page_alloc.c 262.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
L
Linus Torvalds 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
20
#include <linux/highmem.h>
L
Linus Torvalds 已提交
21 22 23
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
24
#include <linux/jiffies.h>
25
#include <linux/memblock.h>
L
Linus Torvalds 已提交
26
#include <linux/compiler.h>
27
#include <linux/kernel.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47
#include <linux/random.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/debugobjects.h>
54
#include <linux/kmemleak.h>
55
#include <linux/compaction.h>
56
#include <trace/events/kmem.h>
57
#include <trace/events/oom.h>
58
#include <linux/prefetch.h>
59
#include <linux/mm_inline.h>
60
#include <linux/mmu_notifier.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
68
#include <linux/ftrace.h>
69
#include <linux/lockdep.h>
70
#include <linux/nmi.h>
71
#include <linux/psi.h>
72
#include <linux/padata.h>
73
#include <linux/khugepaged.h>
74
#include <linux/buffer_head.h>
75
#include <asm/sections.h>
L
Linus Torvalds 已提交
76
#include <asm/tlbflush.h>
77
#include <asm/div64.h>
L
Linus Torvalds 已提交
78
#include "internal.h"
79
#include "shuffle.h"
A
Alexander Duyck 已提交
80
#include "page_reporting.h"
L
Linus Torvalds 已提交
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
typedef int __bitwise fpi_t;

/* No special request */
#define FPI_NONE		((__force fpi_t)0)

/*
 * Skip free page reporting notification for the (possibly merged) page.
 * This does not hinder free page reporting from grabbing the page,
 * reporting it and marking it "reported" -  it only skips notifying
 * the free page reporting infrastructure about a newly freed page. For
 * example, used when temporarily pulling a page from a freelist and
 * putting it back unmodified.
 */
#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))

98 99 100 101 102 103 104 105 106 107 108 109
/*
 * Place the (possibly merged) page to the tail of the freelist. Will ignore
 * page shuffling (relevant code - e.g., memory onlining - is expected to
 * shuffle the whole zone).
 *
 * Note: No code should rely on this flag for correctness - it's purely
 *       to allow for optimizations when handing back either fresh pages
 *       (memory onlining) or untouched pages (page isolation, free page
 *       reporting).
 */
#define FPI_TO_TAIL		((__force fpi_t)BIT(1))

110 111 112 113 114 115 116 117 118 119 120
/*
 * Don't poison memory with KASAN (only for the tag-based modes).
 * During boot, all non-reserved memblock memory is exposed to page_alloc.
 * Poisoning all that memory lengthens boot time, especially on systems with
 * large amount of RAM. This flag is used to skip that poisoning.
 * This is only done for the tag-based KASAN modes, as those are able to
 * detect memory corruptions with the memory tags assigned by default.
 * All memory allocated normally after boot gets poisoned as usual.
 */
#define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))

121 122
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
123
#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
struct pagesets {
	local_lock_t lock;
#if defined(CONFIG_DEBUG_INFO_BTF) &&				\
	!defined(CONFIG_DEBUG_LOCK_ALLOC) &&			\
	!defined(CONFIG_PAHOLE_HAS_ZEROSIZE_PERCPU_SUPPORT)
	/*
	 * pahole 1.21 and earlier gets confused by zero-sized per-CPU
	 * variables and produces invalid BTF. Ensure that
	 * sizeof(struct pagesets) != 0 for older versions of pahole.
	 */
	char __pahole_hack;
	#warning "pahole too old to support zero-sized struct pagesets"
#endif
};
static DEFINE_PER_CPU(struct pagesets, pagesets) = {
	.lock = INIT_LOCAL_LOCK(lock),
};

143 144 145 146 147
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

148 149
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

150 151 152 153 154 155 156 157 158 159 160
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
#endif

161
/* work_structs for global per-cpu drains */
162 163 164 165
struct pcpu_drain {
	struct zone *zone;
	struct work_struct work;
};
166 167
static DEFINE_MUTEX(pcpu_drain_mutex);
static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
168

169
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
170
volatile unsigned long latent_entropy __latent_entropy;
171 172 173
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
174
/*
175
 * Array of node states.
L
Linus Torvalds 已提交
176
 */
177 178 179 180 181 182 183
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
184 185
#endif
	[N_MEMORY] = { { [0] = 1UL } },
186 187 188 189 190
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

191 192
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
193
unsigned long totalreserve_pages __read_mostly;
194
unsigned long totalcma_pages __read_mostly;
195

196
int percpu_pagelist_high_fraction;
197
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
198
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
199 200
EXPORT_SYMBOL(init_on_alloc);

201
DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
202 203
EXPORT_SYMBOL(init_on_free);

204 205
static bool _init_on_alloc_enabled_early __read_mostly
				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
206 207 208
static int __init early_init_on_alloc(char *buf)
{

209
	return kstrtobool(buf, &_init_on_alloc_enabled_early);
210 211 212
}
early_param("init_on_alloc", early_init_on_alloc);

213 214
static bool _init_on_free_enabled_early __read_mostly
				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
215 216
static int __init early_init_on_free(char *buf)
{
217
	return kstrtobool(buf, &_init_on_free_enabled_early);
218 219
}
early_param("init_on_free", early_init_on_free);
L
Linus Torvalds 已提交
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

239 240 241 242 243
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
244 245 246 247
 * they should always be called with system_transition_mutex held
 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 * with that modification).
248
 */
249 250 251 252

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
253
{
254
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
255 256 257 258
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
259 260
}

261
void pm_restrict_gfp_mask(void)
262
{
263
	WARN_ON(!mutex_is_locked(&system_transition_mutex));
264 265
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
266
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
267
}
268 269 270

bool pm_suspended_storage(void)
{
271
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
272 273 274
		return false;
	return true;
}
275 276
#endif /* CONFIG_PM_SLEEP */

277
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
278
unsigned int pageblock_order __read_mostly;
279 280
#endif

281 282
static void __free_pages_ok(struct page *page, unsigned int order,
			    fpi_t fpi_flags);
283

L
Linus Torvalds 已提交
284 285 286 287 288 289
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
290
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
291 292 293
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
294
 */
295
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
296
#ifdef CONFIG_ZONE_DMA
297
	[ZONE_DMA] = 256,
298
#endif
299
#ifdef CONFIG_ZONE_DMA32
300
	[ZONE_DMA32] = 256,
301
#endif
302
	[ZONE_NORMAL] = 32,
303
#ifdef CONFIG_HIGHMEM
304
	[ZONE_HIGHMEM] = 0,
305
#endif
306
	[ZONE_MOVABLE] = 0,
307
};
L
Linus Torvalds 已提交
308

309
static char * const zone_names[MAX_NR_ZONES] = {
310
#ifdef CONFIG_ZONE_DMA
311
	 "DMA",
312
#endif
313
#ifdef CONFIG_ZONE_DMA32
314
	 "DMA32",
315
#endif
316
	 "Normal",
317
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
318
	 "HighMem",
319
#endif
M
Mel Gorman 已提交
320
	 "Movable",
321 322 323
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
324 325
};

326
const char * const migratetype_names[MIGRATE_TYPES] = {
327 328 329 330 331 332 333 334 335 336 337 338
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

339 340 341
compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
	[NULL_COMPOUND_DTOR] = NULL,
	[COMPOUND_PAGE_DTOR] = free_compound_page,
342
#ifdef CONFIG_HUGETLB_PAGE
343
	[HUGETLB_PAGE_DTOR] = free_huge_page,
344
#endif
345
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
346
	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
347
#endif
348 349
};

L
Linus Torvalds 已提交
350
int min_free_kbytes = 1024;
351
int user_min_free_kbytes = -1;
352
int watermark_boost_factor __read_mostly = 15000;
353
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
354

355 356 357
static unsigned long nr_kernel_pages __initdata;
static unsigned long nr_all_pages __initdata;
static unsigned long dma_reserve __initdata;
L
Linus Torvalds 已提交
358

359 360
static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
361
static unsigned long required_kernelcore __initdata;
362
static unsigned long required_kernelcore_percent __initdata;
363
static unsigned long required_movablecore __initdata;
364
static unsigned long required_movablecore_percent __initdata;
365
static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
366
static bool mirrored_kernelcore __meminitdata;
T
Tejun Heo 已提交
367 368 369 370

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
371

M
Miklos Szeredi 已提交
372
#if MAX_NUMNODES > 1
373
unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
374
unsigned int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
375
EXPORT_SYMBOL(nr_node_ids);
376
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
377 378
#endif

379 380
int page_group_by_mobility_disabled __read_mostly;

381
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
/*
 * During boot we initialize deferred pages on-demand, as needed, but once
 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 * and we can permanently disable that path.
 */
static DEFINE_STATIC_KEY_TRUE(deferred_pages);

/*
 * Calling kasan_free_pages() only after deferred memory initialization
 * has completed. Poisoning pages during deferred memory init will greatly
 * lengthen the process and cause problem in large memory systems as the
 * deferred pages initialization is done with interrupt disabled.
 *
 * Assuming that there will be no reference to those newly initialized
 * pages before they are ever allocated, this should have no effect on
 * KASAN memory tracking as the poison will be properly inserted at page
 * allocation time. The only corner case is when pages are allocated by
 * on-demand allocation and then freed again before the deferred pages
 * initialization is done, but this is not likely to happen.
 */
402
static inline void kasan_free_nondeferred_pages(struct page *page, int order,
403
						bool init, fpi_t fpi_flags)
404
{
405 406 407 408 409
	if (static_branch_unlikely(&deferred_pages))
		return;
	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
			(fpi_flags & FPI_SKIP_KASAN_POISON))
		return;
410
	kasan_free_pages(page, order, init);
411 412
}

413
/* Returns true if the struct page for the pfn is uninitialised */
414
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
415
{
416 417 418
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
419 420 421 422 423 424
		return true;

	return false;
}

/*
425
 * Returns true when the remaining initialisation should be deferred until
426 427
 * later in the boot cycle when it can be parallelised.
 */
428 429
static bool __meminit
defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
430
{
431 432 433 434 435 436 437 438 439 440 441
	static unsigned long prev_end_pfn, nr_initialised;

	/*
	 * prev_end_pfn static that contains the end of previous zone
	 * No need to protect because called very early in boot before smp_init.
	 */
	if (prev_end_pfn != end_pfn) {
		prev_end_pfn = end_pfn;
		nr_initialised = 0;
	}

442
	/* Always populate low zones for address-constrained allocations */
443
	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
444
		return false;
445

446 447
	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
		return true;
448 449 450 451
	/*
	 * We start only with one section of pages, more pages are added as
	 * needed until the rest of deferred pages are initialized.
	 */
452
	nr_initialised++;
453
	if ((nr_initialised > PAGES_PER_SECTION) &&
454 455 456
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		NODE_DATA(nid)->first_deferred_pfn = pfn;
		return true;
457
	}
458
	return false;
459 460
}
#else
461
static inline void kasan_free_nondeferred_pages(struct page *page, int order,
462
						bool init, fpi_t fpi_flags)
463 464 465 466
{
	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
			(fpi_flags & FPI_SKIP_KASAN_POISON))
		return;
467
	kasan_free_pages(page, order, init);
468
}
469

470 471 472 473 474
static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

475
static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
476
{
477
	return false;
478 479 480
}
#endif

481
/* Return a pointer to the bitmap storing bits affecting a block of pages */
482
static inline unsigned long *get_pageblock_bitmap(const struct page *page,
483 484 485
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
486
	return section_to_usemap(__pfn_to_section(pfn));
487 488 489 490 491
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

492
static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
493 494 495 496 497 498
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
#endif /* CONFIG_SPARSEMEM */
499
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
500 501
}

502
static __always_inline
503
unsigned long __get_pfnblock_flags_mask(const struct page *page,
504 505 506 507 508 509 510 511 512 513 514 515 516
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
517
	return (word >> bitidx) & mask;
518 519
}

M
Mauro Carvalho Chehab 已提交
520 521 522 523 524 525 526 527
/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
528 529
unsigned long get_pfnblock_flags_mask(const struct page *page,
					unsigned long pfn, unsigned long mask)
530
{
531
	return __get_pfnblock_flags_mask(page, pfn, mask);
532 533
}

534 535
static __always_inline int get_pfnblock_migratetype(const struct page *page,
					unsigned long pfn)
536
{
537
	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
556
	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
557 558 559 560 561 562 563 564

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

565 566
	mask <<= bitidx;
	flags <<= bitidx;
567 568 569 570 571 572 573 574 575

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
576

577
void set_pageblock_migratetype(struct page *page, int migratetype)
578
{
579 580
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
581 582
		migratetype = MIGRATE_UNMOVABLE;

583
	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
584
				page_to_pfn(page), MIGRATETYPE_MASK);
585 586
}

N
Nick Piggin 已提交
587
#ifdef CONFIG_DEBUG_VM
588
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
589
{
590 591 592
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
593
	unsigned long sp, start_pfn;
594

595 596
	do {
		seq = zone_span_seqbegin(zone);
597 598
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
599
		if (!zone_spans_pfn(zone, pfn))
600 601 602
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

603
	if (ret)
604 605 606
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
607

608
	return ret;
609 610 611 612
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
613
	if (!pfn_valid_within(page_to_pfn(page)))
614
		return 0;
L
Linus Torvalds 已提交
615
	if (zone != page_zone(page))
616 617 618 619 620 621 622
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
623
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
624 625
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
626
		return 1;
627 628 629
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
630 631
	return 0;
}
N
Nick Piggin 已提交
632
#else
633
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
634 635 636 637 638
{
	return 0;
}
#endif

639
static void bad_page(struct page *page, const char *reason)
L
Linus Torvalds 已提交
640
{
641 642 643 644 645 646 647 648 649 650 651 652 653 654
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
655
			pr_alert(
656
			      "BUG: Bad page state: %lu messages suppressed\n",
657 658 659 660 661 662 663 664
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

665
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
666
		current->comm, page_to_pfn(page));
667
	dump_page(page, reason);
668

669
	print_modules();
L
Linus Torvalds 已提交
670
	dump_stack();
671
out:
672
	/* Leave bad fields for debug, except PageBuddy could make trouble */
673
	page_mapcount_reset(page); /* remove PageBuddy */
674
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
675 676
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
static inline unsigned int order_to_pindex(int migratetype, int order)
{
	int base = order;

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	if (order > PAGE_ALLOC_COSTLY_ORDER) {
		VM_BUG_ON(order != pageblock_order);
		base = PAGE_ALLOC_COSTLY_ORDER + 1;
	}
#else
	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
#endif

	return (MIGRATE_PCPTYPES * base) + migratetype;
}

static inline int pindex_to_order(unsigned int pindex)
{
	int order = pindex / MIGRATE_PCPTYPES;

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	if (order > PAGE_ALLOC_COSTLY_ORDER) {
		order = pageblock_order;
		VM_BUG_ON(order != pageblock_order);
	}
#else
	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
#endif

	return order;
}

static inline bool pcp_allowed_order(unsigned int order)
{
	if (order <= PAGE_ALLOC_COSTLY_ORDER)
		return true;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	if (order == pageblock_order)
		return true;
#endif
	return false;
}

M
Mel Gorman 已提交
720 721
static inline void free_the_page(struct page *page, unsigned int order)
{
722 723
	if (pcp_allowed_order(order))		/* Via pcp? */
		free_unref_page(page, order);
M
Mel Gorman 已提交
724 725 726 727
	else
		__free_pages_ok(page, order, FPI_NONE);
}

L
Linus Torvalds 已提交
728 729 730
/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
731
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
732
 *
733 734
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
735
 *
736 737
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
738
 *
739
 * The first tail page's ->compound_order holds the order of allocation.
740
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
741
 */
742

743
void free_compound_page(struct page *page)
744
{
745
	mem_cgroup_uncharge(page);
746
	free_the_page(page, compound_order(page));
747 748
}

749
void prep_compound_page(struct page *page, unsigned int order)
750 751 752 753 754 755 756
{
	int i;
	int nr_pages = 1 << order;

	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
757
		p->mapping = TAIL_MAPPING;
758
		set_compound_head(p, page);
759
	}
760 761 762

	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
	set_compound_order(page, order);
763
	atomic_set(compound_mapcount_ptr(page), -1);
764 765
	if (hpage_pincount_available(page))
		atomic_set(compound_pincount_ptr(page), 0);
766 767
}

768 769
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
770

771 772 773
bool _debug_pagealloc_enabled_early __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
774
DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
775
EXPORT_SYMBOL(_debug_pagealloc_enabled);
776 777

DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
778

779 780
static int __init early_debug_pagealloc(char *buf)
{
781
	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
782 783 784
}
early_param("debug_pagealloc", early_debug_pagealloc);

785 786 787 788 789
static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
790
		pr_err("Bad debug_guardpage_minorder value\n");
791 792 793
		return 0;
	}
	_debug_guardpage_minorder = res;
794
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
795 796
	return 0;
}
797
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
798

799
static inline bool set_page_guard(struct zone *zone, struct page *page,
800
				unsigned int order, int migratetype)
801
{
802
	if (!debug_guardpage_enabled())
803 804 805 806
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
807

808
	__SetPageGuard(page);
809 810 811 812
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
813 814

	return true;
815 816
}

817 818
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
819
{
820 821 822
	if (!debug_guardpage_enabled())
		return;

823
	__ClearPageGuard(page);
824

825 826 827
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
828 829
}
#else
830 831
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
832 833
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
834 835
#endif

836 837 838 839 840 841 842 843
/*
 * Enable static keys related to various memory debugging and hardening options.
 * Some override others, and depend on early params that are evaluated in the
 * order of appearance. So we need to first gather the full picture of what was
 * enabled, and then make decisions.
 */
void init_mem_debugging_and_hardening(void)
{
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	bool page_poisoning_requested = false;

#ifdef CONFIG_PAGE_POISONING
	/*
	 * Page poisoning is debug page alloc for some arches. If
	 * either of those options are enabled, enable poisoning.
	 */
	if (page_poisoning_enabled() ||
	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
	      debug_pagealloc_enabled())) {
		static_branch_enable(&_page_poisoning_enabled);
		page_poisoning_requested = true;
	}
#endif

859
	if (_init_on_alloc_enabled_early) {
860
		if (page_poisoning_requested)
861 862 863 864 865 866
			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
				"will take precedence over init_on_alloc\n");
		else
			static_branch_enable(&init_on_alloc);
	}
	if (_init_on_free_enabled_early) {
867
		if (page_poisoning_requested)
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
				"will take precedence over init_on_free\n");
		else
			static_branch_enable(&init_on_free);
	}

#ifdef CONFIG_DEBUG_PAGEALLOC
	if (!debug_pagealloc_enabled())
		return;

	static_branch_enable(&_debug_pagealloc_enabled);

	if (!debug_guardpage_minorder())
		return;

	static_branch_enable(&_debug_guardpage_enabled);
#endif
}

887
static inline void set_buddy_order(struct page *page, unsigned int order)
888
{
H
Hugh Dickins 已提交
889
	set_page_private(page, order);
890
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
891 892 893 894
}

/*
 * This function checks whether a page is free && is the buddy
895
 * we can coalesce a page and its buddy if
896
 * (a) the buddy is not in a hole (check before calling!) &&
897
 * (b) the buddy is in the buddy system &&
898 899
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
900
 *
901 902
 * For recording whether a page is in the buddy system, we set PageBuddy.
 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
L
Linus Torvalds 已提交
903
 *
904
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
905
 */
906
static inline bool page_is_buddy(struct page *page, struct page *buddy,
907
							unsigned int order)
L
Linus Torvalds 已提交
908
{
909 910
	if (!page_is_guard(buddy) && !PageBuddy(buddy))
		return false;
911

912
	if (buddy_order(buddy) != order)
913
		return false;
914

915 916 917 918 919 920
	/*
	 * zone check is done late to avoid uselessly calculating
	 * zone/node ids for pages that could never merge.
	 */
	if (page_zone_id(page) != page_zone_id(buddy))
		return false;
921

922
	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
923

924
	return true;
L
Linus Torvalds 已提交
925 926
}

927 928 929 930 931
#ifdef CONFIG_COMPACTION
static inline struct capture_control *task_capc(struct zone *zone)
{
	struct capture_control *capc = current->capture_control;

932
	return unlikely(capc) &&
933 934
		!(current->flags & PF_KTHREAD) &&
		!capc->page &&
935
		capc->cc->zone == zone ? capc : NULL;
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	if (!capc || order != capc->cc->order)
		return false;

	/* Do not accidentally pollute CMA or isolated regions*/
	if (is_migrate_cma(migratetype) ||
	    is_migrate_isolate(migratetype))
		return false;

	/*
I
Ingo Molnar 已提交
951
	 * Do not let lower order allocations pollute a movable pageblock.
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	 * This might let an unmovable request use a reclaimable pageblock
	 * and vice-versa but no more than normal fallback logic which can
	 * have trouble finding a high-order free page.
	 */
	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
		return false;

	capc->page = page;
	return true;
}

#else
static inline struct capture_control *task_capc(struct zone *zone)
{
	return NULL;
}

static inline bool
compaction_capture(struct capture_control *capc, struct page *page,
		   int order, int migratetype)
{
	return false;
}
#endif /* CONFIG_COMPACTION */

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
/* Used for pages not on another list */
static inline void add_to_free_list(struct page *page, struct zone *zone,
				    unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

/* Used for pages not on another list */
static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
					 unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

	list_add_tail(&page->lru, &area->free_list[migratetype]);
	area->nr_free++;
}

997 998 999 1000 1001
/*
 * Used for pages which are on another list. Move the pages to the tail
 * of the list - so the moved pages won't immediately be considered for
 * allocation again (e.g., optimization for memory onlining).
 */
1002 1003 1004 1005 1006
static inline void move_to_free_list(struct page *page, struct zone *zone,
				     unsigned int order, int migratetype)
{
	struct free_area *area = &zone->free_area[order];

1007
	list_move_tail(&page->lru, &area->free_list[migratetype]);
1008 1009 1010 1011 1012
}

static inline void del_page_from_free_list(struct page *page, struct zone *zone,
					   unsigned int order)
{
A
Alexander Duyck 已提交
1013 1014 1015 1016
	/* clear reported state and update reported page count */
	if (page_reported(page))
		__ClearPageReported(page);

1017 1018 1019 1020 1021 1022
	list_del(&page->lru);
	__ClearPageBuddy(page);
	set_page_private(page, 0);
	zone->free_area[order].nr_free--;
}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/*
 * If this is not the largest possible page, check if the buddy
 * of the next-highest order is free. If it is, it's possible
 * that pages are being freed that will coalesce soon. In case,
 * that is happening, add the free page to the tail of the list
 * so it's less likely to be used soon and more likely to be merged
 * as a higher order page
 */
static inline bool
buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
		   struct page *page, unsigned int order)
{
	struct page *higher_page, *higher_buddy;
	unsigned long combined_pfn;

	if (order >= MAX_ORDER - 2)
		return false;

	if (!pfn_valid_within(buddy_pfn))
		return false;

	combined_pfn = buddy_pfn & pfn;
	higher_page = page + (combined_pfn - pfn);
	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
	higher_buddy = higher_page + (buddy_pfn - combined_pfn);

	return pfn_valid_within(buddy_pfn) &&
	       page_is_buddy(higher_page, higher_buddy, order + 1);
}

L
Linus Torvalds 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
1066 1067
 * free pages of length of (1 << order) and marked with PageBuddy.
 * Page's order is recorded in page_private(page) field.
L
Linus Torvalds 已提交
1068
 * So when we are allocating or freeing one, we can derive the state of the
1069 1070
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
1071
 * If a block is freed, and its buddy is also free, then this
1072
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
1073
 *
1074
 * -- nyc
L
Linus Torvalds 已提交
1075 1076
 */

N
Nick Piggin 已提交
1077
static inline void __free_one_page(struct page *page,
1078
		unsigned long pfn,
1079
		struct zone *zone, unsigned int order,
1080
		int migratetype, fpi_t fpi_flags)
L
Linus Torvalds 已提交
1081
{
1082
	struct capture_control *capc = task_capc(zone);
1083
	unsigned long buddy_pfn;
1084
	unsigned long combined_pfn;
1085
	unsigned int max_order;
1086 1087
	struct page *buddy;
	bool to_tail;
1088

1089
	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
L
Linus Torvalds 已提交
1090

