctx->pages_per_rd_bio)
2138
		scrub_submit(sctx);
2139 2140 2141 2142

	return 0;
}

2143
static void scrub_missing_raid56_end_io(struct bio *bio)
2144 2145
{
	struct scrub_block *sblock = bio->bi_private;
2146
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2147

2148
	if (bio->bi_status)
2149 2150
		sblock->no_io_error_seen = 0;

2151 2152
	bio_put(bio);

2153 2154 2155 2156 2157 2158 2159
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2160
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2161 2162 2163 2164 2165 2166
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2167
	if (sblock->no_io_error_seen)
2168
		scrub_recheck_block_checksum(sblock);
2169 2170 2171 2172 2173

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2174
		btrfs_err_rl_in_rcu(fs_info,
2175
			"IO error rebuilding logical %llu for dev %s",
2176 2177 2178 2179 2180
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2181
		btrfs_err_rl_in_rcu(fs_info,
2182
			"failed to rebuild valid logical %llu for dev %s",
2183 2184 2185 2186 2187
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2188
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2189
		mutex_lock(&sctx->wr_lock);
2190
		scrub_wr_submit(sctx);
2191
		mutex_unlock(&sctx->wr_lock);
2192 2193
	}

2194
	scrub_block_put(sblock);
2195 2196 2197 2198 2199 2200
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2201
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2202 2203
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2204
	struct btrfs_bio *bbio = NULL;
2205 2206 2207 2208 2209
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2210
	btrfs_bio_counter_inc_blocked(fs_info);
2211
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2212
			&length, &bbio);
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2227
	bio = btrfs_io_bio_alloc(0);
2228 2229 2230 2231
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2232
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2233 2234 2235 2236 2237 2238 2239 2240 2241
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2242
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2243 2244 2245 2246 2247 2248 2249 2250
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2251
	btrfs_bio_counter_dec(fs_info);
2252 2253 2254 2255 2256 2257
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2258
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
2259
		       u64 physical, struct btrfs_device *dev, u64 flags,
2260
		       u64 gen, int mirror_num, u8 *csum,
2261
		       u64 physical_for_dev_replace)
2262 2263
{
	struct scrub_block *sblock;
2264
	const u32 sectorsize = sctx->fs_info->sectorsize;
2265 2266
	int index;

2267
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2268
	if (!sblock) {
2269 2270 2271
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2272
		return -ENOMEM;
A
Arne Jansen 已提交
2273
	}
2274

2275 2276
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2277
	refcount_set(&sblock->refs, 1);
2278
	sblock->sctx = sctx;
2279 2280 2281
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2282
		struct scrub_page *spage;
2283 2284 2285 2286 2287 2288
		/*
		 * Here we will allocate one page for one sector to scrub.
		 * This is fine if PAGE_SIZE == sectorsize, but will cost
		 * more memory for PAGE_SIZE > sectorsize case.
		 */
		u32 l = min(sectorsize, len);
2289

2290
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2291 2292
		if (!spage) {
leave_nomem:
2293 2294 2295
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2296
			scrub_block_put(sblock);
2297 2298
			return -ENOMEM;
		}
2299 2300 2301
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2302
		spage->sblock = sblock;
2303
		spage->dev = dev;
2304 2305 2306 2307
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2308
		spage->physical_for_dev_replace = physical_for_dev_replace;
2309 2310 2311
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2312
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2313 2314 2315 2316
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2317
		spage->page = alloc_page(GFP_KERNEL);
2318 2319
		if (!spage->page)
			goto leave_nomem;
2320 2321 2322
		len -= l;
		logical += l;
		physical += l;
2323
		physical_for_dev_replace += l;
2324 2325
	}

2326
	WARN_ON(sblock->page_count == 0);
2327
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2328 2329 2330 2331 2332 2333 2334 2335 2336
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2337

2338 2339 2340 2341 2342
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2343
		}
A
Arne Jansen 已提交
2344

2345
		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2346 2347
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2348

2349 2350
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2351 2352 2353
	return 0;
}

2354
static void scrub_bio_end_io(struct bio *bio)
2355 2356
{
	struct scrub_bio *sbio = bio->bi_private;
2357
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2358

2359
	sbio->status = bio->bi_status;
2360 2361
	sbio->bio = bio;

2362
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2363 2364 2365 2366 2367
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2368
	struct scrub_ctx *sctx = sbio->sctx;
2369 2370
	int i;

2371
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2372
	if (sbio->status) {
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2393 2394 2395 2396
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2397

