arm.c 37.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22 23 24
#include <trace/events/kvm.h>

#define CREATE_TRACE_POINTS
25
#include "trace_arm.h"
26

27
#include <linux/uaccess.h>
28 29
#include <asm/ptrace.h>
#include <asm/mman.h>
30
#include <asm/tlbflush.h>
31
#include <asm/cacheflush.h>
32
#include <asm/cpufeature.h>
33 34 35 36
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
37
#include <asm/kvm_emulate.h>
38
#include <asm/kvm_coproc.h>
39
#include <asm/sections.h>
40

41 42 43 44
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

45 46 47 48
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

49
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 51
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

52 53
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54
static u32 kvm_next_vmid;
55
static DEFINE_SPINLOCK(kvm_vmid_lock);
56

57 58
static bool vgic_present;

59
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 61
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

62 63 64 65 66
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

67
int kvm_arch_hardware_setup(void *opaque)
68 69 70 71
{
	return 0;
}

72
int kvm_arch_check_processor_compat(void *opaque)
73
{
74
	return 0;
75 76
}

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
97

98 99 100 101 102
static int kvm_arm_default_max_vcpus(void)
{
	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
}

103 104 105 106
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
107 108
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
109
	int ret, cpu;
110

111
	ret = kvm_arm_setup_stage2(kvm, type);
112 113
	if (ret)
		return ret;
114

115 116 117 118 119 120 121
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

122 123 124 125
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

126
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
127 128 129
	if (ret)
		goto out_free_stage2_pgd;

130
	kvm_vgic_early_init(kvm);
131

132
	/* Mark the initial VMID generation invalid */
133
	kvm->arch.vmid.vmid_gen = 0;
134

135
	/* The maximum number of VCPUs is limited by the host's GIC model */
136
	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
137

138 139 140 141
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
142 143
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
144
	return ret;
145 146
}

147
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
148 149 150 151 152
{
	return VM_FAULT_SIGBUS;
}


153 154 155 156
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
157 158 159 160
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

161 162
	kvm_vgic_destroy(kvm);

163 164 165
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

166 167
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
168
			kvm_vcpu_destroy(kvm->vcpus[i]);
169 170 171
			kvm->vcpus[i] = NULL;
		}
	}
172
	atomic_set(&kvm->online_vcpus, 0);
173 174
}

175
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
176 177 178
{
	int r;
	switch (ext) {
179
	case KVM_CAP_IRQCHIP:
180 181
		r = vgic_present;
		break;
182
	case KVM_CAP_IOEVENTFD:
183
	case KVM_CAP_DEVICE_CTRL:
184 185 186 187
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
188
	case KVM_CAP_ARM_PSCI:
189
	case KVM_CAP_ARM_PSCI_0_2:
190
	case KVM_CAP_READONLY_MEM:
191
	case KVM_CAP_MP_STATE:
192
	case KVM_CAP_IMMEDIATE_EXIT:
193
	case KVM_CAP_VCPU_EVENTS:
194
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
195
	case KVM_CAP_ARM_NISV_TO_USER:
196
	case KVM_CAP_ARM_INJECT_EXT_DABT:
197 198
		r = 1;
		break;
199 200
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
201
		break;
202 203 204 205
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
206
	case KVM_CAP_MAX_VCPU_ID:
207 208 209 210
		if (kvm)
			r = kvm->arch.max_vcpus;
		else
			r = kvm_arm_default_max_vcpus();
211
		break;
V
Vladimir Murzin 已提交
212 213 214 215 216 217
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
218 219 220 221 222 223 224
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
225
	default:
226
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
227 228 229 230 231 232 233 234 235 236 237
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
253

254 255 256 257 258 259 260 261 262 263 264
int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
{
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
		return -EBUSY;

	if (id >= kvm->arch.max_vcpus)
		return -EINVAL;

	return 0;
}

265
int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
266
{
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	int err;

	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);

	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

	kvm_pmu_vcpu_init(vcpu);

	kvm_arm_reset_debug_ptr(vcpu);

	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

	err = kvm_vgic_vcpu_init(vcpu);
	if (err)
		return err;

286
	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
287 288
}

289
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
290 291 292
{
}

293
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
294
{
295 296 297
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

298
	kvm_mmu_free_memory_caches(vcpu);
299
	kvm_timer_vcpu_terminate(vcpu);
300
	kvm_pmu_vcpu_destroy(vcpu);
301 302

	kvm_arm_vcpu_destroy(vcpu);
303 304 305 306
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
307
	return kvm_timer_is_pending(vcpu);
308 309
}