1091
	VM_BUG_ON(!zone_is_initialized(zone));
1092
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
1093

1094
	VM_BUG_ON(migratetype == -1);
1095
	if (likely(!is_migrate_isolate(migratetype)))
1096
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1097

1098
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1099
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
1100

1101
continue_merging:
1102
	while (order < max_order) {
1103 1104 1105 1106 1107
		if (compaction_capture(capc, page, order, migratetype)) {
			__mod_zone_freepage_state(zone, -(1 << order),
								migratetype);
			return;
		}
1108 1109
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
1110 1111 1112

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
1113
		if (!page_is_buddy(page, buddy, order))
1114
			goto done_merging;
1115 1116 1117 1118
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
1119
		if (page_is_guard(buddy))
1120
			clear_page_guard(zone, buddy, order, migratetype);
1121
		else
1122
			del_page_from_free_list(buddy, zone, order);
1123 1124 1125
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
1126 1127
		order++;
	}
1128
	if (order < MAX_ORDER - 1) {
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

1140 1141
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
1142 1143 1144 1145 1146 1147 1148
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
1149
		max_order = order + 1;
1150 1151 1152 1153
		goto continue_merging;
	}

done_merging:
1154
	set_buddy_order(page, order);
1155

1156 1157 1158
	if (fpi_flags & FPI_TO_TAIL)
		to_tail = true;
	else if (is_shuffle_order(order))
1159
		to_tail = shuffle_pick_tail();
1160
	else
1161
		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1162

1163
	if (to_tail)
1164
		add_to_free_list_tail(page, zone, order, migratetype);
1165
	else
1166
		add_to_free_list(page, zone, order, migratetype);
A
Alexander Duyck 已提交
1167 1168

	/* Notify page reporting subsystem of freed page */
1169
	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
A
Alexander Duyck 已提交
1170
		page_reporting_notify_free(order);
L
Linus Torvalds 已提交
1171 1172
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
1187
			page->memcg_data |
1188 1189 1190 1191 1192 1193 1194
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

1195
static const char *page_bad_reason(struct page *page, unsigned long flags)
L
Linus Torvalds 已提交
1196
{
1197
	const char *bad_reason = NULL;
1198

1199
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1200 1201 1202
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1203
	if (unlikely(page_ref_count(page) != 0))
1204
		bad_reason = "nonzero _refcount";
1205 1206 1207 1208 1209
	if (unlikely(page->flags & flags)) {
		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
		else
			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1210
	}
1211
#ifdef CONFIG_MEMCG
1212
	if (unlikely(page->memcg_data))
1213 1214
		bad_reason = "page still charged to cgroup";
#endif
1215 1216 1217 1218 1219 1220 1221
	return bad_reason;
}

static void check_free_page_bad(struct page *page)
{
	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1222 1223
}

1224
static inline int check_free_page(struct page *page)
1225
{
1226
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1227 1228 1229
		return 0;

	/* Something has gone sideways, find it */
1230
	check_free_page_bad(page);
1231
	return 1;
L
Linus Torvalds 已提交
1232 1233
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
1250
		/* the first tail page: ->mapping may be compound_mapcount() */
1251
		if (unlikely(compound_mapcount(page))) {
1252
			bad_page(page, "nonzero compound_mapcount");
1253 1254 1255 1256 1257 1258
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
M
Matthew Wilcox 已提交
1259
		 * deferred_list.next -- ignore value.
1260 1261 1262 1263
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
1264
			bad_page(page, "corrupted mapping in tail page");
1265 1266 1267 1268 1269
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
1270
		bad_page(page, "PageTail not set");
1271 1272 1273
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
1274
		bad_page(page, "compound_head not consistent");
1275 1276 1277 1278 1279 1280 1281 1282 1283
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1284 1285 1286 1287
static void kernel_init_free_pages(struct page *page, int numpages)
{
	int i;

1288 1289
	/* s390's use of memset() could override KASAN redzones. */
	kasan_disable_current();
1290
	for (i = 0; i < numpages; i++) {
1291
		u8 tag = page_kasan_tag(page + i);
1292
		page_kasan_tag_reset(page + i);
1293
		clear_highpage(page + i);
1294
		page_kasan_tag_set(page + i, tag);
1295
	}
1296
	kasan_enable_current();
1297 1298
}

1299
static __always_inline bool free_pages_prepare(struct page *page,
1300
			unsigned int order, bool check_free, fpi_t fpi_flags)
1301
{
1302
	int bad = 0;
1303
	bool init;
1304 1305 1306

	VM_BUG_ON_PAGE(PageTail(page), page);

1307 1308
	trace_mm_page_free(page, order);

1309 1310 1311 1312 1313
	if (unlikely(PageHWPoison(page)) && !order) {
		/*
		 * Do not let hwpoison pages hit pcplists/buddy
		 * Untie memcg state and reset page's owner
		 */
1314
		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1315 1316 1317 1318 1319
			__memcg_kmem_uncharge_page(page, order);
		reset_page_owner(page, order);
		return false;
	}

1320 1321 1322 1323 1324 1325 1326 1327 1328
	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1329

1330 1331
		if (compound)
			ClearPageDoubleMap(page);
1332 1333 1334
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
1335
			if (unlikely(check_free_page(page + i))) {
1336 1337 1338 1339 1340 1341
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1342
	if (PageMappingFlags(page))
1343
		page->mapping = NULL;
1344
	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1345
		__memcg_kmem_uncharge_page(page, order);
1346
	if (check_free)
1347
		bad += check_free_page(page);
1348 1349
	if (bad)
		return false;
1350

1351 1352 1353
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1354 1355 1356

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1357
					   PAGE_SIZE << order);
1358
		debug_check_no_obj_freed(page_address(page),
1359
					   PAGE_SIZE << order);
1360
	}
1361

1362 1363
	kernel_poison_pages(page, 1 << order);

1364
	/*
1365 1366 1367 1368
	 * As memory initialization might be integrated into KASAN,
	 * kasan_free_pages and kernel_init_free_pages must be
	 * kept together to avoid discrepancies in behavior.
	 *
1369 1370 1371
	 * With hardware tag-based KASAN, memory tags must be set before the
	 * page becomes unavailable via debug_pagealloc or arch_free_page.
	 */
1372 1373 1374 1375
	init = want_init_on_free();
	if (init && !kasan_has_integrated_init())
		kernel_init_free_pages(page, 1 << order);
	kasan_free_nondeferred_pages(page, order, init, fpi_flags);
1376

1377 1378 1379 1380 1381 1382 1383
	/*
	 * arch_free_page() can make the page's contents inaccessible.  s390
	 * does this.  So nothing which can access the page's contents should
	 * happen after this.
	 */
	arch_free_page(page, order);

1384
	debug_pagealloc_unmap_pages(page, 1 << order);
1385

1386 1387 1388
	return true;
}

1389
#ifdef CONFIG_DEBUG_VM
1390 1391 1392 1393 1394
/*
 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
 * moved from pcp lists to free lists.
 */
1395
static bool free_pcp_prepare(struct page *page, unsigned int order)
1396
{
1397
	return free_pages_prepare(page, order, true, FPI_NONE);
1398 1399
}

1400
static bool bulkfree_pcp_prepare(struct page *page)
1401
{
1402
	if (debug_pagealloc_enabled_static())
1403
		return check_free_page(page);
1404 1405
	else
		return false;
1406 1407
}
#else
1408 1409 1410 1411 1412 1413
/*
 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
 * moving from pcp lists to free list in order to reduce overhead. With
 * debug_pagealloc enabled, they are checked also immediately when being freed
 * to the pcp lists.
 */
1414
static bool free_pcp_prepare(struct page *page, unsigned int order)
1415
{
1416
	if (debug_pagealloc_enabled_static())
1417
		return free_pages_prepare(page, order, true, FPI_NONE);
1418
	else
1419
		return free_pages_prepare(page, order, false, FPI_NONE);
1420 1421
}

1422 1423
static bool bulkfree_pcp_prepare(struct page *page)
{
1424
	return check_free_page(page);
1425 1426 1427
}
#endif /* CONFIG_DEBUG_VM */

1428 1429 1430 1431 1432 1433 1434 1435 1436
static inline void prefetch_buddy(struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
	struct page *buddy = page + (buddy_pfn - pfn);

	prefetch(buddy);
}

L
Linus Torvalds 已提交
1437
/*
1438
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1439
 * Assumes all pages on list are in same zone, and of same order.
1440
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1441 1442 1443 1444 1445 1446 1447
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1448 1449
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1450
{
1451
	int pindex = 0;
1452
	int batch_free = 0;
1453 1454
	int nr_freed = 0;
	unsigned int order;
1455
	int prefetch_nr = READ_ONCE(pcp->batch);
1456
	bool isolated_pageblocks;
1457 1458
	struct page *page, *tmp;
	LIST_HEAD(head);
1459

1460 1461 1462 1463 1464
	/*
	 * Ensure proper count is passed which otherwise would stuck in the
	 * below while (list_empty(list)) loop.
	 */
	count = min(pcp->count, count);
1465
	while (count > 0) {
1466 1467 1468
		struct list_head *list;

		/*
1469 1470 1471 1472 1473
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1474 1475
		 */
		do {
1476
			batch_free++;
1477 1478 1479
			if (++pindex == NR_PCP_LISTS)
				pindex = 0;
			list = &pcp->lists[pindex];
1480
		} while (list_empty(list));
N
Nick Piggin 已提交
1481

1482
		/* This is the only non-empty list. Free them all. */
1483
		if (batch_free == NR_PCP_LISTS)
1484
			batch_free = count;
1485

1486 1487
		order = pindex_to_order(pindex);
		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1488
		do {
1489
			page = list_last_entry(list, struct page, lru);
1490
			/* must delete to avoid corrupting pcp list */
1491
			list_del(&page->lru);
1492 1493
			nr_freed += 1 << order;
			count -= 1 << order;
1494

1495 1496 1497
			if (bulkfree_pcp_prepare(page))
				continue;

1498 1499 1500 1501
			/* Encode order with the migratetype */
			page->index <<= NR_PCP_ORDER_WIDTH;
			page->index |= order;

1502
			list_add_tail(&page->lru, &head);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512

			/*
			 * We are going to put the page back to the global
			 * pool, prefetch its buddy to speed up later access
			 * under zone->lock. It is believed the overhead of
			 * an additional test and calculating buddy_pfn here
			 * can be offset by reduced memory latency later. To
			 * avoid excessive prefetching due to large count, only
			 * prefetch buddy for the first pcp->batch nr of pages.
			 */
1513
			if (prefetch_nr) {
1514
				prefetch_buddy(page);
1515 1516
				prefetch_nr--;
			}
1517
		} while (count > 0 && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1518
	}
1519
	pcp->count -= nr_freed;
1520

1521 1522 1523 1524
	/*
	 * local_lock_irq held so equivalent to spin_lock_irqsave for
	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
	 */
1525 1526 1527 1528 1529 1530 1531 1532 1533
	spin_lock(&zone->lock);
	isolated_pageblocks = has_isolate_pageblock(zone);

	/*
	 * Use safe version since after __free_one_page(),
	 * page->lru.next will not point to original list.
	 */
	list_for_each_entry_safe(page, tmp, &head, lru) {
		int mt = get_pcppage_migratetype(page);
1534 1535 1536 1537 1538

		/* mt has been encoded with the order (see above) */
		order = mt & NR_PCP_ORDER_MASK;
		mt >>= NR_PCP_ORDER_WIDTH;

1539 1540 1541 1542 1543 1544
		/* MIGRATE_ISOLATE page should not go to pcplists */
		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
		/* Pageblock could have been isolated meanwhile */
		if (unlikely(isolated_pageblocks))
			mt = get_pageblock_migratetype(page);

1545 1546
		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
		trace_mm_page_pcpu_drain(page, order, mt);
1547
	}
1548
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1549 1550
}

1551 1552
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1553
				unsigned int order,
1554
				int migratetype, fpi_t fpi_flags)
L
Linus Torvalds 已提交
1555
{
1556 1557 1558
	unsigned long flags;

	spin_lock_irqsave(&zone->lock, flags);
1559 1560 1561 1562
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1563
	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1564
	spin_unlock_irqrestore(&zone->lock, flags);
N
Nick Piggin 已提交
1565 1566
}

1567
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1568
				unsigned long zone, int nid)
1569
{
1570
	mm_zero_struct_page(page);
1571 1572 1573 1574
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);
1575
	page_kasan_tag_reset(page);
1576 1577 1578 1579 1580 1581 1582 1583 1584

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

1585
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1586
static void __meminit init_reserved_page(unsigned long pfn)
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1603
	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1604 1605 1606 1607 1608 1609 1610
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1611 1612 1613 1614 1615 1616
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1617
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1618 1619 1620 1621
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1622 1623 1624 1625 1626
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1627 1628 1629 1630

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1631 1632 1633 1634 1635 1636
			/*
			 * no need for atomic set_bit because the struct
			 * page is not visible yet so nobody should
			 * access it yet.
			 */
			__SetPageReserved(page);
1637 1638
		}
	}
1639 1640
}

1641 1642
static void __free_pages_ok(struct page *page, unsigned int order,
			    fpi_t fpi_flags)
1643
{
1644
	unsigned long flags;
M
Minchan Kim 已提交
1645
	int migratetype;
1646
	unsigned long pfn = page_to_pfn(page);
1647
	struct zone *zone = page_zone(page);
1648

1649
	if (!free_pages_prepare(page, order, true, fpi_flags))
1650 1651
		return;

1652
	migratetype = get_pfnblock_migratetype(page, pfn);
1653

1654 1655 1656 1657 1658 1659 1660
	spin_lock_irqsave(&zone->lock, flags);
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
	spin_unlock_irqrestore(&zone->lock, flags);
1661 1662

	__count_vm_events(PGFREE, 1 << order);
L
Linus Torvalds 已提交
1663 1664
}

1665
void __free_pages_core(struct page *page, unsigned int order)
1666
{
1667
	unsigned int nr_pages = 1 << order;
1668
	struct page *p = page;
1669
	unsigned int loop;
1670

1671 1672 1673 1674 1675
	/*
	 * When initializing the memmap, __init_single_page() sets the refcount
	 * of all pages to 1 ("allocated"/"not free"). We have to set the
	 * refcount of all involved pages to 0.
	 */
1676 1677 1678
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1679 1680
		__ClearPageReserved(p);
		set_page_count(p, 0);
1681
	}
1682 1683
	__ClearPageReserved(p);
	set_page_count(p, 0);
1684

1685
	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1686 1687 1688 1689 1690

	/*
	 * Bypass PCP and place fresh pages right to the tail, primarily
	 * relevant for memory onlining.
	 */
1691
	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1692 1693
}

1694
#ifdef CONFIG_NUMA
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
/*
 * During memory init memblocks map pfns to nids. The search is expensive and
 * this caches recent lookups. The implementation of __early_pfn_to_nid
 * treats start/end as pfns.
 */
struct mminit_pfnnid_cache {
	unsigned long last_start;
	unsigned long last_end;
	int last_nid;
};
1706

1707
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1708 1709 1710 1711

/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
1712
static int __meminit __early_pfn_to_nid(unsigned long pfn,
1713
					struct mminit_pfnnid_cache *state)
1714
{
1715
	unsigned long start_pfn, end_pfn;
1716 1717
	int nid;

1718 1719 1720 1721 1722 1723 1724 1725 1726
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;

	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != NUMA_NO_NODE) {
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
	}
1727 1728

	return nid;
1729 1730 1731 1732
}

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1733
	static DEFINE_SPINLOCK(early_pfn_lock);
1734 1735
	int nid;

1736
	spin_lock(&early_pfn_lock);
1737
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1738
	if (nid < 0)
1739
		nid = first_online_node;
1740
	spin_unlock(&early_pfn_lock);
1741

1742
	return nid;
1743
}
1744
#endif /* CONFIG_NUMA */
1745

1746
void __init memblock_free_pages(struct page *page, unsigned long pfn,
1747 1748 1749 1750
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1751
	__free_pages_core(page, order);
1752 1753
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1783 1784 1785
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
1814
		cond_resched();
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1826
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1827 1828
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1829
{
1830 1831
	struct page *page;
	unsigned long i;
1832

1833
	if (!nr_pages)
1834 1835
		return;

1836 1837
	page = pfn_to_page(pfn);

1838
	/* Free a large naturally-aligned chunk if possible */
1839 1840
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1841
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1842
		__free_pages_core(page, pageblock_order);
1843 1844 1845
		return;
	}

1846 1847 1848
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1849
		__free_pages_core(page, 0);
1850
	}
1851 1852
}

1853 1854 1855 1856 1857 1858 1859 1860 1861
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1862

1863
/*
1864 1865 1866 1867 1868 1869 1870 1871
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
1872
 */
1873
static inline bool __init deferred_pfn_valid(unsigned long pfn)
1874
{
1875 1876 1877 1878 1879 1880
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	return true;
}
1881

1882 1883 1884 1885
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
1886
static void __init deferred_free_pages(unsigned long pfn,
1887 1888 1889 1890
				       unsigned long end_pfn)
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1891

1892
	for (; pfn < end_pfn; pfn++) {
1893
		if (!deferred_pfn_valid(pfn)) {
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1905 1906
}

1907 1908 1909 1910 1911
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
1912
static unsigned long  __init deferred_init_pages(struct zone *zone,
1913 1914
						 unsigned long pfn,
						 unsigned long end_pfn)
1915 1916
{
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1917
	int nid = zone_to_nid(zone);
1918
	unsigned long nr_pages = 0;
1919
	int zid = zone_idx(zone);
1920 1921
	struct page *page = NULL;

1922
	for (; pfn < end_pfn; pfn++) {
1923
		if (!deferred_pfn_valid(pfn)) {
1924
			page = NULL;
1925
			continue;
1926
		} else if (!page || !(pfn & nr_pgmask)) {
1927
			page = pfn_to_page(pfn);
1928 1929
		} else {
			page++;
1930
		}
1931
		__init_single_page(page, pfn, zid, nid);
1932
		nr_pages++;
1933
	}
1934
	return (nr_pages);
1935 1936
}

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
/*
 * This function is meant to pre-load the iterator for the zone init.
 * Specifically it walks through the ranges until we are caught up to the
 * first_init_pfn value and exits there. If we never encounter the value we
 * return false indicating there are no valid ranges left.
 */
static bool __init
deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
				    unsigned long *spfn, unsigned long *epfn,
				    unsigned long first_init_pfn)
{
	u64 j;

	/*
	 * Start out by walking through the ranges in this zone that have
	 * already been initialized. We don't need to do anything with them
	 * so we just need to flush them out of the system.
	 */
	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
		if (*epfn <= first_init_pfn)
			continue;
		if (*spfn < first_init_pfn)
			*spfn = first_init_pfn;
		*i = j;
		return true;
	}

	return false;
}

/*
 * Initialize and free pages. We do it in two loops: first we initialize
 * struct page, then free to buddy allocator, because while we are
 * freeing pages we can access pages that are ahead (computing buddy
 * page in __free_one_page()).
 *
 * In order to try and keep some memory in the cache we have the loop
 * broken along max page order boundaries. This way we will not cause
 * any issues with the buddy page computation.
 */
static unsigned long __init
deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
		       unsigned long *end_pfn)
{
	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
	unsigned long spfn = *start_pfn, epfn = *end_pfn;
	unsigned long nr_pages = 0;
	u64 j = *i;

	/* First we loop through and initialize the page values */
	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
		unsigned long t;

		if (mo_pfn <= *start_pfn)
			break;

		t = min(mo_pfn, *end_pfn);
		nr_pages += deferred_init_pages(zone, *start_pfn, t);

		if (mo_pfn < *end_pfn) {
			*start_pfn = mo_pfn;
			break;
		}
	}

	/* Reset values and now loop through freeing pages as needed */
	swap(j, *i);

	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
		unsigned long t;

		if (mo_pfn <= spfn)
			break;

		t = min(mo_pfn, epfn);
		deferred_free_pages(spfn, t);

		if (mo_pfn <= epfn)
			break;
	}

	return nr_pages;
}

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
static void __init
deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
			   void *arg)
{
	unsigned long spfn, epfn;
	struct zone *zone = arg;
	u64 i;

	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);

	/*
	 * Initialize and free pages in MAX_ORDER sized increments so that we
	 * can avoid introducing any issues with the buddy allocator.
	 */
	while (spfn < end_pfn) {
		deferred_init_maxorder(&i, zone, &spfn, &epfn);
		cond_resched();
	}
}

2041 2042 2043 2044 2045 2046 2047
/* An arch may override for more concurrency. */
__weak int __init
deferred_page_init_max_threads(const struct cpumask *node_cpumask)
{
	return 1;
}

2048
/* Initialise remaining memory on a node */
2049
static int __init deferred_init_memmap(void *data)
2050
{
2051
	pg_data_t *pgdat = data;
2052
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2053
	unsigned long spfn = 0, epfn = 0;
2054
	unsigned long first_init_pfn, flags;
2055 2056
	unsigned long start = jiffies;
	struct zone *zone;
2057
	int zid, max_threads;
2058
	u64 i;
2059

2060 2061 2062 2063 2064 2065
	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);

	pgdat_resize_lock(pgdat, &flags);
	first_init_pfn = pgdat->first_deferred_pfn;
2066
	if (first_init_pfn == ULONG_MAX) {
2067
		pgdat_resize_unlock(pgdat, &flags);
2068
		pgdat_init_report_one_done();
2069 2070 2071
		return 0;
	}

2072 2073 2074 2075 2076
	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

2077 2078 2079 2080 2081 2082 2083
	/*
	 * Once we unlock here, the zone cannot be grown anymore, thus if an
	 * interrupt thread must allocate this early in boot, zone must be
	 * pre-grown prior to start of deferred page initialization.
	 */
	pgdat_resize_unlock(pgdat, &flags);

2084 2085 2086 2087 2088 2089
	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
2090 2091 2092 2093 2094

	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_init_pfn))
		goto zone_empty;
2095

2096
	max_threads = deferred_page_init_max_threads(cpumask);
2097

2098
	while (spfn < epfn) {
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
		struct padata_mt_job job = {
			.thread_fn   = deferred_init_memmap_chunk,
			.fn_arg      = zone,
			.start       = spfn,
			.size        = epfn_align - spfn,
			.align       = PAGES_PER_SECTION,
			.min_chunk   = PAGES_PER_SECTION,
			.max_threads = max_threads,
		};

		padata_do_multithreaded(&job);
		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						    epfn_align);
2113
	}
2114
zone_empty:
2115 2116 2117
	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

2118 2119
	pr_info("node %d deferred pages initialised in %ums\n",
		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2120 2121

	pgdat_init_report_one_done();
2122 2123
	return 0;
}
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

/*
 * If this zone has deferred pages, try to grow it by initializing enough
 * deferred pages to satisfy the allocation specified by order, rounded up to
 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
 * of SECTION_SIZE bytes by initializing struct pages in increments of
 * PAGES_PER_SECTION * sizeof(struct page) bytes.
 *
 * Return true when zone was grown, otherwise return false. We return true even
 * when we grow less than requested, to let the caller decide if there are
 * enough pages to satisfy the allocation.
 *
 * Note: We use noinline because this function is needed only during boot, and
 * it is called from a __ref function _deferred_grow_zone. This way we are
 * making sure that it is not inlined into permanent text section.
 */
static noinline bool __init
deferred_grow_zone(struct zone *zone, unsigned int order)
{
	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2144
	pg_data_t *pgdat = zone->zone_pgdat;
2145
	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2146 2147
	unsigned long spfn, epfn, flags;
	unsigned long nr_pages = 0;
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	u64 i;

	/* Only the last zone may have deferred pages */
	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
		return false;

	pgdat_resize_lock(pgdat, &flags);

	/*
	 * If someone grew this zone while we were waiting for spinlock, return
	 * true, as there might be enough pages already.
	 */
	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
		pgdat_resize_unlock(pgdat, &flags);
		return true;
	}

2165 2166 2167 2168
	/* If the zone is empty somebody else may have cleared out the zone */
	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
						 first_deferred_pfn)) {
		pgdat->first_deferred_pfn = ULONG_MAX;
2169
		pgdat_resize_unlock(pgdat, &flags);
2170 2171
		/* Retry only once. */
		return first_deferred_pfn != ULONG_MAX;
2172 2173
	}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	/*
	 * Initialize and free pages in MAX_ORDER sized increments so
	 * that we can avoid introducing any issues with the buddy
	 * allocator.
	 */
	while (spfn < epfn) {
		/* update our first deferred PFN for this section */
		first_deferred_pfn = spfn;

