scrub.c 114.5 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	atomic_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127
	};
128
	struct btrfs_work	work;
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

145
	atomic_t		refs;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164 165 166 167 168 169 170 171
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

172
struct scrub_ctx {
173
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
175 176
	int			first_free;
	int			curr;
177 178
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
179 180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			pages_per_rd_bio;
186 187
	u32			sectorsize;
	u32			nodesize;
188 189

	int			is_dev_replace;
190
	struct scrub_wr_ctx	wr_ctx;
191

A
Arne Jansen 已提交
192 193 194 195 196
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
197 198 199 200 201 202 203 204 205

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
	atomic_t                refs;
A
Arne Jansen 已提交
206 207
};

208
struct scrub_fixup_nodatasum {
209
	struct scrub_ctx	*sctx;
210
	struct btrfs_device	*dev;
211 212 213 214 215 216
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

217 218 219 220 221 222 223
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

224 225 226 227 228 229
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
230
	struct list_head	inodes;
231 232 233
	struct btrfs_work	work;
};

234 235 236 237 238 239 240 241 242
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

243 244 245 246
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249
				     struct scrub_block *sblocks_for_recheck);
250
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 252
				struct scrub_block *sblock,
				int retry_failed_mirror);
253
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255
					     struct scrub_block *sblock_good);
256 257 258
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
259 260 261
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
262 263 264 265 266
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
267 268
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
269 270
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
271 272
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
273
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274
		       u64 physical, struct btrfs_device *dev, u64 flags,
275 276
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
277
static void scrub_bio_end_io(struct bio *bio);
278 279
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
280 281 282 283 284 285 286 287 288 289 290 291 292 293
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
294
static void scrub_wr_bio_end_io(struct bio *bio);
295 296 297 298
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299
				      struct scrub_copy_nocow_ctx *ctx);
300 301 302
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
303
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
306 307


308 309
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
310
	atomic_inc(&sctx->refs);
311 312 313 314 315 316 317
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
318
	scrub_put_ctx(sctx);
319 320
}

321
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322 323 324 325 326 327 328 329 330
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

331
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
332 333 334
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
335
}
336

337 338
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
339 340 341 342 343 344 345 346
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

347 348 349 350 351 352
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

353 354 355 356 357 358 359 360
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

361
	atomic_inc(&sctx->refs);
362 363 364 365 366 367 368 369 370 371 372 373 374
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
375 376 377 378 379 380 381 382 383 384

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
404
	scrub_put_ctx(sctx);
405 406
}

407
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
408
{
409
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
410
		struct btrfs_ordered_sum *sum;
411
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
412 413 414 415 416 417
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

418
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
419 420 421
{
	int i;

422
	if (!sctx)
A
Arne Jansen 已提交
423 424
		return;

425 426
	scrub_free_wr_ctx(&sctx->wr_ctx);

427
	/* this can happen when scrub is cancelled */
428 429
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
430 431

		for (i = 0; i < sbio->page_count; i++) {
432
			WARN_ON(!sbio->pagev[i]->page);
433 434 435 436 437
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

438
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
439
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
440 441 442 443 444 445

		if (!sbio)
			break;
		kfree(sbio);
	}

446 447
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
448 449
}

450 451 452 453 454 455
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
	if (atomic_dec_and_test(&sctx->refs))
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
456
static noinline_for_stack
457
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
458
{
459
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
460 461
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
462
	int ret;
A
Arne Jansen 已提交
463

464 465
	sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
	if (!sctx)
A
Arne Jansen 已提交
466
		goto nomem;
467
	atomic_set(&sctx->refs, 1);
468
	sctx->is_dev_replace = is_dev_replace;
469
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
470
	sctx->curr = -1;
471
	sctx->dev_root = dev->dev_root;
472
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
473 474 475 476 477
		struct scrub_bio *sbio;

		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
		if (!sbio)
			goto nomem;
478
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
479 480

		sbio->index = i;
481
		sbio->sctx = sctx;
482
		sbio->page_count = 0;
483 484
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
485

486
		if (i != SCRUB_BIOS_PER_SCTX - 1)
487
			sctx->bios[i]->next_free = i + 1;
488
		else
489 490 491 492 493
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
494 495
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
496 497 498 499 500 501 502
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
503 504 505 506 507 508 509

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
510
	return sctx;
A
Arne Jansen 已提交
511 512

nomem:
513
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
514 515 516
	return ERR_PTR(-ENOMEM);
}