310 311
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
312 313 314
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
315
	 * so that we have the latest PMR and group enables. This ensures
316 317
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
318 319 320
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
321 322 323
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
324
	vgic_v4_put(vcpu, true);
325
	preempt_enable();
326 327 328 329
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
330 331 332
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
333 334
}

335 336
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
337 338 339 340 341 342 343 344 345 346 347 348 349
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

350
	vcpu->cpu = cpu;
351

352
	kvm_vgic_load(vcpu);
353
	kvm_timer_vcpu_load(vcpu);
354
	kvm_vcpu_load_sysregs(vcpu);
355
	kvm_arch_vcpu_load_fp(vcpu);
356
	kvm_vcpu_pmu_restore_guest(vcpu);
357 358
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
359 360

	if (single_task_running())
361
		vcpu_clear_wfx_traps(vcpu);
362
	else
363
		vcpu_set_wfx_traps(vcpu);
364

365
	if (vcpu_has_ptrauth(vcpu))
366
		vcpu_ptrauth_disable(vcpu);
367 368 369 370
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
371
	kvm_arch_vcpu_put_fp(vcpu);
372
	kvm_vcpu_put_sysregs(vcpu);
373
	kvm_timer_vcpu_put(vcpu);
374
	kvm_vgic_put(vcpu);
375
	kvm_vcpu_pmu_restore_host(vcpu);
376

377
	vcpu->cpu = -1;
378 379
}

A
Andrew Jones 已提交
380 381 382
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
383
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
384 385 386
	kvm_vcpu_kick(vcpu);
}

387 388 389
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
390
	if (vcpu->arch.power_off)
391 392 393 394 395
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
396 397 398 399 400
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
401 402
	int ret = 0;

403 404
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
405
		vcpu->arch.power_off = false;
406 407
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
408
		vcpu_power_off(vcpu);
409 410
		break;
	default:
411
		ret = -EINVAL;
412 413
	}

414
	return ret;
415 416
}

417 418 419 420 421 422 423
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
424 425
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
426 427
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
428
		&& !v->arch.power_off && !v->arch.pause);
429 430
}

431 432
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
433
	return vcpu_mode_priv(vcpu);
434 435
}

436 437 438 439 440 441 442
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
443
	preempt_disable();
444
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
445
	preempt_enable();
446 447 448 449
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
450
 * @vmid: The VMID to check
451 452 453
 *
 * return true if there is a new generation of VMIDs being used
 *
454 455
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
F
Fuad Tabba 已提交
456 457 458
 * generation, which requires us to assign a new value. If we're the first to
 * use a VMID for the new generation, we must flush necessary caches and TLBs
 * on all CPUs.
459
 */
460
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
461
{
462 463
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
464
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
465 466 467
}

/**
468 469 470
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
471
 */
472
static void update_vmid(struct kvm_vmid *vmid)
473
{
474
	if (!need_new_vmid_gen(vmid))
475 476
		return;

477
	spin_lock(&kvm_vmid_lock);
478 479 480 481 482 483

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
484
	if (!need_new_vmid_gen(vmid)) {
485
		spin_unlock(&kvm_vmid_lock);
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

508
	vmid->vmid = kvm_next_vmid;
509
	kvm_next_vmid++;
510
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
511

512
	smp_wmb();
513
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
514 515

	spin_unlock(&kvm_vmid_lock);
516 517 518 519
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
520
	struct kvm *kvm = vcpu->kvm;
521
	int ret = 0;
522

523 524 525
	if (likely(vcpu->arch.has_run_once))
		return 0;

526 527 528
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

529
	vcpu->arch.has_run_once = true;
530

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
547 548
	}

549
	ret = kvm_timer_enable(vcpu);
550 551 552 553
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
554

555
	return ret;
556 557
}

558 559 560 561 562
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

563
void kvm_arm_halt_guest(struct kvm *kvm)
564 565 566 567 568 569
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
570
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
571 572
}

573
void kvm_arm_resume_guest(struct kvm *kvm)
574 575 576 577
{
	int i;
	struct kvm_vcpu *vcpu;

578 579
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
580
		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
581
	}
582 583
}

584
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
585
{
586
	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
587

588 589 590
	rcuwait_wait_event(wait,
			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
			   TASK_INTERRUPTIBLE);
591

A
Andrew Jones 已提交
592
	if (vcpu->arch.power_off || vcpu->arch.pause) {
593
		/* Awaken to handle a signal, request we sleep again later. */
594
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
595
	}
596 597 598 599 600 601 602

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
603 604
}

605 606 607 608 609
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

610 611 612
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
613 614
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
615

616 617 618
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

619 620 621 622 623
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
624 625 626

