scrub.c 90.5 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65 66

struct scrub_page {
67 68
	struct scrub_block	*sblock;
	struct page		*page;
69
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
70 71
	u64			flags;  /* extent flags */
	u64			generation;
72 73
	u64			logical;
	u64			physical;
74
	u64			physical_for_dev_replace;
75
	atomic_t		ref_count;
76 77 78 79 80
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
81 82 83 84 85
	u8			csum[BTRFS_CSUM_SIZE];
};

struct scrub_bio {
	int			index;
86
	struct scrub_ctx	*sctx;
87
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
88 89 90 91
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
92 93 94 95 96
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
97
	int			page_count;
A
Arne Jansen 已提交
98 99 100 101
	int			next_free;
	struct btrfs_work	work;
};

102
struct scrub_block {
103
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 105 106
	int			page_count;
	atomic_t		outstanding_pages;
	atomic_t		ref_count; /* free mem on transition to zero */
107
	struct scrub_ctx	*sctx;
108 109 110 111
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
112
		unsigned int	generation_error:1; /* also sets header_error */
113 114 115
	};
};

116 117 118 119 120 121 122 123
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

124
struct scrub_ctx {
125
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
126
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
127 128
	int			first_free;
	int			curr;
129 130
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
131 132 133 134 135
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
136
	int			readonly;
137
	int			pages_per_rd_bio;
138 139 140
	u32			sectorsize;
	u32			nodesize;
	u32			leafsize;
141 142

	int			is_dev_replace;
143
	struct scrub_wr_ctx	wr_ctx;
144

A
Arne Jansen 已提交
145 146 147 148 149 150 151
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
};

152
struct scrub_fixup_nodatasum {
153
	struct scrub_ctx	*sctx;
154
	struct btrfs_device	*dev;
155 156 157 158 159 160
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

161 162 163 164 165 166 167
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

168 169 170 171 172 173
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
174
	struct list_head	inodes;
175 176 177
	struct btrfs_work	work;
};

178 179 180 181 182 183 184 185 186 187 188 189 190
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	char			*scratch_buf;
	char			*msg_buf;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
	int			msg_bufsize;
	int			scratch_bufsize;
};

191

192 193 194 195
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198
				     struct btrfs_fs_info *fs_info,
199
				     struct scrub_block *original_sblock,
200
				     u64 length, u64 logical,
201
				     struct scrub_block *sblocks_for_recheck);
202 203 204 205
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size);
206 207 208 209 210 211 212 213 214 215 216
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size);
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write);
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
217 218 219
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
220 221 222 223 224
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
225 226
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
227 228
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
229
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230
		       u64 physical, struct btrfs_device *dev, u64 flags,
231 232
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
S
Stefan Behrens 已提交
233
static void scrub_bio_end_io(struct bio *bio, int err);
234 235
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
static void scrub_wr_bio_end_io(struct bio *bio, int err);
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255
				      struct scrub_copy_nocow_ctx *ctx);
256 257 258
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
S
Stefan Behrens 已提交
259 260


261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
}

/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
}

314
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
315
{
316
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
317
		struct btrfs_ordered_sum *sum;
318
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
319 320 321 322 323 324
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

325
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
326 327 328
{
	int i;

329
	if (!sctx)
A
Arne Jansen 已提交
330 331
		return;

332 333
	scrub_free_wr_ctx(&sctx->wr_ctx);

334
	/* this can happen when scrub is cancelled */
335 336
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
337 338

		for (i = 0; i < sbio->page_count; i++) {
339
			WARN_ON(!sbio->pagev[i]->page);
340 341 342 343 344
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

345
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
346
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
347 348 349 350 351 352

		if (!sbio)
			break;
		kfree(sbio);
	}

353 354
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
355 356 357
}

static noinline_for_stack
358
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
359
{
360
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
361 362
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
363 364
	int pages_per_rd_bio;
	int ret;
A
Arne Jansen 已提交
365

366 367 368 369 370 371 372 373 374 375 376 377
	/*
	 * the setting of pages_per_rd_bio is correct for scrub but might
	 * be wrong for the dev_replace code where we might read from
	 * different devices in the initial huge bios. However, that
	 * code is able to correctly handle the case when adding a page
	 * to a bio fails.
	 */
	if (dev->bdev)
		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
					 bio_get_nr_vecs(dev->bdev));
	else
		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
378 379
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
380
		goto nomem;
381
	sctx->is_dev_replace = is_dev_replace;
382
	sctx->pages_per_rd_bio = pages_per_rd_bio;
383
	sctx->curr = -1;
384
	sctx->dev_root = dev->dev_root;
385
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
386 387 388 389 390
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
391
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
392 393

		sbio->index = i;
394
		sbio->sctx = sctx;
395 396
		sbio->page_count = 0;
		sbio->work.func = scrub_bio_end_io_worker;
A
Arne Jansen 已提交
397

398
		if (i != SCRUB_BIOS_PER_SCTX - 1)
399
			sctx->bios[i]->next_free = i + 1;
400
		else
401 402 403 404 405 406
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->leafsize = dev->dev_root->leafsize;
	sctx->sectorsize = dev->dev_root->sectorsize;
407 408
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
409 410 411 412 413 414 415
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
416 417 418 419 420 421 422

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
423
	return sctx;
A
Arne Jansen 已提交
424 425

nomem:
426
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
427 428 429
	return ERR_PTR(-ENOMEM);
}

430 431
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
432 433 434 435 436 437 438
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
439
	struct scrub_warning *swarn = warn_ctx;
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

	ret = inode_item_info(inum, 0, local_root, swarn->path);
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
468 469 470 471 472
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
473 474 475 476 477 478 479 480 481 482
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
483
		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
484 485
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
			"length %llu, links %u (path: %s)\n", swarn->errstr,
486
			swarn->logical, rcu_str_deref(swarn->dev->name),
487 488
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
489
			(char *)(unsigned long)ipath->fspath->val[i]);
490 491 492 493 494

	free_ipath(ipath);
	return 0;

err:
495
	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
496 497
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
		"resolving failed with ret=%d\n", swarn->errstr,
498
		swarn->logical, rcu_str_deref(swarn->dev->name),
499 500 501 502 503 504
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

505
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
506
{
507 508
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
509 510 511 512 513
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
514 515 516
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
517
	u64 ref_root;
518
	u32 item_size;
519 520
	u8 ref_level;
	const int bufsize = 4096;
521
	int ret;
522

523
	WARN_ON(sblock->page_count < 1);
524
	dev = sblock->pagev[0]->dev;
525 526
	fs_info = sblock->sctx->dev_root->fs_info;