		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2184
		touch_nmi_watchdog();
2185

2186 2187 2188
		/* We should only stop along section boundaries */
		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
			continue;
2189

2190
		/* If our quota has been met we can stop here */
2191 2192 2193 2194
		if (nr_pages >= nr_pages_needed)
			break;
	}

2195
	pgdat->first_deferred_pfn = spfn;
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
	pgdat_resize_unlock(pgdat, &flags);

	return nr_pages > 0;
}

/*
 * deferred_grow_zone() is __init, but it is called from
 * get_page_from_freelist() during early boot until deferred_pages permanently
 * disables this call. This is why we have refdata wrapper to avoid warning,
 * and to ensure that the function body gets unloaded.
 */
static bool __ref
_deferred_grow_zone(struct zone *zone, unsigned int order)
{
	return deferred_grow_zone(zone, order);
}

2213
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2214 2215 2216

void __init page_alloc_init_late(void)
{
2217
	struct zone *zone;
2218
	int nid;
2219 2220

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2221

2222 2223
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2224 2225 2226 2227 2228
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
2229
	wait_for_completion(&pgdat_init_all_done_comp);
2230

2231 2232 2233 2234 2235 2236
	/*
	 * We initialized the rest of the deferred pages.  Permanently disable
	 * on-demand struct page initialization.
	 */
	static_branch_disable(&deferred_pages);

2237 2238
	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
2239
#endif
2240

2241 2242
	buffer_init();

P
Pavel Tatashin 已提交
2243 2244
	/* Discard memblock private memory */
	memblock_discard();
2245

2246 2247 2248
	for_each_node_state(nid, N_MEMORY)
		shuffle_free_memory(NODE_DATA(nid));

2249 2250
	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
2251 2252
}

2253
#ifdef CONFIG_CMA
2254
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2255 2256 2257 2258 2259 2260 2261 2262
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
2263
	} while (++p, --i);
2264 2265

	set_pageblock_migratetype(page, MIGRATE_CMA);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

2280
	adjust_managed_page_count(page, pageblock_nr_pages);
2281
	page_zone(page)->cma_pages += pageblock_nr_pages;
2282 2283
}
#endif
L
Linus Torvalds 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
2297
 * -- nyc
L
Linus Torvalds 已提交
2298
 */
N
Nick Piggin 已提交
2299
static inline void expand(struct zone *zone, struct page *page,
2300
	int low, int high, int migratetype)
L
Linus Torvalds 已提交
2301 2302 2303 2304 2305 2306
{
	unsigned long size = 1 << high;

	while (high > low) {
		high--;
		size >>= 1;
2307
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2308

2309 2310 2311 2312 2313 2314 2315
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
2316
			continue;
2317

2318
		add_to_free_list(&page[size], zone, high, migratetype);
2319
		set_buddy_order(&page[size], high);
L
Linus Torvalds 已提交
2320 2321 2322
	}
}

2323
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
2324
{
2325
	if (unlikely(page->flags & __PG_HWPOISON)) {
2326 2327 2328
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
2329
	}
2330 2331 2332

	bad_page(page,
		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
2346 2347
}

2348
#ifdef CONFIG_DEBUG_VM
2349 2350 2351 2352 2353 2354
/*
 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
 * also checked when pcp lists are refilled from the free lists.
 */
static inline bool check_pcp_refill(struct page *page)
2355
{
2356
	if (debug_pagealloc_enabled_static())
2357 2358 2359
		return check_new_page(page);
	else
		return false;
2360 2361
}

2362
static inline bool check_new_pcp(struct page *page)
2363 2364 2365 2366
{
	return check_new_page(page);
}
#else
2367 2368 2369 2370 2371 2372
/*
 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
 * when pcp lists are being refilled from the free lists. With debug_pagealloc
 * enabled, they are also checked when being allocated from the pcp lists.
 */
static inline bool check_pcp_refill(struct page *page)
2373 2374 2375
{
	return check_new_page(page);
}
2376
static inline bool check_new_pcp(struct page *page)
2377
{
2378
	if (debug_pagealloc_enabled_static())
2379 2380 2381
		return check_new_page(page);
	else
		return false;
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

2398 2399 2400
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
2401 2402
	bool init;

2403 2404 2405 2406
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
2407
	debug_pagealloc_map_pages(page, 1 << order);
2408 2409 2410 2411 2412 2413

	/*
	 * Page unpoisoning must happen before memory initialization.
	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
	 * allocations and the page unpoisoning code will complain.
	 */
2414
	kernel_unpoison_pages(page, 1 << order);
2415

2416 2417 2418 2419 2420 2421 2422 2423
	/*
	 * As memory initialization might be integrated into KASAN,
	 * kasan_alloc_pages and kernel_init_free_pages must be
	 * kept together to avoid discrepancies in behavior.
	 */
	init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
	kasan_alloc_pages(page, order, init);
	if (init && !kasan_has_integrated_init())
2424
		kernel_init_free_pages(page, 1 << order);
2425 2426

	set_page_owner(page, order, gfp_flags);
2427 2428
}

2429
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2430
							unsigned int alloc_flags)
2431
{
2432
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
2433 2434 2435 2436

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

2437
	/*
2438
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2439 2440 2441 2442
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
2443 2444 2445 2446
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
2447 2448
}

2449 2450 2451 2452
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
2453
static __always_inline
2454
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2455 2456 2457
						int migratetype)
{
	unsigned int current_order;
2458
	struct free_area *area;
2459 2460 2461 2462 2463
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
2464
		page = get_page_from_free_area(area, migratetype);
2465 2466
		if (!page)
			continue;
2467 2468
		del_page_from_free_list(page, zone, current_order);
		expand(zone, page, order, current_order, migratetype);
2469
		set_pcppage_migratetype(page, migratetype);
2470 2471 2472 2473 2474 2475 2476
		return page;
	}

	return NULL;
}


2477 2478 2479 2480
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
2481
static int fallbacks[MIGRATE_TYPES][3] = {
2482 2483
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2484
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2485
#ifdef CONFIG_CMA
2486
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2487
#endif
2488
#ifdef CONFIG_MEMORY_ISOLATION
2489
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2490
#endif
2491 2492
};

2493
#ifdef CONFIG_CMA
2494
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2495 2496 2497 2498 2499 2500 2501 2502 2503
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

2504
/*
2505
 * Move the free pages in a range to the freelist tail of the requested type.
2506
 * Note that start_page and end_pages are not aligned on a pageblock
2507 2508
 * boundary. If alignment is required, use move_freepages_block()
 */
2509
static int move_freepages(struct zone *zone,
2510
			  unsigned long start_pfn, unsigned long end_pfn,
2511
			  int migratetype, int *num_movable)
2512 2513
{
	struct page *page;
2514
	unsigned long pfn;
2515
	unsigned int order;
2516
	int pages_moved = 0;
2517

2518 2519 2520
	for (pfn = start_pfn; pfn <= end_pfn;) {
		if (!pfn_valid_within(pfn)) {
			pfn++;
2521 2522 2523
			continue;
		}

2524
		page = pfn_to_page(pfn);
2525
		if (!PageBuddy(page)) {
2526 2527 2528 2529 2530 2531 2532 2533
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;
2534
			pfn++;
2535 2536 2537
			continue;
		}

2538 2539 2540 2541
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
		VM_BUG_ON_PAGE(page_zone(page) != zone, page);

2542
		order = buddy_order(page);
2543
		move_to_free_list(page, zone, order, migratetype);
2544
		pfn += 1 << order;
2545
		pages_moved += 1 << order;
2546 2547
	}

2548
	return pages_moved;
2549 2550
}

2551
int move_freepages_block(struct zone *zone, struct page *page,
2552
				int migratetype, int *num_movable)
2553
{
2554
	unsigned long start_pfn, end_pfn, pfn;
2555

2556 2557 2558
	if (num_movable)
		*num_movable = 0;

2559 2560
	pfn = page_to_pfn(page);
	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2561
	end_pfn = start_pfn + pageblock_nr_pages - 1;
2562 2563

	/* Do not cross zone boundaries */
2564
	if (!zone_spans_pfn(zone, start_pfn))
2565
		start_pfn = pfn;
2566
	if (!zone_spans_pfn(zone, end_pfn))
2567 2568
		return 0;

2569
	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2570
								num_movable);
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

2584
/*
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
2595
 */
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

2617
static inline bool boost_watermark(struct zone *zone)
2618 2619 2620 2621
{
	unsigned long max_boost;

	if (!watermark_boost_factor)
2622
		return false;
2623 2624 2625 2626 2627 2628 2629
	/*
	 * Don't bother in zones that are unlikely to produce results.
	 * On small machines, including kdump capture kernels running
	 * in a small area, boosting the watermark can cause an out of
	 * memory situation immediately.
	 */
	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2630
		return false;
2631 2632 2633

	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
			watermark_boost_factor, 10000);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643

	/*
	 * high watermark may be uninitialised if fragmentation occurs
	 * very early in boot so do not boost. We do not fall
	 * through and boost by pageblock_nr_pages as failing
	 * allocations that early means that reclaim is not going
	 * to help and it may even be impossible to reclaim the
	 * boosted watermark resulting in a hang.
	 */
	if (!max_boost)
2644
		return false;
2645

2646 2647 2648 2649
	max_boost = max(pageblock_nr_pages, max_boost);

	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
		max_boost);
2650 2651

	return true;
2652 2653
}

2654 2655 2656
/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2657 2658 2659 2660
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2661 2662
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2663
		unsigned int alloc_flags, int start_type, bool whole_block)
2664
{
2665
	unsigned int current_order = buddy_order(page);
2666 2667 2668 2669
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2670

2671 2672 2673 2674
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2675
	if (is_migrate_highatomic(old_block_type))
2676 2677
		goto single_page;

2678 2679 2680
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2681
		goto single_page;
2682 2683
	}

2684 2685 2686 2687 2688
	/*
	 * Boost watermarks to increase reclaim pressure to reduce the
	 * likelihood of future fallbacks. Wake kswapd now as the node
	 * may be balanced overall and kswapd will not wake naturally.
	 */
2689
	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2690
		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2691

2692 2693 2694 2695
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2720
	/* moving whole block can fail due to zone boundary conditions */
2721
	if (!free_pages)
2722
		goto single_page;
2723

2724 2725 2726 2727 2728
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2729 2730
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2731 2732 2733 2734

	return;

single_page:
2735
	move_to_free_list(page, zone, current_order, start_type);
2736 2737
}

2738 2739 2740 2741 2742 2743 2744 2745
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2756
		if (fallback_mt == MIGRATE_TYPES)
2757 2758
			break;

2759
		if (free_area_empty(area, fallback_mt))
2760
			continue;
2761

2762 2763 2764
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2765 2766 2767 2768 2769
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2770
	}
2771 2772

	return -1;
2773 2774
}

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
2789
	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2801 2802
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2803 2804
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2805
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2817 2818 2819
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2820
 */
2821 2822
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2823 2824 2825 2826 2827 2828 2829
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2830
	bool ret;
2831

2832
	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2833
								ac->nodemask) {
2834 2835 2836 2837 2838 2839
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2840 2841 2842 2843 2844 2845
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2846
			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2847
			if (!page)
2848 2849 2850
				continue;

			/*
2851 2852
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
I
Ingo Molnar 已提交
2853
			 * in this loop although we changed the pageblock type
2854 2855
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2856
			 */
2857
			if (is_migrate_highatomic_page(page)) {
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2880 2881
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2882 2883 2884 2885
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2886 2887 2888
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2889 2890

	return false;
2891 2892
}

2893 2894 2895 2896 2897
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2898 2899 2900 2901
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2902
 */
2903
static __always_inline bool
2904 2905
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
						unsigned int alloc_flags)
2906
{
2907
	struct free_area *area;
2908
	int current_order;
2909
	int min_order = order;
2910
	struct page *page;
2911 2912
	int fallback_mt;
	bool can_steal;
2913

2914 2915 2916 2917 2918 2919 2920 2921
	/*
	 * Do not steal pages from freelists belonging to other pageblocks
	 * i.e. orders < pageblock_order. If there are no local zones free,
	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
	 */
	if (alloc_flags & ALLOC_NOFRAGMENT)
		min_order = pageblock_order;

2922 2923 2924 2925 2926
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2927
	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2928
				--current_order) {
2929 2930
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2931
				start_migratetype, false, &can_steal);
2932 2933
		if (fallback_mt == -1)
			continue;
2934

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2946

2947 2948
		goto do_steal;
	}
2949

2950
	return false;
2951

2952 2953 2954 2955 2956 2957 2958 2959
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2960 2961
	}

2962 2963 2964 2965 2966 2967 2968
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
2969
	page = get_page_from_free_area(area, fallback_mt);
2970

2971 2972
	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
								can_steal);
2973 2974 2975 2976 2977 2978

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2979 2980
}

2981
/*
L
Linus Torvalds 已提交
2982 2983 2984
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2985
static __always_inline struct page *
2986 2987
__rmqueue(struct zone *zone, unsigned int order, int migratetype,
						unsigned int alloc_flags)
L
Linus Torvalds 已提交
2988 2989 2990
{
	struct page *page;

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	if (IS_ENABLED(CONFIG_CMA)) {
		/*
		 * Balance movable allocations between regular and CMA areas by
		 * allocating from CMA when over half of the zone's free memory
		 * is in the CMA area.
		 */
		if (alloc_flags & ALLOC_CMA &&
		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
			page = __rmqueue_cma_fallback(zone, order);
			if (page)
				goto out;
		}
3004
	}
3005
retry:
3006
	page = __rmqueue_smallest(zone, order, migratetype);
3007
	if (unlikely(!page)) {
3008
		if (alloc_flags & ALLOC_CMA)
3009 3010
			page = __rmqueue_cma_fallback(zone, order);

3011 3012
		if (!page && __rmqueue_fallback(zone, order, migratetype,
								alloc_flags))
3013
			goto retry;
3014
	}
3015 3016 3017
out:
	if (page)
		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3018
	return page;
L
Linus Torvalds 已提交
3019 3020
}

3021
/*
L
Linus Torvalds 已提交
3022 3023 3024 3025
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
3026
static int rmqueue_bulk(struct zone *zone, unsigned int order,
3027
			unsigned long count, struct list_head *list,
3028
			int migratetype, unsigned int alloc_flags)
L
Linus Torvalds 已提交
3029
{
3030
	int i, allocated = 0;
3031

3032 3033 3034 3035
	/*
	 * local_lock_irq held so equivalent to spin_lock_irqsave for
	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
	 */
3036
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
3037
	for (i = 0; i < count; ++i) {
3038 3039
		struct page *page = __rmqueue(zone, order, migratetype,
								alloc_flags);
N
Nick Piggin 已提交
3040
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
3041
			break;
3042

3043 3044 3045
		if (unlikely(check_pcp_refill(page)))
			continue;

3046
		/*
3047 3048 3049 3050 3051 3052 3053 3054
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
3055
		 */
3056
		list_add_tail(&page->lru, list);
3057
		allocated++;
3058
		if (is_migrate_cma(get_pcppage_migratetype(page)))
3059 3060
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
3061
	}
3062 3063 3064 3065

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3066
	 * on i. Do not confuse with 'allocated' which is the number of
3067 3068
	 * pages added to the pcp list.
	 */
3069
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3070
	spin_unlock(&zone->lock);
3071
	return allocated;
L
Linus Torvalds 已提交
3072 3073
}

3074
#ifdef CONFIG_NUMA
3075
/*
3076 3077 3078 3079
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
3080 3081
 * Note that this function must be called with the thread pinned to
 * a single processor.
3082
 */
3083
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3084 3085
{
	unsigned long flags;
3086
	int to_drain, batch;
3087

3088
	local_lock_irqsave(&pagesets.lock, flags);
3089
	batch = READ_ONCE(pcp->batch);
3090
	to_drain = min(pcp->count, batch);
3091
	if (to_drain > 0)
3092
		free_pcppages_bulk(zone, to_drain, pcp);
3093
	local_unlock_irqrestore(&pagesets.lock, flags);
3094 3095 3096
}
#endif

3097
/*
3098
 * Drain pcplists of the indicated processor and zone.
3099 3100 3101 3102 3103
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
3104
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
3105
{
N
Nick Piggin 已提交
3106
	unsigned long flags;
3107
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
3108

3109
	local_lock_irqsave(&pagesets.lock, flags);
L
Linus Torvalds 已提交
3110

3111
	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3112
	if (pcp->count)
3113
		free_pcppages_bulk(zone, pcp->count, pcp);
3114

3115
	local_unlock_irqrestore(&pagesets.lock, flags);
3116
}
3117

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
3131 3132 3133
	}
}

3134 3135
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3136 3137 3138
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
3139
 */
3140
void drain_local_pages(struct zone *zone)
3141
{
3142 3143 3144 3145 3146 3147
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
3148 3149
}

3150 3151
static void drain_local_pages_wq(struct work_struct *work)
{
3152 3153 3154 3155
	struct pcpu_drain *drain;

	drain = container_of(work, struct pcpu_drain, work);

3156 3157 3158 3159
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
I
Ingo Molnar 已提交
3160
	 * cpu which is alright but we also have to make sure to not move to
3161 3162 3163
	 * a different one.
	 */
	preempt_disable();
3164
	drain_local_pages(drain->zone);
3165
	preempt_enable();
3166 3167
}

3168
/*
3169 3170
 * The implementation of drain_all_pages(), exposing an extra parameter to
 * drain on all cpus.
3171
 *
3172 3173 3174 3175 3176
 * drain_all_pages() is optimized to only execute on cpus where pcplists are
 * not empty. The check for non-emptiness can however race with a free to
 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
 * that need the guarantee that every CPU has drained can disable the
 * optimizing racy check.
3177
 */
3178
static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3179
{
3180 3181 3182 3183 3184 3185 3186 3187
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

3188 3189 3190 3191 3192 3193 3194
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
3205

3206 3207 3208 3209 3210 3211 3212
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
3213
		struct per_cpu_pages *pcp;
3214
		struct zone *z;
3215
		bool has_pcps = false;
3216

3217 3218 3219 3220 3221 3222 3223
		if (force_all_cpus) {
			/*
			 * The pcp.count check is racy, some callers need a
			 * guarantee that no cpu is missed.
			 */
			has_pcps = true;
		} else if (zone) {
3224 3225
			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
			if (pcp->count)
3226
				has_pcps = true;
3227 3228
		} else {
			for_each_populated_zone(z) {
3229 3230
				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
				if (pcp->count) {
3231 3232 3233
					has_pcps = true;
					break;
				}
3234 3235
			}
		}
3236

3237 3238 3239 3240 3241
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
3242

3243
	for_each_cpu(cpu, &cpus_with_pcps) {
3244 3245 3246 3247 3248
		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);

		drain->zone = zone;
		INIT_WORK(&drain->work, drain_local_pages_wq);
		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3249
	}
3250
	for_each_cpu(cpu, &cpus_with_pcps)
3251
		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3252 3253

	mutex_unlock(&pcpu_drain_mutex);
3254 3255
}

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
/*
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
 * Note that this can be extremely slow as the draining happens in a workqueue.
 */
void drain_all_pages(struct zone *zone)
{
	__drain_all_pages(zone, false);
}

3268
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
3269

3270 3271 3272 3273 3274
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
3275 3276
void mark_free_pages(struct zone *zone)
{
3277
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3278
	unsigned long flags;
3279
	unsigned int order, t;
3280
	struct page *page;
L
Linus Torvalds 已提交
3281

3282
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
3283 3284 3285
		return;

	spin_lock_irqsave(&zone->lock, flags);
3286

3287
	max_zone_pfn = zone_end_pfn(zone);
3288 3289
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
3290
			page = pfn_to_page(pfn);
3291

3292 3293 3294 3295 3296
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

3297 3298 3299
			if (page_zone(page) != zone)
				continue;

3300 3301
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
3302
		}
L
Linus Torvalds 已提交
3303

3304
	for_each_migratetype_order(order, t) {
3305 3306
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
3307
			unsigned long i;
L
Linus Torvalds 已提交
3308

3309
			pfn = page_to_pfn(page);
3310 3311 3312 3313 3314
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
3315
				swsusp_set_page_free(pfn_to_page(pfn + i));
3316
			}
3317
		}
3318
	}
L
Linus Torvalds 已提交
3319 3320
	spin_unlock_irqrestore(&zone->lock, flags);
}
3321
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
3322

3323 3324
static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
							unsigned int order)
L
Linus Torvalds 已提交
3325
{
3326
	int migratetype;
L
Linus Torvalds 已提交
3327

3328
	if (!free_pcp_prepare(page, order))
3329
		return false;
3330

3331
	migratetype = get_pfnblock_migratetype(page, pfn);
3332
	set_pcppage_migratetype(page, migratetype);
3333 3334 3335
	return true;
}

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
{
	int min_nr_free, max_nr_free;

	/* Check for PCP disabled or boot pageset */
	if (unlikely(high < batch))
		return 1;

	/* Leave at least pcp->batch pages on the list */
	min_nr_free = batch;
	max_nr_free = high - batch;

	/*
	 * Double the number of pages freed each time there is subsequent
	 * freeing of pages without any allocation.
	 */
	batch <<= pcp->free_factor;
	if (batch < max_nr_free)
		pcp->free_factor++;
	batch = clamp(batch, min_nr_free, max_nr_free);

	return batch;
}

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
{
	int high = READ_ONCE(pcp->high);

	if (unlikely(!high))
		return 0;

	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
		return high;

	/*
	 * If reclaim is active, limit the number of pages that can be
	 * stored on pcp lists
	 */
	return min(READ_ONCE(pcp->batch) << 2, high);
}

3377
static void free_unref_page_commit(struct page *page, unsigned long pfn,
3378
				   int migratetype, unsigned int order)
3379 3380 3381
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
3382
	int high;
3383
	int pindex;
3384

3385
	__count_vm_event(PGFREE);
3386
	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3387 3388 3389
	pindex = order_to_pindex(migratetype, order);
	list_add(&page->lru, &pcp->lists[pindex]);
	pcp->count += 1 << order;
3390
	high = nr_pcp_high(pcp, zone);
3391 3392 3393 3394 3395
	if (pcp->count >= high) {
		int batch = READ_ONCE(pcp->batch);

		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
	}
3396
}
3397

3398
/*
3399
 * Free a pcp page
3400
 */
3401
void free_unref_page(struct page *page, unsigned int order)
3402 3403 3404
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);
3405
	int migratetype;
3406

3407
	if (!free_unref_page_prepare(page, pfn, order))
3408 3409
		return;

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Place ISOLATE pages on the isolated list because they are being
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	migratetype = get_pcppage_migratetype(page);
	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
		if (unlikely(is_migrate_isolate(migratetype))) {
3420
			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3421 3422 3423 3424 3425
			return;
		}
		migratetype = MIGRATE_MOVABLE;
	}

3426
	local_lock_irqsave(&pagesets.lock, flags);
3427
	free_unref_page_commit(page, pfn, migratetype, order);
3428
	local_unlock_irqrestore(&pagesets.lock, flags);
L
Linus Torvalds 已提交
3429 3430
}

3431 3432 3433
/*
 * Free a list of 0-order pages
 */
3434
void free_unref_page_list(struct list_head *list)
3435 3436
{
	struct page *page, *next;
3437
	unsigned long flags, pfn;
3438
	int batch_count = 0;
3439
	int migratetype;
3440 3441 3442 3443

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
3444
		if (!free_unref_page_prepare(page, pfn, 0))
3445
			list_del(&page->lru);
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466

		/*
		 * Free isolated pages directly to the allocator, see
		 * comment in free_unref_page.
		 */
		migratetype = get_pcppage_migratetype(page);
		if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
			if (unlikely(is_migrate_isolate(migratetype))) {
				list_del(&page->lru);
				free_one_page(page_zone(page), page, pfn, 0,
							migratetype, FPI_NONE);
				continue;
			}

			/*
			 * Non-isolated types over MIGRATE_PCPTYPES get added
			 * to the MIGRATE_MOVABLE pcp list.
			 */
			set_pcppage_migratetype(page, MIGRATE_MOVABLE);
		}

