scrub.c 106.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
A
Arne Jansen 已提交
2
/*
3
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
4 5 6
 */

#include <linux/blkdev.h>
7
#include <linux/ratelimit.h>
8
#include <linux/sched/mm.h>
9
#include <crypto/hash.h>
A
Arne Jansen 已提交
10
#include "ctree.h"
11
#include "discard.h"
A
Arne Jansen 已提交
12 13 14
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
15
#include "transaction.h"
16
#include "backref.h"
17
#include "extent_io.h"
18
#include "dev-replace.h"
19
#include "check-integrity.h"
20
#include "rcu-string.h"
D
David Woodhouse 已提交
21
#include "raid56.h"
22
#include "block-group.h"
A
Arne Jansen 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

37
struct scrub_block;
38
struct scrub_ctx;
A
Arne Jansen 已提交
39

40 41 42 43 44 45 46 47 48
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
49 50 51 52 53 54

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
55
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
56

57
struct scrub_recover {
58
	refcount_t		refs;
59 60 61 62
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
63
struct scrub_page {
64 65
	struct scrub_block	*sblock;
	struct page		*page;
66
	struct btrfs_device	*dev;
67
	struct list_head	list;
A
Arne Jansen 已提交
68 69
	u64			flags;  /* extent flags */
	u64			generation;
70 71
	u64			logical;
	u64			physical;
72
	u64			physical_for_dev_replace;
73
	atomic_t		refs;
74 75 76 77 78
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
79
	u8			csum[BTRFS_CSUM_SIZE];
80 81

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
82 83 84 85
};

struct scrub_bio {
	int			index;
86
	struct scrub_ctx	*sctx;
87
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
88
	struct bio		*bio;
89
	blk_status_t		status;
A
Arne Jansen 已提交
90 91
	u64			logical;
	u64			physical;
92 93 94 95 96
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
97
	int			page_count;
A
Arne Jansen 已提交
98 99 100 101
	int			next_free;
	struct btrfs_work	work;
};

102
struct scrub_block {
103
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 105
	int			page_count;
	atomic_t		outstanding_pages;
106
	refcount_t		refs; /* free mem on transition to zero */
107
	struct scrub_ctx	*sctx;
108
	struct scrub_parity	*sparity;
109 110 111 112
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
113
		unsigned int	generation_error:1; /* also sets header_error */
114 115 116 117

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
118
	};
119
	struct btrfs_work	work;
120 121
};

122 123 124 125 126 127 128 129 130 131 132 133
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

134
	u64			stripe_len;
135

136
	refcount_t		refs;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

152
	unsigned long		bitmap[];
153 154
};

155
struct scrub_ctx {
156
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
157
	struct btrfs_fs_info	*fs_info;
A
Arne Jansen 已提交
158 159
	int			first_free;
	int			curr;
160 161
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
162 163 164 165 166
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
167
	int			readonly;
168
	int			pages_per_rd_bio;
169 170

	int			is_dev_replace;
171 172 173 174 175

	struct scrub_bio        *wr_curr_bio;
	struct mutex            wr_lock;
	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	struct btrfs_device     *wr_tgtdev;
176
	bool                    flush_all_writes;
177

A
Arne Jansen 已提交
178 179 180 181 182
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
183 184 185 186 187 188 189 190

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
191
	refcount_t              refs;
A
Arne Jansen 已提交
192 193
};

194 195 196 197
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
D
David Sterba 已提交
198
	u64			physical;
199 200 201 202
	u64			logical;
	struct btrfs_device	*dev;
};

203 204 205 206 207 208 209
struct full_stripe_lock {
	struct rb_node node;
	u64 logical;
	u64 refs;
	struct mutex mutex;
};

210 211
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
212
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
213
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
214
				     struct scrub_block *sblocks_for_recheck);
215
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
216 217
				struct scrub_block *sblock,
				int retry_failed_mirror);
218
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
219
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
220
					     struct scrub_block *sblock_good);
221 222 223
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
224 225 226
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
227 228 229 230 231
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
232 233
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
234 235
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
236 237
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
238
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
239
		       u64 physical, struct btrfs_device *dev, u64 flags,
240 241
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
242
static void scrub_bio_end_io(struct bio *bio);
243 244
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
245 246 247 248 249 250 251 252
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
253
static void scrub_wr_bio_end_io(struct bio *bio);
254
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
255
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
256
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
257
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
258

259 260 261 262 263
static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
	return page->recover &&
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
}
S
Stefan Behrens 已提交
264

265 266
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
267
	refcount_inc(&sctx->refs);
268 269 270 271 272 273 274
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
275
	scrub_put_ctx(sctx);
276 277
}

278
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
279 280 281 282 283 284 285 286 287
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

288
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
289 290 291
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
292
}
293

294 295
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
296 297 298 299 300 301 302 303
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

304 305 306 307 308 309
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/*
 * Insert new full stripe lock into full stripe locks tree
 *
 * Return pointer to existing or newly inserted full_stripe_lock structure if
 * everything works well.
 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
 *
 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
 * function
 */
static struct full_stripe_lock *insert_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node **p;
	struct rb_node *parent = NULL;
	struct full_stripe_lock *entry;
	struct full_stripe_lock *ret;

329
	lockdep_assert_held(&locks_root->lock);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	p = &locks_root->root.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical) {
			p = &(*p)->rb_left;
		} else if (fstripe_logical > entry->logical) {
			p = &(*p)->rb_right;
		} else {
			entry->refs++;
			return entry;
		}
	}

345 346 347
	/*
	 * Insert new lock.
	 */
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
	if (!ret)
		return ERR_PTR(-ENOMEM);
	ret->logical = fstripe_logical;
	ret->refs = 1;
	mutex_init(&ret->mutex);

	rb_link_node(&ret->node, parent, p);
	rb_insert_color(&ret->node, &locks_root->root);
	return ret;
}

/*
 * Search for a full stripe lock of a block group
 *
 * Return pointer to existing full stripe lock if found
 * Return NULL if not found
 */
static struct full_stripe_lock *search_full_stripe_lock(
		struct btrfs_full_stripe_locks_tree *locks_root,
		u64 fstripe_logical)
{
	struct rb_node *node;
	struct full_stripe_lock *entry;

373
	lockdep_assert_held(&locks_root->lock);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392

	node = locks_root->root.rb_node;
	while (node) {
		entry = rb_entry(node, struct full_stripe_lock, node);
		if (fstripe_logical < entry->logical)
			node = node->rb_left;
		else if (fstripe_logical > entry->logical)
			node = node->rb_right;
		else
			return entry;
	}
	return NULL;
}

/*
 * Helper to get full stripe logical from a normal bytenr.
 *
 * Caller must ensure @cache is a RAID56 block group.
 */
393
static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
394 395 396 397 398 399 400 401 402 403 404 405 406
{
	u64 ret;

	/*
	 * Due to chunk item size limit, full stripe length should not be
	 * larger than U32_MAX. Just a sanity check here.
	 */
	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);

	/*
	 * round_down() can only handle power of 2, while RAID56 full
	 * stripe length can be 64KiB * n, so we need to manually round down.
	 */
407 408
	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
			cache->full_stripe_len + cache->start;
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	return ret;
}

/*
 * Lock a full stripe to avoid concurrency of recovery and read
 *
 * It's only used for profiles with parities (RAID5/6), for other profiles it
 * does nothing.
 *
 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
 * So caller must call unlock_full_stripe() at the same context.
 *
 * Return <0 if encounters error.
 */
static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			    bool *locked_ret)
{
426
	struct btrfs_block_group *bg_cache;
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *existing;
	u64 fstripe_start;
	int ret = 0;

	*locked_ret = false;
	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}

	/* Profiles not based on parity don't need full stripe lock */
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;
	locks_root = &bg_cache->full_stripe_locks_root;

	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	/* Now insert the full stripe lock */
	mutex_lock(&locks_root->lock);
	existing = insert_full_stripe_lock(locks_root, fstripe_start);
	mutex_unlock(&locks_root->lock);
	if (IS_ERR(existing)) {
		ret = PTR_ERR(existing);
		goto out;
	}
	mutex_lock(&existing->mutex);
	*locked_ret = true;
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

/*
 * Unlock a full stripe.
 *
 * NOTE: Caller must ensure it's the same context calling corresponding
 * lock_full_stripe().
 *
 * Return 0 if we unlock full stripe without problem.
 * Return <0 for error
 */
static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
			      bool locked)
{
473
	struct btrfs_block_group *bg_cache;
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	struct btrfs_full_stripe_locks_tree *locks_root;
	struct full_stripe_lock *fstripe_lock;
	u64 fstripe_start;
	bool freeit = false;
	int ret = 0;

	/* If we didn't acquire full stripe lock, no need to continue */
	if (!locked)
		return 0;