527 528 529 530
	path = btrfs_alloc_path();

	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
531 532
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
533
	swarn.errstr = errstr;
534
	swarn.dev = NULL;
535 536 537 538 539 540
	swarn.msg_bufsize = bufsize;
	swarn.scratch_bufsize = bufsize;

	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
		goto out;

541 542
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
543 544 545
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
546
	extent_item_pos = swarn.logical - found_key.objectid;
547 548 549 550 551 552
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

553
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
554 555 556
		do {
			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
							&ref_root, &ref_level);
557
			printk_in_rcu(KERN_WARNING
S
Stefan Behrens 已提交
558
				"btrfs: %s at logical %llu on dev %s, "
559
				"sector %llu: metadata %s (level %d) in tree "
560 561
				"%llu\n", errstr, swarn.logical,
				rcu_str_deref(dev->name),
562 563 564 565 566
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
567
		btrfs_release_path(path);
568
	} else {
569
		btrfs_release_path(path);
570
		swarn.path = path;
571
		swarn.dev = dev;
572 573
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
574 575 576 577 578 579 580 581 582
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
	kfree(swarn.scratch_buf);
	kfree(swarn.msg_buf);
}

583
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
584
{
585
	struct page *page = NULL;
586
	unsigned long index;
587
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
588
	int ret;
589
	int corrected = 0;
590
	struct btrfs_key key;
591
	struct inode *inode = NULL;
592
	struct btrfs_fs_info *fs_info;
593 594
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
595
	int srcu_index;
596 597 598 599

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
600 601 602 603 604 605 606

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
607
		return PTR_ERR(local_root);
608
	}
609 610 611 612

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
613 614
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
615 616 617 618 619 620
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
647 648
		fs_info = BTRFS_I(inode)->root->fs_info;
		ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
					fixup->logical, page,
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
	if (inode)
		iput(inode);
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
705
	struct scrub_ctx *sctx;
706 707 708 709 710 711
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
712
	sctx = fixup->sctx;
713 714 715 716
	fs_info = fixup->root->fs_info;

	path = btrfs_alloc_path();
	if (!path) {
717 718 719
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

748 749 750
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
751 752 753 754 755

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
756 757 758
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
759 760 761
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
762
		printk_ratelimited_in_rcu(KERN_ERR
763
			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
764
			fixup->logical, rcu_str_deref(fixup->dev->name));
765 766 767 768 769
	}

	btrfs_free_path(path);
	kfree(fixup);

770
	scrub_pending_trans_workers_dec(sctx);
771 772
}

A
Arne Jansen 已提交
773
/*
774 775 776 777 778 779
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
780
 */
781
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
782
{
783
	struct scrub_ctx *sctx = sblock_to_check->sctx;
784
	struct btrfs_device *dev;
785 786 787 788 789 790 791 792 793 794 795 796 797 798
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	u64 generation;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	u8 *csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
799
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
800 801 802
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
803
	fs_info = sctx->dev_root->fs_info;
804 805 806 807 808 809 810 811 812 813 814
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
815
	length = sblock_to_check->page_count * PAGE_SIZE;
816 817 818 819 820
	logical = sblock_to_check->pagev[0]->logical;
	generation = sblock_to_check->pagev[0]->generation;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
821
			BTRFS_EXTENT_FLAG_DATA);
822 823 824
	have_csum = sblock_to_check->pagev[0]->have_csum;
	csum = sblock_to_check->pagev[0]->csum;
	dev = sblock_to_check->pagev[0]->dev;
825

826 827 828 829 830
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
				     sizeof(*sblocks_for_recheck),
				     GFP_NOFS);
	if (!sblocks_for_recheck) {
864 865 866 867 868
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
869
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
870
		goto out;
A
Arne Jansen 已提交
871 872
	}

873
	/* setup the context, map the logical blocks and alloc the pages */
874
	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
875 876
					logical, sblocks_for_recheck);
	if (ret) {
877 878 879 880
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
881
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
882 883 884 885
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
886

887
	/* build and submit the bios for the failed mirror, check checksums */
888 889
	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
			    csum, generation, sctx->csum_size);
A
Arne Jansen 已提交
890

891 892 893 894 895 896 897 898 899 900
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
901 902 903
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
904

905 906
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
907
		goto out;
A
Arne Jansen 已提交
908 909
	}

910
	if (!sblock_bad->no_io_error_seen) {
911 912 913
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
914 915
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
916
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
917
	} else if (sblock_bad->checksum_error) {
918 919 920
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
921 922
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
923
		btrfs_dev_stat_inc_and_print(dev,
924
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
925
	} else if (sblock_bad->header_error) {
926 927 928
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
929 930 931
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
932
		if (sblock_bad->generation_error)
933
			btrfs_dev_stat_inc_and_print(dev,
934 935
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
936
			btrfs_dev_stat_inc_and_print(dev,
937
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
938
	}
A
Arne Jansen 已提交
939

940 941 942 943
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
944

945 946
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
947

948 949 950
nodatasum_case:
		WARN_ON(sctx->is_dev_replace);

951 952 953 954 955 956 957 958 959 960
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
961
		fixup_nodatasum->sctx = sctx;
962
		fixup_nodatasum->dev = dev;
963 964 965
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
966
		scrub_pending_trans_workers_inc(sctx);
967 968 969 970
		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
		btrfs_queue_worker(&fs_info->scrub_workers,
				   &fixup_nodatasum->work);
		goto out;
A
Arne Jansen 已提交
971 972
	}

973 974
	/*
	 * now build and submit the bios for the other mirrors, check
975 976
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
992
		struct scrub_block *sblock_other;
993

994 995 996 997 998
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
999 1000 1001 1002 1003
		scrub_recheck_block(fs_info, sblock_other, is_metadata,
				    have_csum, csum, generation,
				    sctx->csum_size);

		if (!sblock_other->header_error &&
1004 1005
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1006 1007 1008 1009 1010 1011 1012 1013 1014
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
			} else {
				int force_write = is_metadata || have_csum;

				ret = scrub_repair_block_from_good_copy(
						sblock_bad, sblock_other,
						force_write);
			}
1015 1016 1017 1018
			if (0 == ret)
				goto corrected_error;
		}
	}
A
Arne Jansen 已提交
1019 1020