517 518
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
519 520 521 522 523 524 525
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
526
	struct scrub_warning *swarn = warn_ctx;
527 528 529 530
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
531
	struct btrfs_key key;
532 533 534 535 536 537 538 539 540 541

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

542 543 544
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
545 546 547 548 549
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
550 551 552 553 554 555 556 557 558 559 560 561 562
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
563 564 565 566 567
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
568 569 570 571 572 573 574 575 576 577
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
578
		btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
579
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
580
			"length %llu, links %u (path: %s)", swarn->errstr,
581
			swarn->logical, rcu_str_deref(swarn->dev->name),
582 583
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
584
			(char *)(unsigned long)ipath->fspath->val[i]);
585 586 587 588 589

	free_ipath(ipath);
	return 0;

err:
590
	btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
591
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
592
		"resolving failed with ret=%d", swarn->errstr,
593
		swarn->logical, rcu_str_deref(swarn->dev->name),
594 595 596 597 598 599
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

600
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
601
{
602 603
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
604 605 606 607 608
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
609 610 611
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
612
	u64 ref_root;
613
	u32 item_size;
614
	u8 ref_level;
615
	int ret;
616

617
	WARN_ON(sblock->page_count < 1);
618
	dev = sblock->pagev[0]->dev;
619 620
	fs_info = sblock->sctx->dev_root->fs_info;

621
	path = btrfs_alloc_path();
622 623
	if (!path)
		return;
624

625 626
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
627
	swarn.errstr = errstr;
628
	swarn.dev = NULL;
629

630 631
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
632 633 634
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
635
	extent_item_pos = swarn.logical - found_key.objectid;
636 637 638 639 640 641
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

642
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
643
		do {
644 645 646
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
647 648
			btrfs_warn_in_rcu(fs_info,
				"%s at logical %llu on dev %s, "
649
				"sector %llu: metadata %s (level %d) in tree "
650
				"%llu", errstr, swarn.logical,
651
				rcu_str_deref(dev->name),
652 653 654 655 656
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
657
		btrfs_release_path(path);
658
	} else {
659
		btrfs_release_path(path);
660
		swarn.path = path;
661
		swarn.dev = dev;
662 663
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
664 665 666 667 668 669 670
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

671
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
672
{
673
	struct page *page = NULL;
674
	unsigned long index;
675
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
676
	int ret;
677
	int corrected = 0;
678
	struct btrfs_key key;
679
	struct inode *inode = NULL;
680
	struct btrfs_fs_info *fs_info;
681 682
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
683
	int srcu_index;
684 685 686 687

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
688 689 690 691 692 693 694

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
695
		return PTR_ERR(local_root);
696
	}
697 698 699 700

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
701 702
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
703 704 705 706 707 708
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	index = offset >> PAGE_CACHE_SHIFT;

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
735
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
736
					fixup->logical, page,
737
					offset - page_offset(page),
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
					EXTENT_DAMAGED, GFP_NOFS);
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
						EXTENT_DAMAGED, GFP_NOFS);
	}

out:
	if (page)
		put_page(page);
772 773

	iput(inode);
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
793
	struct scrub_ctx *sctx;
794 795 796 797 798
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
799
	sctx = fixup->sctx;
800 801 802

	path = btrfs_alloc_path();
	if (!path) {
803 804 805
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

834 835 836
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
837 838 839 840 841

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
842 843 844
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
845 846 847
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
848 849
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
850
			fixup->logical, rcu_str_deref(fixup->dev->name));
851 852 853 854 855
	}

	btrfs_free_path(path);
	kfree(fixup);

856
	scrub_pending_trans_workers_dec(sctx);
857 858
}

859 860 861 862 863 864 865 866
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
867
		btrfs_put_bbio(recover->bbio);
868 869 870 871
		kfree(recover);
	}
}

A
Arne Jansen 已提交
872
/*
873 874 875 876 877 878
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
879
 */
880
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
881
{
882
	struct scrub_ctx *sctx = sblock_to_check->sctx;
883
	struct btrfs_device *dev;
884 885 886 887 888 889 890 891 892 893 894 895
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
896
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
897 898 899
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
900
	fs_info = sctx->dev_root->fs_info;
901 902 903 904 905 906 907 908 909 910 911
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
912
	length = sblock_to_check->page_count * PAGE_SIZE;
913 914 915 916
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
917
			BTRFS_EXTENT_FLAG_DATA);
918 919
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
920