2398
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2399
		mutex_lock(&sctx->wr_lock);
2400
		scrub_wr_submit(sctx);
2401
		mutex_unlock(&sctx->wr_lock);
2402 2403
	}

2404
	scrub_pending_bio_dec(sctx);
2405 2406
}

2407 2408
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
2409
				       u64 start, u32 len)
2410
{
2411
	u64 offset;
2412
	u32 nsectors;
2413
	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2414 2415 2416 2417 2418 2419 2420

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2421
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2422
	offset = offset >> sectorsize_bits;
2423
	nsectors = len >> sectorsize_bits;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2435
						   u64 start, u32 len)
2436 2437 2438 2439 2440
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2441
						  u64 start, u32 len)
2442 2443 2444 2445
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2446 2447
static void scrub_block_complete(struct scrub_block *sblock)
{
2448 2449
	int corrupted = 0;

2450
	if (!sblock->no_io_error_seen) {
2451
		corrupted = 1;
2452
		scrub_handle_errored_block(sblock);
2453 2454 2455 2456 2457 2458
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2459 2460
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2461 2462
			scrub_write_block_to_dev_replace(sblock);
	}
2463 2464 2465 2466 2467 2468

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

2469
		ASSERT(end - start <= U32_MAX);
2470 2471 2472
		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2473 2474
}

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
	list_del(&sum->list);
	kfree(sum);
}

/*
 * Find the desired csum for range [logical, logical + sectorsize), and store
 * the csum into @csum.
 *
 * The search source is sctx->csum_list, which is a pre-populated list
 * storing bytenr ordered csum ranges.  We're reponsible to cleanup any range
 * that is before @logical.
 *
 * Return 0 if there is no csum for the range.
 * Return 1 if there is csum for the range and copied to @csum.
 */
2493
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2494
{
2495
	bool found = false;
A
Arne Jansen 已提交
2496

2497
	while (!list_empty(&sctx->csum_list)) {
2498 2499 2500 2501
		struct btrfs_ordered_sum *sum = NULL;
		unsigned long index;
		unsigned long num_sectors;

2502
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2503
				       struct btrfs_ordered_sum, list);
2504
		/* The current csum range is beyond our range, no csum found */
A
Arne Jansen 已提交
2505 2506 2507
		if (sum->bytenr > logical)
			break;

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
		/*
		 * The current sum is before our bytenr, since scrub is always
		 * done in bytenr order, the csum will never be used anymore,
		 * clean it up so that later calls won't bother with the range,
		 * and continue search the next range.
		 */
		if (sum->bytenr + sum->len <= logical) {
			drop_csum_range(sctx, sum);
			continue;
		}
A
Arne Jansen 已提交
2518

2519 2520 2521 2522
		/* Now the csum range covers our bytenr, copy the csum */
		found = true;
		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2523

2524 2525 2526 2527 2528 2529 2530
		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
		       sctx->fs_info->csum_size);

		/* Cleanup the range if we're at the end of the csum range */
		if (index == num_sectors - 1)
			drop_csum_range(sctx, sum);
		break;
A
Arne Jansen 已提交
2531
	}
2532 2533
	if (!found)
		return 0;
2534
	return 1;
A
Arne Jansen 已提交
2535 2536 2537
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2538
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2539
			u64 logical, u32 len,
2540
			u64 physical, struct btrfs_device *dev, u64 flags,
2541
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2542 2543 2544
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2545 2546 2547
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2548 2549 2550 2551
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2552 2553 2554 2555
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2556
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2557 2558 2559 2560
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2561 2562 2563 2564
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2565
	} else {
2566
		blocksize = sctx->fs_info->sectorsize;
2567
		WARN_ON(1);
2568
	}
A
Arne Jansen 已提交
2569 2570

	while (len) {
2571
		u32 l = min(len, blocksize);
A
Arne Jansen 已提交
2572 2573 2574 2575
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2576
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2577
			if (have_csum == 0)
2578
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2579
		}
2580
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2581
				  mirror_num, have_csum ? csum : NULL,
2582
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2583 2584 2585 2586 2587
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2588
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2589 2590 2591 2592
	}
	return 0;
}

2593
static int scrub_pages_for_parity(struct scrub_parity *sparity,
2594
				  u64 logical, u32 len,
2595 2596 2597 2598 2599
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
2600
	const u32 sectorsize = sctx->fs_info->sectorsize;
2601 2602
	int index;

2603 2604
	ASSERT(IS_ALIGNED(len, sectorsize));