3467 3468
		set_page_private(page, pfn);
	}
3469

3470
	local_lock_irqsave(&pagesets.lock, flags);
3471
	list_for_each_entry_safe(page, next, list, lru) {
3472
		pfn = page_private(page);
3473
		set_page_private(page, 0);
3474
		migratetype = get_pcppage_migratetype(page);
3475
		trace_mm_page_free_batched(page);
3476
		free_unref_page_commit(page, pfn, migratetype, 0);
3477 3478 3479 3480 3481 3482

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
3483
			local_unlock_irqrestore(&pagesets.lock, flags);
3484
			batch_count = 0;
3485
			local_lock_irqsave(&pagesets.lock, flags);
3486
		}
3487
	}
3488
	local_unlock_irqrestore(&pagesets.lock, flags);
3489 3490
}

N
Nick Piggin 已提交
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

3503 3504
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
3505

3506
	for (i = 1; i < (1 << order); i++)
3507
		set_page_refcounted(page + i);
3508
	split_page_owner(page, 1 << order);
3509
	split_page_memcg(page, 1 << order);
N
Nick Piggin 已提交
3510
}
K
K. Y. Srinivasan 已提交
3511
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
3512

3513
int __isolate_free_page(struct page *page, unsigned int order)
3514 3515 3516
{
	unsigned long watermark;
	struct zone *zone;
3517
	int mt;
3518 3519 3520 3521

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
3522
	mt = get_pageblock_migratetype(page);
3523

3524
	if (!is_migrate_isolate(mt)) {
3525 3526 3527 3528 3529 3530
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
3531
		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3532
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3533 3534
			return 0;

3535
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3536
	}
3537 3538

	/* Remove page from free list */
3539

3540
	del_page_from_free_list(page, zone, order);
3541

3542 3543 3544 3545
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
3546 3547
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
3548 3549
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
3550
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3551
			    && !is_migrate_highatomic(mt))
3552 3553 3554
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
3555 3556
	}

3557

3558
	return 1UL << order;
3559 3560
}

3561 3562 3563 3564
/**
 * __putback_isolated_page - Return a now-isolated page back where we got it
 * @page: Page that was isolated
 * @order: Order of the isolated page
3565
 * @mt: The page's pageblock's migratetype
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
 *
 * This function is meant to return a page pulled from the free lists via
 * __isolate_free_page back to the free lists they were pulled from.
 */
void __putback_isolated_page(struct page *page, unsigned int order, int mt)
{
	struct zone *zone = page_zone(page);

	/* zone lock should be held when this function is called */
	lockdep_assert_held(&zone->lock);

	/* Return isolated page to tail of freelist. */
3578
	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3579
			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3580 3581
}

3582 3583 3584 3585 3586
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
3587 3588
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
				   long nr_account)
3589 3590
{
#ifdef CONFIG_NUMA
3591
	enum numa_stat_item local_stat = NUMA_LOCAL;
3592

3593 3594 3595 3596
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

3597
	if (zone_to_nid(z) != numa_node_id())
3598 3599
		local_stat = NUMA_OTHER;

3600
	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3601
		__count_numa_events(z, NUMA_HIT, nr_account);
3602
	else {
3603 3604
		__count_numa_events(z, NUMA_MISS, nr_account);
		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3605
	}
3606
	__count_numa_events(z, local_stat, nr_account);
3607 3608 3609
#endif
}

3610
/* Remove page from the per-cpu list, caller must protect the list */
3611
static inline
3612 3613
struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
			int migratetype,
3614
			unsigned int alloc_flags,
M
Mel Gorman 已提交
3615
			struct per_cpu_pages *pcp,
3616 3617 3618 3619 3620 3621
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
			int batch = READ_ONCE(pcp->batch);
			int alloced;

			/*
			 * Scale batch relative to order if batch implies
			 * free pages can be stored on the PCP. Batch can
			 * be 1 for small zones or for boot pagesets which
			 * should never store free pages as the pages may
			 * belong to arbitrary zones.
			 */
			if (batch > 1)
				batch = max(batch >> order, 2);
			alloced = rmqueue_bulk(zone, order,
					batch, list,
3636
					migratetype, alloc_flags);
3637 3638

			pcp->count += alloced << order;
3639 3640 3641 3642
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
3643
		page = list_first_entry(list, struct page, lru);
3644
		list_del(&page->lru);
3645
		pcp->count -= 1 << order;
3646 3647 3648 3649 3650 3651 3652
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3653 3654 3655
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype,
			unsigned int alloc_flags)
3656 3657 3658 3659
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
3660
	unsigned long flags;
3661

3662
	local_lock_irqsave(&pagesets.lock, flags);
3663 3664 3665 3666 3667 3668

	/*
	 * On allocation, reduce the number of pages that are batch freed.
	 * See nr_pcp_free() where free_factor is increased for subsequent
	 * frees.
	 */
3669
	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3670
	pcp->free_factor >>= 1;
3671 3672
	list = &pcp->lists[order_to_pindex(migratetype, order)];
	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3673
	local_unlock_irqrestore(&pagesets.lock, flags);
3674
	if (page) {
3675
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3676
		zone_statistics(preferred_zone, zone, 1);
3677 3678 3679 3680
	}
	return page;
}

L
Linus Torvalds 已提交
3681
/*
3682
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
3683
 */
3684
static inline
3685
struct page *rmqueue(struct zone *preferred_zone,
3686
			struct zone *zone, unsigned int order,
3687 3688
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
3689 3690
{
	unsigned long flags;
3691
	struct page *page;
L
Linus Torvalds 已提交
3692

3693
	if (likely(pcp_allowed_order(order))) {
3694 3695 3696 3697 3698 3699
		/*
		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
		 * we need to skip it when CMA area isn't allowed.
		 */
		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
				migratetype != MIGRATE_MOVABLE) {
3700 3701
			page = rmqueue_pcplist(preferred_zone, zone, order,
					gfp_flags, migratetype, alloc_flags);
3702 3703
			goto out;
		}
3704
	}
3705

3706 3707 3708 3709 3710 3711
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
3712

3713 3714
	do {
		page = NULL;
3715 3716 3717 3718 3719 3720 3721
		/*
		 * order-0 request can reach here when the pcplist is skipped
		 * due to non-CMA allocation context. HIGHATOMIC area is
		 * reserved for high-order atomic allocation, so order-0
		 * request should skip it.
		 */
		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3722 3723 3724 3725
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
3726
		if (!page)
3727
			page = __rmqueue(zone, order, migratetype, alloc_flags);
3728 3729 3730
	} while (page && check_new_pages(page, order));
	if (!page)
		goto failed;
3731

3732 3733
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
3734
	spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
3735

3736
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3737
	zone_statistics(preferred_zone, zone, 1);
L
Linus Torvalds 已提交
3738

3739
out:
3740 3741 3742 3743 3744 3745
	/* Separate test+clear to avoid unnecessary atomics */
	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
	}

3746
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
3747
	return page;
N
Nick Piggin 已提交
3748 3749

failed:
3750
	spin_unlock_irqrestore(&zone->lock, flags);
N
Nick Piggin 已提交
3751
	return NULL;
L
Linus Torvalds 已提交
3752 3753
}

3754 3755
#ifdef CONFIG_FAIL_PAGE_ALLOC

3756
static struct {
3757 3758
	struct fault_attr attr;

3759
	bool ignore_gfp_highmem;
3760
	bool ignore_gfp_reclaim;
3761
	u32 min_order;
3762 3763
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
3764
	.ignore_gfp_reclaim = true,
3765
	.ignore_gfp_highmem = true,
3766
	.min_order = 1,
3767 3768 3769 3770 3771 3772 3773 3774
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

3775
static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3776
{
3777
	if (order < fail_page_alloc.min_order)
3778
		return false;
3779
	if (gfp_mask & __GFP_NOFAIL)
3780
		return false;
3781
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3782
		return false;
3783 3784
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
3785
		return false;
3786 3787 3788 3789 3790 3791 3792 3793

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
3794
	umode_t mode = S_IFREG | 0600;
3795 3796
	struct dentry *dir;

3797 3798
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
3799

3800 3801 3802 3803 3804
	debugfs_create_bool("ignore-gfp-wait", mode, dir,
			    &fail_page_alloc.ignore_gfp_reclaim);
	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
			    &fail_page_alloc.ignore_gfp_highmem);
	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3805

3806
	return 0;
3807 3808 3809 3810 3811 3812 3813 3814
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

3815
static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3816
{
3817
	return false;
3818 3819 3820 3821
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

3822
noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3823 3824 3825 3826 3827
{
	return __should_fail_alloc_page(gfp_mask, order);
}
ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
static inline long __zone_watermark_unusable_free(struct zone *z,
				unsigned int order, unsigned int alloc_flags)
{
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
	long unusable_free = (1 << order) - 1;

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
	if (likely(!alloc_harder))
		unusable_free += z->nr_reserved_highatomic;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	return unusable_free;
}

L
Linus Torvalds 已提交
3851
/*
3852 3853 3854 3855
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3856
 */
3857
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3858
			 int highest_zoneidx, unsigned int alloc_flags,
3859
			 long free_pages)
L
Linus Torvalds 已提交
3860
{
3861
	long min = mark;
L
Linus Torvalds 已提交
3862
	int o;
3863
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3864

3865
	/* free_pages may go negative - that's OK */
3866
	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3867

R
Rohit Seth 已提交
3868
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3869
		min -= min / 2;
3870

3871
	if (unlikely(alloc_harder)) {
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3884 3885 3886 3887 3888
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
3889
	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3890
		return false;
L
Linus Torvalds 已提交
3891

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3905
			if (!free_area_empty(area, mt))
3906 3907 3908 3909
				return true;
		}

#ifdef CONFIG_CMA
3910
		if ((alloc_flags & ALLOC_CMA) &&
3911
		    !free_area_empty(area, MIGRATE_CMA)) {
3912
			return true;
3913
		}
3914
#endif
3915
		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3916
			return true;
L
Linus Torvalds 已提交
3917
	}
3918
	return false;
3919 3920
}

3921
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3922
		      int highest_zoneidx, unsigned int alloc_flags)
3923
{
3924
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3925 3926 3927
					zone_page_state(z, NR_FREE_PAGES));
}

3928
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3929
				unsigned long mark, int highest_zoneidx,
3930
				unsigned int alloc_flags, gfp_t gfp_mask)
3931
{
3932
	long free_pages;
3933

3934
	free_pages = zone_page_state(z, NR_FREE_PAGES);
3935 3936 3937

	/*
	 * Fast check for order-0 only. If this fails then the reserves
3938
	 * need to be calculated.
3939
	 */
3940 3941 3942 3943 3944 3945 3946 3947
	if (!order) {
		long fast_free;

		fast_free = free_pages;
		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
			return true;
	}
3948

3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
					free_pages))
		return true;
	/*
	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
	 * when checking the min watermark. The min watermark is the
	 * point where boosting is ignored so that kswapd is woken up
	 * when below the low watermark.
	 */
	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
		mark = z->_watermark[WMARK_MIN];
		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
					alloc_flags, free_pages);
	}

	return false;
3966 3967
}

3968
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3969
			unsigned long mark, int highest_zoneidx)
3970 3971 3972 3973 3974 3975
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3976
	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3977
								free_pages);
L
Linus Torvalds 已提交
3978 3979
}

3980
#ifdef CONFIG_NUMA
3981 3982
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3983
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3984
				node_reclaim_distance;
3985
}
3986
#else	/* CONFIG_NUMA */
3987 3988 3989 3990
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3991 3992
#endif	/* CONFIG_NUMA */

3993 3994 3995 3996 3997 3998 3999 4000 4001
/*
 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
 * fragmentation is subtle. If the preferred zone was HIGHMEM then
 * premature use of a lower zone may cause lowmem pressure problems that
 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
 * probably too small. It only makes sense to spread allocations to avoid
 * fragmentation between the Normal and DMA32 zones.
 */
static inline unsigned int
4002
alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4003
{
4004
	unsigned int alloc_flags;
4005

4006 4007 4008 4009 4010
	/*
	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save a branch.
	 */
	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4011 4012

#ifdef CONFIG_ZONE_DMA32
4013 4014 4015
	if (!zone)
		return alloc_flags;

4016
	if (zone_idx(zone) != ZONE_NORMAL)
4017
		return alloc_flags;
4018 4019 4020 4021 4022 4023 4024 4025

	/*
	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
	 * on UMA that if Normal is populated then so is DMA32.
	 */
	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
	if (nr_online_nodes > 1 && !populated_zone(--zone))
4026
		return alloc_flags;
4027

4028
	alloc_flags |= ALLOC_NOFRAGMENT;
4029 4030
#endif /* CONFIG_ZONE_DMA32 */
	return alloc_flags;
4031 4032
}

4033 4034 4035
/* Must be called after current_gfp_context() which can change gfp_mask */
static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
						  unsigned int alloc_flags)
4036 4037
{
#ifdef CONFIG_CMA
4038
	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4039 4040 4041 4042 4043
		alloc_flags |= ALLOC_CMA;
#endif
	return alloc_flags;
}

R
Rohit Seth 已提交
4044
/*
4045
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
4046 4047 4048
 * a page.
 */
static struct page *
4049 4050
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
4051
{
4052
	struct zoneref *z;
4053
	struct zone *zone;
4054
	struct pglist_data *last_pgdat_dirty_limit = NULL;
4055
	bool no_fallback;
4056

4057
retry:
R
Rohit Seth 已提交
4058
	/*
4059
	 * Scan zonelist, looking for a zone with enough free.
4060
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
4061
	 */
4062 4063
	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
	z = ac->preferred_zoneref;
4064 4065
	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
					ac->nodemask) {
4066
		struct page *page;
4067 4068
		unsigned long mark;

4069 4070
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
4071
			!__cpuset_zone_allowed(zone, gfp_mask))
4072
				continue;
4073 4074
		/*
		 * When allocating a page cache page for writing, we
4075 4076
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
4077
		 * proportional share of globally allowed dirty pages.
4078
		 * The dirty limits take into account the node's
4079 4080 4081 4082 4083
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
4084
		 * exceed the per-node dirty limit in the slowpath
4085
		 * (spread_dirty_pages unset) before going into reclaim,
4086
		 * which is important when on a NUMA setup the allowed
4087
		 * nodes are together not big enough to reach the
4088
		 * global limit.  The proper fix for these situations
4089
		 * will require awareness of nodes in the
4090 4091
		 * dirty-throttling and the flusher threads.
		 */
4092 4093 4094 4095 4096 4097 4098 4099 4100
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
4101

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
		if (no_fallback && nr_online_nodes > 1 &&
		    zone != ac->preferred_zoneref->zone) {
			int local_nid;

			/*
			 * If moving to a remote node, retry but allow
			 * fragmenting fallbacks. Locality is more important
			 * than fragmentation avoidance.
			 */
			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
			if (zone_to_nid(zone) != local_nid) {
				alloc_flags &= ~ALLOC_NOFRAGMENT;
				goto retry;
			}
		}

4118
		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4119
		if (!zone_watermark_fast(zone, order, mark,
4120 4121
				       ac->highest_zoneidx, alloc_flags,
				       gfp_mask)) {
4122 4123
			int ret;

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/*
			 * Watermark failed for this zone, but see if we can
			 * grow this zone if it contains deferred pages.
			 */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
4134 4135 4136 4137 4138
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

4139
			if (!node_reclaim_enabled() ||
4140
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4141 4142
				continue;

4143
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4144
			switch (ret) {
4145
			case NODE_RECLAIM_NOSCAN:
4146
				/* did not scan */
4147
				continue;
4148
			case NODE_RECLAIM_FULL:
4149
				/* scanned but unreclaimable */
4150
				continue;
4151 4152
			default:
				/* did we reclaim enough */
4153
				if (zone_watermark_ok(zone, order, mark,
4154
					ac->highest_zoneidx, alloc_flags))
4155 4156 4157
					goto try_this_zone;

				continue;
4158
			}
R
Rohit Seth 已提交
4159 4160
		}

4161
try_this_zone:
4162
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4163
				gfp_mask, alloc_flags, ac->migratetype);
4164
		if (page) {
4165
			prep_new_page(page, order, gfp_mask, alloc_flags);
4166 4167 4168 4169 4170 4171 4172 4173

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

4174
			return page;
4175 4176 4177 4178 4179 4180 4181 4182
		} else {
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
			/* Try again if zone has deferred pages */
			if (static_branch_unlikely(&deferred_pages)) {
				if (_deferred_grow_zone(zone, order))
					goto try_this_zone;
			}
#endif
4183
		}
4184
	}
4185

4186 4187 4188 4189 4190 4191 4192 4193 4194
	/*
	 * It's possible on a UMA machine to get through all zones that are
	 * fragmented. If avoiding fragmentation, reset and try again.
	 */
	if (no_fallback) {
		alloc_flags &= ~ALLOC_NOFRAGMENT;
		goto retry;
	}

4195
	return NULL;
M
Martin Hicks 已提交
4196 4197
}

4198
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4199 4200 4201 4202 4203 4204 4205 4206 4207
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
4208
		if (tsk_is_oom_victim(current) ||
4209 4210
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
4211
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4212 4213
		filter &= ~SHOW_MEM_FILTER_NODES;

4214
	show_mem(filter, nodemask);
4215 4216
}

4217
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4218 4219 4220
{
	struct va_format vaf;
	va_list args;
4221
	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4222

4223
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4224 4225
		return;

4226 4227 4228
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
4229
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
M
Michal Hocko 已提交
4230 4231
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
4232
	va_end(args);
J
Joe Perches 已提交
4233

4234
	cpuset_print_current_mems_allowed();
4235
	pr_cont("\n");
4236
	dump_stack();
4237
	warn_alloc_show_mem(gfp_mask, nodemask);
4238 4239
}

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

4260 4261
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4262
	const struct alloc_context *ac, unsigned long *did_some_progress)
4263
{
4264 4265 4266
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
4267
		.memcg = NULL,
4268 4269 4270
		.gfp_mask = gfp_mask,
		.order = order,
	};
4271 4272
	struct page *page;

4273 4274 4275
	*did_some_progress = 0;

	/*
4276 4277
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
4278
	 */
4279
	if (!mutex_trylock(&oom_lock)) {
4280
		*did_some_progress = 1;
4281
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
4282 4283
		return NULL;
	}
4284

4285 4286 4287
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
4288 4289 4290
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
4291
	 */
4292 4293 4294
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
4295
	if (page)
4296 4297
		goto out;

4298 4299 4300 4301 4302 4303
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
4304 4305 4306 4307 4308
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
4309 4310
	 *
	 * The OOM killer may not free memory on a specific node.
4311
	 */
4312
	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4313
		goto out;
4314
	/* The OOM killer does not needlessly kill tasks for lowmem */
4315
	if (ac->highest_zoneidx < ZONE_NORMAL)
4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

4329
	/* Exhausted what can be done so it's blame time */
4330
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4331
		*did_some_progress = 1;
4332

4333 4334 4335 4336 4337 4338
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4339 4340
					ALLOC_NO_WATERMARKS, ac);
	}
4341
out:
4342
	mutex_unlock(&oom_lock);
4343 4344 4345
	return page;
}

4346
/*
L
Lu Jialin 已提交
4347
 * Maximum number of compaction retries with a progress before OOM
4348 4349 4350 4351
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

4352 4353 4354 4355
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4356
		unsigned int alloc_flags, const struct alloc_context *ac,
4357
		enum compact_priority prio, enum compact_result *compact_result)
4358
{
4359
	struct page *page = NULL;
4360
	unsigned long pflags;
4361
	unsigned int noreclaim_flag;
4362 4363

	if (!order)
4364 4365
		return NULL;

4366
	psi_memstall_enter(&pflags);
4367
	noreclaim_flag = memalloc_noreclaim_save();
4368

4369
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4370
								prio, &page);
4371

4372
	memalloc_noreclaim_restore(noreclaim_flag);
4373
	psi_memstall_leave(&pflags);
4374

4375 4376
	if (*compact_result == COMPACT_SKIPPED)
		return NULL;
4377 4378 4379 4380 4381
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
4382

4383 4384 4385 4386 4387 4388 4389
	/* Prep a captured page if available */
	if (page)
		prep_new_page(page, order, gfp_mask, alloc_flags);

	/* Try get a page from the freelist if available */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4390

4391 4392
	if (page) {
		struct zone *zone = page_zone(page);
4393

4394 4395 4396 4397 4398
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
4399

4400 4401 4402 4403 4404
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
4405

4406
	cond_resched();
4407 4408 4409

	return NULL;
}
4410

4411 4412 4413 4414
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
4415
		     int *compaction_retries)
4416 4417
{
	int max_retries = MAX_COMPACT_RETRIES;
4418
	int min_priority;
4419 4420 4421
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
4422 4423 4424 4425

	if (!order)
		return false;

4426 4427 4428
	if (fatal_signal_pending(current))
		return false;

4429 4430 4431
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

4432 4433 4434 4435 4436
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
4437 4438
	if (compaction_failed(compact_result))
		goto check_priority;
4439

4440 4441 4442 4443 4444 4445 4446 4447 4448
	/*
	 * compaction was skipped because there are not enough order-0 pages
	 * to work with, so we retry only if it looks like reclaim can help.
	 */
	if (compaction_needs_reclaim(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}

4449 4450 4451
	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
4452 4453
	 * But the next retry should use a higher priority if allowed, so
	 * we don't just keep bailing out endlessly.
4454
	 */
4455
	if (compaction_withdrawn(compact_result)) {
4456
		goto check_priority;
4457
	}
4458 4459

	/*
4460
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4461 4462 4463 4464 4465 4466 4467 4468
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
4469 4470 4471 4472
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
4473

4474 4475 4476 4477 4478
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
4479 4480
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4481

4482
	if (*compact_priority > min_priority) {
4483 4484
		(*compact_priority)--;
		*compaction_retries = 0;
4485
		ret = true;
4486
	}
4487 4488 4489
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
4490
}
4491 4492 4493
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4494
		unsigned int alloc_flags, const struct alloc_context *ac,
4495
		enum compact_priority prio, enum compact_result *compact_result)
4496
{
4497
	*compact_result = COMPACT_SKIPPED;
4498 4499
	return NULL;
}
4500 4501

static inline bool
4502 4503
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
4504
		     enum compact_priority *compact_priority,
4505
		     int *compaction_retries)
4506
{
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
4519 4520
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
4521
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4522
					ac->highest_zoneidx, alloc_flags))
4523 4524
			return true;
	}
4525 4526
	return false;
}
4527
#endif /* CONFIG_COMPACTION */
4528

4529
#ifdef CONFIG_LOCKDEP
4530
static struct lockdep_map __fs_reclaim_map =
4531 4532
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

4533
static bool __need_reclaim(gfp_t gfp_mask)
4534 4535 4536 4537 4538 4539
{
	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
4540
	if (current->flags & PF_MEMALLOC)
4541 4542 4543 4544 4545 4546 4547 4548
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
void __fs_reclaim_acquire(void)
{
	lock_map_acquire(&__fs_reclaim_map);
}

void __fs_reclaim_release(void)
{
	lock_map_release(&__fs_reclaim_map);
}

4559 4560
void fs_reclaim_acquire(gfp_t gfp_mask)
{
4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	gfp_mask = current_gfp_context(gfp_mask);

	if (__need_reclaim(gfp_mask)) {
		if (gfp_mask & __GFP_FS)
			__fs_reclaim_acquire();

#ifdef CONFIG_MMU_NOTIFIER
		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
#endif

	}
4573 4574 4575 4576 4577
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
4578 4579 4580 4581 4582 4583
	gfp_mask = current_gfp_context(gfp_mask);

	if (__need_reclaim(gfp_mask)) {
		if (gfp_mask & __GFP_FS)
			__fs_reclaim_release();
	}
4584 4585 4586 4587
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

4588
/* Perform direct synchronous page reclaim */
4589
static unsigned long
4590 4591
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
4592
{
4593
	unsigned int noreclaim_flag;
4594
	unsigned long pflags, progress;
4595 4596 4597 4598 4599

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
4600
	psi_memstall_enter(&pflags);
4601
	fs_reclaim_acquire(gfp_mask);
4602
	noreclaim_flag = memalloc_noreclaim_save();
4603

4604 4605
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
4606

4607
	memalloc_noreclaim_restore(noreclaim_flag);
4608
	fs_reclaim_release(gfp_mask);
4609
	psi_memstall_leave(&pflags);
4610 4611 4612

	cond_resched();