	/*
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	 * for dev_replace, pick good pages and write to the target device.
	 */
	if (sctx->is_dev_replace) {
		success = 1;
		for (page_num = 0; page_num < sblock_bad->page_count;
		     page_num++) {
			int sub_success;

			sub_success = 0;
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				struct scrub_block *sblock_other =
					sblocks_for_recheck + mirror_index;
				struct scrub_page *page_other =
					sblock_other->pagev[page_num];

				if (!page_other->io_error) {
					ret = scrub_write_page_to_dev_replace(
							sblock_other, page_num);
					if (ret == 0) {
						/* succeeded for this page */
						sub_success = 1;
						break;
					} else {
						btrfs_dev_replace_stats_inc(
							&sctx->dev_root->
							fs_info->dev_replace.
							num_write_errors);
					}
				}
			}

			if (!sub_success) {
				/*
				 * did not find a mirror to fetch the page
				 * from. scrub_write_page_to_dev_replace()
				 * handles this case (page->io_error), by
				 * filling the block with zeros before
				 * submitting the write request
				 */
				success = 0;
				ret = scrub_write_page_to_dev_replace(
						sblock_bad, page_num);
				if (ret)
					btrfs_dev_replace_stats_inc(
						&sctx->dev_root->fs_info->
						dev_replace.num_write_errors);
			}
		}

		goto out;
	}

	/*
	 * for regular scrub, repair those pages that are errored.
	 * In case of I/O errors in the area that is supposed to be
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1100 1101
	 */

1102 1103 1104 1105 1106 1107
	/* can only fix I/O errors from here on */
	if (sblock_bad->no_io_error_seen)
		goto did_not_correct_error;

	success = 1;
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1108
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1109 1110

		if (!page_bad->io_error)
A
Arne Jansen 已提交
1111
			continue;
1112 1113 1114 1115 1116 1117 1118

		for (mirror_index = 0;
		     mirror_index < BTRFS_MAX_MIRRORS &&
		     sblocks_for_recheck[mirror_index].page_count > 0;
		     mirror_index++) {
			struct scrub_block *sblock_other = sblocks_for_recheck +
							   mirror_index;
1119 1120
			struct scrub_page *page_other = sblock_other->pagev[
							page_num];
1121 1122 1123 1124 1125 1126 1127 1128 1129

			if (!page_other->io_error) {
				ret = scrub_repair_page_from_good_copy(
					sblock_bad, sblock_other, page_num, 0);
				if (0 == ret) {
					page_bad->io_error = 0;
					break; /* succeeded for this page */
				}
			}
I
Ilya Dryomov 已提交
1130
		}
A
Arne Jansen 已提交
1131

1132 1133 1134 1135
		if (page_bad->io_error) {
			/* did not find a mirror to copy the page from */
			success = 0;
		}
A
Arne Jansen 已提交
1136 1137
	}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	if (success) {
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1149 1150 1151 1152
			scrub_recheck_block(fs_info, sblock_bad,
					    is_metadata, have_csum, csum,
					    generation, sctx->csum_size);
			if (!sblock_bad->header_error &&
1153 1154 1155 1156 1157 1158 1159
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1160 1161 1162
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
			spin_unlock(&sctx->stat_lock);
1163
			printk_ratelimited_in_rcu(KERN_ERR
1164
				"btrfs: fixed up error at logical %llu on dev %s\n",
1165
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1166
		}
1167 1168
	} else {
did_not_correct_error:
1169 1170 1171
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1172
		printk_ratelimited_in_rcu(KERN_ERR
1173
			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1174
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1175
	}
A
Arne Jansen 已提交
1176

1177 1178 1179 1180 1181 1182 1183 1184
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
			int page_index;

1185 1186 1187 1188 1189
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
				scrub_page_put(sblock->pagev[page_index]);
			}
1190 1191 1192
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1193

1194 1195
	return 0;
}
A
Arne Jansen 已提交
1196

1197
static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1198
				     struct btrfs_fs_info *fs_info,
1199
				     struct scrub_block *original_sblock,
1200 1201 1202 1203 1204 1205 1206 1207
				     u64 length, u64 logical,
				     struct scrub_block *sblocks_for_recheck)
{
	int page_index;
	int mirror_index;
	int ret;

	/*
1208
	 * note: the two members ref_count and outstanding_pages
1209 1210 1211 1212 1213 1214 1215 1216 1217
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	page_index = 0;
	while (length > 0) {
		u64 sublen = min_t(u64, length, PAGE_SIZE);
		u64 mapped_length = sublen;
		struct btrfs_bio *bbio = NULL;
A
Arne Jansen 已提交
1218

1219 1220 1221 1222
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1223 1224
		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
				      &mapped_length, &bbio, 0);
1225 1226 1227 1228
		if (ret || !bbio || mapped_length < sublen) {
			kfree(bbio);
			return -EIO;
		}
A
Arne Jansen 已提交
1229

1230
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1231 1232 1233 1234 1235 1236 1237 1238 1239
		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			if (mirror_index >= BTRFS_MAX_MIRRORS)
				continue;

			sblock = sblocks_for_recheck + mirror_index;
1240 1241 1242 1243
			sblock->sctx = sctx;
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1244 1245 1246
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1247
				kfree(bbio);
1248 1249
				return -ENOMEM;
			}
1250 1251 1252 1253
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
			page->logical = logical;
			page->physical = bbio->stripes[mirror_index].physical;
1254 1255 1256 1257
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1258 1259 1260
			/* for missing devices, dev->bdev is NULL */
			page->dev = bbio->stripes[mirror_index].dev;
			page->mirror_num = mirror_index + 1;
1261
			sblock->page_count++;
1262 1263 1264
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1265 1266 1267 1268 1269 1270 1271 1272
		}
		kfree(bbio);
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1273 1274
}

1275 1276 1277 1278 1279 1280 1281
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1282 1283 1284 1285
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
				struct scrub_block *sblock, int is_metadata,
				int have_csum, u8 *csum, u64 generation,
				u16 csum_size)
I
Ilya Dryomov 已提交
1286
{
1287
	int page_num;
I
Ilya Dryomov 已提交
1288

1289 1290 1291
	sblock->no_io_error_seen = 1;
	sblock->header_error = 0;
	sblock->checksum_error = 0;
I
Ilya Dryomov 已提交
1292

1293 1294
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1295
		struct scrub_page *page = sblock->pagev[page_num];
1296

1297
		if (page->dev->bdev == NULL) {
1298 1299 1300 1301 1302
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1303
		WARN_ON(!page->page);
1304
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1305 1306 1307 1308 1309
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1310
		bio->bi_bdev = page->dev->bdev;
1311 1312
		bio->bi_sector = page->physical >> 9;

1313
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1314
		if (btrfsic_submit_bio_wait(READ, bio))
1315
			sblock->no_io_error_seen = 0;
1316