	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
	if (!bg_cache) {
		ASSERT(0);
		return -ENOENT;
	}
	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
		goto out;

	locks_root = &bg_cache->full_stripe_locks_root;
	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);

	mutex_lock(&locks_root->lock);
	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
	/* Unpaired unlock_full_stripe() detected */
	if (!fstripe_lock) {
		WARN_ON(1);
		ret = -ENOENT;
		mutex_unlock(&locks_root->lock);
		goto out;
	}

	if (fstripe_lock->refs == 0) {
		WARN_ON(1);
		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
			fstripe_lock->logical);
	} else {
		fstripe_lock->refs--;
	}

	if (fstripe_lock->refs == 0) {
		rb_erase(&fstripe_lock->node, &locks_root->root);
		freeit = true;
	}
	mutex_unlock(&locks_root->lock);

	mutex_unlock(&fstripe_lock->mutex);
	if (freeit)
		kfree(fstripe_lock);
out:
	btrfs_put_block_group(bg_cache);
	return ret;
}

527
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
528
{
529
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
530
		struct btrfs_ordered_sum *sum;
531
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
532 533 534 535 536 537
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

538
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
539 540 541
{
	int i;

542
	if (!sctx)
A
Arne Jansen 已提交
543 544
		return;

545
	/* this can happen when scrub is cancelled */
546 547
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
548 549

		for (i = 0; i < sbio->page_count; i++) {
550
			WARN_ON(!sbio->pagev[i]->page);
551 552 553 554 555
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

556
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
557
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
558 559 560 561 562 563

		if (!sbio)
			break;
		kfree(sbio);
	}

564
	kfree(sctx->wr_curr_bio);
565 566
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
567 568
}

569 570
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
571
	if (refcount_dec_and_test(&sctx->refs))
572 573 574
		scrub_free_ctx(sctx);
}

575 576
static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
		struct btrfs_fs_info *fs_info, int is_dev_replace)
A
Arne Jansen 已提交
577
{
578
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
579 580
	int		i;

581
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
582
	if (!sctx)
A
Arne Jansen 已提交
583
		goto nomem;
584
	refcount_set(&sctx->refs, 1);
585
	sctx->is_dev_replace = is_dev_replace;
586
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
587
	sctx->curr = -1;
588
	sctx->fs_info = fs_info;
589
	INIT_LIST_HEAD(&sctx->csum_list);
590
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
591 592
		struct scrub_bio *sbio;

593
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
594 595
		if (!sbio)
			goto nomem;
596
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
597 598

		sbio->index = i;
599
		sbio->sctx = sctx;
600
		sbio->page_count = 0;
601 602
		btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
				NULL);
A
Arne Jansen 已提交
603

604
		if (i != SCRUB_BIOS_PER_SCTX - 1)
605
			sctx->bios[i]->next_free = i + 1;
606
		else
607 608 609
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
610 611
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
612 613 614 615 616 617
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
618

619 620 621
	WARN_ON(sctx->wr_curr_bio != NULL);
	mutex_init(&sctx->wr_lock);
	sctx->wr_curr_bio = NULL;
622
	if (is_dev_replace) {
623
		WARN_ON(!fs_info->dev_replace.tgtdev);
624
		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
625
		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
626
		sctx->flush_all_writes = false;
627
	}
628

629
	return sctx;
A
Arne Jansen 已提交
630 631

nomem:
632
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
633 634 635
	return ERR_PTR(-ENOMEM);
}

636 637
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
638 639 640 641 642
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
643
	unsigned nofs_flag;
644 645
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
646
	struct scrub_warning *swarn = warn_ctx;
647
	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
648 649
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
650
	struct btrfs_key key;
651

D
David Sterba 已提交
652
	local_root = btrfs_get_fs_root(fs_info, root, true);
653 654 655 656 657
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

658 659 660
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
661 662 663 664 665
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
666
	if (ret) {
667
		btrfs_put_root(local_root);
668 669 670 671 672 673 674 675 676 677 678
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

679 680 681 682 683 684
	/*
	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
	 * uses GFP_NOFS in this context, so we keep it consistent but it does
	 * not seem to be strictly necessary.
	 */
	nofs_flag = memalloc_nofs_save();
685
	ipath = init_ipath(4096, local_root, swarn->path);
686
	memalloc_nofs_restore(nofs_flag);
687
	if (IS_ERR(ipath)) {
688
		btrfs_put_root(local_root);
689 690 691 692
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
693 694 695 696 697 698 699 700 701 702
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
J
Jeff Mahoney 已提交
703
		btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
704
"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
J
Jeff Mahoney 已提交
705 706
				  swarn->errstr, swarn->logical,
				  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
707
				  swarn->physical,
J
Jeff Mahoney 已提交
708 709 710
				  root, inum, offset,
				  min(isize - offset, (u64)PAGE_SIZE), nlink,
				  (char *)(unsigned long)ipath->fspath->val[i]);
711

712
	btrfs_put_root(local_root);
713 714 715 716
	free_ipath(ipath);
	return 0;

err:
J
Jeff Mahoney 已提交
717
	btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
718
			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
J
Jeff Mahoney 已提交
719 720
			  swarn->errstr, swarn->logical,
			  rcu_str_deref(swarn->dev->name),
D
David Sterba 已提交
721
			  swarn->physical,
J
Jeff Mahoney 已提交
722
			  root, inum, offset, ret);
723 724 725 726 727

	free_ipath(ipath);
	return 0;
}

728
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
729
{
730 731
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
732 733 734 735 736
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
737 738 739
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
740
	u64 ref_root;
741
	u32 item_size;
742
	u8 ref_level = 0;
743
	int ret;
744

745
	WARN_ON(sblock->page_count < 1);
746
	dev = sblock->pagev[0]->dev;
747
	fs_info = sblock->sctx->fs_info;
748

749
	path = btrfs_alloc_path();
750 751
	if (!path)
		return;
752

D
David Sterba 已提交
753
	swarn.physical = sblock->pagev[0]->physical;
754
	swarn.logical = sblock->pagev[0]->logical;
755
	swarn.errstr = errstr;
756
	swarn.dev = NULL;
757

758 759
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
760 761 762
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
763
	extent_item_pos = swarn.logical - found_key.objectid;
764 765 766 767 768 769
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

770
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
771
		do {
772 773 774
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
775
			btrfs_warn_in_rcu(fs_info,
D
David Sterba 已提交
776
"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
J
Jeff Mahoney 已提交
777
				errstr, swarn.logical,
778
				rcu_str_deref(dev->name),
D
David Sterba 已提交
779
				swarn.physical,
780 781 782 783
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
784
		btrfs_release_path(path);
785
	} else {
786
		btrfs_release_path(path);
787
		swarn.path = path;
788
		swarn.dev = dev;
789 790
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
791
					scrub_print_warning_inode, &swarn, false);
792 793 794 795 796 797
	}

out:
	btrfs_free_path(path);
}

798 799
static inline void scrub_get_recover(struct scrub_recover *recover)
{
800
	refcount_inc(&recover->refs);
801 802
}

803 804
static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
				     struct scrub_recover *recover)
805
{
806
	if (refcount_dec_and_test(&recover->refs)) {
807
		btrfs_bio_counter_dec(fs_info);
808
		btrfs_put_bbio(recover->bbio);
809 810 811 812
		kfree(recover);
	}
}

A
Arne Jansen 已提交
813
/*
814 815 816 817 818 819
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
820
 */
821
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
822
{
823
	struct scrub_ctx *sctx = sblock_to_check->sctx;
824
	struct btrfs_device *dev;
825 826 827 828 829 830 831 832 833 834 835
	struct btrfs_fs_info *fs_info;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
836
	bool full_stripe_locked;
837
	unsigned int nofs_flag;
838
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
839 840 841
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
842
	fs_info = sctx->fs_info;
843 844 845 846 847 848 849 850 851 852 853
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
854 855 856 857
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
858
			BTRFS_EXTENT_FLAG_DATA);
859 860
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
861

862 863 864 865 866 867 868 869 870 871
	/*
	 * We must use GFP_NOFS because the scrub task might be waiting for a
	 * worker task executing this function and in turn a transaction commit
	 * might be waiting the scrub task to pause (which needs to wait for all
	 * the worker tasks to complete before pausing).
	 * We do allocations in the workers through insert_full_stripe_lock()
	 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
	 * this function.
	 */
	nofs_flag = memalloc_nofs_save();
872 873 874 875 876 877 878 879 880
	/*
	 * For RAID5/6, race can happen for a different device scrub thread.
	 * For data corruption, Parity and Data threads will both try
	 * to recovery the data.
	 * Race can lead to doubly added csum error, or even unrecoverable
	 * error.
	 */
	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
	if (ret < 0) {
881
		memalloc_nofs_restore(nofs_flag);
882 883 884 885 886 887 888 889 890
		spin_lock(&sctx->stat_lock);
		if (ret == -ENOMEM)
			sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
		return ret;
	}

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

920
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
921
				      sizeof(*sblocks_for_recheck), GFP_KERNEL);
922
	if (!sblocks_for_recheck) {
923 924 925 926 927
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
928
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
929
		goto out;
A
Arne Jansen 已提交
930 931
	}

932
	/* setup the context, map the logical blocks and alloc the pages */
933
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
934
	if (ret) {
935 936 937 938
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
939
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
940 941 942 943
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
944