921 922 923 924 925
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

955 956
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
957
	if (!sblocks_for_recheck) {
958 959 960 961 962
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
963
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
964
		goto out;
A
Arne Jansen 已提交
965 966
	}

967
	/* setup the context, map the logical blocks and alloc the pages */
968
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
969
	if (ret) {
970 971 972 973
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
974
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
975 976 977 978
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
979

980
	/* build and submit the bios for the failed mirror, check checksums */
981
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
982

983 984 985 986 987 988 989 990 991 992
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
993 994
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
995
		sblock_to_check->data_corrected = 1;
996
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
997

998 999
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1000
		goto out;
A
Arne Jansen 已提交
1001 1002
	}

1003
	if (!sblock_bad->no_io_error_seen) {
1004 1005 1006
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1007 1008
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1009
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1010
	} else if (sblock_bad->checksum_error) {
1011 1012 1013
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1014 1015
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1016
		btrfs_dev_stat_inc_and_print(dev,
1017
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1018
	} else if (sblock_bad->header_error) {
1019 1020 1021
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1022 1023 1024
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1025
		if (sblock_bad->generation_error)
1026
			btrfs_dev_stat_inc_and_print(dev,
1027 1028
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1029
			btrfs_dev_stat_inc_and_print(dev,
1030
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1031
	}
A
Arne Jansen 已提交
1032

1033 1034 1035 1036
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1037

1038 1039
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1040

1041 1042
		WARN_ON(sctx->is_dev_replace);

1043 1044
nodatasum_case:

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		/*
		 * !is_metadata and !have_csum, this means that the data
		 * might not be COW'ed, that it might be modified
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1055
		fixup_nodatasum->sctx = sctx;
1056
		fixup_nodatasum->dev = dev;
1057 1058 1059
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1060
		scrub_pending_trans_workers_inc(sctx);
1061 1062
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1063 1064
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1065
		goto out;
A
Arne Jansen 已提交
1066 1067
	}

1068 1069
	/*
	 * now build and submit the bios for the other mirrors, check
1070 1071
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1087
		struct scrub_block *sblock_other;
1088

1089 1090 1091 1092 1093
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1094
		scrub_recheck_block(fs_info, sblock_other, 0);
1095 1096

		if (!sblock_other->header_error &&
1097 1098
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1099 1100
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1101
				goto corrected_error;
1102 1103
			} else {
				ret = scrub_repair_block_from_good_copy(
1104 1105 1106
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1107
			}
1108 1109
		}
	}
A
Arne Jansen 已提交
1110

1111 1112
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1113 1114 1115

	/*
	 * In case of I/O errors in the area that is supposed to be
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
	 * the final checksum succeedes. But this would be a rare
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1137
	 */
1138
	success = 1;
1139 1140
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1141
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1142
		struct scrub_block *sblock_other = NULL;
1143

1144 1145
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1146
			continue;
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1159 1160
				}
			}
1161 1162
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1163
		}
A
Arne Jansen 已提交
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1192
		}
A
Arne Jansen 已提交
1193 1194
	}

1195
	if (success && !sctx->is_dev_replace) {
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1206
			scrub_recheck_block(fs_info, sblock_bad, 1);
1207
			if (!sblock_bad->header_error &&
1208 1209 1210 1211 1212 1213 1214
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1215 1216
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1217
			sblock_to_check->data_corrected = 1;
1218
			spin_unlock(&sctx->stat_lock);
1219 1220
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1221
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1222
		}
1223 1224
	} else {
did_not_correct_error:
1225 1226 1227
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1228 1229
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1230
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1231
	}
A
Arne Jansen 已提交
1232

1233 1234 1235 1236 1237 1238
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1239
			struct scrub_recover *recover;
1240 1241
			int page_index;

1242 1243 1244
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1245 1246 1247 1248 1249 1250
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1251 1252
				scrub_page_put(sblock->pagev[page_index]);
			}
1253 1254 1255
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1256

1257 1258
	return 0;
}
A
Arne Jansen 已提交
1259

1260
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1261
{
Z
Zhao Lei 已提交
1262 1263 1264 1265 1266
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1267 1268 1269
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1270 1271
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1272 1273 1274 1275 1276 1277 1278
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1279
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1300
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1301 1302
				     struct scrub_block *sblocks_for_recheck)
{
1303 1304 1305 1306
	struct scrub_ctx *sctx = original_sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1307 1308 1309
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1310 1311 1312 1313 1314 1315
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1316
	int page_index = 0;
1317
	int mirror_index;
1318
	int nmirrors;
1319 1320 1321
	int ret;