1317 1318
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1319

1320 1321 1322 1323 1324
	if (sblock->no_io_error_seen)
		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
					     have_csum, csum, generation,
					     csum_size);

1325
	return;
A
Arne Jansen 已提交
1326 1327
}

1328 1329 1330 1331 1332
static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
					 struct scrub_block *sblock,
					 int is_metadata, int have_csum,
					 const u8 *csum, u64 generation,
					 u16 csum_size)
A
Arne Jansen 已提交
1333
{
1334 1335 1336 1337 1338
	int page_num;
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u32 crc = ~(u32)0;
	void *mapped_buffer;

1339
	WARN_ON(!sblock->pagev[0]->page);
1340 1341 1342
	if (is_metadata) {
		struct btrfs_header *h;

1343
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1344 1345
		h = (struct btrfs_header *)mapped_buffer;

1346
		if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1347 1348
		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1349
			   BTRFS_UUID_SIZE)) {
1350
			sblock->header_error = 1;
1351
		} else if (generation != btrfs_stack_header_generation(h)) {
1352 1353 1354
			sblock->header_error = 1;
			sblock->generation_error = 1;
		}
1355 1356 1357 1358
		csum = h->csum;
	} else {
		if (!have_csum)
			return;
A
Arne Jansen 已提交
1359

1360
		mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1361
	}
A
Arne Jansen 已提交
1362

1363 1364
	for (page_num = 0;;) {
		if (page_num == 0 && is_metadata)
1365
			crc = btrfs_csum_data(
1366 1367 1368
				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
		else
1369
			crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1370

1371
		kunmap_atomic(mapped_buffer);
1372 1373 1374
		page_num++;
		if (page_num >= sblock->page_count)
			break;
1375
		WARN_ON(!sblock->pagev[page_num]->page);
1376

1377
		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1378 1379 1380 1381 1382
	}

	btrfs_csum_final(crc, calculated_csum);
	if (memcmp(calculated_csum, csum, csum_size))
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1383 1384
}

1385 1386 1387 1388 1389 1390
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
					     struct scrub_block *sblock_good,
					     int force_write)
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1391

1392 1393
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1394

1395 1396 1397 1398 1399 1400
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
							   page_num,
							   force_write);
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1401
	}
1402 1403 1404 1405 1406 1407 1408 1409

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1410 1411
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1412

1413 1414
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1415 1416 1417 1418 1419
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1420 1421 1422 1423 1424 1425
		if (!page_bad->dev->bdev) {
			printk_ratelimited(KERN_WARNING
				"btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
			return -EIO;
		}

1426
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1427 1428
		if (!bio)
			return -EIO;
1429
		bio->bi_bdev = page_bad->dev->bdev;
1430 1431 1432 1433 1434 1435
		bio->bi_sector = page_bad->physical >> 9;

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1436
		}
1437

1438
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1439 1440
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1441 1442 1443
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1444 1445 1446
			bio_put(bio);
			return -EIO;
		}
1447
		bio_put(bio);
A
Arne Jansen 已提交
1448 1449
	}

1450 1451 1452
	return 0;
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1512
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
		bio->bi_sector = sbio->physical >> 9;
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

static void scrub_wr_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

	sbio->err = err;
	sbio->bio = bio;

	sbio->work.func = scrub_wr_bio_end_io_worker;
	btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1615 1616 1617 1618
{
	u64 flags;
	int ret;

1619 1620
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1632 1633

	return ret;
A
Arne Jansen 已提交
1634 1635
}

1636
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1637
{
1638
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1639
	u8 csum[BTRFS_CSUM_SIZE];
1640 1641 1642
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1643 1644
	u32 crc = ~(u32)0;
	int fail = 0;
1645 1646
	u64 len;
	int index;
A
Arne Jansen 已提交
1647

1648
	BUG_ON(sblock->page_count < 1);
1649
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1650 1651
		return 0;

1652 1653
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1654
	buffer = kmap_atomic(page);
1655

1656
	len = sctx->sectorsize;
1657 1658 1659 1660
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1661
		crc = btrfs_csum_data(buffer, crc, l);
1662
		kunmap_atomic(buffer);
1663 1664 1665 1666 1667
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1668 1669
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1670
		buffer = kmap_atomic(page);
1671 1672
	}

A
Arne Jansen 已提交
1673
	btrfs_csum_final(crc, csum);
1674
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1675 1676 1677 1678 1679
		fail = 1;

	return fail;
}

1680
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1681
{
1682
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1683
	struct btrfs_header *h;
1684
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1685
	struct btrfs_fs_info *fs_info = root->fs_info;
1686 1687 1688 1689 1690 1691
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1692 1693 1694
	u32 crc = ~(u32)0;
	int fail = 0;
	int crc_fail = 0;
1695 1696 1697 1698
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1699
	page = sblock->pagev[0]->page;
1700
	mapped_buffer = kmap_atomic(page);
1701
	h = (struct btrfs_header *)mapped_buffer;
1702
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1703 1704 1705 1706 1707 1708 1709

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */

1710
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
A
Arne Jansen 已提交
1711 1712
		++fail;

1713
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
A
Arne Jansen 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722
		++fail;

	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
		++fail;

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
		++fail;

1723
	WARN_ON(sctx->nodesize != sctx->leafsize);
1724
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1725 1726 1727 1728 1729 1730
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1731
		crc = btrfs_csum_data(p, crc, l);
1732
		kunmap_atomic(mapped_buffer);
1733 1734 1735 1736 1737
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1738 1739
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1740
		mapped_buffer = kmap_atomic(page);
1741 1742 1743 1744 1745
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1746
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
A
Arne Jansen 已提交
1747 1748 1749 1750 1751
		++crc_fail;

	return fail || crc_fail;
}

1752
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1753 1754
{
	struct btrfs_super_block *s;
1755
	struct scrub_ctx *sctx = sblock->sctx;
1756
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1757
	struct btrfs_fs_info *fs_info = root->fs_info;
1758 1759 1760 1761 1762 1763
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1764
	u32 crc = ~(u32)0;
1765 1766
	int fail_gen = 0;
	int fail_cor = 0;
1767 1768
	u64 len;
	int index;
A
Arne Jansen 已提交
1769

1770
	BUG_ON(sblock->page_count < 1);
1771
	page = sblock->pagev[0]->page;
1772
	mapped_buffer = kmap_atomic(page);
1773
	s = (struct btrfs_super_block *)mapped_buffer;
1774
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1775