2605
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2606 2607 2608 2609 2610 2611 2612 2613 2614
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2615
	refcount_set(&sblock->refs, 1);
2616 2617 2618 2619 2620 2621 2622 2623
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;

2624
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2649
			memcpy(spage->csum, csum, sctx->fs_info->csum_size);
2650 2651 2652 2653
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2654
		spage->page = alloc_page(GFP_KERNEL);
2655 2656
		if (!spage->page)
			goto leave_nomem;
2657 2658 2659 2660 2661 2662


		/* Iterate over the stripe range in sectorsize steps */
		len -= sectorsize;
		logical += sectorsize;
		physical += sectorsize;
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
2683
				   u64 logical, u32 len,
2684 2685 2686 2687 2688 2689 2690 2691
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2692
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2693 2694 2695 2696
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2697
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2698
		blocksize = sparity->stripe_len;
2699
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2700
		blocksize = sparity->stripe_len;
2701
	} else {
2702
		blocksize = sctx->fs_info->sectorsize;
2703 2704 2705 2706
		WARN_ON(1);
	}

	while (len) {
2707
		u32 l = min(len, blocksize);
2708 2709 2710 2711
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2712
			have_csum = scrub_find_csum(sctx, logical, csum);
2713 2714 2715 2716 2717 2718 2719 2720
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2721
skip:
2722 2723 2724 2725 2726 2727 2728
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2729 2730 2731 2732 2733 2734 2735 2736
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2737 2738
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2739 2740 2741 2742 2743
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2744 2745
	u32 stripe_index;
	u32 rot;
2746
	const int data_stripes = nr_data_stripes(map);
2747

2748
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2749 2750 2751
	if (stripe_start)
		*stripe_start = last_offset;

2752
	*offset = last_offset;
2753
	for (i = 0; i < data_stripes; i++) {
2754 2755
		*offset = last_offset + i * map->stripe_len;

2756
		stripe_nr = div64_u64(*offset, map->stripe_len);
2757
		stripe_nr = div_u64(stripe_nr, data_stripes);
2758 2759

		/* Work out the disk rotation on this stripe-set */
2760
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2761 2762
		/* calculate which stripe this data locates */
		rot += i;
2763
		stripe_index = rot % map->num_stripes;
2764 2765 2766 2767 2768 2769 2770 2771 2772
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2805
static void scrub_parity_bio_endio(struct bio *bio)
2806 2807
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2808
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2809

2810
	if (bio->bi_status)
2811 2812 2813 2814
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2815

2816 2817
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2818
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2819 2820 2821 2822 2823
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2824
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2835
	length = sparity->logic_end - sparity->logic_start;
2836 2837

	btrfs_bio_counter_inc_blocked(fs_info);
2838
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2839
			       &length, &bbio);
2840
	if (ret || !bbio || !bbio->raid_map)
2841 2842
		goto bbio_out;

2843
	bio = btrfs_io_bio_alloc(0);
2844 2845 2846 2847
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2848
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2849
					      length, sparity->scrub_dev,
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2862
	btrfs_bio_counter_dec(fs_info);
2863
	btrfs_put_bbio(bbio);
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2875
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2876 2877 2878 2879
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2880
	refcount_inc(&sparity->refs);
2881 2882 2883 2884
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2885
	if (!refcount_dec_and_test(&sparity->refs))
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2898
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2899 2900 2901
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2902
	struct btrfs_bio *bbio = NULL;
2903 2904 2905 2906 2907 2908 2909 2910
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
2911 2912
	/* Check the comment in scrub_stripe() for why u32 is enough here */
	u32 extent_len;
2913
	u64 mapped_length;
2914 2915 2916 2917 2918 2919 2920
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2921
	ASSERT(map->stripe_len <= U32_MAX);
2922
	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

2933
	ASSERT(map->stripe_len <= U32_MAX);
2934 2935 2936 2937 2938 2939
	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2940
	refcount_set(&sparity->refs, 1);
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2989 2990 2991 2992
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2993
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2994
				bytes = fs_info->nodesize;
2995 2996 2997 2998 2999 3000
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

3001
			if (key.objectid >= logic_end) {
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3014 3015 3016 3017
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
3018 3019
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3020
					  key.objectid, logic_start);
3021 3022 3023
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
3024 3025 3026 3027
				goto next;
			}
again:
			extent_logical = key.objectid;
3028
			ASSERT(bytes <= U32_MAX);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

3044
			mapped_length = extent_len;
3045
			bbio = NULL;
3046 3047 3048
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3075 3076 3077

			scrub_free_csums(sctx);