4613 4614 4615 4616 4617 4618
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4619
		unsigned int alloc_flags, const struct alloc_context *ac,
4620
		unsigned long *did_some_progress)
4621 4622 4623 4624
{
	struct page *page = NULL;
	bool drained = false;

4625
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4626 4627
	if (unlikely(!(*did_some_progress)))
		return NULL;
4628

4629
retry:
4630
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4631 4632 4633

	/*
	 * If an allocation failed after direct reclaim, it could be because
4634
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4635
	 * Shrink them and try again
4636 4637
	 */
	if (!page && !drained) {
4638
		unreserve_highatomic_pageblock(ac, false);
4639
		drain_all_pages(NULL);
4640 4641 4642 4643
		drained = true;
		goto retry;
	}

4644 4645 4646
	return page;
}

4647 4648
static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
			     const struct alloc_context *ac)
4649 4650 4651
{
	struct zoneref *z;
	struct zone *zone;
4652
	pg_data_t *last_pgdat = NULL;
4653
	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4654

4655
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4656
					ac->nodemask) {
4657
		if (last_pgdat != zone->zone_pgdat)
4658
			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4659 4660
		last_pgdat = zone->zone_pgdat;
	}
4661 4662
}

4663
static inline unsigned int
4664 4665
gfp_to_alloc_flags(gfp_t gfp_mask)
{
4666
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
4667

4668 4669 4670 4671 4672
	/*
	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
	 * to save two branches.
	 */
4673
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4674
	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4675

4676 4677 4678 4679
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4680
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4681
	 */
4682 4683
	alloc_flags |= (__force int)
		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
L
Linus Torvalds 已提交
4684

4685
	if (gfp_mask & __GFP_ATOMIC) {
4686
		/*
4687 4688
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
4689
		 */
4690
		if (!(gfp_mask & __GFP_NOMEMALLOC))
4691
			alloc_flags |= ALLOC_HARDER;
4692
		/*
4693
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4694
		 * comment for __cpuset_node_allowed().
4695
		 */
4696
		alloc_flags &= ~ALLOC_CPUSET;
4697
	} else if (unlikely(rt_task(current)) && !in_interrupt())
4698 4699
		alloc_flags |= ALLOC_HARDER;

4700
	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4701

4702 4703 4704
	return alloc_flags;
}

4705
static bool oom_reserves_allowed(struct task_struct *tsk)
4706
{
4707 4708 4709 4710 4711 4712 4713 4714
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4715 4716
		return false;

4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
4728
	if (gfp_mask & __GFP_MEMALLOC)
4729
		return ALLOC_NO_WATERMARKS;
4730
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4731 4732 4733 4734 4735 4736 4737
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
4738

4739 4740 4741 4742 4743 4744
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
4745 4746
}

M
Michal Hocko 已提交
4747 4748 4749
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
4750 4751 4752 4753
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
4754 4755 4756 4757 4758 4759
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
4760
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
4761 4762 4763
{
	struct zone *zone;
	struct zoneref *z;
4764
	bool ret = false;
M
Michal Hocko 已提交
4765

4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
4776 4777 4778 4779
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
4780 4781
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
4782
		return unreserve_highatomic_pageblock(ac, true);
4783
	}
M
Michal Hocko 已提交
4784

4785 4786 4787 4788 4789
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
4790
	 */
4791 4792
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
				ac->highest_zoneidx, ac->nodemask) {
M
Michal Hocko 已提交
4793
		unsigned long available;
4794
		unsigned long reclaimable;
4795 4796
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
4797

4798 4799
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
4800 4801

		/*
4802 4803
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
4804
		 */
4805
		wmark = __zone_watermark_ok(zone, order, min_wmark,
4806
				ac->highest_zoneidx, alloc_flags, available);
4807 4808 4809
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
4810 4811 4812 4813 4814 4815 4816
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
4817
				unsigned long write_pending;
4818

4819 4820
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
4821

4822
				if (2 * write_pending > reclaimable) {
4823 4824 4825 4826
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
4827

4828 4829
			ret = true;
			goto out;
M
Michal Hocko 已提交
4830 4831 4832
		}
	}

4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
out:
	/*
	 * Memory allocation/reclaim might be called from a WQ context and the
	 * current implementation of the WQ concurrency control doesn't
	 * recognize that a particular WQ is congested if the worker thread is
	 * looping without ever sleeping. Therefore we have to do a short sleep
	 * here rather than calling cond_resched().
	 */
	if (current->flags & PF_WQ_WORKER)
		schedule_timeout_uninterruptible(1);
	else
		cond_resched();
	return ret;
M
Michal Hocko 已提交
4846 4847
}

4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

4881 4882
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4883
						struct alloc_context *ac)
4884
{
4885
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4886
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4887
	struct page *page = NULL;
4888
	unsigned int alloc_flags;
4889
	unsigned long did_some_progress;
4890
	enum compact_priority compact_priority;
4891
	enum compact_result compact_result;
4892 4893 4894
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
4895
	int reserve_flags;
L
Linus Torvalds 已提交
4896

4897 4898 4899 4900 4901 4902 4903 4904
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

4905 4906 4907 4908 4909
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
4910 4911 4912 4913 4914 4915 4916 4917

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

4918 4919 4920 4921 4922 4923 4924
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4925
					ac->highest_zoneidx, ac->nodemask);
4926 4927 4928
	if (!ac->preferred_zoneref->zone)
		goto nopage;

4929
	if (alloc_flags & ALLOC_KSWAPD)
4930
		wake_all_kswapds(order, gfp_mask, ac);
4931 4932 4933 4934 4935 4936 4937 4938 4939

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

4940 4941
	/*
	 * For costly allocations, try direct compaction first, as it's likely
4942 4943 4944 4945 4946 4947
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4948
	 */
4949 4950 4951 4952
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4953 4954
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4955
						INIT_COMPACT_PRIORITY,
4956 4957 4958 4959
						&compact_result);
		if (page)
			goto got_pg;

4960 4961 4962 4963 4964
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes some THP page fault allocations
		 */
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4965 4966 4967 4968
			/*
			 * If allocating entire pageblock(s) and compaction
			 * failed because all zones are below low watermarks
			 * or is prohibited because it recently failed at this
4969 4970
			 * order, fail immediately unless the allocator has
			 * requested compaction and reclaim retry.
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
			 *
			 * Reclaim is
			 *  - potentially very expensive because zones are far
			 *    below their low watermarks or this is part of very
			 *    bursty high order allocations,
			 *  - not guaranteed to help because isolate_freepages()
			 *    may not iterate over freed pages as part of its
			 *    linear scan, and
			 *  - unlikely to make entire pageblocks free on its
			 *    own.
			 */
			if (compact_result == COMPACT_SKIPPED ||
			    compact_result == COMPACT_DEFERRED)
				goto nopage;
4985 4986

			/*
4987 4988
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4989
			 * using async compaction.
4990
			 */
4991
			compact_priority = INIT_COMPACT_PRIORITY;
4992 4993
		}
	}
4994

4995
retry:
4996
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4997
	if (alloc_flags & ALLOC_KSWAPD)
4998
		wake_all_kswapds(order, gfp_mask, ac);
4999

5000 5001
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
5002
		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5003

5004
	/*
5005 5006 5007
	 * Reset the nodemask and zonelist iterators if memory policies can be
	 * ignored. These allocations are high priority and system rather than
	 * user oriented.
5008
	 */
5009
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5010
		ac->nodemask = NULL;
5011
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5012
					ac->highest_zoneidx, ac->nodemask);
5013 5014
	}

5015
	/* Attempt with potentially adjusted zonelist and alloc_flags */
5016
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
5017 5018
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
5019

5020
	/* Caller is not willing to reclaim, we can't balance anything */
5021
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
5022 5023
		goto nopage;

5024 5025
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
5026 5027
		goto nopage;

5028 5029 5030 5031 5032 5033 5034
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
5035
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5036
					compact_priority, &compact_result);
5037 5038
	if (page)
		goto got_pg;
5039

5040 5041
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
5042
		goto nopage;
5043

M
Michal Hocko 已提交
5044 5045
	/*
	 * Do not retry costly high order allocations unless they are
5046
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
5047
	 */
5048
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5049
		goto nopage;
M
Michal Hocko 已提交
5050 5051

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5052
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
5053 5054
		goto retry;

5055 5056 5057 5058 5059 5060 5061
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
5062
			should_compact_retry(ac, order, alloc_flags,
5063
				compact_result, &compact_priority,
5064
				&compaction_retries))
5065 5066
		goto retry;

5067 5068 5069

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5070 5071
		goto retry_cpuset;

5072 5073 5074 5075 5076
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

5077
	/* Avoid allocations with no watermarks from looping endlessly */
5078
	if (tsk_is_oom_victim(current) &&
5079
	    (alloc_flags & ALLOC_OOM ||
5080
	     (gfp_mask & __GFP_NOMEMALLOC)))
5081 5082
		goto nopage;

5083
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
5084 5085
	if (did_some_progress) {
		no_progress_loops = 0;
5086
		goto retry;
M
Michal Hocko 已提交
5087
	}
5088

L
Linus Torvalds 已提交
5089
nopage:
5090 5091
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5092 5093
		goto retry_cpuset;

5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

5131 5132 5133 5134
		cond_resched();
		goto retry;
	}
fail:
5135
	warn_alloc(gfp_mask, ac->nodemask,
5136
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
5137
got_pg:
5138
	return page;
L
Linus Torvalds 已提交
5139
}
5140

5141
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5142
		int preferred_nid, nodemask_t *nodemask,
5143
		struct alloc_context *ac, gfp_t *alloc_gfp,
5144
		unsigned int *alloc_flags)
5145
{
5146
	ac->highest_zoneidx = gfp_zone(gfp_mask);
5147
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5148
	ac->nodemask = nodemask;
5149
	ac->migratetype = gfp_migratetype(gfp_mask);
5150

5151
	if (cpusets_enabled()) {
5152
		*alloc_gfp |= __GFP_HARDWALL;
5153 5154 5155 5156 5157
		/*
		 * When we are in the interrupt context, it is irrelevant
		 * to the current task context. It means that any node ok.
		 */
		if (!in_interrupt() && !ac->nodemask)
5158
			ac->nodemask = &cpuset_current_mems_allowed;
5159 5160
		else
			*alloc_flags |= ALLOC_CPUSET;
5161 5162
	}

5163 5164
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
5165

5166
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5167 5168

	if (should_fail_alloc_page(gfp_mask, order))
5169
		return false;
5170

5171
	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5172

5173
	/* Dirty zone balancing only done in the fast path */
5174
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5175

5176 5177 5178 5179 5180
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
5181
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5182
					ac->highest_zoneidx, ac->nodemask);
5183 5184

	return true;
5185 5186
}

5187
/*
5188
 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5189 5190 5191
 * @gfp: GFP flags for the allocation
 * @preferred_nid: The preferred NUMA node ID to allocate from
 * @nodemask: Set of nodes to allocate from, may be NULL
5192 5193 5194
 * @nr_pages: The number of pages desired on the list or array
 * @page_list: Optional list to store the allocated pages
 * @page_array: Optional array to store the pages
5195 5196
 *
 * This is a batched version of the page allocator that attempts to
5197 5198
 * allocate nr_pages quickly. Pages are added to page_list if page_list
 * is not NULL, otherwise it is assumed that the page_array is valid.
5199
 *
5200 5201 5202 5203 5204 5205
 * For lists, nr_pages is the number of pages that should be allocated.
 *
 * For arrays, only NULL elements are populated with pages and nr_pages
 * is the maximum number of pages that will be stored in the array.
 *
 * Returns the number of pages on the list or array.
5206 5207 5208
 */
unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
			nodemask_t *nodemask, int nr_pages,
5209 5210
			struct list_head *page_list,
			struct page **page_array)
5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
{
	struct page *page;
	unsigned long flags;
	struct zone *zone;
	struct zoneref *z;
	struct per_cpu_pages *pcp;
	struct list_head *pcp_list;
	struct alloc_context ac;
	gfp_t alloc_gfp;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5221
	int nr_populated = 0, nr_account = 0;
5222

5223
	if (unlikely(nr_pages <= 0))
5224 5225
		return 0;

5226 5227 5228 5229
	/*
	 * Skip populated array elements to determine if any pages need
	 * to be allocated before disabling IRQs.
	 */
5230
	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5231 5232
		nr_populated++;

5233 5234
	/* Already populated array? */
	if (unlikely(page_array && nr_pages - nr_populated == 0))
5235
		return nr_populated;
5236

5237
	/* Use the single page allocator for one page. */
5238
	if (nr_pages - nr_populated == 1)
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
		goto failed;

	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
	gfp &= gfp_allowed_mask;
	alloc_gfp = gfp;
	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
		return 0;
	gfp = alloc_gfp;

	/* Find an allowed local zone that meets the low watermark. */
	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
		unsigned long mark;

		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
		    !__cpuset_zone_allowed(zone, gfp)) {
			continue;
		}

		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
			goto failed;
		}

		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
		if (zone_watermark_fast(zone, 0,  mark,
				zonelist_zone_idx(ac.preferred_zoneref),
				alloc_flags, gfp)) {
			break;
		}
	}

	/*
	 * If there are no allowed local zones that meets the watermarks then
	 * try to allocate a single page and reclaim if necessary.
	 */
5274
	if (unlikely(!zone))
5275 5276 5277
		goto failed;

	/* Attempt the batch allocation */
5278
	local_lock_irqsave(&pagesets.lock, flags);
5279
	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5280
	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5281

5282 5283 5284 5285 5286 5287 5288 5289
	while (nr_populated < nr_pages) {

		/* Skip existing pages */
		if (page_array && page_array[nr_populated]) {
			nr_populated++;
			continue;
		}

5290
		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5291
								pcp, pcp_list);
5292
		if (unlikely(!page)) {
5293
			/* Try and get at least one page */
5294
			if (!nr_populated)
5295 5296 5297
				goto failed_irq;
			break;
		}
5298
		nr_account++;
5299 5300

		prep_new_page(page, 0, gfp, 0);
5301 5302 5303 5304 5305
		if (page_list)
			list_add(&page->lru, page_list);
		else
			page_array[nr_populated] = page;
		nr_populated++;
5306 5307
	}

5308 5309
	local_unlock_irqrestore(&pagesets.lock, flags);

5310 5311 5312
	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);

5313
	return nr_populated;
5314 5315

failed_irq:
5316
	local_unlock_irqrestore(&pagesets.lock, flags);
5317 5318 5319 5320

failed:
	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
	if (page) {
5321 5322 5323 5324 5325
		if (page_list)
			list_add(&page->lru, page_list);
		else
			page_array[nr_populated] = page;
		nr_populated++;
5326 5327
	}

5328
	return nr_populated;
5329 5330 5331
}
EXPORT_SYMBOL_GPL(__alloc_pages_bulk);

5332 5333 5334
/*
 * This is the 'heart' of the zoned buddy allocator.
 */
5335
struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5336
							nodemask_t *nodemask)
5337 5338 5339
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5340
	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5341 5342
	struct alloc_context ac = { };

5343 5344 5345 5346 5347
	/*
	 * There are several places where we assume that the order value is sane
	 * so bail out early if the request is out of bound.
	 */
	if (unlikely(order >= MAX_ORDER)) {
5348
		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5349 5350 5351
		return NULL;
	}

5352
	gfp &= gfp_allowed_mask;
5353 5354 5355 5356
	/*
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
5357 5358
	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
	 * movable zones are not used during allocation.
5359 5360
	 */
	gfp = current_gfp_context(gfp);
5361 5362
	alloc_gfp = gfp;
	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5363
			&alloc_gfp, &alloc_flags))
5364 5365
		return NULL;

5366 5367 5368 5369
	/*
	 * Forbid the first pass from falling back to types that fragment
	 * memory until all local zones are considered.
	 */
5370
	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5371

5372
	/* First allocation attempt */
5373
	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5374 5375
	if (likely(page))
		goto out;
5376

5377
	alloc_gfp = gfp;
5378
	ac.spread_dirty_pages = false;
5379

5380 5381 5382 5383
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
5384
	ac.nodemask = nodemask;
5385

5386
	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5387

5388
out:
5389 5390
	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5391 5392
		__free_pages(page, order);
		page = NULL;
5393 5394
	}

5395
	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5396

5397
	return page;
L
Linus Torvalds 已提交
5398
}
5399
EXPORT_SYMBOL(__alloc_pages);
L
Linus Torvalds 已提交
5400 5401

/*
5402 5403 5404
 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
 * address cannot represent highmem pages. Use alloc_pages and then kmap if
 * you need to access high mem.
L
Linus Torvalds 已提交
5405
 */
H
Harvey Harrison 已提交
5406
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
5407
{
5408 5409
	struct page *page;

5410
	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415 5416
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
5417
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
5418
{
5419
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
5420 5421 5422
}
EXPORT_SYMBOL(get_zeroed_page);

5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
/**
 * __free_pages - Free pages allocated with alloc_pages().
 * @page: The page pointer returned from alloc_pages().
 * @order: The order of the allocation.
 *
 * This function can free multi-page allocations that are not compound
 * pages.  It does not check that the @order passed in matches that of
 * the allocation, so it is easy to leak memory.  Freeing more memory
 * than was allocated will probably emit a warning.
 *
 * If the last reference to this page is speculative, it will be released
 * by put_page() which only frees the first page of a non-compound
 * allocation.  To prevent the remaining pages from being leaked, we free
 * the subsequent pages here.  If you want to use the page's reference
 * count to decide when to free the allocation, you should allocate a
 * compound page, and use put_page() instead of __free_pages().
 *
 * Context: May be called in interrupt context or while holding a normal
 * spinlock, but not in NMI context or while holding a raw spinlock.
 */
5443 5444 5445 5446
void __free_pages(struct page *page, unsigned int order)
{
	if (put_page_testzero(page))
		free_the_page(page, order);
5447 5448 5449
	else if (!PageHead(page))
		while (order-- > 0)
			free_the_page(page + (1 << order), order);
5450
}
L
Linus Torvalds 已提交
5451 5452
EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
5453
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
5454 5455
{
	if (addr != 0) {
N
Nick Piggin 已提交
5456
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
5457 5458 5459 5460 5461 5462
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
5474 5475
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

5495
void __page_frag_cache_drain(struct page *page, unsigned int count)
5496 5497 5498
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

5499 5500
	if (page_ref_sub_and_test(page, count))
		free_the_page(page, compound_order(page));
5501
}
5502
EXPORT_SYMBOL(__page_frag_cache_drain);
5503

5504 5505 5506
void *page_frag_alloc_align(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask,
		      unsigned int align_mask)
5507 5508 5509 5510 5511 5512 5513
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
5514
		page = __page_frag_cache_refill(nc, gfp_mask);
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
5525
		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5526 5527

		/* reset page count bias and offset to start of new frag */
5528
		nc->pfmemalloc = page_is_pfmemalloc(page);
5529
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5530 5531 5532 5533 5534 5535 5536
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

5537
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5538 5539
			goto refill;

5540 5541 5542 5543 5544
		if (unlikely(nc->pfmemalloc)) {
			free_the_page(page, compound_order(page));
			goto refill;
		}

5545 5546 5547 5548 5549
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
5550
		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5551 5552

		/* reset page count bias and offset to start of new frag */
5553
		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5554 5555 5556 5557
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
5558
	offset &= align_mask;
5559 5560 5561 5562
	nc->offset = offset;

	return nc->va + offset;
}
5563
EXPORT_SYMBOL(page_frag_alloc_align);
5564 5565 5566 5567

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
5568
void page_frag_free(void *addr)
5569 5570 5571
{
	struct page *page = virt_to_head_page(addr);

5572 5573
	if (unlikely(put_page_testzero(page)))
		free_the_page(page, compound_order(page));
5574
}
5575
EXPORT_SYMBOL(page_frag_free);
5576

5577 5578
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

5593 5594 5595
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
5596
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5597 5598 5599 5600 5601 5602 5603 5604
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
5605 5606
 *
 * Return: pointer to the allocated area or %NULL in case of error.
5607 5608 5609 5610 5611 5612
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

5613 5614 5615
	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

5616
	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
5617
	return make_alloc_exact(addr, order, size);
5618 5619 5620
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
5621 5622 5623
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
5624
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
5625
 * @size: the number of bytes to allocate
5626
 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
A
Andi Kleen 已提交
5627 5628 5629
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
5630 5631
 *
 * Return: pointer to the allocated area or %NULL in case of error.
A
Andi Kleen 已提交
5632
 */
5633
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
5634
{
5635
	unsigned int order = get_order(size);
5636 5637 5638 5639 5640 5641
	struct page *p;

	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
		gfp_mask &= ~__GFP_COMP;

	p = alloc_pages_node(nid, gfp_mask, order);
A
Andi Kleen 已提交
5642 5643 5644 5645 5646
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

5666 5667 5668 5669
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
5670
 * nr_free_zone_pages() counts the number of pages which are beyond the
5671 5672
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
5673 5674
 *
 *     nr_free_zone_pages = managed_pages - high_pages
5675 5676
 *
 * Return: number of pages beyond high watermark.
5677
 */
5678
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
5679
{
5680
	struct zoneref *z;
5681 5682
	struct zone *zone;

5683
	/* Just pick one node, since fallback list is circular */
5684
	unsigned long sum = 0;
L
Linus Torvalds 已提交
5685

5686
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
5687

5688
	for_each_zone_zonelist(zone, z, zonelist, offset) {
5689
		unsigned long size = zone_managed_pages(zone);
5690
		unsigned long high = high_wmark_pages(zone);
5691 5692
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
5693 5694 5695 5696 5697
	}

	return sum;
}

5698 5699 5700 5701 5702
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
5703 5704 5705
 *
 * Return: number of pages beyond high watermark within ZONE_DMA and
 * ZONE_NORMAL.
L
Linus Torvalds 已提交
5706
 */
5707
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
5708
{
A
Al Viro 已提交
5709
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
5710
}
5711
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
5712

5713
static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
5714
{
5715
	if (IS_ENABLED(CONFIG_NUMA))
5716
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
5717 5718
}

5719 5720 5721 5722 5723 5724
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
5725
	unsigned long reclaimable;
5726 5727 5728 5729
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5730
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5731 5732

	for_each_zone(zone)
5733
		wmark_low += low_wmark_pages(zone);
5734 5735 5736 5737 5738

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
5739
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
5751 5752 5753
	 * Part of the reclaimable slab and other kernel memory consists of
	 * items that are in use, and cannot be freed. Cap this estimate at the
	 * low watermark.
5754
	 */
5755 5756
	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5757
	available += reclaimable - min(reclaimable / 2, wmark_low);
5758

5759 5760 5761 5762 5763 5764
	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
5765 5766
void si_meminfo(struct sysinfo *val)
{
5767
	val->totalram = totalram_pages();
5768
	val->sharedram = global_node_page_state(NR_SHMEM);
5769
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
5770
	val->bufferram = nr_blockdev_pages();
5771
	val->totalhigh = totalhigh_pages();
L
Linus Torvalds 已提交
5772 5773 5774 5775 5776 5777 5778 5779 5780
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
5781 5782
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
5783 5784
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
5785 5786
	pg_data_t *pgdat = NODE_DATA(nid);

5787
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5788
		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5789
	val->totalram = managed_pages;
5790
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5791
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5792
#ifdef CONFIG_HIGHMEM
5793 5794 5795 5796
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
5797
			managed_highpages += zone_managed_pages(zone);
5798 5799 5800 5801 5802
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5803
#else
5804 5805
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
5806
#endif
L
Linus Torvalds 已提交
5807 5808 5809 5810
	val->mem_unit = PAGE_SIZE;
}
#endif

5811
/*
5812 5813
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5814
 */
5815
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5816 5817
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
5818
		return false;
5819

5820 5821 5822 5823 5824 5825 5826 5827 5828
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
5829 5830
}

L
Linus Torvalds 已提交
5831 5832
#define K(x) ((x) << (PAGE_SHIFT-10))

5833 5834 5835 5836 5837
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
5838 5839
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
5840 5841 5842
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
5843
#ifdef CONFIG_MEMORY_ISOLATION
5844
		[MIGRATE_ISOLATE]	= 'I',
5845
#endif
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
5857
	printk(KERN_CONT "(%s) ", tmp);
5858 5859
}

L
Linus Torvalds 已提交
5860 5861 5862 5863
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
5864 5865 5866 5867
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
5868
 */
5869
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
5870
{
5871
	unsigned long free_pcp = 0;
5872
	int cpu;
L
Linus Torvalds 已提交
5873
	struct zone *zone;
M
Mel Gorman 已提交
5874
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
5875