1776
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1777
		++fail_cor;
A
Arne Jansen 已提交
1778

1779
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1780
		++fail_gen;
A
Arne Jansen 已提交
1781 1782

	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1783
		++fail_cor;
A
Arne Jansen 已提交
1784

1785 1786 1787 1788 1789 1790 1791
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1792
		crc = btrfs_csum_data(p, crc, l);
1793
		kunmap_atomic(mapped_buffer);
1794 1795 1796 1797 1798
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1799 1800
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1801
		mapped_buffer = kmap_atomic(page);
1802 1803 1804 1805 1806
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1807
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1808
		++fail_cor;
A
Arne Jansen 已提交
1809

1810
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1811 1812 1813 1814 1815
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1816 1817 1818
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1819
		if (fail_cor)
1820
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1821 1822
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1823
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1824
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1825 1826
	}

1827
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1828 1829
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static void scrub_block_get(struct scrub_block *sblock)
{
	atomic_inc(&sblock->ref_count);
}

static void scrub_block_put(struct scrub_block *sblock)
{
	if (atomic_dec_and_test(&sblock->ref_count)) {
		int i;

		for (i = 0; i < sblock->page_count; i++)
1841
			scrub_page_put(sblock->pagev[i]);
1842 1843 1844 1845
		kfree(sblock);
	}
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static void scrub_page_get(struct scrub_page *spage)
{
	atomic_inc(&spage->ref_count);
}

static void scrub_page_put(struct scrub_page *spage)
{
	if (atomic_dec_and_test(&spage->ref_count)) {
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1860
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
1861 1862 1863
{
	struct scrub_bio *sbio;

1864
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
1865
		return;
A
Arne Jansen 已提交
1866

1867 1868
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
1869
	scrub_pending_bio_inc(sctx);
A
Arne Jansen 已提交
1870

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	if (!sbio->bio->bi_bdev) {
		/*
		 * this case should not happen. If btrfs_map_block() is
		 * wrong, it could happen for dev-replace operations on
		 * missing devices when no mirrors are available, but in
		 * this case it should already fail the mount.
		 * This case is handled correctly (but _very_ slowly).
		 */
		printk_ratelimited(KERN_WARNING
			"btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
		bio_endio(sbio->bio, -EIO);
	} else {
		btrfsic_submit_bio(READ, sbio->bio);
	}
A
Arne Jansen 已提交
1885 1886
}

1887 1888
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
1889
{
1890
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
1891
	struct scrub_bio *sbio;
1892
	int ret;
A
Arne Jansen 已提交
1893 1894 1895 1896 1897

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
1898 1899 1900 1901 1902 1903 1904 1905
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
1906
		} else {
1907 1908
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
1909 1910
		}
	}
1911
	sbio = sctx->bios[sctx->curr];
1912
	if (sbio->page_count == 0) {
1913 1914
		struct bio *bio;

1915 1916
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
1917
		sbio->dev = spage->dev;
1918 1919
		bio = sbio->bio;
		if (!bio) {
1920
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1921 1922 1923 1924
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
1925 1926 1927

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
1928 1929
		bio->bi_bdev = sbio->dev->bdev;
		bio->bi_sector = sbio->physical >> 9;
1930
		sbio->err = 0;
1931 1932 1933
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1934 1935
		   spage->logical ||
		   sbio->dev != spage->dev) {
1936
		scrub_submit(sctx);
A
Arne Jansen 已提交
1937 1938
		goto again;
	}
1939

1940 1941 1942 1943 1944 1945 1946 1947
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
1948
		scrub_submit(sctx);
1949 1950 1951
		goto again;
	}

1952
	scrub_block_get(sblock); /* one for the page added to the bio */
1953 1954
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
1955
	if (sbio->page_count == sctx->pages_per_rd_bio)
1956
		scrub_submit(sctx);
1957 1958 1959 1960

	return 0;
}

1961
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1962
		       u64 physical, struct btrfs_device *dev, u64 flags,
1963 1964
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
1965 1966 1967 1968 1969 1970
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
1971 1972 1973
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
1974
		return -ENOMEM;
A
Arne Jansen 已提交
1975
	}
1976

1977 1978
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
1979
	atomic_set(&sblock->ref_count, 1);
1980
	sblock->sctx = sctx;
1981 1982 1983
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
1984
		struct scrub_page *spage;
1985 1986
		u64 l = min_t(u64, len, PAGE_SIZE);

1987 1988 1989
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
1990 1991 1992
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
1993
			scrub_block_put(sblock);
1994 1995
			return -ENOMEM;
		}
1996 1997 1998
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
1999
		spage->sblock = sblock;
2000
		spage->dev = dev;
2001 2002 2003 2004
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2005
		spage->physical_for_dev_replace = physical_for_dev_replace;
2006 2007 2008
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2009
			memcpy(spage->csum, csum, sctx->csum_size);
2010 2011 2012 2013
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2014 2015 2016
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2017 2018 2019
		len -= l;
		logical += l;
		physical += l;
2020
		physical_for_dev_replace += l;
2021 2022
	}

2023
	WARN_ON(sblock->page_count == 0);
2024
	for (index = 0; index < sblock->page_count; index++) {
2025
		struct scrub_page *spage = sblock->pagev[index];
2026 2027
		int ret;

2028
		ret = scrub_add_page_to_rd_bio(sctx, spage);
2029 2030
		if (ret) {
			scrub_block_put(sblock);
2031
			return ret;
2032
		}
2033
	}
A
Arne Jansen 已提交
2034

2035
	if (force)
2036
		scrub_submit(sctx);
A
Arne Jansen 已提交
2037

2038 2039
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2040 2041 2042
	return 0;
}

2043 2044 2045
static void scrub_bio_end_io(struct bio *bio, int err)
{
	struct scrub_bio *sbio = bio->bi_private;
2046
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

	sbio->err = err;
	sbio->bio = bio;

	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2057
	struct scrub_ctx *sctx = sbio->sctx;
2058 2059
	int i;

2060
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2082 2083 2084 2085
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2086 2087 2088 2089 2090 2091 2092 2093

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2094
	scrub_pending_bio_dec(sctx);
2095 2096 2097 2098
}

static void scrub_block_complete(struct scrub_block *sblock)
{
2099
	if (!sblock->no_io_error_seen) {
2100
		scrub_handle_errored_block(sblock);
2101 2102 2103 2104 2105 2106 2107 2108 2109
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock);
	}
2110 2111
}