945
	/* build and submit the bios for the failed mirror, check checksums */
946
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
947

948 949 950 951 952 953 954 955 956 957
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
958 959
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
960
		sblock_to_check->data_corrected = 1;
961
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
962

963 964
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
965
		goto out;
A
Arne Jansen 已提交
966 967
	}

968
	if (!sblock_bad->no_io_error_seen) {
969 970 971
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
972 973
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
974
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
975
	} else if (sblock_bad->checksum_error) {
976 977 978
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
979 980
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
981
		btrfs_dev_stat_inc_and_print(dev,
982
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
983
	} else if (sblock_bad->header_error) {
984 985 986
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
987 988 989
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
990
		if (sblock_bad->generation_error)
991
			btrfs_dev_stat_inc_and_print(dev,
992 993
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
994
			btrfs_dev_stat_inc_and_print(dev,
995
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
996
	}
A
Arne Jansen 已提交
997

998 999 1000 1001
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1002

1003 1004
	/*
	 * now build and submit the bios for the other mirrors, check
1005 1006
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
1018
	for (mirror_index = 0; ;mirror_index++) {
1019
		struct scrub_block *sblock_other;
1020

1021 1022
		if (mirror_index == failed_mirror_index)
			continue;
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			if (mirror_index >= BTRFS_MAX_MIRRORS)
				break;
			if (!sblocks_for_recheck[mirror_index].page_count)
				break;

			sblock_other = sblocks_for_recheck + mirror_index;
		} else {
			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
			int max_allowed = r->bbio->num_stripes -
						r->bbio->num_tgtdevs;

			if (mirror_index >= max_allowed)
				break;
			if (!sblocks_for_recheck[1].page_count)
				break;

			ASSERT(failed_mirror_index == 0);
			sblock_other = sblocks_for_recheck + 1;
			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
		}
1046 1047

		/* build and submit the bios, check checksums */
1048
		scrub_recheck_block(fs_info, sblock_other, 0);
1049 1050

		if (!sblock_other->header_error &&
1051 1052
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1053 1054
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1055
				goto corrected_error;
1056 1057
			} else {
				ret = scrub_repair_block_from_good_copy(
1058 1059 1060
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1061
			}
1062 1063
		}
	}
A
Arne Jansen 已提交
1064

1065 1066
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1067 1068 1069

	/*
	 * In case of I/O errors in the area that is supposed to be
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1082
	 * the final checksum succeeds. But this would be a rare
1083 1084 1085 1086 1087 1088 1089 1090
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1091
	 */
1092
	success = 1;
1093 1094
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1095
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1096
		struct scrub_block *sblock_other = NULL;
1097

1098 1099
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1100
			continue;
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
			/*
			 * In case of dev replace, if raid56 rebuild process
			 * didn't work out correct data, then copy the content
			 * in sblock_bad to make sure target device is identical
			 * to source device, instead of writing garbage data in
			 * sblock_for_recheck array to target device.
			 */
			sblock_other = NULL;
		} else if (page_bad->io_error) {
			/* try to find no-io-error page in mirrors */
1113 1114 1115 1116 1117 1118 1119 1120 1121
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1122 1123
				}
			}
1124 1125
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1126
		}
A
Arne Jansen 已提交
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
1141
				atomic64_inc(
1142
					&fs_info->dev_replace.num_write_errors);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1153
		}
A
Arne Jansen 已提交
1154 1155
	}

1156
	if (success && !sctx->is_dev_replace) {
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1167
			scrub_recheck_block(fs_info, sblock_bad, 1);
1168
			if (!sblock_bad->header_error &&
1169 1170 1171 1172 1173 1174 1175
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1176 1177
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1178
			sblock_to_check->data_corrected = 1;
1179
			spin_unlock(&sctx->stat_lock);
1180 1181
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1182
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1183
		}
1184 1185
	} else {
did_not_correct_error:
1186 1187 1188
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1189 1190
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1191
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1192
	}
A
Arne Jansen 已提交
1193

1194 1195 1196 1197 1198 1199
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1200
			struct scrub_recover *recover;
1201 1202
			int page_index;

1203 1204 1205
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1206 1207
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
1208
					scrub_put_recover(fs_info, recover);
1209 1210 1211
					sblock->pagev[page_index]->recover =
									NULL;
				}
1212 1213
				scrub_page_put(sblock->pagev[page_index]);
			}
1214 1215 1216
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1217

1218
	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1219
	memalloc_nofs_restore(nofs_flag);
1220 1221
	if (ret < 0)
		return ret;
1222 1223
	return 0;
}
A
Arne Jansen 已提交
1224

1225
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1226
{
Z
Zhao Lei 已提交
1227 1228 1229 1230 1231
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1232 1233 1234
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1235 1236
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1237 1238 1239 1240 1241 1242 1243
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1244
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1265
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1266 1267
				     struct scrub_block *sblocks_for_recheck)
{
1268
	struct scrub_ctx *sctx = original_sblock->sctx;
1269
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1270 1271
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1272 1273 1274
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1275 1276 1277 1278 1279 1280
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1281
	int page_index = 0;
1282
	int mirror_index;
1283
	int nmirrors;
1284 1285 1286
	int ret;

	/*
1287
	 * note: the two members refs and outstanding_pages
1288 1289 1290 1291 1292
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1293 1294 1295
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1296

1297 1298 1299 1300
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1301
		btrfs_bio_counter_inc_blocked(fs_info);
1302
		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1303
				logical, &mapped_length, &bbio);
1304
		if (ret || !bbio || mapped_length < sublen) {
1305
			btrfs_put_bbio(bbio);
1306
			btrfs_bio_counter_dec(fs_info);
1307 1308
			return -EIO;
		}
A
Arne Jansen 已提交
1309

1310 1311
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1312
			btrfs_put_bbio(bbio);
1313
			btrfs_bio_counter_dec(fs_info);
1314 1315 1316
			return -ENOMEM;
		}

1317
		refcount_set(&recover->refs, 1);
1318 1319 1320
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1321
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1322

1323
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1324

1325
		for (mirror_index = 0; mirror_index < nmirrors;
1326 1327 1328 1329 1330
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1331
			sblock->sctx = sctx;
1332

1333 1334 1335
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1336 1337 1338
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1339
				scrub_put_recover(fs_info, recover);
1340 1341
				return -ENOMEM;
			}
1342 1343
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1344 1345 1346
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1347
			page->logical = logical;
1348 1349 1350 1351 1352
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1353

Z
Zhao Lei 已提交
1354 1355 1356
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1357
						      mapped_length,
1358 1359
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1360 1361 1362 1363 1364 1365 1366
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1367 1368 1369 1370
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1371 1372
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1373
			sblock->page_count++;
1374 1375 1376
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1377 1378 1379

			scrub_get_recover(recover);
			page->recover = recover;
1380
		}
1381
		scrub_put_recover(fs_info, recover);
1382 1383 1384 1385 1386 1387
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1388 1389
}

1390
static void scrub_bio_wait_endio(struct bio *bio)
1391
{
1392
	complete(bio->bi_private);
1393 1394 1395 1396 1397 1398
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
1399
	DECLARE_COMPLETION_ONSTACK(done);
1400
	int ret;
1401
	int mirror_num;
1402 1403 1404 1405 1406

	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

1407
	mirror_num = page->sblock->pagev[0]->mirror_num;
1408
	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1409
				    page->recover->map_length,
1410
				    mirror_num, 0);
1411 1412 1413
	if (ret)
		return ret;

1414 1415
	wait_for_completion_io(&done);
	return blk_status_to_errno(bio->bi_status);
1416 1417
}

L
Liu Bo 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
					  struct scrub_block *sblock)
{
	struct scrub_page *first_page = sblock->pagev[0];
	struct bio *bio;
	int page_num;

	/* All pages in sblock belong to the same stripe on the same device. */
	ASSERT(first_page->dev);
	if (!first_page->dev->bdev)
		goto out;

	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
	bio_set_dev(bio, first_page->dev->bdev);

	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct scrub_page *page = sblock->pagev[page_num];

		WARN_ON(!page->page);
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
	}

	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
		bio_put(bio);
		goto out;
	}

	bio_put(bio);

	scrub_recheck_block_checksum(sblock);

	return;
out:
	for (page_num = 0; page_num < sblock->page_count; page_num++)
		sblock->pagev[page_num]->io_error = 1;

	sblock->no_io_error_seen = 0;
}

1457 1458 1459 1460 1461 1462 1463
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1464
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1465 1466
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1467
{
1468
	int page_num;
I
Ilya Dryomov 已提交
1469

1470
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1471

L
Liu Bo 已提交
1472 1473 1474 1475
	/* short cut for raid56 */
	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
		return scrub_recheck_block_on_raid56(fs_info, sblock);

1476 1477
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1478
		struct scrub_page *page = sblock->pagev[page_num];
1479

1480
		if (page->dev->bdev == NULL) {
1481 1482 1483 1484 1485
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1486
		WARN_ON(!page->page);
1487
		bio = btrfs_io_bio_alloc(1);
1488
		bio_set_dev(bio, page->dev->bdev);
1489