	/*
1322
	 * note: the two members refs and outstanding_pages
1323 1324 1325 1326 1327
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1328 1329 1330
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1331

1332 1333 1334 1335
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1336
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1337
				       &mapped_length, &bbio, 0, 1);
1338
		if (ret || !bbio || mapped_length < sublen) {
1339
			btrfs_put_bbio(bbio);
1340 1341
			return -EIO;
		}
A
Arne Jansen 已提交
1342

1343 1344
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1345
			btrfs_put_bbio(bbio);
1346 1347 1348 1349 1350 1351 1352
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1353
		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1354

1355
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1356

1357
		for (mirror_index = 0; mirror_index < nmirrors;
1358 1359 1360 1361 1362
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1363
			sblock->sctx = sctx;
1364

1365 1366 1367
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1368 1369 1370
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1371
				scrub_put_recover(recover);
1372 1373
				return -ENOMEM;
			}
1374 1375
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1376 1377 1378
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1379
			page->logical = logical;
1380 1381 1382 1383 1384
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1385

Z
Zhao Lei 已提交
1386 1387 1388
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1389
						      mapped_length,
1390 1391
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1392 1393 1394 1395 1396 1397 1398
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1399 1400 1401 1402
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1403 1404
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1405
			sblock->page_count++;
1406 1407 1408
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1409 1410 1411

			scrub_get_recover(recover);
			page->recover = recover;
1412
		}
1413
		scrub_put_recover(recover);
1414 1415 1416 1417 1418 1419
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1420 1421
}

1422 1423 1424 1425 1426
struct scrub_bio_ret {
	struct completion event;
	int error;
};

1427
static void scrub_bio_wait_endio(struct bio *bio)
1428 1429 1430
{
	struct scrub_bio_ret *ret = bio->bi_private;

1431
	ret->error = bio->bi_error;
1432 1433 1434 1435 1436
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1437
	return page->recover &&
1438
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1456
				    page->mirror_num, 0);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1467 1468 1469 1470 1471 1472 1473
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1474
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1475 1476
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1477
{
1478
	int page_num;
I
Ilya Dryomov 已提交
1479

1480
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1481

1482 1483
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1484
		struct scrub_page *page = sblock->pagev[page_num];
1485

1486
		if (page->dev->bdev == NULL) {
1487 1488 1489 1490 1491
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1492
		WARN_ON(!page->page);
1493
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1494 1495 1496 1497 1498
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1499
		bio->bi_bdev = page->dev->bdev;
1500

1501
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1502 1503 1504 1505 1506 1507 1508 1509 1510
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1511

1512 1513
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1514

1515
	if (sblock->no_io_error_seen)
1516
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1517 1518
}

M
Miao Xie 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1529
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1530
{
1531 1532 1533
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1534

1535 1536 1537 1538
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1539 1540
}

1541
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542
					     struct scrub_block *sblock_good)
1543 1544 1545
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1546

1547 1548
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1549

1550 1551
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1552
							   page_num, 1);
1553 1554
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1555
	}
1556 1557 1558 1559 1560 1561 1562 1563

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1564 1565
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1566

1567 1568
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1569 1570 1571 1572 1573
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1574
		if (!page_bad->dev->bdev) {
1575
			btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info,
1576
				"scrub_repair_page_from_good_copy(bdev == NULL) "
1577
				"is unexpected");
1578 1579 1580
			return -EIO;
		}

1581
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582 1583
		if (!bio)
			return -EIO;
1584
		bio->bi_bdev = page_bad->dev->bdev;
1585
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586 1587 1588 1589 1590

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1591
		}
1592

1593
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1594 1595
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1596 1597 1598
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1599 1600 1601
			bio_put(bio);
			return -EIO;
		}
1602
		bio_put(bio);
A
Arne Jansen 已提交
1603 1604
	}

1605 1606 1607
	return 0;
}

1608 1609 1610 1611
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1612 1613 1614 1615 1616 1617 1618
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

		memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
					      GFP_NOFS);
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1674
			bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1685
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