5876
	for_each_populated_zone(zone) {
5877
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5878
			continue;
5879

5880
		for_each_online_cpu(cpu)
5881
			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
L
Linus Torvalds 已提交
5882 5883
	}

K
KOSAKI Motohiro 已提交
5884 5885
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5886
		" unevictable:%lu dirty:%lu writeback:%lu\n"
5887
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5888
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5889
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
5890 5891 5892 5893 5894 5895 5896
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
5897 5898
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
5899 5900
		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5901
		global_node_page_state(NR_FILE_MAPPED),
5902
		global_node_page_state(NR_SHMEM),
5903
		global_node_page_state(NR_PAGETABLE),
5904 5905
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
5906
		free_pcp,
5907
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
5908

M
Mel Gorman 已提交
5909
	for_each_online_pgdat(pgdat) {
5910
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5911 5912
			continue;

M
Mel Gorman 已提交
5913 5914 5915 5916 5917 5918 5919 5920
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
5921
			" mapped:%lukB"
5922 5923 5924 5925 5926 5927 5928 5929 5930
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
5931 5932 5933 5934
			" kernel_stack:%lukB"
#ifdef CONFIG_SHADOW_CALL_STACK
			" shadow_call_stack:%lukB"
#endif
5935
			" pagetables:%lukB"
M
Mel Gorman 已提交
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5946
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5947 5948
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
5949
			K(node_page_state(pgdat, NR_SHMEM)),
5950
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5951
			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5952
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5953
			K(node_page_state(pgdat, NR_ANON_THPS)),
5954 5955
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5956 5957 5958 5959
			node_page_state(pgdat, NR_KERNEL_STACK_KB),
#ifdef CONFIG_SHADOW_CALL_STACK
			node_page_state(pgdat, NR_KERNEL_SCS_KB),
#endif
5960
			K(node_page_state(pgdat, NR_PAGETABLE)),
5961 5962
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
5963 5964
	}

5965
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
5966 5967
		int i;

5968
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5969
			continue;
5970 5971 5972

		free_pcp = 0;
		for_each_online_cpu(cpu)
5973
			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5974

L
Linus Torvalds 已提交
5975
		show_node(zone);
5976 5977
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
5978 5979 5980 5981
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
5982
			" reserved_highatomic:%luKB"
M
Minchan Kim 已提交
5983 5984 5985 5986 5987
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
5988
			" writepending:%lukB"
L
Linus Torvalds 已提交
5989
			" present:%lukB"
5990
			" managed:%lukB"
5991 5992
			" mlocked:%lukB"
			" bounce:%lukB"
5993 5994
			" free_pcp:%lukB"
			" local_pcp:%ukB"
5995
			" free_cma:%lukB"
L
Linus Torvalds 已提交
5996 5997
			"\n",
			zone->name,
5998
			K(zone_page_state(zone, NR_FREE_PAGES)),
5999 6000 6001
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
6002
			K(zone->nr_reserved_highatomic),
M
Minchan Kim 已提交
6003 6004 6005 6006 6007
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6008
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
6009
			K(zone->present_pages),
6010
			K(zone_managed_pages(zone)),
6011 6012
			K(zone_page_state(zone, NR_MLOCK)),
			K(zone_page_state(zone, NR_BOUNCE)),
6013
			K(free_pcp),
6014
			K(this_cpu_read(zone->per_cpu_pageset->count)),
6015
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
6016 6017
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
6018 6019
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6020 6021
	}

6022
	for_each_populated_zone(zone) {
6023 6024
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
6025
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
6026

6027
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6028
			continue;
L
Linus Torvalds 已提交
6029
		show_node(zone);
6030
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
6031 6032 6033

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
6034 6035 6036 6037
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
6038
			total += nr[order] << order;
6039 6040 6041

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
6042
				if (!free_area_empty(area, type))
6043 6044
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
6045 6046
		}
		spin_unlock_irqrestore(&zone->lock, flags);
6047
		for (order = 0; order < MAX_ORDER; order++) {
6048 6049
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
6050 6051 6052
			if (nr[order])
				show_migration_types(types[order]);
		}
6053
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
6054 6055
	}

6056 6057
	hugetlb_show_meminfo();

6058
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6059

L
Linus Torvalds 已提交
6060 6061 6062
	show_swap_cache_info();
}

6063 6064 6065 6066 6067 6068
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
6069 6070
/*
 * Builds allocation fallback zone lists.
6071 6072
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
6073
 */
6074
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
6075
{
6076
	struct zone *zone;
6077
	enum zone_type zone_type = MAX_NR_ZONES;
6078
	int nr_zones = 0;
6079 6080

	do {
6081
		zone_type--;
6082
		zone = pgdat->node_zones + zone_type;
6083
		if (managed_zone(zone)) {
6084
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6085
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
6086
		}
6087
	} while (zone_type);
6088

6089
	return nr_zones;
L
Linus Torvalds 已提交
6090 6091 6092
}

#ifdef CONFIG_NUMA
6093 6094 6095

static int __parse_numa_zonelist_order(char *s)
{
6096
	/*
I
Ingo Molnar 已提交
6097
	 * We used to support different zonelists modes but they turned
6098 6099 6100 6101 6102 6103
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6104 6105 6106 6107 6108
		return -EINVAL;
	}
	return 0;
}

6109 6110
char numa_zonelist_order[] = "Node";

6111 6112 6113
/*
 * sysctl handler for numa_zonelist_order
 */
6114
int numa_zonelist_order_handler(struct ctl_table *table, int write,
6115
		void *buffer, size_t *length, loff_t *ppos)
6116
{
6117 6118 6119
	if (write)
		return __parse_numa_zonelist_order(buffer);
	return proc_dostring(table, write, buffer, length, ppos);
6120 6121 6122
}


6123
#define MAX_NODE_LOAD (nr_online_nodes)
6124 6125
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
6126
/**
6127
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
6138 6139
 *
 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
L
Linus Torvalds 已提交
6140
 */
6141
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
6142
{
6143
	int n, val;
L
Linus Torvalds 已提交
6144
	int min_val = INT_MAX;
D
David Rientjes 已提交
6145
	int best_node = NUMA_NO_NODE;
L
Linus Torvalds 已提交
6146

6147 6148 6149 6150 6151
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
6152

6153
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
6154 6155 6156 6157 6158 6159 6160 6161

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

6162 6163 6164
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
6165
		/* Give preference to headless and unused nodes */
6166
		if (!cpumask_empty(cpumask_of_node(n)))
L
Linus Torvalds 已提交
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

6185 6186 6187 6188 6189 6190

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
6191 6192
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
6193
{
6194 6195 6196 6197 6198 6199 6200 6201 6202
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
6203

6204 6205 6206 6207 6208
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
6209 6210
}

6211 6212 6213 6214 6215
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
6216 6217
	struct zoneref *zonerefs;
	int nr_zones;
6218

6219 6220 6221 6222 6223
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
6224 6225
}

6226 6227 6228 6229 6230 6231 6232 6233 6234
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
6235 6236
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
6237
	nodemask_t used_mask = NODE_MASK_NONE;
6238
	int local_node, prev_node;
L
Linus Torvalds 已提交
6239 6240 6241

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
6242
	load = nr_online_nodes;
L
Linus Torvalds 已提交
6243
	prev_node = local_node;
6244 6245

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
6246 6247 6248 6249 6250 6251
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
6252 6253
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
6254 6255
			node_load[node] = load;

6256
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
6257 6258 6259
		prev_node = node;
		load--;
	}
6260

6261
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6262
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
6263 6264
}

6265 6266 6267 6268 6269 6270 6271 6272 6273
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
6274
	struct zoneref *z;
6275

6276
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6277
				   gfp_zone(GFP_KERNEL),
6278
				   NULL);
6279
	return zone_to_nid(z->zone);
6280 6281
}
#endif
6282

6283 6284
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
6285 6286
#else	/* CONFIG_NUMA */

6287
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
6288
{
6289
	int node, local_node;
6290 6291
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
6292 6293 6294

	local_node = pgdat->node_id;

6295 6296 6297
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
6298

6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
6310 6311
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
6312
	}
6313 6314 6315
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
6316 6317
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
6318 6319
	}

6320 6321
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
6322 6323 6324 6325
}

#endif	/* CONFIG_NUMA */

6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
6341
static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6342 6343 6344
/* These effectively disable the pcplists in the boot pageset completely */
#define BOOT_PAGESET_HIGH	0
#define BOOT_PAGESET_BATCH	1
6345 6346
static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6347
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6348

6349
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
6350
{
6351
	int nid;
6352
	int __maybe_unused cpu;
6353
	pg_data_t *self = data;
6354 6355 6356
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
6357

6358 6359 6360
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
6361

6362 6363 6364 6365
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
6366 6367
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
6368 6369 6370
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
6371

6372 6373
			build_zonelists(pgdat);
		}
6374

6375 6376 6377 6378 6379 6380 6381 6382 6383
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
6384
		for_each_online_cpu(cpu)
6385
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6386
#endif
6387
	}
6388 6389

	spin_unlock(&lock);
6390 6391
}

6392 6393 6394
static noinline void __init
build_all_zonelists_init(void)
{
6395 6396
	int cpu;

6397
	__build_all_zonelists(NULL);
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
6413
		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6414

6415 6416 6417 6418
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

6419 6420
/*
 * unless system_state == SYSTEM_BOOTING.
6421
 *
6422
 * __ref due to call of __init annotated helper build_all_zonelists_init
6423
 * [protected by SYSTEM_BOOTING].
6424
 */
6425
void __ref build_all_zonelists(pg_data_t *pgdat)
6426
{
D
David Hildenbrand 已提交
6427 6428
	unsigned long vm_total_pages;

6429
	if (system_state == SYSTEM_BOOTING) {
6430
		build_all_zonelists_init();
6431
	} else {
6432
		__build_all_zonelists(pgdat);
6433 6434
		/* cpuset refresh routine should be here */
	}
6435 6436
	/* Get the number of free pages beyond high watermark in all zones. */
	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6437 6438 6439 6440 6441 6442 6443
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
6444
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6445 6446 6447 6448
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

6449
	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
6450 6451 6452
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
6453
#ifdef CONFIG_NUMA
6454
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6455
#endif
L
Linus Torvalds 已提交
6456 6457
}

6458 6459 6460 6461 6462 6463 6464 6465
/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
static bool __meminit
overlap_memmap_init(unsigned long zone, unsigned long *pfn)
{
	static struct memblock_region *r;

	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6466
			for_each_mem_region(r) {
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
				if (*pfn < memblock_region_memory_end_pfn(r))
					break;
			}
		}
		if (*pfn >= memblock_region_memory_base_pfn(r) &&
		    memblock_is_mirror(r)) {
			*pfn = memblock_region_memory_end_pfn(r);
			return true;
		}
	}
	return false;
}

L
Linus Torvalds 已提交
6480 6481
/*
 * Initially all pages are reserved - free ones are freed
6482
 * up by memblock_free_all() once the early boot process is
L
Linus Torvalds 已提交
6483
 * done. Non-atomic initialization, single-pass.
6484 6485 6486 6487
 *
 * All aligned pageblocks are initialized to the specified migratetype
 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
 * zone stats (e.g., nr_isolate_pageblock) are touched.
L
Linus Torvalds 已提交
6488
 */
6489
void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6490
		unsigned long start_pfn, unsigned long zone_end_pfn,
6491 6492
		enum meminit_context context,
		struct vmem_altmap *altmap, int migratetype)
L
Linus Torvalds 已提交
6493
{
6494
	unsigned long pfn, end_pfn = start_pfn + size;
6495
	struct page *page;
L
Linus Torvalds 已提交
6496

6497 6498 6499
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

6500
#ifdef CONFIG_ZONE_DEVICE
6501 6502
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
6503 6504 6505 6506
	 * memory. We limit the total number of pages to initialize to just
	 * those that might contain the memory mapping. We will defer the
	 * ZONE_DEVICE page initialization until after we have released
	 * the hotplug lock.
6507
	 */
6508 6509 6510 6511 6512 6513 6514 6515 6516
	if (zone == ZONE_DEVICE) {
		if (!altmap)
			return;

		if (start_pfn == altmap->base_pfn)
			start_pfn += altmap->reserve;
		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
	}
#endif
6517

6518
	for (pfn = start_pfn; pfn < end_pfn; ) {
D
Dave Hansen 已提交
6519
		/*
6520 6521
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
6522
		 */
6523
		if (context == MEMINIT_EARLY) {
6524 6525
			if (overlap_memmap_init(zone, &pfn))
				continue;
6526
			if (defer_init(nid, pfn, zone_end_pfn))
6527
				break;
D
Dave Hansen 已提交
6528
		}
6529

6530 6531
		page = pfn_to_page(pfn);
		__init_single_page(page, pfn, zone, nid);
6532
		if (context == MEMINIT_HOTPLUG)
6533
			__SetPageReserved(page);
6534

6535
		/*
6536 6537 6538
		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
		 * such that unmovable allocations won't be scattered all
		 * over the place during system boot.
6539
		 */
6540
		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6541
			set_pageblock_migratetype(page, migratetype);
6542
			cond_resched();
6543
		}
6544
		pfn++;
L
Linus Torvalds 已提交
6545 6546 6547
	}
}

6548 6549 6550
#ifdef CONFIG_ZONE_DEVICE
void __ref memmap_init_zone_device(struct zone *zone,
				   unsigned long start_pfn,
6551
				   unsigned long nr_pages,
6552 6553
				   struct dev_pagemap *pgmap)
{
6554
	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6555
	struct pglist_data *pgdat = zone->zone_pgdat;
6556
	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6557 6558 6559 6560
	unsigned long zone_idx = zone_idx(zone);
	unsigned long start = jiffies;
	int nid = pgdat->node_id;

D
Dan Williams 已提交
6561
	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6562 6563 6564
		return;

	/*
6565
	 * The call to memmap_init should have already taken care
6566 6567 6568
	 * of the pages reserved for the memmap, so we can just jump to
	 * the end of that region and start processing the device pages.
	 */
6569
	if (altmap) {
6570
		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6571
		nr_pages = end_pfn - start_pfn;
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
	}

	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
		struct page *page = pfn_to_page(pfn);

		__init_single_page(page, pfn, zone_idx, nid);

		/*
		 * Mark page reserved as it will need to wait for onlining
		 * phase for it to be fully associated with a zone.
		 *
		 * We can use the non-atomic __set_bit operation for setting
		 * the flag as we are still initializing the pages.
		 */
		__SetPageReserved(page);

		/*
6589 6590 6591
		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
		 * ever freed or placed on a driver-private list.
6592 6593
		 */
		page->pgmap = pgmap;
6594
		page->zone_device_data = NULL;
6595 6596 6597 6598 6599 6600 6601 6602

		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
		 * kernel allocations are made.
		 *
6603
		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6604
		 * because this is done early in section_activate()
6605
		 */
6606
		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6607 6608 6609 6610 6611
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
			cond_resched();
		}
	}

6612
	pr_info("%s initialised %lu pages in %ums\n", __func__,
6613
		nr_pages, jiffies_to_msecs(jiffies - start));
6614 6615 6616
}

#endif
6617
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
6618
{
6619
	unsigned int order, t;
6620 6621
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
6622 6623 6624 6625
		zone->free_area[order].nr_free = 0;
	}
}

6626
#if !defined(CONFIG_FLATMEM)
6627 6628 6629
/*
 * Only struct pages that correspond to ranges defined by memblock.memory
 * are zeroed and initialized by going through __init_single_page() during
6630
 * memmap_init_zone_range().
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
 *
 * But, there could be struct pages that correspond to holes in
 * memblock.memory. This can happen because of the following reasons:
 * - physical memory bank size is not necessarily the exact multiple of the
 *   arbitrary section size
 * - early reserved memory may not be listed in memblock.memory
 * - memory layouts defined with memmap= kernel parameter may not align
 *   nicely with memmap sections
 *
 * Explicitly initialize those struct pages so that:
 * - PG_Reserved is set
 * - zone and node links point to zone and node that span the page if the
 *   hole is in the middle of a zone
 * - zone and node links point to adjacent zone/node if the hole falls on
 *   the zone boundary; the pages in such holes will be prepended to the
 *   zone/node above the hole except for the trailing pages in the last
 *   section that will be appended to the zone/node below.
 */
6649 6650 6651
static void __init init_unavailable_range(unsigned long spfn,
					  unsigned long epfn,
					  int zone, int node)
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
{
	unsigned long pfn;
	u64 pgcnt = 0;

	for (pfn = spfn; pfn < epfn; pfn++) {
		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
				+ pageblock_nr_pages - 1;
			continue;
		}
		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
		__SetPageReserved(pfn_to_page(pfn));
		pgcnt++;
	}

6667 6668 6669
	if (pgcnt)
		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
			node, zone_names[zone], pgcnt);
6670 6671
}
#else
6672 6673 6674
static inline void init_unavailable_range(unsigned long spfn,
					  unsigned long epfn,
					  int zone, int node)
6675 6676 6677 6678
{
}
#endif

6679 6680 6681 6682
static void __init memmap_init_zone_range(struct zone *zone,
					  unsigned long start_pfn,
					  unsigned long end_pfn,
					  unsigned long *hole_pfn)
6683
{
6684 6685
	unsigned long zone_start_pfn = zone->zone_start_pfn;
	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);

	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);

	if (start_pfn >= end_pfn)
		return;

	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);

	if (*hole_pfn < start_pfn)
		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);

	*hole_pfn = end_pfn;
}

static void __init memmap_init(void)
{
6705
	unsigned long start_pfn, end_pfn;
6706 6707
	unsigned long hole_pfn = 0;
	int i, j, zone_id, nid;
6708

6709 6710 6711 6712 6713
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		struct pglist_data *node = NODE_DATA(nid);

		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = node->node_zones + j;
6714

6715 6716
			if (!populated_zone(zone))
				continue;
6717

6718 6719 6720 6721
			memmap_init_zone_range(zone, start_pfn, end_pfn,
					       &hole_pfn);
			zone_id = j;
		}
6722
	}
6723 6724 6725

#ifdef CONFIG_SPARSEMEM
	/*
6726 6727 6728 6729 6730 6731 6732
	 * Initialize the memory map for hole in the range [memory_end,
	 * section_end].
	 * Append the pages in this hole to the highest zone in the last
	 * node.
	 * The call to init_unavailable_range() is outside the ifdef to
	 * silence the compiler warining about zone_id set but not used;
	 * for FLATMEM it is a nop anyway
6733
	 */
6734
	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6735 6736
	if (hole_pfn < end_pfn)
#endif
6737
		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6738
}
L
Linus Torvalds 已提交
6739

6740
static int zone_batchsize(struct zone *zone)
6741
{
6742
#ifdef CONFIG_MMU
6743 6744 6745
	int batch;

	/*
6746 6747 6748 6749
	 * The number of pages to batch allocate is either ~0.1%
	 * of the zone or 1MB, whichever is smaller. The batch
	 * size is striking a balance between allocation latency
	 * and zone lock contention.
6750
	 */
6751
	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6752 6753 6754 6755 6756
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
6757 6758 6759
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
6760
	 *
6761 6762 6763 6764
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
6765
	 */
6766
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6767

6768
	return batch;
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
6786 6787
}

6788
static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6789 6790 6791
{
#ifdef CONFIG_MMU
	int high;
6792
	int nr_split_cpus;
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
	unsigned long total_pages;

	if (!percpu_pagelist_high_fraction) {
		/*
		 * By default, the high value of the pcp is based on the zone
		 * low watermark so that if they are full then background
		 * reclaim will not be started prematurely.
		 */
		total_pages = low_wmark_pages(zone);
	} else {
		/*
		 * If percpu_pagelist_high_fraction is configured, the high
		 * value is based on a fraction of the managed pages in the
		 * zone.
		 */
		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
	}
6810 6811

	/*
6812 6813 6814
	 * Split the high value across all online CPUs local to the zone. Note
	 * that early in boot that CPUs may not be online yet and that during
	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6815 6816 6817
	 * onlined. For memory nodes that have no CPUs, split pcp->high across
	 * all online CPUs to mitigate the risk that reclaim is triggered
	 * prematurely due to pages stored on pcp lists.
6818
	 */
6819 6820 6821 6822
	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
	if (!nr_split_cpus)
		nr_split_cpus = num_online_cpus();
	high = total_pages / nr_split_cpus;
6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835

	/*
	 * Ensure high is at least batch*4. The multiple is based on the
	 * historical relationship between high and batch.
	 */
	high = max(high, batch << 2);

	return high;
#else
	return 0;
#endif
}

6836
/*
6837 6838 6839
 * pcp->high and pcp->batch values are related and generally batch is lower
 * than high. They are also related to pcp->count such that count is lower
 * than high, and as soon as it reaches high, the pcplist is flushed.
6840
 *
6841 6842 6843 6844 6845 6846
 * However, guaranteeing these relations at all times would require e.g. write
 * barriers here but also careful usage of read barriers at the read side, and
 * thus be prone to error and bad for performance. Thus the update only prevents
 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
 * can cope with those fields changing asynchronously, and fully trust only the
 * pcp->count field on the local CPU with interrupts disabled.
6847 6848 6849 6850 6851 6852 6853 6854
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
6855 6856
	WRITE_ONCE(pcp->batch, batch);
	WRITE_ONCE(pcp->high, high);
6857 6858
}

6859
static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6860
{
6861
	int pindex;
6862

6863 6864
	memset(pcp, 0, sizeof(*pcp));
	memset(pzstats, 0, sizeof(*pzstats));
6865

6866 6867
	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
		INIT_LIST_HEAD(&pcp->lists[pindex]);
6868

6869 6870 6871 6872 6873 6874
	/*
	 * Set batch and high values safe for a boot pageset. A true percpu
	 * pageset's initialization will update them subsequently. Here we don't
	 * need to be as careful as pageset_update() as nobody can access the
	 * pageset yet.
	 */
6875 6876
	pcp->high = BOOT_PAGESET_HIGH;
	pcp->batch = BOOT_PAGESET_BATCH;
6877
	pcp->free_factor = 0;
6878 6879
}

6880
static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6881 6882
		unsigned long batch)
{
6883
	struct per_cpu_pages *pcp;
6884 6885 6886
	int cpu;

	for_each_possible_cpu(cpu) {
6887 6888
		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
		pageset_update(pcp, high, batch);
6889 6890 6891
	}
}

6892
/*
6893
 * Calculate and set new high and batch values for all per-cpu pagesets of a
6894
 * zone based on the zone's size.
6895
 */
6896
static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6897
{
6898
	int new_high, new_batch;
6899

6900
	new_batch = max(1, zone_batchsize(zone));
6901
	new_high = zone_highsize(zone, new_batch, cpu_online);
6902

6903 6904 6905 6906 6907 6908 6909
	if (zone->pageset_high == new_high &&
	    zone->pageset_batch == new_batch)
		return;

	zone->pageset_high = new_high;
	zone->pageset_batch = new_batch;

6910
	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6911 6912
}

6913
void __meminit setup_zone_pageset(struct zone *zone)
6914 6915
{
	int cpu;
6916

6917 6918 6919 6920 6921
	/* Size may be 0 on !SMP && !NUMA */
	if (sizeof(struct per_cpu_zonestat) > 0)
		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);

	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6922
	for_each_possible_cpu(cpu) {
6923 6924 6925 6926 6927 6928
		struct per_cpu_pages *pcp;
		struct per_cpu_zonestat *pzstats;

		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
		per_cpu_pages_init(pcp, pzstats);
6929 6930
	}

6931
	zone_set_pageset_high_and_batch(zone, 0);
6932 6933
}

6934
/*
6935 6936
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
6937
 */
6938
void __init setup_per_cpu_pageset(void)
6939
{
6940
	struct pglist_data *pgdat;
6941
	struct zone *zone;
6942
	int __maybe_unused cpu;
6943

6944 6945
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
6946

6947 6948 6949 6950 6951 6952 6953 6954
#ifdef CONFIG_NUMA
	/*
	 * Unpopulated zones continue using the boot pagesets.
	 * The numa stats for these pagesets need to be reset.
	 * Otherwise, they will end up skewing the stats of
	 * the nodes these zones are associated with.
	 */
	for_each_possible_cpu(cpu) {
6955
		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6956 6957
		memset(pzstats->vm_numa_event, 0,
		       sizeof(pzstats->vm_numa_event));
6958 6959 6960
	}
#endif