1490
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
L
Liu Bo 已提交
1491 1492
		bio->bi_iter.bi_sector = page->physical >> 9;
		bio->bi_opf = REQ_OP_READ;
1493

L
Liu Bo 已提交
1494 1495 1496
		if (btrfsic_submit_bio_wait(bio)) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
1497
		}
1498

1499 1500
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1501

1502
	if (sblock->no_io_error_seen)
1503
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1504 1505
}

M
Miao Xie 已提交
1506 1507 1508 1509 1510 1511
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

1512
	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
M
Miao Xie 已提交
1513 1514 1515
	return !ret;
}

1516
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1517
{
1518 1519 1520
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1521

1522 1523 1524 1525
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1526 1527
}

1528
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1529
					     struct scrub_block *sblock_good)
1530 1531 1532
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1533

1534 1535
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1536

1537 1538
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1539
							   page_num, 1);
1540 1541
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1542
	}
1543 1544 1545 1546 1547 1548 1549 1550

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1551 1552
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1553
	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1554

1555 1556
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1557 1558 1559 1560 1561
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1562
		if (!page_bad->dev->bdev) {
1563
			btrfs_warn_rl(fs_info,
J
Jeff Mahoney 已提交
1564
				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1565 1566 1567
			return -EIO;
		}

1568
		bio = btrfs_io_bio_alloc(1);
1569
		bio_set_dev(bio, page_bad->dev->bdev);
1570
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
D
David Sterba 已提交
1571
		bio->bi_opf = REQ_OP_WRITE;
1572 1573 1574 1575 1576

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1577
		}
1578

1579
		if (btrfsic_submit_bio_wait(bio)) {
1580 1581
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1582
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1583 1584 1585
			bio_put(bio);
			return -EIO;
		}
1586
		bio_put(bio);
A
Arne Jansen 已提交
1587 1588
	}

1589 1590 1591
	return 0;
}

1592 1593
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
1594
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1595 1596
	int page_num;

1597 1598 1599 1600 1601 1602 1603
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1604 1605 1606 1607 1608
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
1609
			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1610 1611 1612 1613 1614 1615 1616 1617 1618
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
1619 1620
	if (spage->io_error)
		clear_page(page_address(spage->page));
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_bio *sbio;
	int ret;

1631
	mutex_lock(&sctx->wr_lock);
1632
again:
1633 1634
	if (!sctx->wr_curr_bio) {
		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1635
					      GFP_KERNEL);
1636 1637
		if (!sctx->wr_curr_bio) {
			mutex_unlock(&sctx->wr_lock);
1638 1639
			return -ENOMEM;
		}
1640 1641
		sctx->wr_curr_bio->sctx = sctx;
		sctx->wr_curr_bio->page_count = 0;
1642
	}
1643
	sbio = sctx->wr_curr_bio;
1644 1645 1646 1647 1648
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
1649
		sbio->dev = sctx->wr_tgtdev;
1650 1651
		bio = sbio->bio;
		if (!bio) {
1652
			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1653 1654 1655 1656 1657
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
1658
		bio_set_dev(bio, sbio->dev->bdev);
1659
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
1660
		bio->bi_opf = REQ_OP_WRITE;
1661
		sbio->status = 0;
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
1675
			mutex_unlock(&sctx->wr_lock);
1676 1677 1678 1679 1680 1681 1682 1683 1684
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
1685
	if (sbio->page_count == sctx->pages_per_wr_bio)
1686
		scrub_wr_submit(sctx);
1687
	mutex_unlock(&sctx->wr_lock);
1688 1689 1690 1691 1692 1693 1694 1695

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_bio *sbio;

1696
	if (!sctx->wr_curr_bio)
1697 1698
		return;

1699 1700
	sbio = sctx->wr_curr_bio;
	sctx->wr_curr_bio = NULL;
1701
	WARN_ON(!sbio->bio->bi_disk);
1702 1703 1704 1705 1706
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
1707
	btrfsic_submit_bio(sbio->bio);
1708 1709
}

1710
static void scrub_wr_bio_end_io(struct bio *bio)
1711 1712
{
	struct scrub_bio *sbio = bio->bi_private;
1713
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1714

1715
	sbio->status = bio->bi_status;
1716 1717
	sbio->bio = bio;

1718
	btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1719
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1720 1721 1722 1723 1724 1725 1726 1727 1728
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1729
	if (sbio->status) {
1730
		struct btrfs_dev_replace *dev_replace =
1731
			&sbio->sctx->fs_info->dev_replace;
1732 1733 1734 1735 1736

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
1737
			atomic64_inc(&dev_replace->num_write_errors);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1750 1751 1752 1753
{
	u64 flags;
	int ret;

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1766 1767
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1779 1780

	return ret;
A
Arne Jansen 已提交
1781 1782
}

1783
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1784
{
1785
	struct scrub_ctx *sctx = sblock->sctx;
1786 1787
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
A
Arne Jansen 已提交
1788
	u8 csum[BTRFS_CSUM_SIZE];
1789
	struct scrub_page *spage;
1790
	char *kaddr;
A
Arne Jansen 已提交
1791

1792
	BUG_ON(sblock->page_count < 1);
1793 1794
	spage = sblock->pagev[0];
	if (!spage->have_csum)
A
Arne Jansen 已提交
1795 1796
		return 0;

1797
	kaddr = page_address(spage->page);
1798

1799 1800 1801
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
1802

1803
	if (memcmp(csum, spage->csum, sctx->csum_size))
1804
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1805

1806
	return sblock->checksum_error;
A
Arne Jansen 已提交
1807 1808
}

1809
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1810
{
1811
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1812
	struct btrfs_header *h;
1813
	struct btrfs_fs_info *fs_info = sctx->fs_info;
1814
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1815 1816
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1817 1818
	const int num_pages = sctx->fs_info->nodesize >> PAGE_SHIFT;
	int i;
1819
	struct page *page;
1820
	char *kaddr;
1821

1822
	BUG_ON(sblock->page_count < 1);
1823
	page = sblock->pagev[0]->page;
1824 1825
	kaddr = page_address(page);
	h = (struct btrfs_header *)kaddr;
1826
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1827 1828 1829 1830 1831 1832

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1833
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1834
		sblock->header_error = 1;
A
Arne Jansen 已提交
1835

1836 1837 1838 1839
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1840

M
Miao Xie 已提交
1841
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1842
		sblock->header_error = 1;
A
Arne Jansen 已提交
1843 1844 1845

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1846
		sblock->header_error = 1;
A
Arne Jansen 已提交
1847

1848 1849 1850 1851
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
			    PAGE_SIZE - BTRFS_CSUM_SIZE);
1852

1853 1854 1855
	for (i = 1; i < num_pages; i++) {
		kaddr = page_address(sblock->pagev[i]->page);
		crypto_shash_update(shash, kaddr, PAGE_SIZE);
1856 1857
	}

1858
	crypto_shash_final(shash, calculated_csum);
1859
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1860
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1861

1862
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1863 1864
}

1865
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1866 1867
{
	struct btrfs_super_block *s;
1868
	struct scrub_ctx *sctx = sblock->sctx;
1869 1870
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1871
	u8 calculated_csum[BTRFS_CSUM_SIZE];
1872
	struct scrub_page *spage;
1873
	char *kaddr;
1874 1875
	int fail_gen = 0;
	int fail_cor = 0;
1876

1877
	BUG_ON(sblock->page_count < 1);
1878 1879
	spage = sblock->pagev[0];
	kaddr = page_address(spage->page);
1880
	s = (struct btrfs_super_block *)kaddr;
A
Arne Jansen 已提交
1881

1882
	if (spage->logical != btrfs_super_bytenr(s))
1883
		++fail_cor;
A
Arne Jansen 已提交
1884

1885
	if (spage->generation != btrfs_super_generation(s))
1886
		++fail_gen;
A
Arne Jansen 已提交
1887

1888
	if (!scrub_check_fsid(s->fsid, spage))
1889
		++fail_cor;
A
Arne Jansen 已提交
1890

1891 1892 1893 1894
	shash->tfm = fs_info->csum_shash;
	crypto_shash_init(shash);
	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
1895

1896
	if (memcmp(calculated_csum, s->csum, sctx->csum_size))
1897
		++fail_cor;
A
Arne Jansen 已提交
1898

1899
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1900 1901 1902 1903 1904
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1905 1906 1907
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1908
		if (fail_cor)
1909
			btrfs_dev_stat_inc_and_print(spage->dev,
1910 1911
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1912
			btrfs_dev_stat_inc_and_print(spage->dev,
1913
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1914 1915
	}

1916
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1917 1918
}

1919 1920
static void scrub_block_get(struct scrub_block *sblock)
{
1921
	refcount_inc(&sblock->refs);
1922 1923 1924 1925
}

static void scrub_block_put(struct scrub_block *sblock)
{
1926
	if (refcount_dec_and_test(&sblock->refs)) {
1927 1928
		int i;