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
3107 3108
	if (ret < 0) {
		ASSERT(logic_end - logic_start <= U32_MAX);
3109
		scrub_parity_mark_sectors_error(sparity, logic_start,
3110
						logic_end - logic_start);
3111
	}
3112 3113
	scrub_parity_put(sparity);
	scrub_submit(sctx);
3114
	mutex_lock(&sctx->wr_lock);
3115
	scrub_wr_submit(sctx);
3116
	mutex_unlock(&sctx->wr_lock);
3117 3118 3119 3120 3121

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
static void sync_replace_for_zoned(struct scrub_ctx *sctx)
{
	if (!btrfs_is_zoned(sctx->fs_info))
		return;

	sctx->flush_all_writes = true;
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_lock);

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
}

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
					u64 physical, u64 physical_end)
{
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	int ret = 0;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);

	mutex_lock(&sctx->wr_lock);
	if (sctx->write_pointer < physical_end) {
		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
						    physical,
						    sctx->write_pointer);
		if (ret)
			btrfs_err(fs_info,
				  "zoned: failed to recover write pointer");
	}
	mutex_unlock(&sctx->wr_lock);
	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);

	return ret;
}

3162
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3163 3164
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3165 3166
					   int num, u64 base, u64 length,
					   struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3167
{
3168
	struct btrfs_path *path, *ppath;
3169
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3170 3171 3172
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3173
	struct blk_plug plug;
A
Arne Jansen 已提交
3174 3175 3176 3177 3178 3179 3180
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3181
	u64 logic_end;
3182
	u64 physical_end;
A
Arne Jansen 已提交
3183
	u64 generation;
3184
	int mirror_num;
A
Arne Jansen 已提交
3185 3186
	struct reada_control *reada1;
	struct reada_control *reada2;
3187
	struct btrfs_key key;
A
Arne Jansen 已提交
3188
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3189 3190
	u64 increment = map->stripe_len;
	u64 offset;
3191 3192
	u64 extent_logical;
	u64 extent_physical;
3193 3194 3195 3196 3197
	/*
	 * Unlike chunk length, extent length should never go beyond
	 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
	 */
	u32 extent_len;
3198 3199
	u64 stripe_logical;
	u64 stripe_end;
3200 3201
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3202
	int stop_loop = 0;
D
David Woodhouse 已提交
3203

3204
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3205
	offset = 0;
3206
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3207 3208 3209
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3210
		mirror_num = 1;
A
Arne Jansen 已提交
3211 3212 3213 3214
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3215
		mirror_num = num % map->sub_stripes + 1;
3216
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
A
Arne Jansen 已提交
3217
		increment = map->stripe_len;
3218
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3219 3220
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3221
		mirror_num = num % map->num_stripes + 1;
3222
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3223
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3224 3225
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3226 3227
	} else {
		increment = map->stripe_len;
3228
		mirror_num = 1;
A
Arne Jansen 已提交
3229 3230 3231 3232 3233 3234
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3235 3236
	ppath = btrfs_alloc_path();
	if (!ppath) {
3237
		btrfs_free_path(path);
3238 3239 3240
		return -ENOMEM;
	}

3241 3242 3243 3244 3245
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3246 3247 3248
	path->search_commit_root = 1;
	path->skip_locking = 1;

3249 3250
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3251
	/*
A
Arne Jansen 已提交
3252 3253 3254
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3255 3256
	 */
	logical = base + offset;
3257
	physical_end = physical + nstripes * map->stripe_len;
3258
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3259
		get_raid56_logic_offset(physical_end, num,
3260
					map, &logic_end, NULL);
3261 3262 3263 3264
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3265
	wait_event(sctx->list_wait,
3266
		   atomic_read(&sctx->bios_in_flight) == 0);
3267
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3268 3269

	/* FIXME it might be better to start readahead at commit root */
3270 3271 3272
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3273
	key_end.objectid = logic_end;
3274 3275
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3276
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3277

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	if (cache->flags & BTRFS_BLOCK_GROUP_DATA) {
		key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key.type = BTRFS_EXTENT_CSUM_KEY;
		key.offset = logical;
		key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
		key_end.type = BTRFS_EXTENT_CSUM_KEY;
		key_end.offset = logic_end;
		reada2 = btrfs_reada_add(csum_root, &key, &key_end);
	} else {
		reada2 = NULL;
	}
A
Arne Jansen 已提交
3289 3290 3291

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
3292
	if (!IS_ERR_OR_NULL(reada2))
A
Arne Jansen 已提交
3293 3294
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3295 3296 3297 3298 3299