1736
static void scrub_wr_bio_end_io(struct bio *bio)
1737 1738 1739 1740
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

1741
	sbio->err = bio->bi_error;
1742 1743
	sbio->bio = bio;

1744 1745
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1746
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1778 1779 1780 1781
{
	u64 flags;
	int ret;

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1794 1795
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1807 1808

	return ret;
A
Arne Jansen 已提交
1809 1810
}

1811
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1812
{
1813
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1814
	u8 csum[BTRFS_CSUM_SIZE];
1815 1816 1817
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1818
	u32 crc = ~(u32)0;
1819 1820
	u64 len;
	int index;
A
Arne Jansen 已提交
1821

1822
	BUG_ON(sblock->page_count < 1);
1823
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1824 1825
		return 0;

1826 1827
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1828
	buffer = kmap_atomic(page);
1829

1830
	len = sctx->sectorsize;
1831 1832 1833 1834
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1835
		crc = btrfs_csum_data(buffer, crc, l);
1836
		kunmap_atomic(buffer);
1837 1838 1839 1840 1841
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1842 1843
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1844
		buffer = kmap_atomic(page);
1845 1846
	}

A
Arne Jansen 已提交
1847
	btrfs_csum_final(crc, csum);
1848
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1849
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1850

1851
	return sblock->checksum_error;
A
Arne Jansen 已提交
1852 1853
}

1854
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1855
{
1856
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1857
	struct btrfs_header *h;
1858
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1859
	struct btrfs_fs_info *fs_info = root->fs_info;
1860 1861 1862 1863 1864 1865
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1866
	u32 crc = ~(u32)0;
1867 1868 1869 1870
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1871
	page = sblock->pagev[0]->page;
1872
	mapped_buffer = kmap_atomic(page);
1873
	h = (struct btrfs_header *)mapped_buffer;
1874
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1875 1876 1877 1878 1879 1880

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1881
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1882
		sblock->header_error = 1;
A
Arne Jansen 已提交
1883

1884 1885 1886 1887
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1888

M
Miao Xie 已提交
1889
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1890
		sblock->header_error = 1;
A
Arne Jansen 已提交
1891 1892 1893

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1894
		sblock->header_error = 1;
A
Arne Jansen 已提交
1895

1896
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1897 1898 1899 1900 1901 1902
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1903
		crc = btrfs_csum_data(p, crc, l);
1904
		kunmap_atomic(mapped_buffer);
1905 1906 1907 1908 1909
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1910 1911
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1912
		mapped_buffer = kmap_atomic(page);
1913 1914 1915 1916 1917
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1918
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1919
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1920

1921
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1922 1923
}

1924
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1925 1926
{
	struct btrfs_super_block *s;
1927
	struct scrub_ctx *sctx = sblock->sctx;
1928 1929 1930 1931 1932 1933
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1934
	u32 crc = ~(u32)0;
1935 1936
	int fail_gen = 0;
	int fail_cor = 0;
1937 1938
	u64 len;
	int index;
A
Arne Jansen 已提交
1939

1940
	BUG_ON(sblock->page_count < 1);
1941
	page = sblock->pagev[0]->page;
1942
	mapped_buffer = kmap_atomic(page);
1943
	s = (struct btrfs_super_block *)mapped_buffer;
1944
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1945

1946
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1947
		++fail_cor;
A
Arne Jansen 已提交
1948

1949
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1950
		++fail_gen;
A
Arne Jansen 已提交
1951

M
Miao Xie 已提交
1952
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1953
		++fail_cor;
A
Arne Jansen 已提交
1954

1955 1956 1957 1958 1959 1960 1961
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1962
		crc = btrfs_csum_data(p, crc, l);
1963
		kunmap_atomic(mapped_buffer);
1964 1965 1966 1967 1968
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1969 1970
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1971
		mapped_buffer = kmap_atomic(page);
1972 1973 1974 1975 1976
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1977
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1978
		++fail_cor;
A
Arne Jansen 已提交
1979

1980
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1981 1982 1983 1984 1985
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1986 1987 1988
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1989
		if (fail_cor)
1990
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1991 1992
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1993
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1994
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1995 1996
	}

1997
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1998 1999
}

2000 2001
static void scrub_block_get(struct scrub_block *sblock)
{
2002
	atomic_inc(&sblock->refs);
2003 2004 2005 2006
}

static void scrub_block_put(struct scrub_block *sblock)
{
2007
	if (atomic_dec_and_test(&sblock->refs)) {
2008 2009
		int i;