1929 1930 1931
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

1932
		for (i = 0; i < sblock->page_count; i++)
1933
			scrub_page_put(sblock->pagev[i]);
1934 1935 1936 1937
		kfree(sblock);
	}
}

1938 1939
static void scrub_page_get(struct scrub_page *spage)
{
1940
	atomic_inc(&spage->refs);
1941 1942 1943 1944
}

static void scrub_page_put(struct scrub_page *spage)
{
1945
	if (atomic_dec_and_test(&spage->refs)) {
1946 1947 1948 1949 1950 1951
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

1952
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
1953 1954 1955
{
	struct scrub_bio *sbio;

1956
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
1957
		return;
A
Arne Jansen 已提交
1958

1959 1960
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
1961
	scrub_pending_bio_inc(sctx);
1962
	btrfsic_submit_bio(sbio->bio);
A
Arne Jansen 已提交
1963 1964
}

1965 1966
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
1967
{
1968
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
1969
	struct scrub_bio *sbio;
1970
	int ret;
A
Arne Jansen 已提交
1971 1972 1973 1974 1975

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
1976 1977 1978 1979 1980 1981 1982 1983
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
1984
		} else {
1985 1986
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
1987 1988
		}
	}
1989
	sbio = sctx->bios[sctx->curr];
1990
	if (sbio->page_count == 0) {
1991 1992
		struct bio *bio;

1993 1994
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
1995
		sbio->dev = spage->dev;
1996 1997
		bio = sbio->bio;
		if (!bio) {
1998
			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
1999 2000
			sbio->bio = bio;
		}
2001 2002 2003

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2004
		bio_set_dev(bio, sbio->dev->bdev);
2005
		bio->bi_iter.bi_sector = sbio->physical >> 9;
D
David Sterba 已提交
2006
		bio->bi_opf = REQ_OP_READ;
2007
		sbio->status = 0;
2008 2009 2010
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2011 2012
		   spage->logical ||
		   sbio->dev != spage->dev) {
2013
		scrub_submit(sctx);
A
Arne Jansen 已提交
2014 2015
		goto again;
	}
2016

2017 2018 2019 2020 2021 2022 2023 2024
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2025
		scrub_submit(sctx);
2026 2027 2028
		goto again;
	}

2029
	scrub_block_get(sblock); /* one for the page added to the bio */
2030 2031
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2032
	if (sbio->page_count == sctx->pages_per_rd_bio)
2033
		scrub_submit(sctx);
2034 2035 2036 2037

	return 0;
}

2038
static void scrub_missing_raid56_end_io(struct bio *bio)
2039 2040
{
	struct scrub_block *sblock = bio->bi_private;
2041
	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2042

2043
	if (bio->bi_status)
2044 2045
		sblock->no_io_error_seen = 0;

2046 2047
	bio_put(bio);

2048 2049 2050 2051 2052 2053 2054
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
2055
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2056 2057 2058 2059 2060 2061
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2062
	if (sblock->no_io_error_seen)
2063
		scrub_recheck_block_checksum(sblock);
2064 2065 2066 2067 2068

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2069
		btrfs_err_rl_in_rcu(fs_info,
2070
			"IO error rebuilding logical %llu for dev %s",
2071 2072 2073 2074 2075
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2076
		btrfs_err_rl_in_rcu(fs_info,
2077
			"failed to rebuild valid logical %llu for dev %s",
2078 2079 2080 2081 2082
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

2083
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2084
		mutex_lock(&sctx->wr_lock);
2085
		scrub_wr_submit(sctx);
2086
		mutex_unlock(&sctx->wr_lock);
2087 2088
	}

2089
	scrub_block_put(sblock);
2090 2091 2092 2093 2094 2095
	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
2096
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2097 2098
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2099
	struct btrfs_bio *bbio = NULL;
2100 2101 2102 2103 2104
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

2105
	btrfs_bio_counter_inc_blocked(fs_info);
2106
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2107
			&length, &bbio);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

2122
	bio = btrfs_io_bio_alloc(0);
2123 2124 2125 2126
	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

2127
	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2128 2129 2130 2131 2132 2133 2134 2135 2136
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

2137
	btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
2138 2139 2140 2141 2142 2143 2144 2145
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2146
	btrfs_bio_counter_dec(fs_info);
2147 2148 2149 2150 2151 2152
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2153
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2154
		       u64 physical, struct btrfs_device *dev, u64 flags,
2155 2156
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2157 2158 2159 2160
{
	struct scrub_block *sblock;
	int index;

2161
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2162
	if (!sblock) {
2163 2164 2165
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2166
		return -ENOMEM;
A
Arne Jansen 已提交
2167
	}
2168

2169 2170
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2171
	refcount_set(&sblock->refs, 1);
2172
	sblock->sctx = sctx;
2173 2174 2175
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2176
		struct scrub_page *spage;
2177 2178
		u64 l = min_t(u64, len, PAGE_SIZE);

2179
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2180 2181
		if (!spage) {
leave_nomem:
2182 2183 2184
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2185
			scrub_block_put(sblock);
2186 2187
			return -ENOMEM;
		}
2188 2189 2190
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2191
		spage->sblock = sblock;
2192
		spage->dev = dev;
2193 2194 2195 2196
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2197
		spage->physical_for_dev_replace = physical_for_dev_replace;
2198 2199 2200
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2201
			memcpy(spage->csum, csum, sctx->csum_size);
2202 2203 2204 2205
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2206
		spage->page = alloc_page(GFP_KERNEL);
2207 2208
		if (!spage->page)
			goto leave_nomem;
2209 2210 2211
		len -= l;
		logical += l;
		physical += l;
2212
		physical_for_dev_replace += l;
2213 2214
	}

2215
	WARN_ON(sblock->page_count == 0);
2216
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2217 2218 2219 2220 2221 2222 2223 2224 2225
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2226

2227 2228 2229 2230 2231
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2232
		}
A
Arne Jansen 已提交
2233

2234 2235 2236
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2237

2238 2239
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2240 2241 2242
	return 0;
}

2243
static void scrub_bio_end_io(struct bio *bio)
2244 2245
{
	struct scrub_bio *sbio = bio->bi_private;
2246
	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2247

2248
	sbio->status = bio->bi_status;
2249 2250
	sbio->bio = bio;

2251
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2252 2253 2254 2255 2256
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2257
	struct scrub_ctx *sctx = sbio->sctx;
2258 2259
	int i;

2260
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2261
	if (sbio->status) {
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2282 2283 2284 2285
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2286

2287
	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2288
		mutex_lock(&sctx->wr_lock);
2289
		scrub_wr_submit(sctx);
2290
		mutex_unlock(&sctx->wr_lock);
2291 2292
	}

2293
	scrub_pending_bio_dec(sctx);
2294 2295
}

2296 2297 2298 2299
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2300
	u64 offset;
2301 2302
	u64 nsectors64;
	u32 nsectors;
2303
	int sectorsize = sparity->sctx->fs_info->sectorsize;
2304 2305 2306 2307 2308 2309 2310

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2311 2312
	start = div64_u64_rem(start, sparity->stripe_len, &offset);
	offset = div_u64(offset, sectorsize);
2313 2314 2315 2316
	nsectors64 = div_u64(len, sectorsize);

	ASSERT(nsectors64 < UINT_MAX);
	nsectors = (u32)nsectors64;
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2339 2340
static void scrub_block_complete(struct scrub_block *sblock)
{
2341 2342
	int corrupted = 0;

2343
	if (!sblock->no_io_error_seen) {
2344
		corrupted = 1;
2345
		scrub_handle_errored_block(sblock);
2346 2347 2348 2349 2350 2351
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2352 2353
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2354 2355
			scrub_write_block_to_dev_replace(sblock);
	}
2356 2357 2358 2359 2360 2361 2362 2363 2364

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2365 2366
}

2367
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2368 2369
{
	struct btrfs_ordered_sum *sum = NULL;
2370
	unsigned long index;
A
Arne Jansen 已提交
2371 2372
	unsigned long num_sectors;

2373 2374
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2375 2376 2377 2378 2379 2380
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2381
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2382 2383 2384 2385 2386 2387 2388
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2389 2390 2391
	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
	ASSERT(index < UINT_MAX);

2392
	num_sectors = sum->len / sctx->fs_info->sectorsize;
2393
	memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
2394
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2395 2396 2397
		list_del(&sum->list);
		kfree(sum);
	}
2398
	return 1;
A
Arne Jansen 已提交
2399 2400 2401
}

/* scrub extent tries to collect up to 64 kB for each bio */
L
Liu Bo 已提交
2402 2403
static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
			u64 logical, u64 len,
2404
			u64 physical, struct btrfs_device *dev, u64 flags,
2405
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2406 2407 2408
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2409 2410 2411
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2412 2413 2414 2415
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->sectorsize;
2416 2417 2418 2419
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2420
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2421 2422 2423 2424
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
			blocksize = map->stripe_len;
		else
			blocksize = sctx->fs_info->nodesize;
2425 2426 2427 2428
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2429
	} else {
2430
		blocksize = sctx->fs_info->sectorsize;
2431
		WARN_ON(1);
2432
	}
A
Arne Jansen 已提交
2433 2434

	while (len) {
2435
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2436 2437 2438 2439
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2440
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2441
			if (have_csum == 0)
2442
				++sctx->stat.no_csum;
A
Arne Jansen 已提交
2443
		}
2444
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2445 2446
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
A
Arne Jansen 已提交
2447 2448 2449 2450 2451
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2452
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2453 2454 2455 2456
	}
	return 0;
}