6961 6962 6963
	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
6964 6965
}

6966
static __meminit void zone_pcp_init(struct zone *zone)
6967
{
6968 6969 6970 6971 6972
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
6973 6974
	zone->per_cpu_pageset = &boot_pageset;
	zone->per_cpu_zonestats = &boot_zonestats;
6975 6976
	zone->pageset_high = BOOT_PAGESET_HIGH;
	zone->pageset_batch = BOOT_PAGESET_BATCH;
6977

6978
	if (populated_zone(zone))
6979 6980
		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
			 zone->present_pages, zone_batchsize(zone));
6981 6982
}

6983
void __meminit init_currently_empty_zone(struct zone *zone,
6984
					unsigned long zone_start_pfn,
6985
					unsigned long size)
6986 6987
{
	struct pglist_data *pgdat = zone->zone_pgdat;
6988
	int zone_idx = zone_idx(zone) + 1;
6989

6990 6991
	if (zone_idx > pgdat->nr_zones)
		pgdat->nr_zones = zone_idx;
6992 6993 6994

	zone->zone_start_pfn = zone_start_pfn;

6995 6996 6997 6998 6999 7000
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

7001
	zone_init_free_lists(zone);
7002
	zone->initialized = 1;
7003 7004
}

7005 7006
/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
7007 7008 7009
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7010 7011
 *
 * It returns the start and end page frame of a node based on information
7012
 * provided by memblock_set_node(). If called for a node
7013
 * with no available memory, a warning is printed and the start and end
7014
 * PFNs will be 0.
7015
 */
7016
void __init get_pfn_range_for_nid(unsigned int nid,
7017 7018
			unsigned long *start_pfn, unsigned long *end_pfn)
{
7019
	unsigned long this_start_pfn, this_end_pfn;
7020
	int i;
7021

7022 7023 7024
	*start_pfn = -1UL;
	*end_pfn = 0;

7025 7026 7027
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
7028 7029
	}

7030
	if (*start_pfn == -1UL)
7031 7032 7033
		*start_pfn = 0;
}

M
Mel Gorman 已提交
7034 7035 7036 7037 7038
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
7039
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
7057
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
7058 7059 7060 7061 7062 7063 7064
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
7065
static void __init adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

7080 7081 7082 7083 7084 7085
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
7086 7087 7088 7089 7090 7091
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

7092 7093 7094 7095
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
7096
static unsigned long __init zone_spanned_pages_in_node(int nid,
7097
					unsigned long zone_type,
7098 7099
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
7100
					unsigned long *zone_start_pfn,
7101
					unsigned long *zone_end_pfn)
7102
{
7103 7104
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7105
	/* When hotadd a new node from cpu_up(), the node should be empty */
7106 7107 7108
	if (!node_start_pfn && !node_end_pfn)
		return 0;

7109
	/* Get the start and end of the zone */
7110 7111
	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
M
Mel Gorman 已提交
7112 7113
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
7114
				zone_start_pfn, zone_end_pfn);
7115 7116

	/* Check that this node has pages within the zone's required range */
7117
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7118 7119 7120
		return 0;

	/* Move the zone boundaries inside the node if necessary */
7121 7122
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7123 7124

	/* Return the spanned pages */
7125
	return *zone_end_pfn - *zone_start_pfn;
7126 7127 7128 7129
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7130
 * then all holes in the requested range will be accounted for.
7131
 */
7132
unsigned long __init __absent_pages_in_range(int nid,
7133 7134 7135
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
7136 7137 7138
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
7139

7140 7141 7142 7143
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
7144
	}
7145
	return nr_absent;
7146 7147 7148 7149 7150 7151 7152
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
7153
 * Return: the number of pages frames in memory holes within a range.
7154 7155 7156 7157 7158 7159 7160 7161
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
7162
static unsigned long __init zone_absent_pages_in_node(int nid,
7163
					unsigned long zone_type,
7164
					unsigned long node_start_pfn,
7165
					unsigned long node_end_pfn)
7166
{
7167 7168
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7169
	unsigned long zone_start_pfn, zone_end_pfn;
7170
	unsigned long nr_absent;
7171

7172
	/* When hotadd a new node from cpu_up(), the node should be empty */
7173 7174 7175
	if (!node_start_pfn && !node_end_pfn)
		return 0;

7176 7177
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7178

M
Mel Gorman 已提交
7179 7180 7181
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
7182 7183 7184 7185 7186 7187 7188
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
7189 7190 7191 7192
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

7193
		for_each_mem_region(r) {
7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
7206 7207 7208 7209
		}
	}

	return nr_absent;
7210
}
7211

7212
static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7213
						unsigned long node_start_pfn,
7214
						unsigned long node_end_pfn)
7215
{
7216
	unsigned long realtotalpages = 0, totalpages = 0;
7217 7218
	enum zone_type i;

7219 7220
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
7221
		unsigned long zone_start_pfn, zone_end_pfn;
7222
		unsigned long spanned, absent;
7223
		unsigned long size, real_size;
7224

7225 7226 7227 7228 7229 7230 7231 7232
		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
						     node_start_pfn,
						     node_end_pfn,
						     &zone_start_pfn,
						     &zone_end_pfn);
		absent = zone_absent_pages_in_node(pgdat->node_id, i,
						   node_start_pfn,
						   node_end_pfn);
7233 7234 7235 7236

		size = spanned;
		real_size = size - absent;

7237 7238 7239 7240
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
7241 7242 7243 7244 7245 7246 7247 7248
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
7249
	pgdat->node_present_pages = realtotalpages;
7250
	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7251 7252
}

7253 7254 7255
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
7256 7257
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7258 7259 7260
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
7261
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7262 7263 7264
{
	unsigned long usemapsize;

7265
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7266 7267
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
7268 7269 7270 7271 7272 7273
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

7274
static void __ref setup_usemap(struct zone *zone)
7275
{
7276 7277
	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
					       zone->spanned_pages);
7278
	zone->pageblock_flags = NULL;
7279
	if (usemapsize) {
7280
		zone->pageblock_flags =
7281
			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7282
					    zone_to_nid(zone));
7283 7284
		if (!zone->pageblock_flags)
			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7285
			      usemapsize, zone->name, zone_to_nid(zone));
7286
	}
7287 7288
}
#else
7289
static inline void setup_usemap(struct zone *zone) {}
7290 7291
#endif /* CONFIG_SPARSEMEM */

7292
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7293

7294
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7295
void __init set_pageblock_order(void)
7296
{
7297 7298
	unsigned int order;

7299 7300 7301 7302
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

7303 7304 7305 7306 7307
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

7308 7309
	/*
	 * Assume the largest contiguous order of interest is a huge page.
7310 7311
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
7312 7313 7314 7315 7316
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

7317 7318
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7319 7320 7321
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
7322
 */
7323
void __init set_pageblock_order(void)
7324 7325
{
}
7326 7327 7328

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

7329
static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
P
Pavel Tatashin 已提交
7330
						unsigned long present_pages)
7331 7332 7333 7334 7335 7336 7337 7338
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
7339
	 * populated regions may not be naturally aligned on page boundary.
7340 7341 7342 7343 7344 7345 7346 7347 7348
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

7349 7350 7351
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void pgdat_init_split_queue(struct pglist_data *pgdat)
{
7352 7353 7354 7355 7356
	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;

	spin_lock_init(&ds_queue->split_queue_lock);
	INIT_LIST_HEAD(&ds_queue->split_queue);
	ds_queue->split_queue_len = 0;
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370
}
#else
static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
#endif

#ifdef CONFIG_COMPACTION
static void pgdat_init_kcompactd(struct pglist_data *pgdat)
{
	init_waitqueue_head(&pgdat->kcompactd_wait);
}
#else
static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
#endif

7371
static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
7372
{
7373
	pgdat_resize_init(pgdat);
7374 7375 7376 7377

	pgdat_init_split_queue(pgdat);
	pgdat_init_kcompactd(pgdat);

L
Linus Torvalds 已提交
7378
	init_waitqueue_head(&pgdat->kswapd_wait);
7379
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7380

7381
	pgdat_page_ext_init(pgdat);
7382
	lruvec_init(&pgdat->__lruvec);
7383 7384 7385 7386 7387
}

static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
							unsigned long remaining_pages)
{
7388
	atomic_long_set(&zone->managed_pages, remaining_pages);
7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428
	zone_set_nid(zone, nid);
	zone->name = zone_names[idx];
	zone->zone_pgdat = NODE_DATA(nid);
	spin_lock_init(&zone->lock);
	zone_seqlock_init(zone);
	zone_pcp_init(zone);
}

/*
 * Set up the zone data structures
 * - init pgdat internals
 * - init all zones belonging to this node
 *
 * NOTE: this function is only called during memory hotplug
 */
#ifdef CONFIG_MEMORY_HOTPLUG
void __ref free_area_init_core_hotplug(int nid)
{
	enum zone_type z;
	pg_data_t *pgdat = NODE_DATA(nid);

	pgdat_init_internals(pgdat);
	for (z = 0; z < MAX_NR_ZONES; z++)
		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
}
#endif

/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
 *
 * NOTE: pgdat should get zeroed by caller.
 * NOTE: this function is only called during early init.
 */
static void __init free_area_init_core(struct pglist_data *pgdat)
{
	enum zone_type j;
	int nid = pgdat->node_id;
7429

7430
	pgdat_init_internals(pgdat);
7431 7432
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
7433 7434
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
7435
		unsigned long size, freesize, memmap_pages;
L
Linus Torvalds 已提交
7436

7437
		size = zone->spanned_pages;
7438
		freesize = zone->present_pages;
L
Linus Torvalds 已提交
7439

7440
		/*
7441
		 * Adjust freesize so that it accounts for how much memory
7442 7443 7444
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
7445
		memmap_pages = calc_memmap_size(size, freesize);
7446 7447 7448 7449
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
7450 7451
					pr_debug("  %s zone: %lu pages used for memmap\n",
						 zone_names[j], memmap_pages);
7452
			} else
7453
				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7454 7455
					zone_names[j], memmap_pages, freesize);
		}
7456

7457
		/* Account for reserved pages */
7458 7459
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
7460
			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7461 7462
		}

7463
		if (!is_highmem_idx(j))
7464
			nr_kernel_pages += freesize;
7465 7466 7467
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
7468
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
7469

7470 7471 7472 7473 7474
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
7475
		zone_init_internals(zone, j, nid, freesize);
7476

7477
		if (!size)
L
Linus Torvalds 已提交
7478 7479
			continue;

7480
		set_pageblock_order();
7481
		setup_usemap(zone);
7482
		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
L
Linus Torvalds 已提交
7483 7484 7485
	}
}

7486
#ifdef CONFIG_FLATMEM
7487
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
7488
{
7489
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
7490 7491
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
7492 7493 7494 7495
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

7496 7497
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
7498 7499
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
7500
		unsigned long size, end;
A
Andy Whitcroft 已提交
7501 7502
		struct page *map;

7503 7504 7505 7506 7507
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
7508
		end = pgdat_end_pfn(pgdat);
7509 7510
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
7511 7512
		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
					  pgdat->node_id);
7513 7514 7515
		if (!map)
			panic("Failed to allocate %ld bytes for node %d memory map\n",
			      size, pgdat->node_id);
L
Laura Abbott 已提交
7516
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
7517
	}
7518 7519 7520
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
7521
#ifndef CONFIG_NUMA
L
Linus Torvalds 已提交
7522 7523 7524
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
7525
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
7526
		mem_map = NODE_DATA(0)->node_mem_map;
7527
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
7528
			mem_map -= offset;
7529
	}
L
Linus Torvalds 已提交
7530 7531
#endif
}
7532 7533
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7534
#endif /* CONFIG_FLATMEM */
L
Linus Torvalds 已提交
7535

7536 7537 7538 7539 7540 7541 7542 7543 7544
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
{
	pgdat->first_deferred_pfn = ULONG_MAX;
}
#else
static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
#endif

7545
static void __init free_area_init_node(int nid)
L
Linus Torvalds 已提交
7546
{
7547
	pg_data_t *pgdat = NODE_DATA(nid);
7548 7549
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
7550

7551
	/* pg_data_t should be reset to zero when it's allocated */
7552
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7553

7554
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7555

L
Linus Torvalds 已提交
7556
	pgdat->node_id = nid;
7557
	pgdat->node_start_pfn = start_pfn;
7558
	pgdat->per_cpu_nodestats = NULL;
7559

7560
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7561 7562
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7563
	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
L
Linus Torvalds 已提交
7564 7565

	alloc_node_mem_map(pgdat);
7566
	pgdat_set_deferred_range(pgdat);
L
Linus Torvalds 已提交
7567

7568
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
7569 7570
}

7571
void __init free_area_init_memoryless_node(int nid)
7572
{
7573
	free_area_init_node(nid);
7574 7575
}

M
Miklos Szeredi 已提交
7576 7577 7578 7579
#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
7580
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
7581
{
7582
	unsigned int highest;
M
Miklos Szeredi 已提交
7583

7584
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
7585 7586 7587 7588
	nr_node_ids = highest + 1;
}
#endif

7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
7605
 * Return: the determined alignment in pfn's.  0 if there is no alignment
7606 7607 7608 7609 7610
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
7611
	unsigned long start, end, mask;
7612
	int last_nid = NUMA_NO_NODE;
7613
	int i, nid;
7614

7615
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

7639 7640 7641
/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
7642
 * Return: the minimum PFN based on information provided via
7643
 * memblock_set_node().
7644 7645 7646
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
7647
	return PHYS_PFN(memblock_start_of_DRAM());
7648 7649
}

7650 7651 7652
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
7653
 * Populate N_MEMORY for calculating usable_nodes.
7654
 */
A
Adrian Bunk 已提交
7655
static unsigned long __init early_calculate_totalpages(void)
7656 7657
{
	unsigned long totalpages = 0;
7658 7659 7660 7661 7662
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
7663

7664 7665
		totalpages += pages;
		if (pages)
7666
			node_set_state(nid, N_MEMORY);
7667
	}
7668
	return totalpages;
7669 7670
}

M
Mel Gorman 已提交
7671 7672 7673 7674 7675 7676
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
7677
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
7678 7679 7680 7681
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
7682
	/* save the state before borrow the nodemask */
7683
	nodemask_t saved_node_state = node_states[N_MEMORY];
7684
	unsigned long totalpages = early_calculate_totalpages();
7685
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
7686
	struct memblock_region *r;
7687 7688 7689 7690 7691 7692 7693 7694 7695

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
7696
		for_each_mem_region(r) {
E
Emil Medve 已提交
7697
			if (!memblock_is_hotpluggable(r))
7698 7699
				continue;

7700
			nid = memblock_get_region_node(r);
7701

E
Emil Medve 已提交
7702
			usable_startpfn = PFN_DOWN(r->base);
7703 7704 7705 7706 7707 7708 7709
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
7710

7711 7712 7713 7714 7715 7716
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

7717
		for_each_mem_region(r) {
7718 7719 7720
			if (memblock_is_mirror(r))
				continue;

7721
			nid = memblock_get_region_node(r);
7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
C
Chen Tao 已提交
7736
			pr_warn("This configuration results in unmirrored kernel memory.\n");
7737 7738 7739 7740

		goto out2;
	}

7741
	/*
7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753
	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
	 * amount of necessary memory.
	 */
	if (required_kernelcore_percent)
		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
				       10000UL;
	if (required_movablecore_percent)
		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
					10000UL;

	/*
	 * If movablecore= was specified, calculate what size of
7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7769
		required_movablecore = min(totalpages, required_movablecore);
7770 7771 7772 7773 7774
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

7775 7776 7777 7778 7779
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
7780
		goto out;
M
Mel Gorman 已提交
7781 7782 7783 7784 7785 7786 7787

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
7788
	for_each_node_state(nid, N_MEMORY) {
7789 7790
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
7807
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
7808 7809
			unsigned long size_pages;

7810
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
7853
			 * satisfied
M
Mel Gorman 已提交
7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
7867
	 * satisfied
M
Mel Gorman 已提交
7868 7869 7870 7871 7872
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

7873
out2:
M
Mel Gorman 已提交
7874 7875 7876 7877
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7878

7879
out:
7880
	/* restore the node_state */
7881
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
7882 7883
}

7884 7885
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
7886 7887 7888
{
	enum zone_type zone_type;

7889
	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7890
		struct zone *zone = &pgdat->node_zones[zone_type];
7891
		if (populated_zone(zone)) {
7892 7893 7894
			if (IS_ENABLED(CONFIG_HIGHMEM))
				node_set_state(nid, N_HIGH_MEMORY);
			if (zone_type <= ZONE_NORMAL)
7895
				node_set_state(nid, N_NORMAL_MEMORY);
7896 7897
			break;
		}
7898 7899 7900
	}
}

7901
/*
I
Ingo Molnar 已提交
7902
 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7903 7904 7905 7906 7907 7908 7909
 * such cases we allow max_zone_pfn sorted in the descending order
 */
bool __weak arch_has_descending_max_zone_pfns(void)
{
	return false;
}

7910
/**
7911
 * free_area_init - Initialise all pg_data_t and zone data
7912
 * @max_zone_pfn: an array of max PFNs for each zone
7913 7914
 *
 * This will call free_area_init_node() for each active node in the system.
7915
 * Using the page ranges provided by memblock_set_node(), the size of each
7916 7917 7918 7919 7920 7921 7922
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
7923
void __init free_area_init(unsigned long *max_zone_pfn)
7924
{
7925
	unsigned long start_pfn, end_pfn;
7926 7927
	int i, nid, zone;
	bool descending;
7928

7929 7930 7931 7932 7933
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
7934 7935

	start_pfn = find_min_pfn_with_active_regions();
7936
	descending = arch_has_descending_max_zone_pfns();
7937 7938

	for (i = 0; i < MAX_NR_ZONES; i++) {
7939 7940 7941 7942 7943 7944
		if (descending)
			zone = MAX_NR_ZONES - i - 1;
		else
			zone = i;

		if (zone == ZONE_MOVABLE)
M
Mel Gorman 已提交
7945
			continue;
7946

7947 7948 7949
		end_pfn = max(max_zone_pfn[zone], start_pfn);
		arch_zone_lowest_possible_pfn[zone] = start_pfn;
		arch_zone_highest_possible_pfn[zone] = end_pfn;
7950 7951

		start_pfn = end_pfn;
7952
	}
M
Mel Gorman 已提交
7953 7954 7955

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7956
	find_zone_movable_pfns_for_nodes();
7957 7958

	/* Print out the zone ranges */
7959
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
7960 7961 7962
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
7963
		pr_info("  %-8s ", zone_names[i]);
7964 7965
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
7966
			pr_cont("empty\n");
7967
		else
7968 7969 7970 7971
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
7972
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
7973 7974 7975
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7976
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
7977 7978
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
7979 7980
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
7981
	}
7982

7983 7984 7985 7986 7987
	/*
	 * Print out the early node map, and initialize the
	 * subsection-map relative to active online memory ranges to
	 * enable future "sub-section" extensions of the memory map.
	 */
7988
	pr_info("Early memory node ranges\n");
7989
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7990 7991 7992
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
7993 7994
		subsection_map_init(start_pfn, end_pfn - start_pfn);
	}
7995 7996

	/* Initialise every node */
7997
	mminit_verify_pageflags_layout();
7998
	setup_nr_node_ids();
7999 8000
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
8001
		free_area_init_node(nid);
8002 8003 8004

		/* Any memory on that node */
		if (pgdat->node_present_pages)
8005 8006
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
8007
	}
8008 8009

	memmap_init();
8010
}
M
Mel Gorman 已提交
8011

8012 8013
static int __init cmdline_parse_core(char *p, unsigned long *core,
				     unsigned long *percent)
M
Mel Gorman 已提交
8014 8015
{
	unsigned long long coremem;
8016 8017
	char *endptr;

M
Mel Gorman 已提交
8018 8019 8020
	if (!p)
		return -EINVAL;

8021 8022 8023 8024 8025
	/* Value may be a percentage of total memory, otherwise bytes */
	coremem = simple_strtoull(p, &endptr, 0);
	if (*endptr == '%') {
		/* Paranoid check for percent values greater than 100 */
		WARN_ON(coremem > 100);
M
Mel Gorman 已提交
8026

8027 8028 8029 8030 8031
		*percent = coremem;
	} else {
		coremem = memparse(p, &p);
		/* Paranoid check that UL is enough for the coremem value */
		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
M
Mel Gorman 已提交
8032

8033 8034 8035
		*core = coremem >> PAGE_SHIFT;
		*percent = 0UL;
	}
M
Mel Gorman 已提交
8036 8037
	return 0;
}
M
Mel Gorman 已提交
8038

8039 8040 8041 8042 8043 8044
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
8045 8046 8047 8048 8049 8050
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

8051 8052
	return cmdline_parse_core(p, &required_kernelcore,
				  &required_kernelcore_percent);
8053 8054 8055 8056 8057 8058 8059 8060
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
8061 8062
	return cmdline_parse_core(p, &required_movablecore,
				  &required_movablecore_percent);
8063 8064
}

M
Mel Gorman 已提交
8065
early_param("kernelcore", cmdline_parse_kernelcore);
8066
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
8067

8068 8069
void adjust_managed_page_count(struct page *page, long count)
{
8070
	atomic_long_add(count, &page_zone(page)->managed_pages);
8071
	totalram_pages_add(count);
8072 8073
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
8074
		totalhigh_pages_add(count);
8075
#endif
8076
}
8077
EXPORT_SYMBOL(adjust_managed_page_count);
8078

8079
unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8080
{
8081 8082
	void *pos;
	unsigned long pages = 0;
8083

8084 8085 8086
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097
		struct page *page = virt_to_page(pos);
		void *direct_map_addr;

		/*
		 * 'direct_map_addr' might be different from 'pos'
		 * because some architectures' virt_to_page()
		 * work with aliases.  Getting the direct map
		 * address ensures that we get a _writeable_
		 * alias for the memset().
		 */
		direct_map_addr = page_address(page);
8098 8099 8100 8101 8102
		/*
		 * Perform a kasan-unchecked memset() since this memory
		 * has not been initialized.
		 */
		direct_map_addr = kasan_reset_tag(direct_map_addr);
8103
		if ((unsigned int)poison <= 0xFF)
8104 8105 8106
			memset(direct_map_addr, poison, PAGE_SIZE);

		free_reserved_page(page);
8107 8108 8109
	}

	if (pages && s)
8110 8111
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
8112 8113 8114 8115

	return pages;
}

8116
void __init mem_init_print_info(void)
8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
8137 8138 8139 8140
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
8141 8142 8143 8144 8145 8146 8147 8148 8149 8150

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
8151
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8152
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
8153
		", %luK highmem"
8154
#endif
8155
		")\n",
J
Joe Perches 已提交
8156 8157 8158 8159
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8160
		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8161
		totalcma_pages << (PAGE_SHIFT - 10)
8162
#ifdef	CONFIG_HIGHMEM
8163
		, totalhigh_pages() << (PAGE_SHIFT - 10)
8164
#endif
8165
		);
8166 8167
}

8168
/**
8169 8170
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
8171
 *
8172
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8173 8174
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
8175 8176 8177
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
8178 8179 8180 8181 8182 8183
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

8184
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
8185
{
8186
	struct zone *zone;
L
Linus Torvalds 已提交
8187

8188 8189
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
8190

8191 8192 8193 8194 8195 8196 8197
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
8198

8199 8200 8201 8202 8203 8204 8205 8206
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219

	for_each_populated_zone(zone)
		zone_pcp_update(zone, 0);

	return 0;
}

static int page_alloc_cpu_online(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone)
		zone_pcp_update(zone, 1);
8220
	return 0;
L
Linus Torvalds 已提交
8221 8222
}

8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

L
Linus Torvalds 已提交
8236 8237
void __init page_alloc_init(void)
{
8238 8239
	int ret;

8240 8241 8242 8243 8244
#ifdef CONFIG_NUMA
	if (num_node_state(N_MEMORY) == 1)
		hashdist = 0;
#endif

8245 8246 8247
	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
					"mm/page_alloc:pcp",
					page_alloc_cpu_online,
8248 8249
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
8250 8251
}

8252
/*
8253
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8254 8255 8256 8257 8258 8259
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
8260
	enum zone_type i, j;
8261 8262

	for_each_online_pgdat(pgdat) {
8263 8264 8265

		pgdat->totalreserve_pages = 0;