2112
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
A
Arne Jansen 已提交
2113 2114 2115
			   u8 *csum)
{
	struct btrfs_ordered_sum *sum = NULL;
2116
	unsigned long index;
A
Arne Jansen 已提交
2117 2118
	unsigned long num_sectors;

2119 2120
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2121 2122 2123 2124 2125 2126
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2127
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2128 2129 2130 2131 2132 2133 2134
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2135
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2136
	num_sectors = sum->len / sctx->sectorsize;
2137 2138
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2139 2140 2141
		list_del(&sum->list);
		kfree(sum);
	}
2142
	return 1;
A
Arne Jansen 已提交
2143 2144 2145
}

/* scrub extent tries to collect up to 64 kB for each bio */
2146
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2147
			u64 physical, struct btrfs_device *dev, u64 flags,
2148
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2149 2150 2151
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2152 2153 2154
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2155 2156 2157 2158 2159
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2160
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2161
		WARN_ON(sctx->nodesize != sctx->leafsize);
2162 2163 2164 2165 2166
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2167
	} else {
2168
		blocksize = sctx->sectorsize;
2169
		WARN_ON(1);
2170
	}
A
Arne Jansen 已提交
2171 2172

	while (len) {
2173
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2174 2175 2176 2177
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2178
			have_csum = scrub_find_csum(sctx, logical, l, csum);
A
Arne Jansen 已提交
2179
			if (have_csum == 0)
2180
				++sctx->stat.no_csum;
2181 2182 2183 2184 2185 2186
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2187
		}
2188
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2189 2190 2191
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2192 2193 2194 2195 2196
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2197
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2198 2199 2200 2201
	}
	return 0;
}

2202
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2203 2204
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2205 2206
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
2207 2208
{
	struct btrfs_path *path;
2209
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
2210 2211 2212
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2213
	struct blk_plug plug;
A
Arne Jansen 已提交
2214 2215 2216 2217 2218 2219 2220 2221
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2222
	u64 logic_end;
A
Arne Jansen 已提交
2223
	u64 generation;
2224
	int mirror_num;
A
Arne Jansen 已提交
2225 2226 2227 2228
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
2229 2230
	u64 increment = map->stripe_len;
	u64 offset;
2231 2232 2233 2234 2235
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
L
Liu Bo 已提交
2236
	int stop_loop;
A
Arne Jansen 已提交
2237

D
David Woodhouse 已提交
2238 2239 2240 2241 2242 2243 2244
	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
			 BTRFS_BLOCK_GROUP_RAID6)) {
		if (num >= nr_data_stripes(map)) {
			return 0;
		}
	}

A
Arne Jansen 已提交
2245 2246 2247 2248 2249 2250
	nstripes = length;
	offset = 0;
	do_div(nstripes, map->stripe_len);
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
2251
		mirror_num = 1;
A
Arne Jansen 已提交
2252 2253 2254 2255
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
2256
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
2257 2258
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
2259
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2260 2261
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
2262
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
2263 2264
	} else {
		increment = map->stripe_len;
2265
		mirror_num = 1;
A
Arne Jansen 已提交
2266 2267 2268 2269 2270 2271
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

2272 2273 2274 2275 2276
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
2277 2278 2279 2280
	path->search_commit_root = 1;
	path->skip_locking = 1;

	/*
A
Arne Jansen 已提交
2281 2282 2283
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
2284 2285 2286
	 */
	logical = base + offset;

2287
	wait_event(sctx->list_wait,
2288
		   atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2289 2290 2291 2292 2293 2294 2295 2296
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
	key_end.objectid = base + offset + nstripes * increment;
2297 2298
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
	key_end.offset = base + offset + nstripes * increment;
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

	mutex_lock(&fs_info->scrub_lock);
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
A
Arne Jansen 已提交
2320
	}
A
Arne Jansen 已提交
2321 2322 2323
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	wake_up(&fs_info->scrub_pause_wait);
A
Arne Jansen 已提交
2324 2325 2326 2327 2328

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
2329
	blk_start_plug(&plug);
A
Arne Jansen 已提交
2330 2331 2332 2333

	/*
	 * now find all extents for each stripe and scrub them
	 */
A
Arne Jansen 已提交
2334 2335
	logical = base + offset;
	physical = map->stripes[num].physical;
L
Liu Bo 已提交
2336
	logic_end = logical + increment * nstripes;
A
Arne Jansen 已提交
2337
	ret = 0;
L
Liu Bo 已提交
2338
	while (logical < logic_end) {
A
Arne Jansen 已提交
2339 2340 2341 2342
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
2343
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
2344 2345 2346 2347 2348 2349 2350 2351
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
2352
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2353
			scrub_submit(sctx);
2354 2355 2356
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
2357
			wait_event(sctx->list_wait,
2358
				   atomic_read(&sctx->bios_in_flight) == 0);
2359
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
A
Arne Jansen 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
			atomic_inc(&fs_info->scrubs_paused);
			wake_up(&fs_info->scrub_pause_wait);
			mutex_lock(&fs_info->scrub_lock);
			while (atomic_read(&fs_info->scrub_pause_req)) {
				mutex_unlock(&fs_info->scrub_lock);
				wait_event(fs_info->scrub_pause_wait,
				   atomic_read(&fs_info->scrub_pause_req) == 0);
				mutex_lock(&fs_info->scrub_lock);
			}
			atomic_dec(&fs_info->scrubs_paused);
			mutex_unlock(&fs_info->scrub_lock);
			wake_up(&fs_info->scrub_pause_wait);
		}

		key.objectid = logical;
		key.type = BTRFS_EXTENT_ITEM_KEY;
L
Liu Bo 已提交
2376
		key.offset = (u64)-1;
A
Arne Jansen 已提交
2377 2378 2379 2380

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
2381

2382
		if (ret > 0) {
A
Arne Jansen 已提交
2383 2384 2385 2386
			ret = btrfs_previous_item(root, path, 0,
						  BTRFS_EXTENT_ITEM_KEY);
			if (ret < 0)
				goto out;
2387 2388 2389 2390 2391 2392 2393 2394 2395
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
2396 2397
		}

L
Liu Bo 已提交
2398
		stop_loop = 0;
A
Arne Jansen 已提交
2399
		while (1) {
2400 2401
			u64 bytes;

A
Arne Jansen 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
2411
				stop_loop = 1;
A
Arne Jansen 已提交
2412 2413 2414 2415
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2416 2417 2418 2419 2420 2421
			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->leafsize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
2422 2423
				goto next;

L
Liu Bo 已提交
2424 2425 2426
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;
A
Arne Jansen 已提交
2427