2010 2011 2012
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2013
		for (i = 0; i < sblock->page_count; i++)
2014
			scrub_page_put(sblock->pagev[i]);
2015 2016 2017 2018
		kfree(sblock);
	}
}

2019 2020
static void scrub_page_get(struct scrub_page *spage)
{
2021
	atomic_inc(&spage->refs);
2022 2023 2024 2025
}

static void scrub_page_put(struct scrub_page *spage)
{
2026
	if (atomic_dec_and_test(&spage->refs)) {
2027 2028 2029 2030 2031 2032
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2033
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2034 2035 2036
{
	struct scrub_bio *sbio;

2037
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2038
		return;
A
Arne Jansen 已提交
2039

2040 2041
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2042
	scrub_pending_bio_inc(sctx);
2043
	btrfsic_submit_bio(READ, sbio->bio);
A
Arne Jansen 已提交
2044 2045
}

2046 2047
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2048
{
2049
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2050
	struct scrub_bio *sbio;
2051
	int ret;
A
Arne Jansen 已提交
2052 2053 2054 2055 2056

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2057 2058 2059 2060 2061 2062 2063 2064
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2065
		} else {
2066 2067
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2068 2069
		}
	}
2070
	sbio = sctx->bios[sctx->curr];
2071
	if (sbio->page_count == 0) {
2072 2073
		struct bio *bio;

2074 2075
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2076
		sbio->dev = spage->dev;
2077 2078
		bio = sbio->bio;
		if (!bio) {
2079
			bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2080 2081 2082 2083
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2084 2085 2086

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2087
		bio->bi_bdev = sbio->dev->bdev;
2088
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2089
		sbio->err = 0;
2090 2091 2092
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2093 2094
		   spage->logical ||
		   sbio->dev != spage->dev) {
2095
		scrub_submit(sctx);
A
Arne Jansen 已提交
2096 2097
		goto again;
	}
2098

2099 2100 2101 2102 2103 2104 2105 2106
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2107
		scrub_submit(sctx);
2108 2109 2110
		goto again;
	}

2111
	scrub_block_get(sblock); /* one for the page added to the bio */
2112 2113
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2114
	if (sbio->page_count == sctx->pages_per_rd_bio)
2115
		scrub_submit(sctx);
2116 2117 2118 2119

	return 0;
}

2120
static void scrub_missing_raid56_end_io(struct bio *bio)
2121 2122 2123 2124
{
	struct scrub_block *sblock = bio->bi_private;
	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;

2125
	if (bio->bi_error)
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
		sblock->no_io_error_seen = 0;

	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2141
	if (sblock->no_io_error_seen)
2142
		scrub_recheck_block_checksum(sblock);
2143 2144 2145 2146 2147

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2148
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2149
			"IO error rebuilding logical %llu for dev %s",
2150 2151 2152 2153 2154
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2155
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2156
			"failed to rebuild valid logical %llu for dev %s",
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
	struct btrfs_bio *bbio;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
			       &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2236
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2237
		       u64 physical, struct btrfs_device *dev, u64 flags,
2238 2239
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2240 2241 2242 2243 2244 2245
{
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
2246 2247 2248
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2249
		return -ENOMEM;
A
Arne Jansen 已提交
2250
	}
2251

2252 2253
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2254
	atomic_set(&sblock->refs, 1);
2255
	sblock->sctx = sctx;
2256 2257 2258
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2259
		struct scrub_page *spage;
2260 2261
		u64 l = min_t(u64, len, PAGE_SIZE);

2262 2263 2264
		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
2265 2266 2267
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2268
			scrub_block_put(sblock);
2269 2270
			return -ENOMEM;
		}
2271 2272 2273
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2274
		spage->sblock = sblock;
2275
		spage->dev = dev;
2276 2277 2278 2279
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2280
		spage->physical_for_dev_replace = physical_for_dev_replace;
2281 2282 2283
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2284
			memcpy(spage->csum, csum, sctx->csum_size);
2285 2286 2287 2288
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2289 2290 2291
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
2292 2293 2294
		len -= l;
		logical += l;
		physical += l;
2295
		physical_for_dev_replace += l;
2296 2297
	}

2298
	WARN_ON(sblock->page_count == 0);
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	if (dev->missing) {
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2309