2457 2458 2459 2460 2461 2462 2463 2464 2465
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2466
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2467 2468 2469 2470 2471 2472 2473 2474 2475
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2476
	refcount_set(&sblock->refs, 1);
2477 2478 2479 2480 2481 2482 2483 2484 2485
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2486
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2516
		spage->page = alloc_page(GFP_KERNEL);
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2551
	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2552 2553 2554 2555
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2556
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
L
Liu Bo 已提交
2557
		blocksize = sparity->stripe_len;
2558
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
L
Liu Bo 已提交
2559
		blocksize = sparity->stripe_len;
2560
	} else {
2561
		blocksize = sctx->fs_info->sectorsize;
2562 2563 2564 2565 2566 2567 2568 2569 2570
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2571
			have_csum = scrub_find_csum(sctx, logical, csum);
2572 2573 2574 2575 2576 2577 2578 2579
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2580
skip:
2581 2582 2583 2584 2585 2586 2587
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2588 2589 2590 2591 2592 2593 2594 2595
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2596 2597
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2598 2599 2600 2601 2602
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2603 2604
	u32 stripe_index;
	u32 rot;
2605
	const int data_stripes = nr_data_stripes(map);
2606

2607
	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2608 2609 2610
	if (stripe_start)
		*stripe_start = last_offset;

2611
	*offset = last_offset;
2612
	for (i = 0; i < data_stripes; i++) {
2613 2614
		*offset = last_offset + i * map->stripe_len;

2615
		stripe_nr = div64_u64(*offset, map->stripe_len);
2616
		stripe_nr = div_u64(stripe_nr, data_stripes);
2617 2618

		/* Work out the disk rotation on this stripe-set */
2619
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2620 2621
		/* calculate which stripe this data locates */
		rot += i;
2622
		stripe_index = rot % map->num_stripes;
2623 2624 2625 2626 2627 2628 2629 2630 2631
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2664
static void scrub_parity_bio_endio(struct bio *bio)
2665 2666
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2667
	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2668

2669
	if (bio->bi_status)
2670 2671 2672 2673
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2674

2675 2676
	btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
			NULL);
2677
	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2678 2679 2680 2681 2682
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
2683
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2694
	length = sparity->logic_end - sparity->logic_start;
2695 2696

	btrfs_bio_counter_inc_blocked(fs_info);
2697
	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2698
			       &length, &bbio);
2699
	if (ret || !bbio || !bbio->raid_map)
2700 2701
		goto bbio_out;

2702
	bio = btrfs_io_bio_alloc(0);
2703 2704 2705 2706
	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

2707
	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2708
					      length, sparity->scrub_dev,
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2721
	btrfs_bio_counter_dec(fs_info);
2722
	btrfs_put_bbio(bbio);
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2734
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2735 2736 2737 2738
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2739
	refcount_inc(&sparity->refs);
2740 2741 2742 2743
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2744
	if (!refcount_dec_and_test(&sparity->refs))
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
2757
	struct btrfs_fs_info *fs_info = sctx->fs_info;
2758 2759 2760
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2761
	struct btrfs_bio *bbio = NULL;
2762 2763 2764 2765 2766 2767 2768 2769 2770
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2771
	u64 mapped_length;
2772 2773 2774 2775 2776 2777 2778
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2779
	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2796
	refcount_set(&sparity->refs, 1);
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2845 2846 2847 2848
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2849
			if (key.type == BTRFS_METADATA_ITEM_KEY)
2850
				bytes = fs_info->nodesize;
2851 2852 2853 2854 2855 2856
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2857
			if (key.objectid >= logic_end) {
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2870 2871 2872 2873
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
J
Jeff Mahoney 已提交
2874 2875
				btrfs_err(fs_info,
					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2876
					  key.objectid, logic_start);
2877 2878 2879
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2899
			mapped_length = extent_len;
2900
			bbio = NULL;
2901 2902 2903
			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
					extent_logical, &mapped_length, &bbio,
					0);
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
2930 2931 2932

			scrub_free_csums(sctx);

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
2964
						logic_end - logic_start);
2965 2966
	scrub_parity_put(sparity);
	scrub_submit(sctx);
2967
	mutex_lock(&sctx->wr_lock);
2968
	scrub_wr_submit(sctx);
2969
	mutex_unlock(&sctx->wr_lock);
2970 2971 2972 2973 2974

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

2975
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2976 2977
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
2978 2979
					   int num, u64 base, u64 length,
					   struct btrfs_block_group *cache)
A
Arne Jansen 已提交
2980
{
2981
	struct btrfs_path *path, *ppath;
2982
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
2983 2984 2985
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2986
	struct blk_plug plug;
A
Arne Jansen 已提交
2987 2988 2989 2990 2991 2992 2993
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
2994
	u64 logic_end;
2995
	u64 physical_end;
A
Arne Jansen 已提交
2996
	u64 generation;
2997
	int mirror_num;
A
Arne Jansen 已提交
2998 2999
	struct reada_control *reada1;
	struct reada_control *reada2;
3000
	struct btrfs_key key;
A
Arne Jansen 已提交
3001
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3002 3003
	u64 increment = map->stripe_len;
	u64 offset;
3004 3005 3006
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3007 3008
	u64 stripe_logical;
	u64 stripe_end;
3009 3010
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3011
	int stop_loop = 0;
D
David Woodhouse 已提交
3012

3013
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3014
	offset = 0;
3015
	nstripes = div64_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3016 3017 3018
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3019
		mirror_num = 1;
A
Arne Jansen 已提交
3020 3021 3022 3023
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3024
		mirror_num = num % map->sub_stripes + 1;
3025
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
A
Arne Jansen 已提交
3026
		increment = map->stripe_len;
3027
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3028 3029
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3030
		mirror_num = num % map->num_stripes + 1;
3031
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3032
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3033 3034
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3035 3036
	} else {
		increment = map->stripe_len;
3037
		mirror_num = 1;
A
Arne Jansen 已提交
3038 3039 3040 3041 3042 3043
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3044 3045
	ppath = btrfs_alloc_path();
	if (!ppath) {
3046
		btrfs_free_path(path);
3047 3048 3049
		return -ENOMEM;
	}

3050 3051 3052 3053 3054
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3055 3056 3057
	path->search_commit_root = 1;
	path->skip_locking = 1;

3058 3059
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3060
	/*
A
Arne Jansen 已提交
3061 3062 3063
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3064 3065
	 */
	logical = base + offset;
3066
	physical_end = physical + nstripes * map->stripe_len;
3067
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3068
		get_raid56_logic_offset(physical_end, num,
3069
					map, &logic_end, NULL);
3070 3071 3072 3073
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3074
	wait_event(sctx->list_wait,
3075
		   atomic_read(&sctx->bios_in_flight) == 0);
3076
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3077 3078

	/* FIXME it might be better to start readahead at commit root */
3079 3080 3081
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3082
	key_end.objectid = logic_end;
3083 3084
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3085
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3086

3087 3088 3089
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3090 3091
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3092
	key_end.offset = logic_end;
3093
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3094 3095 3096 3097 3098 3099

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3100 3101 3102 3103 3104

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3105
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3106 3107 3108 3109 3110

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3111
	while (physical < physical_end) {
A
Arne Jansen 已提交
3112 3113 3114 3115
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3116
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3117 3118 3119 3120 3121 3122 3123 3124
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3125
			sctx->flush_all_writes = true;
3126
			scrub_submit(sctx);
3127
			mutex_lock(&sctx->wr_lock);
3128
			scrub_wr_submit(sctx);
3129
			mutex_unlock(&sctx->wr_lock);
3130
			wait_event(sctx->list_wait,
3131
				   atomic_read(&sctx->bios_in_flight) == 0);
3132
			sctx->flush_all_writes = false;
3133
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3134 3135
		}

3136 3137 3138 3139 3140 3141
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3142
				/* it is parity strip */
3143
				stripe_logical += base;
3144
				stripe_end = stripe_logical + increment;
3145 3146 3147 3148 3149 3150 3151 3152 3153
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3154 3155 3156 3157
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3158
		key.objectid = logical;
L
Liu Bo 已提交
3159
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3160 3161 3162 3163

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3164

3165
		if (ret > 0) {
3166
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3167 3168
			if (ret < 0)
				goto out;
3169 3170 3171 3172 3173 3174 3175 3176 3177
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3178 3179
		}

L
Liu Bo 已提交
3180
		stop_loop = 0;
A
Arne Jansen 已提交
3181
		while (1) {
3182 3183
			u64 bytes;