L
Liu Bo 已提交
2428 2429 2430 2431 2432 2433
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

			if (key.objectid < logical &&
			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
				printk(KERN_ERR
				       "btrfs scrub: tree block %llu spanning "
				       "stripes, ignored. logical=%llu\n",
2445
				       key.objectid, logical);
A
Arne Jansen 已提交
2446 2447 2448
				goto next;
			}

L
Liu Bo 已提交
2449 2450 2451 2452
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
2453 2454 2455
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
2456 2457 2458
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
2459
			}
L
Liu Bo 已提交
2460
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
2461
			    logical + map->stripe_len) {
L
Liu Bo 已提交
2462 2463
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
2464 2465
			}

L
Liu Bo 已提交
2466
			extent_physical = extent_logical - logical + physical;
2467 2468 2469 2470 2471 2472 2473
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
2474 2475 2476 2477 2478 2479 2480

			ret = btrfs_lookup_csums_range(csum_root, logical,
						logical + map->stripe_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

2481 2482 2483
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
2484
					   extent_logical - logical + physical);
A
Arne Jansen 已提交
2485 2486 2487
			if (ret)
				goto out;

2488
			scrub_free_csums(sctx);
L
Liu Bo 已提交
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logical += increment;
				physical += map->stripe_len;

				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

				if (logical >= logic_end) {
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
2504 2505 2506
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
2507
		btrfs_release_path(path);
A
Arne Jansen 已提交
2508 2509
		logical += increment;
		physical += map->stripe_len;
2510
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
2511 2512 2513 2514 2515
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
2516
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
2517 2518
		if (stop_loop)
			break;
A
Arne Jansen 已提交
2519
	}
2520
out:
A
Arne Jansen 已提交
2521
	/* push queued extents */
2522
	scrub_submit(sctx);
2523 2524 2525
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
2526

2527
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
2528 2529 2530 2531
	btrfs_free_path(path);
	return ret < 0 ? ret : 0;
}

2532
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2533 2534 2535
					  struct btrfs_device *scrub_dev,
					  u64 chunk_tree, u64 chunk_objectid,
					  u64 chunk_offset, u64 length,
2536
					  u64 dev_offset, int is_dev_replace)
A
Arne Jansen 已提交
2537 2538
{
	struct btrfs_mapping_tree *map_tree =
2539
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
2540 2541 2542
	struct map_lookup *map;
	struct extent_map *em;
	int i;
2543
	int ret = 0;
A
Arne Jansen 已提交
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

	if (!em)
		return -EINVAL;

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
2560
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2561
		    map->stripes[i].physical == dev_offset) {
2562
			ret = scrub_stripe(sctx, map, scrub_dev, i,
2563 2564
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
2576
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2577 2578
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
2579 2580 2581
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
2582
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_tree;
	u64 chunk_objectid;
	u64 chunk_offset;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
2594
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
2595 2596 2597 2598 2599 2600 2601 2602 2603

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

2604
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
2605 2606 2607 2608 2609 2610
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
2611 2612 2613 2614 2615 2616 2617 2618 2619
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
				if (ret)
					break;
			}
		}
A
Arne Jansen 已提交
2620 2621 2622 2623 2624 2625

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

2626
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
2627 2628
			break;

2629
		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

		if (found_key.offset + length <= start) {
			key.offset = found_key.offset + length;
C
Chris Mason 已提交
2643
			btrfs_release_path(path);
A
Arne Jansen 已提交
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
			continue;
		}

		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
		if (!cache) {
			ret = -ENOENT;
2658
			break;
A
Arne Jansen 已提交
2659
		}
2660 2661 2662
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
2663
		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
				  chunk_offset, length, found_key.offset,
				  is_dev_replace);

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
		atomic_inc(&fs_info->scrubs_paused);
		wake_up(&fs_info->scrub_pause_wait);
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);

		mutex_lock(&fs_info->scrub_lock);
		while (atomic_read(&fs_info->scrub_pause_req)) {
			mutex_unlock(&fs_info->scrub_lock);
			wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrub_pause_req) == 0);
			mutex_lock(&fs_info->scrub_lock);
		}
		atomic_dec(&fs_info->scrubs_paused);
		mutex_unlock(&fs_info->scrub_lock);
		wake_up(&fs_info->scrub_pause_wait);

A
Arne Jansen 已提交
2702 2703 2704
		btrfs_put_block_group(cache);
		if (ret)
			break;
2705 2706
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
2707 2708 2709 2710 2711 2712 2713
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
2714

2715 2716 2717
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;

A
Arne Jansen 已提交
2718
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
2719
		btrfs_release_path(path);
A
Arne Jansen 已提交
2720 2721 2722
	}

	btrfs_free_path(path);
2723 2724 2725 2726 2727 2728

	/*
	 * ret can still be 1 from search_slot or next_leaf,
	 * that's not an error
	 */
	return ret < 0 ? ret : 0;
A
Arne Jansen 已提交
2729 2730
}

2731 2732
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
2733 2734 2735 2736 2737
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
2738
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
2739

2740
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2741 2742
		return -EIO;

A
Arne Jansen 已提交
2743 2744 2745 2746
	gen = root->fs_info->last_trans_committed;

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
2747
		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
A
Arne Jansen 已提交
2748 2749
			break;

2750
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2751
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2752
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
2753 2754 2755
		if (ret)
			return ret;
	}
2756
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2757 2758 2759 2760 2761 2762 2763

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
2764 2765
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
2766
{
2767
	int ret = 0;
A
Arne Jansen 已提交
2768

A
Arne Jansen 已提交
2769
	if (fs_info->scrub_workers_refcnt == 0) {
2770 2771 2772 2773 2774 2775 2776
		if (is_dev_replace)
			btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
					&fs_info->generic_worker);
		else
			btrfs_init_workers(&fs_info->scrub_workers, "scrub",
					fs_info->thread_pool_size,
					&fs_info->generic_worker);
A
Arne Jansen 已提交
2777
		fs_info->scrub_workers.idle_thresh = 4;
2778 2779 2780
		ret = btrfs_start_workers(&fs_info->scrub_workers);
		if (ret)
			goto out;
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
				   "scrubwrc",
				   fs_info->thread_pool_size,
				   &fs_info->generic_worker);
		fs_info->scrub_wr_completion_workers.idle_thresh = 2;
		ret = btrfs_start_workers(
				&fs_info->scrub_wr_completion_workers);
		if (ret)
			goto out;
		btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
				   &fs_info->generic_worker);
		ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
		if (ret)
			goto out;
A
Arne Jansen 已提交
2795
	}
A
Arne Jansen 已提交
2796
	++fs_info->scrub_workers_refcnt;
2797 2798
out:
	return ret;
A
Arne Jansen 已提交
2799 2800
}