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
627 628 629 630 631 632 633 634

		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
			/* The distributor enable bits were changed */
			preempt_disable();
			vgic_v4_put(vcpu, false);
			vgic_v4_load(vcpu);
			preempt_enable();
		}
635 636 637
	}
}

638 639 640 641 642 643 644 645 646 647
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
648
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
649
{
650
	struct kvm_run *run = vcpu->run;
651 652
	int ret;

653
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
654 655 656 657
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
658
		return ret;
659

C
Christoffer Dall 已提交
660
	if (run->exit_reason == KVM_EXIT_MMIO) {
661
		ret = kvm_handle_mmio_return(vcpu, run);
C
Christoffer Dall 已提交
662
		if (ret)
663
			return ret;
C
Christoffer Dall 已提交
664 665
	}

666 667 668 669
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
670

671
	kvm_sigset_activate(vcpu);
672 673 674 675 676 677 678 679 680

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

681
		update_vmid(&vcpu->kvm->arch.vmid);
682

683 684
		check_vcpu_requests(vcpu);

685 686 687 688 689
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
690
		preempt_disable();
691

692
		kvm_pmu_flush_hwstate(vcpu);
693

694 695
		local_irq_disable();

696 697
		kvm_vgic_flush_hwstate(vcpu);

698
		/*
699 700
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
701
		 */
702
		if (signal_pending(current)) {
703 704 705 706
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

722 723 724 725
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
726
		 * Documentation/virt/kvm/vcpu-requests.rst
727 728 729
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

730
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
731
		    kvm_request_pending(vcpu)) {
732
			vcpu->mode = OUTSIDE_GUEST_MODE;
733
			isb(); /* Ensure work in x_flush_hwstate is committed */
734
			kvm_pmu_sync_hwstate(vcpu);
735 736
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
737
			kvm_vgic_sync_hwstate(vcpu);
738
			local_irq_enable();
739
			preempt_enable();
740 741 742
			continue;
		}

743 744
		kvm_arm_setup_debug(vcpu);

745 746 747 748
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
749
		guest_enter_irqoff();
750

751 752 753
		if (has_vhe()) {
			ret = kvm_vcpu_run_vhe(vcpu);
		} else {
754
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
755 756
		}

757
		vcpu->mode = OUTSIDE_GUEST_MODE;
758
		vcpu->stat.exits++;
759 760 761 762
		/*
		 * Back from guest
		 *************************************************************/

763 764
		kvm_arm_clear_debug(vcpu);

765
		/*
766
		 * We must sync the PMU state before the vgic state so
767 768 769 770 771
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

772 773 774 775 776
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
777 778
		kvm_vgic_sync_hwstate(vcpu);

779 780 781 782 783
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
784 785
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
786

787 788
		kvm_arch_vcpu_ctxsync_fp(vcpu);

789 790 791 792 793 794 795 796 797 798 799 800 801
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
802
		 * We do local_irq_enable() before calling guest_exit() so
803 804
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
805
		 * preemption after calling guest_exit() so that if we get
806 807 808
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
809
		guest_exit();
810
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
811

812 813 814
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

815 816
		preempt_enable();

817 818 819
		ret = handle_exit(vcpu, run, ret);
	}

820
	/* Tell userspace about in-kernel device output levels */
821 822 823 824
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
825

826 827
	kvm_sigset_deactivate(vcpu);

828
	vcpu_put(vcpu);
829
	return ret;
830 831
}

832 833 834 835
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
836
	unsigned long *hcr;
837 838 839 840 841 842

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

843
	hcr = vcpu_hcr(vcpu);
844
	if (level)
845
		set = test_and_set_bit(bit_index, hcr);
846
	else
847
		set = test_and_clear_bit(bit_index, hcr);
848 849 850 851 852 853 854 855 856 857 858 859

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
860
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
861 862 863 864 865
	kvm_vcpu_kick(vcpu);

	return 0;
}

866 867
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
868 869 870 871 872 873 874 875 876
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
877
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
878 879 880 881
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

882 883 884 885
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
886

887 888
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
889

890 891 892
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
893

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
911

912
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
913 914 915 916
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

917
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
918 919
			return -EINVAL;

920
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
921 922 923
	}

	return -EINVAL;
924 925
}

926 927 928
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
929
	unsigned int i, ret;
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
964 965 966 967 968
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
969

970 971
	return ret;
}
972

973 974 975 976 977 978 979 980 981
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