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3300
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3301

3302 3303 3304 3305 3306 3307 3308 3309
	if (sctx->is_dev_replace &&
	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
		mutex_lock(&sctx->wr_lock);
		sctx->write_pointer = physical;
		mutex_unlock(&sctx->wr_lock);
		sctx->flush_all_writes = true;
	}

A
Arne Jansen 已提交
3310 3311 3312 3313
	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3314
	while (physical < physical_end) {
A
Arne Jansen 已提交
3315 3316 3317 3318
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3319
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3320 3321 3322 3323 3324 3325 3326 3327
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3328
			sctx->flush_all_writes = true;
3329
			scrub_submit(sctx);
3330
			mutex_lock(&sctx->wr_lock);
3331
			scrub_wr_submit(sctx);
3332
			mutex_unlock(&sctx->wr_lock);
3333
			wait_event(sctx->list_wait,
3334
				   atomic_read(&sctx->bios_in_flight) == 0);
3335
			sctx->flush_all_writes = false;
3336
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3337 3338
		}

3339 3340 3341 3342 3343 3344
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3345
				/* it is parity strip */
3346
				stripe_logical += base;
3347
				stripe_end = stripe_logical + increment;
3348 3349 3350 3351 3352 3353 3354 3355 3356
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3357 3358 3359 3360
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3361
		key.objectid = logical;
L
Liu Bo 已提交
3362
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3363 3364 3365 3366

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3367

3368
		if (ret > 0) {
3369
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3370 3371
			if (ret < 0)
				goto out;
3372 3373 3374 3375 3376 3377 3378 3379 3380
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3381 3382
		}

L
Liu Bo 已提交
3383
		stop_loop = 0;
A
Arne Jansen 已提交
3384
		while (1) {
3385 3386
			u64 bytes;

A
Arne Jansen 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3396
				stop_loop = 1;
A
Arne Jansen 已提交
3397 3398 3399 3400
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3401 3402 3403 3404
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3405
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3406
				bytes = fs_info->nodesize;
3407 3408 3409 3410
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3411 3412
				goto next;

L
Liu Bo 已提交
3413 3414 3415 3416 3417 3418
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3419

3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
			spin_lock(&cache->lock);
			if (cache->removed) {
				spin_unlock(&cache->lock);
				ret = 0;
				goto out;
			}
			spin_unlock(&cache->lock);

A
Arne Jansen 已提交
3434 3435 3436 3437 3438
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3439 3440 3441 3442
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3443
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3444
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3445
				       key.objectid, logical);
3446 3447 3448
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3449 3450 3451
				goto next;
			}

L
Liu Bo 已提交
3452 3453
again:
			extent_logical = key.objectid;
3454
			ASSERT(bytes <= U32_MAX);
L
Liu Bo 已提交
3455 3456
			extent_len = bytes;

A
Arne Jansen 已提交
3457 3458 3459
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3460 3461 3462
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3463
			}
L
Liu Bo 已提交
3464
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3465
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3466 3467
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3468 3469
			}

L
Liu Bo 已提交
3470
			extent_physical = extent_logical - logical + physical;
3471 3472
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3473
			if (sctx->is_dev_replace)
3474 3475 3476 3477
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3478

3479 3480 3481 3482 3483 3484 3485 3486
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3487

L
Liu Bo 已提交
3488
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3489 3490
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3491
					   extent_logical - logical + physical);
3492 3493 3494

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3495 3496 3497
			if (ret)
				goto out;

3498 3499 3500
			if (sctx->is_dev_replace)
				sync_replace_for_zoned(sctx);

L
Liu Bo 已提交
3501 3502
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3503
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3504 3505 3506 3507
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3518
								increment;
3519 3520 3521 3522 3523 3524 3525 3526
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3527 3528 3529 3530
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3531 3532 3533 3534 3535
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3536
				if (physical >= physical_end) {
L
Liu Bo 已提交
3537 3538 3539 3540
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3541 3542 3543
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3544
		btrfs_release_path(path);
3545
skip:
A
Arne Jansen 已提交
3546 3547
		logical += increment;
		physical += map->stripe_len;
3548
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3549 3550 3551 3552 3553
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3554
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3555 3556
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3557
	}
3558
out:
A
Arne Jansen 已提交
3559
	/* push queued extents */
3560
	scrub_submit(sctx);
3561
	mutex_lock(&sctx->wr_lock);
3562
	scrub_wr_submit(sctx);
3563
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3564