A
Arne Jansen 已提交
3184 3185 3186 3187 3188 3189 3190 3191 3192
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3193
				stop_loop = 1;
A
Arne Jansen 已提交
3194 3195 3196 3197
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3198 3199 3200 3201
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3202
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3203
				bytes = fs_info->nodesize;
3204 3205 3206 3207
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3208 3209
				goto next;

L
Liu Bo 已提交
3210 3211 3212 3213 3214 3215
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3216

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
			/*
			 * If our block group was removed in the meanwhile, just
			 * stop scrubbing since there is no point in continuing.
			 * Continuing would prevent reusing its device extents
			 * for new block groups for a long time.
			 */
			spin_lock(&cache->lock);
			if (cache->removed) {
				spin_unlock(&cache->lock);
				ret = 0;
				goto out;
			}
			spin_unlock(&cache->lock);

A
Arne Jansen 已提交
3231 3232 3233 3234 3235
			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3236 3237 3238 3239
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3240
				btrfs_err(fs_info,
J
Jeff Mahoney 已提交
3241
					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3242
				       key.objectid, logical);
3243 3244 3245
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3246 3247 3248
				goto next;
			}

L
Liu Bo 已提交
3249 3250 3251 3252
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3253 3254 3255
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3256 3257 3258
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3259
			}
L
Liu Bo 已提交
3260
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3261
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3262 3263
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3264 3265
			}

L
Liu Bo 已提交
3266
			extent_physical = extent_logical - logical + physical;
3267 3268
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
3269
			if (sctx->is_dev_replace)
3270 3271 3272 3273
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3274

3275 3276 3277 3278 3279 3280 3281 3282
			if (flags & BTRFS_EXTENT_FLAG_DATA) {
				ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
				if (ret)
					goto out;
			}
L
Liu Bo 已提交
3283

L
Liu Bo 已提交
3284
			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3285 3286
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3287
					   extent_logical - logical + physical);
3288 3289 3290

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3291 3292 3293
			if (ret)
				goto out;

L
Liu Bo 已提交
3294 3295
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3296
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3297 3298 3299 3300
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3311
								increment;
3312 3313 3314 3315 3316 3317 3318 3319
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3320 3321 3322 3323
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3324 3325 3326 3327 3328
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3329
				if (physical >= physical_end) {
L
Liu Bo 已提交
3330 3331 3332 3333
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3334 3335 3336
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3337
		btrfs_release_path(path);
3338
skip:
A
Arne Jansen 已提交
3339 3340
		logical += increment;
		physical += map->stripe_len;
3341
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3342 3343 3344 3345 3346
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3347
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3348 3349
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3350
	}
3351
out:
A
Arne Jansen 已提交
3352
	/* push queued extents */
3353
	scrub_submit(sctx);
3354
	mutex_lock(&sctx->wr_lock);
3355
	scrub_wr_submit(sctx);
3356
	mutex_unlock(&sctx->wr_lock);
A
Arne Jansen 已提交
3357

3358
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3359
	btrfs_free_path(path);
3360
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3361 3362 3363
	return ret < 0 ? ret : 0;
}

3364
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3365 3366
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3367
					  u64 dev_offset,
3368
					  struct btrfs_block_group *cache)
A
Arne Jansen 已提交
3369
{
3370
	struct btrfs_fs_info *fs_info = sctx->fs_info;
3371
	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
A
Arne Jansen 已提交
3372 3373 3374
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3375
	int ret = 0;
A
Arne Jansen 已提交
3376

3377 3378 3379
	read_lock(&map_tree->lock);
	em = lookup_extent_mapping(map_tree, chunk_offset, 1);
	read_unlock(&map_tree->lock);
A
Arne Jansen 已提交
3380

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3393

3394
	map = em->map_lookup;
A
Arne Jansen 已提交
3395 3396 3397 3398 3399 3400 3401
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3402
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3403
		    map->stripes[i].physical == dev_offset) {
3404
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3405
					   chunk_offset, length, cache);
A
Arne Jansen 已提交
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3417
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3418
			   struct btrfs_device *scrub_dev, u64 start, u64 end)
A
Arne Jansen 已提交
3419 3420 3421
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3422 3423
	struct btrfs_fs_info *fs_info = sctx->fs_info;
	struct btrfs_root *root = fs_info->dev_root;
A
Arne Jansen 已提交
3424 3425
	u64 length;
	u64 chunk_offset;
3426
	int ret = 0;
3427
	int ro_set;
A
Arne Jansen 已提交
3428 3429 3430 3431
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
3432
	struct btrfs_block_group *cache;
3433
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3434 3435 3436 3437 3438

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3439
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3440 3441 3442
	path->search_commit_root = 1;
	path->skip_locking = 1;

3443
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3444 3445 3446 3447 3448 3449
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3450 3451 3452 3453 3454
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3455 3456 3457 3458
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3459
					break;
3460 3461 3462
				}
			} else {
				ret = 0;
3463 3464
			}
		}
A
Arne Jansen 已提交
3465 3466 3467 3468 3469 3470

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3471
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3472 3473
			break;

3474
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3486 3487
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3488 3489 3490 3491 3492 3493 3494 3495

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3496 3497 3498 3499 3500 3501

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
		/*
		 * Make sure that while we are scrubbing the corresponding block
		 * group doesn't get its logical address and its device extents
		 * reused for another block group, which can possibly be of a
		 * different type and different profile. We do this to prevent
		 * false error detections and crashes due to bogus attempts to
		 * repair extents.
		 */
		spin_lock(&cache->lock);
		if (cache->removed) {
			spin_unlock(&cache->lock);
			btrfs_put_block_group(cache);
			goto skip;
		}
3516
		btrfs_freeze_block_group(cache);
3517 3518
		spin_unlock(&cache->lock);

3519 3520 3521 3522 3523 3524 3525 3526 3527
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545

		/*
		 * Don't do chunk preallocation for scrub.
		 *
		 * This is especially important for SYSTEM bgs, or we can hit
		 * -EFBIG from btrfs_finish_chunk_alloc() like:
		 * 1. The only SYSTEM bg is marked RO.
		 *    Since SYSTEM bg is small, that's pretty common.
		 * 2. New SYSTEM bg will be allocated
		 *    Due to regular version will allocate new chunk.
		 * 3. New SYSTEM bg is empty and will get cleaned up
		 *    Before cleanup really happens, it's marked RO again.
		 * 4. Empty SYSTEM bg get scrubbed
		 *    We go back to 2.
		 *
		 * This can easily boost the amount of SYSTEM chunks if cleaner
		 * thread can't be triggered fast enough, and use up all space
		 * of btrfs_super_block::sys_chunk_array
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
		 *
		 * While for dev replace, we need to try our best to mark block
		 * group RO, to prevent race between:
		 * - Write duplication
		 *   Contains latest data
		 * - Scrub copy
		 *   Contains data from commit tree
		 *
		 * If target block group is not marked RO, nocow writes can
		 * be overwritten by scrub copy, causing data corruption.
		 * So for dev-replace, it's not allowed to continue if a block
		 * group is not RO.
3558
		 */
3559
		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3560 3561
		if (ret == 0) {
			ro_set = 1;
3562
		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
3563 3564 3565
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
3566
			 * It is not a problem for scrub, because
3567 3568 3569 3570 3571
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
J
Jeff Mahoney 已提交
3572
			btrfs_warn(fs_info,
3573
				   "failed setting block group ro: %d", ret);
3574
			btrfs_unfreeze_block_group(cache);
3575
			btrfs_put_block_group(cache);
3576
			scrub_pause_off(fs_info);
3577 3578 3579
			break;
		}

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
		/*
		 * Now the target block is marked RO, wait for nocow writes to
		 * finish before dev-replace.
		 * COW is fine, as COW never overwrites extents in commit tree.
		 */
		if (sctx->is_dev_replace) {
			btrfs_wait_nocow_writers(cache);
			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
					cache->length);
		}

		scrub_pause_off(fs_info);
3592
		down_write(&dev_replace->rwsem);
3593 3594 3595
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3596 3597
		up_write(&dev_replace->rwsem);

3598
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3599
				  found_key.offset, cache);
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
3611
		sctx->flush_all_writes = true;
3612
		scrub_submit(sctx);
3613
		mutex_lock(&sctx->wr_lock);
3614
		scrub_wr_submit(sctx);
3615
		mutex_unlock(&sctx->wr_lock);
3616 3617 3618

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3619 3620

		scrub_pause_on(fs_info);
3621 3622 3623 3624 3625 3626

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3627 3628
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3629
		sctx->flush_all_writes = false;
3630

3631
		scrub_pause_off(fs_info);
3632

3633
		down_write(&dev_replace->rwsem);
3634 3635
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3636
		up_write(&dev_replace->rwsem);
3637

3638
		if (ro_set)
3639
			btrfs_dec_block_group_ro(cache);
3640

3641 3642 3643 3644 3645 3646 3647 3648 3649
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3650
		    cache->used == 0) {
3651
			spin_unlock(&cache->lock);
3652 3653 3654 3655 3656
			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
				btrfs_discard_queue_work(&fs_info->discard_ctl,
							 cache);
			else
				btrfs_mark_bg_unused(cache);
3657 3658 3659 3660
		} else {
			spin_unlock(&cache->lock);
		}