982 983 984
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
985
	 *
986 987 988 989
	 * S2FWB enforces all memory accesses to RAM being cacheable,
	 * ensuring that the data side is always coherent. We still
	 * need to invalidate the I-cache though, as FWB does *not*
	 * imply CTR_EL0.DIC.
990
	 */
991 992 993 994 995 996
	if (vcpu->arch.has_run_once) {
		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
			stage2_unmap_vm(vcpu->kvm);
		else
			__flush_icache_all();
	}
997

998 999
	vcpu_reset_hcr(vcpu);

1000
	/*
1001
	 * Handle the "start in power-off" case.
1002
	 */
1003
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1004
		vcpu_power_off(vcpu);
1005
	else
1006
		vcpu->arch.power_off = false;
1007 1008 1009 1010

	return 0;
}

1011 1012 1013 1014 1015 1016 1017
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1018
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1032
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1046
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1047 1048 1049 1050 1051 1052
		break;
	}

	return ret;
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1079 1080 1081 1082 1083
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1084
	struct kvm_device_attr attr;
1085 1086
	long r;

1087 1088 1089 1090
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1091
		r = -EFAULT;
1092
		if (copy_from_user(&init, argp, sizeof(init)))
1093
			break;
1094

1095 1096
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1097 1098 1099 1100
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1101

1102
		r = -ENOEXEC;
1103
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1104
			break;
1105

1106
		r = -EFAULT;
1107
		if (copy_from_user(&reg, argp, sizeof(reg)))
1108 1109
			break;

1110
		if (ioctl == KVM_SET_ONE_REG)
1111
			r = kvm_arm_set_reg(vcpu, &reg);
1112
		else
1113 1114
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1115 1116 1117 1118 1119 1120
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1121
		r = -ENOEXEC;
1122
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1123
			break;
1124

1125 1126 1127 1128
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1129
		r = -EFAULT;
1130
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1131
			break;
1132 1133 1134
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1135 1136
			break;
		r = -E2BIG;
1137
		if (n < reg_list.n)
1138 1139 1140
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1141
	}
1142
	case KVM_SET_DEVICE_ATTR: {
1143
		r = -EFAULT;
1144
		if (copy_from_user(&attr, argp, sizeof(attr)))
1145 1146 1147
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1148 1149
	}
	case KVM_GET_DEVICE_ATTR: {
1150
		r = -EFAULT;
1151
		if (copy_from_user(&attr, argp, sizeof(attr)))
1152 1153 1154
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1155 1156
	}
	case KVM_HAS_DEVICE_ATTR: {
1157
		r = -EFAULT;
1158
		if (copy_from_user(&attr, argp, sizeof(attr)))
1159 1160 1161
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1162
	}
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1193
	default:
1194
		r = -EINVAL;
1195
	}
1196 1197

	return r;
1198 1199
}

1200
void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1201
{
1202

1203 1204
}

1205 1206
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
1207
{
1208
	kvm_flush_remote_tlbs(kvm);
1209 1210
}

1211 1212 1213
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1214 1215 1216 1217 1218 1219 1220 1221 1222
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1223 1224
		if (!vgic_present)
			return -ENXIO;
1225
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1226 1227 1228
	default:
		return -ENODEV;
	}
1229 1230
}

1231 1232 1233
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1234 1235 1236 1237
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1238
	case KVM_CREATE_IRQCHIP: {
1239
		int ret;
1240 1241
		if (!vgic_present)
			return -ENXIO;
1242 1243 1244 1245
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1246
	}
1247 1248 1249 1250 1251 1252 1253
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1267 1268 1269
	default:
		return -EINVAL;
	}
1270 1271
}

1272
static void cpu_init_hyp_mode(void)
1273
{
1274
	phys_addr_t pgd_ptr;
1275 1276
	unsigned long hyp_stack_ptr;
	unsigned long vector_ptr;
1277
	unsigned long tpidr_el2;
1278 1279

	/* Switch from the HYP stub to our own HYP init vector */
1280
	__hyp_set_vectors(kvm_get_idmap_vector());
1281

1282 1283 1284 1285 1286 1287
	/*
	 * Calculate the raw per-cpu offset without a translation from the
	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
	 * so that we can use adr_l to access per-cpu variables in EL2.
	 */
	tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
1288
		     (unsigned long)kvm_ksym_ref(&kvm_host_data));
1289

1290
	pgd_ptr = kvm_mmu_get_httbr();
1291
	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1292
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	/*
	 * Call initialization code, and switch to the full blown HYP code.
	 * If the cpucaps haven't been finalized yet, something has gone very
	 * wrong, and hyp will crash and burn when it uses any
	 * cpus_have_const_cap() wrapper.
	 */
	BUG_ON(!system_capabilities_finalized());
	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);