3565
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3566
	btrfs_free_path(path);
3567
	btrfs_free_path(ppath);
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578

	if (sctx->is_dev_replace && ret >= 0) {
		int ret2;

		ret2 = sync_write_pointer_for_zoned(sctx, base + offset,
						    map->stripes[num].physical,
						    physical_end);
		if (ret2)
			ret = ret2;
	}

A
Arne Jansen 已提交
3579 3580 3581
	return ret < 0 ? ret : 0;
}

3582
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3583 3584
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3585
					  u64 dev_offset,
3586
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3587
{
3588
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3589
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3590 3591 3592
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3593
	int ret = 0;
A
Arne Jansen 已提交
3594

3595 3596 3597
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3598

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3611

3612
	map = em->map_lookup;
A
Arne Jansen 已提交
3613 3614 3615 3616 3617 3618 3619
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3620
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3621
		    map->stripes[i].physical == dev_offset) {
3622
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3623
					   chunk_offset, length, cache);
A
Arne Jansen 已提交
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
static int finish_extent_writes_for_zoned(struct btrfs_root *root,
					  struct btrfs_block_group *cache)
{
	struct btrfs_fs_info *fs_info = cache->fs_info;
	struct btrfs_trans_handle *trans;

	if (!btrfs_is_zoned(fs_info))
		return 0;

	btrfs_wait_block_group_reservations(cache);
	btrfs_wait_nocow_writers(cache);
	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans))
		return PTR_ERR(trans);
	return btrfs_commit_transaction(trans);
}

A
Arne Jansen 已提交
3653
static noinline_for_stack
3654
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3655
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3656 3657 3658
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3659 3660
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3661 3662
	u64 length;
	u64 chunk_offset;
3663
	int ret = 0;
3664
	int ro_set;
A
Arne Jansen 已提交
3665 3666 3667 3668
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3669
	struct btrfs_block_group *cache;
3670
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3671 3672 3673 3674 3675

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3676
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3677 3678 3679
	path->search_commit_root = 1;
	path->skip_locking = 1;

3680
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3681 3682 3683 3684 3685 3686
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3687 3688 3689 3690 3691
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3692 3693 3694 3695
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3696
					break;
3697 3698 3699
				}
			} else {
				ret = 0;
3700 3701
			}
		}
A
Arne Jansen 已提交
3702 3703 3704 3705 3706 3707

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3708
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3709 3710
			break;

3711
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3723 3724
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3725 3726 3727 3728 3729 3730 3731 3732

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3733 3734 3735 3736 3737 3738

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3739 3740 3741 3742
		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
			spin_lock(&cache->lock);
			if (!cache->to_copy) {
				spin_unlock(&cache->lock);
3743 3744
				btrfs_put_block_group(cache);
				goto skip;
3745 3746 3747 3748
			}
			spin_unlock(&cache->lock);
		}

3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3763
		btrfs_freeze_block_group(cache);
3764 3765
		spin_unlock(&cache->lock);

3766 3767 3768 3769 3770 3771 3772 3773 3774
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3805
		 */
3806
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
		if (!ret && sctx->is_dev_replace) {
			ret = finish_extent_writes_for_zoned(root, cache);
			if (ret) {
				btrfs_dec_block_group_ro(cache);
				scrub_pause_off(fs_info);
				btrfs_put_block_group(cache);
				break;
			}
		}

3817 3818
		if (ret == 0) {
			ro_set = 1;
3819
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3820 3821 3822
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3823
			 * It is not a problem for scrub, because
3824 3825 3826 3827
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
3828 3829 3830 3831 3832 3833 3834
		} else if (ret == -ETXTBSY) {
			btrfs_warn(fs_info,
		   "skipping scrub of block group %llu due to active swapfile",
				   cache->start);
			scrub_pause_off(fs_info);
			ret = 0;
			goto skip_unfreeze;
3835
		} else {
J
Jeff Mahoney 已提交
3836
			btrfs_warn(fs_info,
3837
				   "failed setting block group ro: %d", ret);
3838
			btrfs_unfreeze_block_group(cache);
3839
			btrfs_put_block_group(cache);
3840
			scrub_pause_off(fs_info);
3841 3842 3843
			break;
		}

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3856
		down_write(&dev_replace->rwsem);
3857 3858 3859
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3860 3861
		up_write(&dev_replace->rwsem);

3862
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3863
				  found_key.offset, cache);
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3875
		sctx->flush_all_writes = true;
3876
		scrub_submit(sctx);
3877
		mutex_lock(&sctx->wr_lock);
3878
		scrub_wr_submit(sctx);
3879
		mutex_unlock(&sctx->wr_lock);
3880 3881 3882