8266 8267
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
8268
			long max = 0;
8269
			unsigned long managed_pages = zone_managed_pages(zone);
8270 8271 8272 8273 8274 8275 8276

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

8277 8278
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
8279

8280 8281
			if (max > managed_pages)
				max = managed_pages;
8282

8283
			pgdat->totalreserve_pages += max;
8284

8285 8286 8287 8288 8289 8290
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
8291 8292
/*
 * setup_per_zone_lowmem_reserve - called whenever
8293
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
8294 8295 8296 8297 8298 8299
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
8300
	enum zone_type i, j;
L
Linus Torvalds 已提交
8301

8302
	for_each_online_pgdat(pgdat) {
8303 8304 8305 8306 8307 8308 8309
		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
			struct zone *zone = &pgdat->node_zones[i];
			int ratio = sysctl_lowmem_reserve_ratio[i];
			bool clear = !ratio || !zone_managed_pages(zone);
			unsigned long managed_pages = 0;

			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8310 8311 8312
				struct zone *upper_zone = &pgdat->node_zones[j];

				managed_pages += zone_managed_pages(upper_zone);
8313

8314 8315 8316
				if (clear)
					zone->lowmem_reserve[j] = 0;
				else
8317
					zone->lowmem_reserve[j] = managed_pages / ratio;
L
Linus Torvalds 已提交
8318 8319 8320
			}
		}
	}
8321 8322 8323

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
8324 8325
}

8326
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
8327 8328 8329 8330 8331 8332 8333 8334 8335
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
8336
			lowmem_pages += zone_managed_pages(zone);
L
Linus Torvalds 已提交
8337 8338 8339
	}

	for_each_zone(zone) {
8340 8341
		u64 tmp;

8342
		spin_lock_irqsave(&zone->lock, flags);
8343
		tmp = (u64)pages_min * zone_managed_pages(zone);
8344
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
8345 8346
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
8347 8348 8349 8350
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
8351
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
W
Wei Yang 已提交
8352
			 * deltas control async page reclaim, and so should
N
Nick Piggin 已提交
8353
			 * not be capped for highmem.
L
Linus Torvalds 已提交
8354
			 */
8355
			unsigned long min_pages;
L
Linus Torvalds 已提交
8356

8357
			min_pages = zone_managed_pages(zone) / 1024;
8358
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8359
			zone->_watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
8360
		} else {
N
Nick Piggin 已提交
8361 8362
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
8363 8364
			 * proportionate to the zone's size.
			 */
8365
			zone->_watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
8366 8367
		}

8368 8369 8370 8371 8372 8373
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
8374
			    mult_frac(zone_managed_pages(zone),
8375 8376
				      watermark_scale_factor, 10000));

8377
		zone->watermark_boost = 0;
8378 8379
		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8380

8381
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
8382
	}
8383 8384 8385

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
8386 8387
}

8388 8389 8390 8391 8392 8393 8394 8395 8396
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
8397
	struct zone *zone;
8398 8399 8400
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
8401
	__setup_per_zone_wmarks();
8402
	spin_unlock(&lock);
8403 8404 8405 8406 8407 8408

	/*
	 * The watermark size have changed so update the pcpu batch
	 * and high limits or the limits may be inappropriate.
	 */
	for_each_zone(zone)
8409
		zone_pcp_update(zone, 0);
8410 8411
}

L
Linus Torvalds 已提交
8412 8413 8414 8415
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
8416
 * we want it large (256MB max).  But it is not linear, because network
L
Linus Torvalds 已提交
8417 8418
 * bandwidth does not increase linearly with machine size.  We use
 *
8419
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
8436
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
8437 8438
{
	unsigned long lowmem_kbytes;
8439
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
8440 8441

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8442 8443 8444 8445 8446 8447
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
8448 8449
		if (min_free_kbytes > 262144)
			min_free_kbytes = 262144;
8450 8451 8452 8453
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
8454
	setup_per_zone_wmarks();
8455
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
8456
	setup_per_zone_lowmem_reserve();
8457 8458 8459 8460 8461 8462

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

8463 8464
	khugepaged_min_free_kbytes_update();

L
Linus Torvalds 已提交
8465 8466
	return 0;
}
8467
postcore_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
8468 8469

/*
8470
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
8471 8472 8473
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
8474
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8475
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
8476
{
8477 8478 8479 8480 8481 8482
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

8483 8484
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
8485
		setup_per_zone_wmarks();
8486
	}
L
Linus Torvalds 已提交
8487 8488 8489
	return 0;
}

8490
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8491
		void *buffer, size_t *length, loff_t *ppos)
8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

8505
#ifdef CONFIG_NUMA
8506
static void setup_min_unmapped_ratio(void)
8507
{
8508
	pg_data_t *pgdat;
8509 8510
	struct zone *zone;

8511
	for_each_online_pgdat(pgdat)
8512
		pgdat->min_unmapped_pages = 0;
8513

8514
	for_each_zone(zone)
8515 8516
		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
						         sysctl_min_unmapped_ratio) / 100;
8517
}
8518

8519 8520

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8521
		void *buffer, size_t *length, loff_t *ppos)
8522 8523 8524
{
	int rc;

8525
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8526 8527 8528
	if (rc)
		return rc;

8529 8530 8531 8532 8533 8534 8535 8536 8537 8538
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

8539 8540 8541
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

8542
	for_each_zone(zone)
8543 8544
		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
						     sysctl_min_slab_ratio) / 100;
8545 8546 8547
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8548
		void *buffer, size_t *length, loff_t *ppos)
8549 8550 8551 8552 8553 8554 8555 8556 8557
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

8558 8559
	return 0;
}
8560 8561
#endif

L
Linus Torvalds 已提交
8562 8563 8564 8565 8566 8567
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
8568
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
8569 8570
 * if in function of the boot time zone sizes.
 */
8571
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8572
		void *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
8573
{
8574 8575
	int i;

8576
	proc_dointvec_minmax(table, write, buffer, length, ppos);
8577 8578 8579 8580 8581 8582

	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (sysctl_lowmem_reserve_ratio[i] < 1)
			sysctl_lowmem_reserve_ratio[i] = 0;
	}

L
Linus Torvalds 已提交
8583 8584 8585 8586
	setup_per_zone_lowmem_reserve();
	return 0;
}

8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624
/*
 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
 * cpu. It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
 */
int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
		int write, void *buffer, size_t *length, loff_t *ppos)
{
	struct zone *zone;
	int old_percpu_pagelist_high_fraction;
	int ret;

	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;

	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_high_fraction &&
	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
		goto out;

	for_each_populated_zone(zone)
		zone_set_pageset_high_and_batch(zone, 0);
out:
	mutex_unlock(&pcp_batch_high_lock);
	return ret;
}

8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
8664 8665
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
8666
{
8667
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
8668 8669
	unsigned long log2qty, size;
	void *table = NULL;
8670
	gfp_t gfp_flags;
8671
	bool virt;
8672
	bool huge;
L
Linus Torvalds 已提交
8673 8674 8675 8676

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
8677
		numentries = nr_kernel_pages;
8678
		numentries -= arch_reserved_kernel_pages();
8679 8680 8681 8682

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
8683

P
Pavel Tatashin 已提交
8684 8685 8686 8687 8688 8689 8690 8691 8692 8693
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
8694 8695 8696 8697 8698
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
8699 8700

		/* Make sure we've got at least a 0-order allocation.. */
8701 8702 8703 8704 8705 8706 8707 8708
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8709
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
8710
	}
8711
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
8712 8713 8714 8715 8716 8717

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
8718
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
8719

8720 8721
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
8722 8723 8724
	if (numentries > max)
		numentries = max;

8725
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
8726

8727
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
8728
	do {
8729
		virt = false;
L
Linus Torvalds 已提交
8730
		size = bucketsize << log2qty;
8731 8732
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
8733
				table = memblock_alloc(size, SMP_CACHE_BYTES);
8734
			else
8735 8736
				table = memblock_alloc_raw(size,
							   SMP_CACHE_BYTES);
8737
		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8738
			table = __vmalloc(size, gfp_flags);
8739
			virt = true;
8740
			huge = is_vm_area_hugepages(table);
8741
		} else {
8742 8743
			/*
			 * If bucketsize is not a power-of-two, we may free
8744 8745
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
8746
			 */
8747 8748
			table = alloc_pages_exact(size, gfp_flags);
			kmemleak_alloc(table, size, 1, gfp_flags);
L
Linus Torvalds 已提交
8749 8750 8751 8752 8753 8754
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

8755 8756
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8757
		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
L
Linus Torvalds 已提交
8758 8759 8760 8761 8762 8763 8764 8765

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
8766

K
KAMEZAWA Hiroyuki 已提交
8767
/*
8768 8769
 * This function checks whether pageblock includes unmovable pages or not.
 *
8770
 * PageLRU check without isolation or lru_lock could race so that
8771 8772 8773
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
8774 8775
 *
 * Returns a page without holding a reference. If the caller wants to
8776
 * dereference that page (e.g., dumping), it has to make sure that it
8777 8778
 * cannot get removed (e.g., via memory unplug) concurrently.
 *
K
KAMEZAWA Hiroyuki 已提交
8779
 */
8780 8781
struct page *has_unmovable_pages(struct zone *zone, struct page *page,
				 int migratetype, int flags)
8782
{
8783 8784
	unsigned long iter = 0;
	unsigned long pfn = page_to_pfn(page);
8785
	unsigned long offset = pfn % pageblock_nr_pages;
8786

8787 8788 8789 8790 8791 8792 8793
	if (is_migrate_cma_page(page)) {
		/*
		 * CMA allocations (alloc_contig_range) really need to mark
		 * isolate CMA pageblocks even when they are not movable in fact
		 * so consider them movable here.
		 */
		if (is_migrate_cma(migratetype))
8794
			return NULL;
8795

8796
		return page;
8797
	}
8798

8799
	for (; iter < pageblock_nr_pages - offset; iter++) {
8800
		if (!pfn_valid_within(pfn + iter))
8801
			continue;
8802

8803
		page = pfn_to_page(pfn + iter);
8804

8805 8806 8807 8808 8809 8810
		/*
		 * Both, bootmem allocations and memory holes are marked
		 * PG_reserved and are unmovable. We can even have unmovable
		 * allocations inside ZONE_MOVABLE, for example when
		 * specifying "movablecore".
		 */
8811
		if (PageReserved(page))
8812
			return page;
8813

8814 8815 8816 8817 8818 8819 8820 8821
		/*
		 * If the zone is movable and we have ruled out all reserved
		 * pages then it should be reasonably safe to assume the rest
		 * is movable.
		 */
		if (zone_idx(zone) == ZONE_MOVABLE)
			continue;

8822 8823
		/*
		 * Hugepages are not in LRU lists, but they're movable.
8824
		 * THPs are on the LRU, but need to be counted as #small pages.
W
Wei Yang 已提交
8825
		 * We need not scan over tail pages because we don't
8826 8827
		 * handle each tail page individually in migration.
		 */
8828
		if (PageHuge(page) || PageTransCompound(page)) {
8829 8830
			struct page *head = compound_head(page);
			unsigned int skip_pages;
8831

8832 8833 8834 8835
			if (PageHuge(page)) {
				if (!hugepage_migration_supported(page_hstate(head)))
					return page;
			} else if (!PageLRU(head) && !__PageMovable(head)) {
8836
				return page;
8837
			}
8838

8839
			skip_pages = compound_nr(head) - (page - head);
8840
			iter += skip_pages - 1;
8841 8842 8843
			continue;
		}

8844 8845 8846 8847
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
8848
		 * because their page->_refcount is zero at all time.
8849
		 */
8850
		if (!page_ref_count(page)) {
8851
			if (PageBuddy(page))
8852
				iter += (1 << buddy_order(page)) - 1;
8853 8854
			continue;
		}
8855

8856 8857 8858 8859
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
8860
		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8861 8862
			continue;

8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875
		/*
		 * We treat all PageOffline() pages as movable when offlining
		 * to give drivers a chance to decrement their reference count
		 * in MEM_GOING_OFFLINE in order to indicate that these pages
		 * can be offlined as there are no direct references anymore.
		 * For actually unmovable PageOffline() where the driver does
		 * not support this, we will fail later when trying to actually
		 * move these pages that still have a reference count > 0.
		 * (false negatives in this function only)
		 */
		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
			continue;

8876
		if (__PageMovable(page) || PageLRU(page))
8877 8878
			continue;

8879
		/*
8880 8881 8882
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
8883
		 */
8884
		return page;
8885
	}
8886
	return NULL;
8887 8888
}

8889
#ifdef CONFIG_CONTIG_ALLOC
8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901
static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922
#if defined(CONFIG_DYNAMIC_DEBUG) || \
	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
/* Usage: See admin-guide/dynamic-debug-howto.rst */
static void alloc_contig_dump_pages(struct list_head *page_list)
{
	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");

	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
		struct page *page;

		dump_stack();
		list_for_each_entry(page, page_list, lru)
			dump_page(page, "migration failure");
	}
}
#else
static inline void alloc_contig_dump_pages(struct list_head *page_list)
{
}
#endif

8923
/* [start, end) must belong to a single zone. */
8924 8925
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
8926 8927
{
	/* This function is based on compact_zone() from compaction.c. */
8928
	unsigned int nr_reclaimed;
8929 8930 8931
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;
8932 8933 8934 8935
	struct migration_target_control mtc = {
		.nid = zone_to_nid(cc->zone),
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
	};
8936

8937
	lru_cache_disable();
8938

8939
	while (pfn < end || !list_empty(&cc->migratepages)) {
8940 8941 8942 8943 8944
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

8945 8946
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
8947 8948
			ret = isolate_migratepages_range(cc, pfn, end);
			if (ret && ret != -EAGAIN)
8949
				break;
8950
			pfn = cc->migrate_pfn;
8951 8952
			tries = 0;
		} else if (++tries == 5) {
8953
			ret = -EBUSY;
8954 8955 8956
			break;
		}

8957 8958 8959
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
8960

8961 8962
		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8963 8964 8965 8966 8967 8968 8969

		/*
		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
		 * to retry again over this error, so do the same here.
		 */
		if (ret == -ENOMEM)
			break;
8970
	}
8971

8972
	lru_cache_enable();
8973
	if (ret < 0) {
8974 8975
		if (ret == -EBUSY)
			alloc_contig_dump_pages(&cc->migratepages);
8976 8977 8978 8979
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
8980 8981 8982 8983 8984 8985
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
I
Ingo Molnar 已提交
8986
 * @migratetype:	migratetype of the underlying pageblocks (either
8987 8988 8989
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
8990
 * @gfp_mask:	GFP mask to use during compaction
8991 8992
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8993
 * aligned.  The PFN range must belong to a single zone.
8994
 *
8995 8996 8997
 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
 * pageblocks in the range.  Once isolated, the pageblocks should not
 * be modified by others.
8998
 *
8999
 * Return: zero on success or negative error code.  On success all
9000 9001 9002
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
9003
int alloc_contig_range(unsigned long start, unsigned long end,
9004
		       unsigned migratetype, gfp_t gfp_mask)
9005 9006
{
	unsigned long outer_start, outer_end;
9007 9008
	unsigned int order;
	int ret = 0;
9009

9010 9011 9012 9013
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
9014
		.mode = MIGRATE_SYNC,
9015
		.ignore_skip_hint = true,
9016
		.no_set_skip_hint = true,
9017
		.gfp_mask = current_gfp_context(gfp_mask),
9018
		.alloc_contig = true,
9019 9020 9021
	};
	INIT_LIST_HEAD(&cc.migratepages);

9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
9047
				       pfn_max_align_up(end), migratetype, 0);
9048
	if (ret)
9049
		return ret;
9050

9051 9052
	drain_all_pages(cc.zone);

9053 9054
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
9055 9056 9057 9058 9059 9060 9061
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
9062
	 */
9063
	ret = __alloc_contig_migrate_range(&cc, start, end);
9064
	if (ret && ret != -EBUSY)
9065
		goto done;
9066
	ret = 0;
9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
9089 9090
			outer_start = start;
			break;
9091 9092 9093 9094
		}
		outer_start &= ~0UL << order;
	}

9095
	if (outer_start != start) {
9096
		order = buddy_order(pfn_to_page(outer_start));
9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

9108
	/* Make sure the range is really isolated. */
9109
	if (test_pages_isolated(outer_start, end, 0)) {
9110 9111 9112 9113
		ret = -EBUSY;
		goto done;
	}

9114
	/* Grab isolated pages from freelists. */
9115
	outer_end = isolate_freepages_range(&cc, outer_start, end);
9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
9129
				pfn_max_align_up(end), migratetype);
9130 9131
	return ret;
}
9132
EXPORT_SYMBOL(alloc_contig_range);
9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227

static int __alloc_contig_pages(unsigned long start_pfn,
				unsigned long nr_pages, gfp_t gfp_mask)
{
	unsigned long end_pfn = start_pfn + nr_pages;

	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  gfp_mask);
}

static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
				   unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		page = pfn_to_online_page(i);
		if (!page)
			return false;

		if (page_zone(page) != z)
			return false;

		if (PageReserved(page))
			return false;
	}
	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
				unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;

	return zone_spans_pfn(zone, last_pfn);
}

/**
 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
 * @nr_pages:	Number of contiguous pages to allocate
 * @gfp_mask:	GFP mask to limit search and used during compaction
 * @nid:	Target node
 * @nodemask:	Mask for other possible nodes
 *
 * This routine is a wrapper around alloc_contig_range(). It scans over zones
 * on an applicable zonelist to find a contiguous pfn range which can then be
 * tried for allocation with alloc_contig_range(). This routine is intended
 * for allocation requests which can not be fulfilled with the buddy allocator.
 *
 * The allocated memory is always aligned to a page boundary. If nr_pages is a
 * power of two then the alignment is guaranteed to be to the given nr_pages
 * (e.g. 1GB request would be aligned to 1GB).
 *
 * Allocated pages can be freed with free_contig_range() or by manually calling
 * __free_page() on each allocated page.
 *
 * Return: pointer to contiguous pages on success, or NULL if not successful.
 */
struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
				int nid, nodemask_t *nodemask)
{
	unsigned long ret, pfn, flags;
	struct zonelist *zonelist;
	struct zone *zone;
	struct zoneref *z;

	zonelist = node_zonelist(nid, gfp_mask);
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
					gfp_zone(gfp_mask), nodemask) {
		spin_lock_irqsave(&zone->lock, flags);

		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&zone->lock, flags);
				ret = __alloc_contig_pages(pfn, nr_pages,
							gfp_mask);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&zone->lock, flags);
			}
			pfn += nr_pages;
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
	return NULL;
}
9228
#endif /* CONFIG_CONTIG_ALLOC */
9229

9230
void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9231
{
9232
	unsigned long count = 0;
9233 9234 9235 9236 9237 9238 9239

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
9240
	WARN(count != 0, "%lu pages are still in use!\n", count);
9241
}
9242
EXPORT_SYMBOL(free_contig_range);
9243

9244 9245
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
I
Ingo Molnar 已提交
9246
 * page high values need to be recalculated.
9247
 */
9248
void zone_pcp_update(struct zone *zone, int cpu_online)
9249
{
9250
	mutex_lock(&pcp_batch_high_lock);
9251
	zone_set_pageset_high_and_batch(zone, cpu_online);
9252
	mutex_unlock(&pcp_batch_high_lock);
9253 9254
}

9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275
/*
 * Effectively disable pcplists for the zone by setting the high limit to 0
 * and draining all cpus. A concurrent page freeing on another CPU that's about
 * to put the page on pcplist will either finish before the drain and the page
 * will be drained, or observe the new high limit and skip the pcplist.
 *
 * Must be paired with a call to zone_pcp_enable().
 */
void zone_pcp_disable(struct zone *zone)
{
	mutex_lock(&pcp_batch_high_lock);
	__zone_set_pageset_high_and_batch(zone, 0, 1);
	__drain_all_pages(zone, true);
}

void zone_pcp_enable(struct zone *zone)
{
	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
	mutex_unlock(&pcp_batch_high_lock);
}

9276 9277
void zone_pcp_reset(struct zone *zone)
{
9278
	int cpu;
9279
	struct per_cpu_zonestat *pzstats;
9280

9281
	if (zone->per_cpu_pageset != &boot_pageset) {
9282
		for_each_online_cpu(cpu) {
9283 9284
			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
			drain_zonestat(zone, pzstats);
9285
		}
9286 9287 9288 9289
		free_percpu(zone->per_cpu_pageset);
		free_percpu(zone->per_cpu_zonestats);
		zone->per_cpu_pageset = &boot_pageset;
		zone->per_cpu_zonestats = &boot_zonestats;
9290 9291 9292
	}
}

9293
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
9294
/*
9295 9296
 * All pages in the range must be in a single zone, must not contain holes,
 * must span full sections, and must be isolated before calling this function.
K
KAMEZAWA Hiroyuki 已提交
9297
 */
9298
void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
K
KAMEZAWA Hiroyuki 已提交
9299
{
9300
	unsigned long pfn = start_pfn;
K
KAMEZAWA Hiroyuki 已提交
9301 9302
	struct page *page;
	struct zone *zone;
9303
	unsigned int order;
K
KAMEZAWA Hiroyuki 已提交
9304
	unsigned long flags;
9305

9306
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
9307 9308 9309 9310
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	while (pfn < end_pfn) {
		page = pfn_to_page(pfn);
9311 9312 9313 9314 9315 9316 9317 9318
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			continue;
		}
9319 9320 9321 9322 9323 9324 9325 9326 9327 9328
		/*
		 * At this point all remaining PageOffline() pages have a
		 * reference count of 0 and can simply be skipped.
		 */
		if (PageOffline(page)) {
			BUG_ON(page_count(page));
			BUG_ON(PageBuddy(page));
			pfn++;
			continue;
		}
9329

K
KAMEZAWA Hiroyuki 已提交
9330 9331
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
9332
		order = buddy_order(page);
9333
		del_page_from_free_list(page, zone, order);
K
KAMEZAWA Hiroyuki 已提交
9334 9335 9336 9337 9338
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
9339 9340 9341 9342 9343 9344

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
9345
	unsigned int order;
9346 9347 9348 9349 9350

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

9351
		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9352 9353 9354 9355 9356 9357
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}
9358 9359 9360

#ifdef CONFIG_MEMORY_FAILURE
/*
9361 9362
 * Break down a higher-order page in sub-pages, and keep our target out of
 * buddy allocator.
9363
 */
9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387
static void break_down_buddy_pages(struct zone *zone, struct page *page,
				   struct page *target, int low, int high,
				   int migratetype)
{
	unsigned long size = 1 << high;
	struct page *current_buddy, *next_page;

	while (high > low) {
		high--;
		size >>= 1;

		if (target >= &page[size]) {
			next_page = page + size;
			current_buddy = page;
		} else {
			next_page = page;
			current_buddy = page + size;
		}

		if (set_page_guard(zone, current_buddy, high, migratetype))
			continue;

		if (current_buddy != target) {
			add_to_free_list(current_buddy, zone, high, migratetype);
9388
			set_buddy_order(current_buddy, high);
9389 9390 9391 9392 9393 9394 9395 9396 9397
			page = next_page;
		}
	}
}

/*
 * Take a page that will be marked as poisoned off the buddy allocator.
 */
bool take_page_off_buddy(struct page *page)
9398 9399 9400 9401 9402
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
	unsigned int order;
9403
	bool ret = false;
9404 9405 9406 9407

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));
9408
		int page_order = buddy_order(page_head);
9409

9410
		if (PageBuddy(page_head) && page_order >= order) {
9411 9412 9413 9414
			unsigned long pfn_head = page_to_pfn(page_head);
			int migratetype = get_pfnblock_migratetype(page_head,
								   pfn_head);

9415
			del_page_from_free_list(page_head, zone, page_order);
9416
			break_down_buddy_pages(zone, page_head, page, 0,
9417
						page_order, migratetype);
9418 9419
			if (!is_migrate_isolate(migratetype))
				__mod_zone_freepage_state(zone, -1, migratetype);
9420
			ret = true;
9421 9422
			break;
		}
9423 9424
		if (page_count(page_head) > 0)
			break;
9425 9426
	}
	spin_unlock_irqrestore(&zone->lock, flags);
9427
	return ret;
9428 9429
}
#endif