	/*
	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
	 * at EL2.
	 */
	if (this_cpu_has_cap(ARM64_SSBS) &&
	    arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
		kvm_call_hyp(__kvm_enable_ssbs);
	}
1311 1312
}

1313 1314 1315 1316 1317 1318
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1319 1320
static void cpu_hyp_reinit(void)
{
1321 1322
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1323 1324
	cpu_hyp_reset();

1325
	if (is_kernel_in_hyp_mode())
1326
		kvm_timer_init_vhe();
1327
	else
1328
		cpu_init_hyp_mode();
1329

1330
	kvm_arm_init_debug();
1331 1332 1333

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1334 1335
}

1336 1337 1338
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1339
		cpu_hyp_reinit();
1340
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1341
	}
1342
}
1343

1344 1345 1346 1347
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1348 1349
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1362

1363 1364 1365 1366 1367
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1383
		return NOTIFY_OK;
1384
	case CPU_PM_ENTER_FAILED:
1385 1386 1387 1388
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1389

1390 1391 1392 1393 1394
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1405 1406 1407 1408
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1409 1410 1411 1412
#else
static inline void hyp_cpu_pm_init(void)
{
}
1413 1414 1415
static inline void hyp_cpu_pm_exit(void)
{
}
1416 1417
#endif

1418 1419
static int init_common_resources(void)
{
1420
	return kvm_set_ipa_limit();
1421 1422 1423 1424
}

static int init_subsystems(void)
{
1425
	int err = 0;
1426

1427
	/*
1428
	 * Enable hardware so that subsystem initialisation can access EL2.
1429
	 */
1430
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1431 1432 1433 1434 1435 1436

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1448
		err = 0;
1449 1450
		break;
	default:
1451
		goto out;
1452 1453 1454 1455 1456
	}

	/*
	 * Init HYP architected timer support
	 */
1457
	err = kvm_timer_hyp_init(vgic_present);
1458
	if (err)
1459
		goto out;
1460 1461 1462 1463

	kvm_perf_init();
	kvm_coproc_table_init();

1464 1465 1466 1467
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1503
			goto out_err;
1504 1505 1506 1507 1508 1509 1510 1511
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1512
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1513
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1514 1515
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1516
		goto out_err;
1517 1518
	}

1519
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1520
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1521 1522
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1523 1524 1525 1526 1527 1528 1529
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1530
		goto out_err;
1531 1532
	}

1533 1534 1535 1536 1537 1538
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1539 1540 1541 1542 1543
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1544 1545
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1546 1547 1548

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1549
			goto out_err;
1550 1551 1552 1553
		}
	}

	for_each_possible_cpu(cpu) {
1554
		kvm_host_data_t *cpu_data;
1555

1556 1557
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1558 1559

		if (err) {
1560
			kvm_err("Cannot map host CPU state: %d\n", err);
1561
			goto out_err;
1562 1563 1564
		}
	}

1565 1566
	err = hyp_map_aux_data();
	if (err)
1567
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1568

1569
	return 0;
1570

1571
out_err:
1572
	teardown_hyp_mode();
1573 1574 1575 1576
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1577 1578 1579 1580 1581
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1606 1607
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1608 1609 1610 1611 1612 1613 1614
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1615 1616
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1635 1636 1637
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1638 1639
int kvm_arch_init(void *opaque)
{
1640
	int err;
1641
	int ret, cpu;
1642
	bool in_hyp_mode;
1643 1644

	if (!is_hyp_mode_available()) {
1645
		kvm_info("HYP mode not available\n");
1646 1647 1648
		return -ENODEV;
	}

1649 1650 1651 1652
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1653 1654 1655
		return -ENODEV;
	}

1656 1657 1658 1659 1660 1661
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1662 1663
	}

1664
	err = init_common_resources();
1665
	if (err)
1666
		return err;
1667

1668
	err = kvm_arm_init_sve();
1669 1670 1671
	if (err)
		return err;

1672
	if (!in_hyp_mode) {
1673
		err = init_hyp_mode();
1674 1675 1676
		if (err)
			goto out_err;
	}
1677

1678 1679 1680
	err = init_subsystems();
	if (err)
		goto out_hyp;
1681

1682 1683 1684 1685 1686
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1687
	return 0;
1688 1689

out_hyp:
1690
	hyp_cpu_pm_exit();
1691 1692
	if (!in_hyp_mode)
		teardown_hyp_mode();
1693 1694
out_err:
	return err;
1695 1696 1697 1698 1699
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1700
	kvm_perf_teardown();
1701 1702 1703 1704 1705 1706 1707 1708 1709
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);