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3883 3884

		scrub_pause_on(fs_info);
3885 3886 3887 3888 3889 3890

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3891 3892
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3893
		sctx->flush_all_writes = false;
3894

3895
		scrub_pause_off(fs_info);
3896

3897 3898 3899 3900 3901
		if (sctx->is_dev_replace &&
		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
						      cache, found_key.offset))
			ro_set = 0;

3902
		down_write(&dev_replace->rwsem);
3903 3904
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3905
		up_write(&dev_replace->rwsem);
3906

3907
		if (ro_set)
3908
			btrfs_dec_block_group_ro(cache);
3909

3910 3911 3912 3913 3914 3915 3916 3917 3918
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3919
		    cache->used == 0) {
3920
			spin_unlock(&cache->lock);
3921 3922 3923 3924 3925
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3926 3927 3928
		} else {
			spin_unlock(&cache->lock);
		}
3929
skip_unfreeze:
3930
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3931 3932 3933
		btrfs_put_block_group(cache);
		if (ret)
			break;
3934
		if (sctx->is_dev_replace &&
3935
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3936 3937 3938 3939 3940 3941 3942
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3943
skip:
A
Arne Jansen 已提交
3944
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3945
		btrfs_release_path(path);
A
Arne Jansen 已提交
3946 3947 3948
	}

	btrfs_free_path(path);
3949

3950
	return ret;
A
Arne Jansen 已提交
3951 3952
}

3953 3954
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3955 3956 3957 3958 3959
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3960
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3961

3962
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3963
		return -EROFS;
3964

3965
	/* Seed devices of a new filesystem has their own generation. */
3966
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3967 3968
		gen = scrub_dev->generation;
	else
3969
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3970 3971 3972

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3973 3974
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3975
			break;
3976 3977
		if (!btrfs_check_super_location(scrub_dev, bytenr))
			continue;
A
Arne Jansen 已提交
3978

3979
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3980
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3981
				  NULL, bytenr);
A
Arne Jansen 已提交
3982 3983 3984
		if (ret)
			return ret;
	}
3985
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3986 3987 3988 3989

	return 0;
}

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
static void scrub_workers_put(struct btrfs_fs_info *fs_info)
{
	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
					&fs_info->scrub_lock)) {
		struct btrfs_workqueue *scrub_workers = NULL;
		struct btrfs_workqueue *scrub_wr_comp = NULL;
		struct btrfs_workqueue *scrub_parity = NULL;

		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
		mutex_unlock(&fs_info->scrub_lock);

		btrfs_destroy_workqueue(scrub_workers);
		btrfs_destroy_workqueue(scrub_wr_comp);
		btrfs_destroy_workqueue(scrub_parity);
	}
}

A
Arne Jansen 已提交
4013 4014 4015
/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
4016 4017
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
4018
{
4019 4020 4021
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
4022
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4023
	int max_active = fs_info->thread_pool_size;
4024
	int ret = -ENOMEM;
A
Arne Jansen 已提交
4025

4026 4027
	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
		return 0;
4028

4029 4030 4031 4032
	scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
					      is_dev_replace ? 1 : max_active, 4);
	if (!scrub_workers)
		goto fail_scrub_workers;
4033

4034
	scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
4035
					      max_active, 2);
4036 4037
	if (!scrub_wr_comp)
		goto fail_scrub_wr_completion_workers;
4038

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
					     max_active, 2);
	if (!scrub_parity)
		goto fail_scrub_parity_workers;

	mutex_lock(&fs_info->scrub_lock);
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
		ASSERT(fs_info->scrub_workers == NULL &&
		       fs_info->scrub_wr_completion_workers == NULL &&
		       fs_info->scrub_parity_workers == NULL);
		fs_info->scrub_workers = scrub_workers;
		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
		fs_info->scrub_parity_workers = scrub_parity;
4052
		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4053 4054
		mutex_unlock(&fs_info->scrub_lock);
		return 0;
A
Arne Jansen 已提交
4055
	}
4056 4057 4058
	/* Other thread raced in and created the workers for us */
	refcount_inc(&fs_info->scrub_workers_refcnt);
	mutex_unlock(&fs_info->scrub_lock);
4059