2801
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2802
{
2803
	if (--fs_info->scrub_workers_refcnt == 0) {
A
Arne Jansen 已提交
2804
		btrfs_stop_workers(&fs_info->scrub_workers);
2805 2806 2807
		btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
		btrfs_stop_workers(&fs_info->scrub_nocow_workers);
	}
A
Arne Jansen 已提交
2808 2809 2810
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

2811 2812
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
2813
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
2814
{
2815
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
2816 2817 2818
	int ret;
	struct btrfs_device *dev;

2819
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
2820 2821 2822 2823 2824
		return -EINVAL;

	/*
	 * check some assumptions
	 */
2825
	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2826 2827
		printk(KERN_ERR
		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2828 2829
		       fs_info->chunk_root->nodesize,
		       fs_info->chunk_root->leafsize);
2830 2831 2832
		return -EINVAL;
	}

2833
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2834 2835 2836 2837 2838 2839 2840
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
		printk(KERN_ERR
		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2841
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2842 2843 2844
		return -EINVAL;
	}

2845
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2846 2847
		/* not supported for data w/o checksums */
		printk(KERN_ERR
2848 2849
		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails\n",
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
2850 2851 2852
		return -EINVAL;
	}

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
		pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
2869

2870 2871
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2872
	if (!dev || (dev->missing && !is_dev_replace)) {
2873
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2874 2875 2876
		return -ENODEV;
	}

2877
	mutex_lock(&fs_info->scrub_lock);
2878
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
2879
		mutex_unlock(&fs_info->scrub_lock);
2880 2881
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
2882 2883
	}

2884 2885 2886 2887 2888
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
2889
		mutex_unlock(&fs_info->scrub_lock);
2890
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2891 2892
		return -EINPROGRESS;
	}
2893
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
2894 2895 2896 2897 2898 2899 2900 2901

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

2902
	sctx = scrub_setup_ctx(dev, is_dev_replace);
2903
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
2904
		mutex_unlock(&fs_info->scrub_lock);
2905 2906
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
2907
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
2908
	}
2909 2910
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
A
Arne Jansen 已提交
2911 2912 2913 2914

	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

2915
	if (!is_dev_replace) {
2916 2917 2918 2919
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
2920 2921
		ret = scrub_supers(sctx, dev);
	}
2922
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
2923 2924

	if (!ret)
2925 2926
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
2927

2928
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
2929 2930 2931
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

2932
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2933

A
Arne Jansen 已提交
2934
	if (progress)
2935
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
2936 2937 2938

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
2939
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
2940 2941
	mutex_unlock(&fs_info->scrub_lock);

2942
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
2943 2944 2945 2946

	return ret;
}

2947
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

2964
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
2965 2966 2967 2968 2969 2970 2971
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

2972
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

2993 2994
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
2995
{
2996
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
2997 2998

	mutex_lock(&fs_info->scrub_lock);
2999 3000
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3001 3002 3003
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3004
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3015

A
Arne Jansen 已提交
3016 3017 3018 3019
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
3020
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
3021 3022

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3023
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
3024
	if (dev)
3025 3026 3027
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3028 3029
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

3030
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
3031
}
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
		kfree(bbio);
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
	kfree(bbio);
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
					 bio_get_nr_vecs(dev->bdev));
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
	nocow_ctx->work.func = copy_nocow_pages_worker;
3109
	INIT_LIST_HEAD(&nocow_ctx->inodes);
3110 3111 3112 3113 3114 3115
	btrfs_queue_worker(&fs_info->scrub_nocow_workers,
			   &nocow_ctx->work);

	return 0;
}

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
3168
					  record_inode_for_nocow, nocow_ctx);
3169
	if (ret != 0 && ret != -ENOENT) {
3170 3171 3172
		pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d\n",
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
3173 3174 3175 3176
		not_written = 1;
		goto out;
	}

3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
3195
out:
3196 3197 3198 3199 3200 3201 3202 3203
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

3216 3217
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
3218
{
3219
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3220
	struct btrfs_key key;
3221 3222
	struct inode *inode;
	struct page *page;
3223
	struct btrfs_root *local_root;
3224 3225 3226 3227
	struct btrfs_ordered_extent *ordered;
	struct extent_map *em;
	struct extent_state *cached_state = NULL;
	struct extent_io_tree *io_tree;
3228
	u64 physical_for_dev_replace;
3229 3230
	u64 len = nocow_ctx->len;
	u64 lockstart = offset, lockend = offset + len - 1;
3231
	unsigned long index;
3232
	int srcu_index;
3233 3234
	int ret = 0;
	int err = 0;
3235 3236 3237 3238

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
3239 3240 3241

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

3242
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3243 3244
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3245
		return PTR_ERR(local_root);
3246
	}
3247 3248 3249 3250 3251

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3252
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3253 3254 3255
	if (IS_ERR(inode))
		return PTR_ERR(inode);

3256 3257 3258 3259
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

3260
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > nocow_ctx->logical ||
	    em->block_start + em->block_len < nocow_ctx->logical + len) {
		free_extent_map(em);
		goto out_unlock;
	}
	free_extent_map(em);

3287 3288
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
3289
again:
3290 3291 3292 3293
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
			pr_err("find_or_create_page() failed\n");
			ret = -ENOMEM;
3294
			goto out;
3295 3296 3297 3298 3299 3300 3301
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
3302 3303 3304
			err = extent_read_full_page_nolock(io_tree, page,
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
3305 3306
			if (err) {
				ret = err;
3307 3308
				goto next_page;
			}
3309

3310
			lock_page(page);
3311 3312 3313 3314 3315 3316 3317
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
3318
				unlock_page(page);
3319 3320 3321
				page_cache_release(page);
				goto again;
			}
3322 3323 3324 3325 3326
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
3327 3328 3329 3330
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
3331
next_page:
3332 3333 3334 3335 3336 3337
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

3338 3339 3340 3341
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
		len -= PAGE_CACHE_SIZE;
	}
3342 3343 3344 3345
	ret = COPY_COMPLETE;
out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
3346
out:
3347
	mutex_unlock(&inode->i_mutex);
3348
	iput(inode);
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
		printk_ratelimited(KERN_WARNING
			"btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
		return -EIO;
	}
3367
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
	bio->bi_size = 0;
	bio->bi_sector = physical_for_dev_replace >> 9;
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

3385
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3386 3387 3388 3389 3390
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}