3661
		btrfs_unfreeze_block_group(cache);
A
Arne Jansen 已提交
3662 3663 3664
		btrfs_put_block_group(cache);
		if (ret)
			break;
3665
		if (sctx->is_dev_replace &&
3666
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3667 3668 3669 3670 3671 3672 3673
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3674
skip:
A
Arne Jansen 已提交
3675
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3676
		btrfs_release_path(path);
A
Arne Jansen 已提交
3677 3678 3679
	}

	btrfs_free_path(path);
3680

3681
	return ret;
A
Arne Jansen 已提交
3682 3683
}

3684 3685
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3686 3687 3688 3689 3690
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3691
	struct btrfs_fs_info *fs_info = sctx->fs_info;
A
Arne Jansen 已提交
3692

3693
	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3694 3695
		return -EIO;

3696
	/* Seed devices of a new filesystem has their own generation. */
3697
	if (scrub_dev->fs_devices != fs_info->fs_devices)
3698 3699
		gen = scrub_dev->generation;
	else
3700
		gen = fs_info->last_trans_committed;
A
Arne Jansen 已提交
3701 3702 3703

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3704 3705
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3706 3707
			break;

3708
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3709
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3710
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3711 3712 3713
		if (ret)
			return ret;
	}
3714
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3715 3716 3717 3718 3719 3720 3721

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3722 3723
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3724
{
3725
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3726
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3727

3728 3729
	lockdep_assert_held(&fs_info->scrub_lock);

3730
	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
3731
		ASSERT(fs_info->scrub_workers == NULL);
3732 3733
		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
				flags, is_dev_replace ? 1 : max_active, 4);
3734 3735 3736
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3737
		ASSERT(fs_info->scrub_wr_completion_workers == NULL);
3738
		fs_info->scrub_wr_completion_workers =
3739
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3740
					      max_active, 2);
3741 3742 3743
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3744
		ASSERT(fs_info->scrub_parity_workers == NULL);
3745
		fs_info->scrub_parity_workers =
3746
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3747
					      max_active, 2);
3748 3749
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
3750 3751 3752 3753

		refcount_set(&fs_info->scrub_workers_refcnt, 1);
	} else {
		refcount_inc(&fs_info->scrub_workers_refcnt);
A
Arne Jansen 已提交
3754
	}
3755 3756 3757 3758 3759 3760 3761 3762
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3763 3764
}

3765 3766
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3767
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3768
{
3769
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3770 3771
	int ret;
	struct btrfs_device *dev;
3772
	unsigned int nofs_flag;
3773 3774 3775
	struct btrfs_workqueue *scrub_workers = NULL;
	struct btrfs_workqueue *scrub_wr_comp = NULL;
	struct btrfs_workqueue *scrub_parity = NULL;
A
Arne Jansen 已提交
3776

3777
	if (btrfs_fs_closing(fs_info))
3778
		return -EAGAIN;
A
Arne Jansen 已提交
3779

3780
	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3781 3782 3783 3784 3785
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3786 3787
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3788 3789
		       fs_info->nodesize,
		       BTRFS_STRIPE_LEN);
3790 3791 3792
		return -EINVAL;
	}

3793
	if (fs_info->sectorsize != PAGE_SIZE) {
3794
		/* not supported for data w/o checksums */
3795
		btrfs_err_rl(fs_info,
J
Jeff Mahoney 已提交
3796
			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3797
		       fs_info->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3798 3799 3800
		return -EINVAL;
	}

3801
	if (fs_info->nodesize >
3802
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3803
	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3804 3805 3806 3807
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
J
Jeff Mahoney 已提交
3808 3809
		btrfs_err(fs_info,
			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3810
		       fs_info->nodesize,
3811
		       SCRUB_MAX_PAGES_PER_BLOCK,
3812
		       fs_info->sectorsize,
3813 3814 3815 3816
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

3817 3818 3819 3820
	/* Allocate outside of device_list_mutex */
	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
	if (IS_ERR(sctx))
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3821

3822
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3823
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
3824 3825
	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
		     !is_dev_replace)) {
3826
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3827 3828
		ret = -ENODEV;
		goto out_free_ctx;
A
Arne Jansen 已提交
3829 3830
	}

3831 3832
	if (!is_dev_replace && !readonly &&
	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3833
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3834 3835
		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
				rcu_str_deref(dev->name));
3836 3837
		ret = -EROFS;
		goto out_free_ctx;
3838 3839
	}

3840
	mutex_lock(&fs_info->scrub_lock);
3841
	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3842
	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
A
Arne Jansen 已提交
3843
		mutex_unlock(&fs_info->scrub_lock);
3844
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3845 3846
		ret = -EIO;
		goto out_free_ctx;
A
Arne Jansen 已提交
3847 3848
	}

3849
	down_read(&fs_info->dev_replace.rwsem);
3850
	if (dev->scrub_ctx ||
3851 3852
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3853
		up_read(&fs_info->dev_replace.rwsem);
A
Arne Jansen 已提交
3854
		mutex_unlock(&fs_info->scrub_lock);
3855
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856 3857
		ret = -EINPROGRESS;
		goto out_free_ctx;
A
Arne Jansen 已提交
3858
	}
3859
	up_read(&fs_info->dev_replace.rwsem);
3860 3861 3862 3863 3864

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3865
		goto out_free_ctx;
3866 3867
	}

3868
	sctx->readonly = readonly;
3869
	dev->scrub_ctx = sctx;
3870
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3871

3872 3873 3874 3875
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3876
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3877 3878 3879
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
	/*
	 * In order to avoid deadlock with reclaim when there is a transaction
	 * trying to pause scrub, make sure we use GFP_NOFS for all the
	 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
	 * invoked by our callees. The pausing request is done when the
	 * transaction commit starts, and it blocks the transaction until scrub
	 * is paused (done at specific points at scrub_stripe() or right above
	 * before incrementing fs_info->scrubs_running).
	 */
	nofs_flag = memalloc_nofs_save();
3890
	if (!is_dev_replace) {
3891
		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
3892 3893 3894 3895
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3896
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3897
		ret = scrub_supers(sctx, dev);
3898
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3899
	}
A
Arne Jansen 已提交
3900 3901

	if (!ret)
3902
		ret = scrub_enumerate_chunks(sctx, dev, start, end);
3903
	memalloc_nofs_restore(nofs_flag);
A
Arne Jansen 已提交
3904

3905
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3906 3907 3908
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3909
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3910

A
Arne Jansen 已提交
3911
	if (progress)
3912
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3913

3914 3915 3916 3917
	if (!is_dev_replace)
		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
			ret ? "not finished" : "finished", devid, ret);

A
Arne Jansen 已提交
3918
	mutex_lock(&fs_info->scrub_lock);
3919
	dev->scrub_ctx = NULL;
3920
	if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
3921 3922 3923
		scrub_workers = fs_info->scrub_workers;
		scrub_wr_comp = fs_info->scrub_wr_completion_workers;
		scrub_parity = fs_info->scrub_parity_workers;
3924 3925 3926 3927

		fs_info->scrub_workers = NULL;
		fs_info->scrub_wr_completion_workers = NULL;
		fs_info->scrub_parity_workers = NULL;
3928
	}
A
Arne Jansen 已提交
3929 3930
	mutex_unlock(&fs_info->scrub_lock);

3931 3932 3933
	btrfs_destroy_workqueue(scrub_workers);
	btrfs_destroy_workqueue(scrub_wr_comp);
	btrfs_destroy_workqueue(scrub_parity);
3934
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3935

3936 3937 3938 3939 3940
	return ret;

out_free_ctx:
	scrub_free_ctx(sctx);

A
Arne Jansen 已提交
3941 3942 3943
	return ret;
}

3944
void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
{
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3959
void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3960 3961 3962 3963 3964
{
	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3965
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3986
int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3987
{
3988
	struct btrfs_fs_info *fs_info = dev->fs_info;
3989
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3990 3991

	mutex_lock(&fs_info->scrub_lock);
3992
	sctx = dev->scrub_ctx;
3993
	if (!sctx) {
A
Arne Jansen 已提交
3994 3995 3996
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3997
	atomic_inc(&sctx->cancel_req);
3998
	while (dev->scrub_ctx) {
A
Arne Jansen 已提交
3999 4000
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
4001
			   dev->scrub_ctx == NULL);
A
Arne Jansen 已提交
4002 4003 4004 4005 4006 4007
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4008

4009
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
A
Arne Jansen 已提交
4010 4011 4012
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4013
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4014

4015
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4016
	dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
A
Arne Jansen 已提交
4017
	if (dev)
4018
		sctx = dev->scrub_ctx;
4019 4020
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
4021
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
4022

4023
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4024
}
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
4037
	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4038 4039 4040
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4041
		btrfs_put_bbio(bbio);
4042 4043 4044 4045 4046 4047
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4048
	btrfs_put_bbio(bbio);
4049
}