4060 4061
	ret = 0;
	btrfs_destroy_workqueue(scrub_parity);
4062
fail_scrub_parity_workers:
4063
	btrfs_destroy_workqueue(scrub_wr_comp);
4064
fail_scrub_wr_completion_workers:
4065
	btrfs_destroy_workqueue(scrub_workers);
4066
fail_scrub_workers:
4067
	return ret;
A
Arne Jansen 已提交
4068 4069
}

4070 4071
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
4072
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
4073
{
4074
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4075 4076
	int ret;
	struct btrfs_device *dev;
4077
	unsigned int nofs_flag;
A
Arne Jansen 已提交
4078

4079
	if (btrfs_fs_closing(fs_info))
4080
		return -EAGAIN;
A
Arne Jansen 已提交
4081

4082
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
4083 4084 4085 4086 4087
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
4088 4089
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
4090 4091
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
4092 4093 4094
		return -EINVAL;
	}

4095
	if (fs_info->nodesize >
4096
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
4097
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
4098 4099 4100 4101
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
4102 4103
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
4104
		       fs_info->nodesize,
4105
		       SCRUB_MAX_PAGES_PER_BLOCK,
4106
		       fs_info->sectorsize,
4107 4108 4109 4110
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

4111 4112 4113 4114
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
4115

4116 4117 4118 4119
	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret)
		goto out_free_ctx;

4120
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4121
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
4122 4123
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
4124
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4125
		ret = -ENODEV;
4126
		goto out;
A
Arne Jansen 已提交
4127 4128
	}

4129 4130
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4131
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4132 4133 4134
		btrfs_err_in_rcu(fs_info,
			"scrub on devid %llu: filesystem on %s is not writable",
				 devid, rcu_str_deref(dev->name));
4135
		ret = -EROFS;
4136
		goto out;
4137 4138
	}

4139
	mutex_lock(&fs_info->scrub_lock);
4140
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4141
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
4142
		mutex_unlock(&fs_info->scrub_lock);
4143
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4144
		ret = -EIO;
4145
		goto out;
A
Arne Jansen 已提交
4146 4147
	}

4148
	down_read(&fs_info->dev_replace.rwsem);
4149
	if (dev->scrub_ctx ||
4150 4151
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4152
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
4153
		mutex_unlock(&fs_info->scrub_lock);
4154
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4155
		ret = -EINPROGRESS;
4156
		goto out;
A
Arne Jansen 已提交
4157
	}
4158
	up_read(&fs_info->dev_replace.rwsem);
4159

4160
	sctx->readonly = readonly;
4161
	dev->scrub_ctx = sctx;
4162
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4163

4164 4165 4166 4167
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
4168
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
4169 4170 4171
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
4182
	if (!is_dev_replace) {
4183
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4184 4185 4186 4187
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
4188
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4189
		ret = scrub_supers(sctx, dev);
4190
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4191
	}
A
Arne Jansen 已提交
4192 4193

	if (!ret)
4194
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4195
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
4196

4197
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
4198 4199 4200
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

4201
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4202

A
Arne Jansen 已提交
4203
	if (progress)
4204
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4205

4206 4207 4208 4209
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
4210
	mutex_lock(&fs_info->scrub_lock);
4211
	dev->scrub_ctx = NULL;
A
Arne Jansen 已提交
4212 4213
	mutex_unlock(&fs_info->scrub_lock);

4214
	scrub_workers_put(fs_info);
4215
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
4216

4217
	return ret;
4218 4219
out:
	scrub_workers_put(fs_info);
4220 4221 4222
out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
4223 4224 4225
	return ret;
}

4226
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

4241
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4242 4243 4244 4245 4246
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4247
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4268
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4269
{
4270
	struct btrfs_fs_info *fs_info = dev->fs_info;
4271
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4272 4273

	mutex_lock(&fs_info->scrub_lock);
4274
	sctx = dev->scrub_ctx;
4275
	if (!sctx) {
A
Arne Jansen 已提交
4276 4277 4278
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4279
	atomic_inc(&sctx->cancel_req);
4280
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
4281 4282
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4283
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4284 4285 4286 4287 4288 4289
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4290

4291
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4292 4293 4294
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4295
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4296

4297
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4298
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
A
Arne Jansen 已提交
4299
	if (dev)
4300
		sctx = dev->scrub_ctx;
4301 4302
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4303
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4304

4305
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4306
}
4307 4308

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4309
			       u64 extent_logical, u32 extent_len,
4310 4311 4312 4313 4314 4315 4316 4317 4318
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4319
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4320 4321 4322
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4323
		btrfs_put_bbio(bbio);
4324 4325 4326 4327 4328 4329
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4330
	btrfs_put_bbio(bbio);
4331
}