2310 2311 2312 2313 2314
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2315
		}
A
Arne Jansen 已提交
2316

2317 2318 2319
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2320

2321 2322
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2323 2324 2325
	return 0;
}

2326
static void scrub_bio_end_io(struct bio *bio)
2327 2328
{
	struct scrub_bio *sbio = bio->bi_private;
2329
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2330

2331
	sbio->err = bio->bi_error;
2332 2333
	sbio->bio = bio;

2334
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2335 2336 2337 2338 2339
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2340
	struct scrub_ctx *sctx = sbio->sctx;
2341 2342
	int i;

2343
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2365 2366 2367 2368
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2369 2370 2371 2372 2373 2374 2375 2376

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2377
	scrub_pending_bio_dec(sctx);
2378 2379
}

2380 2381 2382 2383
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2384
	u32 offset;
2385 2386 2387 2388 2389 2390 2391 2392 2393
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2394
	start = div_u64_rem(start, sparity->stripe_len, &offset);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2419 2420
static void scrub_block_complete(struct scrub_block *sblock)
{
2421 2422
	int corrupted = 0;

2423
	if (!sblock->no_io_error_seen) {
2424
		corrupted = 1;
2425
		scrub_handle_errored_block(sblock);
2426 2427 2428 2429 2430 2431
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2432 2433
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2434 2435
			scrub_write_block_to_dev_replace(sblock);
	}
2436 2437 2438 2439 2440 2441 2442 2443 2444

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2445 2446
}

2447
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2448 2449
{
	struct btrfs_ordered_sum *sum = NULL;
2450
	unsigned long index;
A
Arne Jansen 已提交
2451 2452
	unsigned long num_sectors;

2453 2454
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2455 2456 2457 2458 2459 2460
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2461
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2462 2463 2464 2465 2466 2467 2468
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2469
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2470
	num_sectors = sum->len / sctx->sectorsize;
2471 2472
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2473 2474 2475
		list_del(&sum->list);
		kfree(sum);
	}
2476
	return 1;
A
Arne Jansen 已提交
2477 2478 2479
}

/* scrub extent tries to collect up to 64 kB for each bio */
2480
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2481
			u64 physical, struct btrfs_device *dev, u64 flags,
2482
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2483 2484 2485
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2486 2487 2488
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2489 2490 2491 2492 2493
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2494
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2495 2496 2497 2498 2499
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2500
	} else {
2501
		blocksize = sctx->sectorsize;
2502
		WARN_ON(1);
2503
	}
A
Arne Jansen 已提交
2504 2505

	while (len) {
2506
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2507 2508 2509 2510
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2511
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2512
			if (have_csum == 0)
2513
				++sctx->stat.no_csum;
2514 2515 2516 2517 2518 2519
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2520
		}
2521
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2522 2523 2524
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2525 2526 2527 2528 2529
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2530
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2531 2532 2533 2534
	}
	return 0;
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2554
	atomic_set(&sblock->refs, 1);
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

		spage = kzalloc(sizeof(*spage), GFP_NOFS);
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
		spage->page = alloc_page(GFP_NOFS);
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2629 2630 2631 2632 2633
	if (dev->missing) {
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2649
			have_csum = scrub_find_csum(sctx, logical, csum);
2650 2651 2652 2653 2654 2655 2656 2657
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2658
skip:
2659 2660 2661 2662 2663 2664 2665
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2666 2667 2668 2669 2670 2671 2672 2673
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2674 2675
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2676 2677 2678 2679 2680
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2681 2682
	u32 stripe_index;
	u32 rot;
2683 2684 2685

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2686 2687 2688
	if (stripe_start)
		*stripe_start = last_offset;

2689 2690 2691 2692
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2693 2694
		stripe_nr = div_u64(*offset, map->stripe_len);
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2695 2696

		/* Work out the disk rotation on this stripe-set */
2697
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2698 2699
		/* calculate which stripe this data locates */
		rot += i;
2700
		stripe_index = rot % map->num_stripes;
2701 2702 2703 2704 2705 2706 2707 2708 2709
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2742
static void scrub_parity_bio_endio(struct bio *bio)
2743 2744 2745
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;

2746
	if (bio->bi_error)
2747 2748 2749 2750
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2751 2752 2753 2754 2755

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
			 &sparity->work);
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2772
	length = sparity->logic_end - sparity->logic_start;
2773
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2774
			       sparity->logic_start,
2775 2776
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2788
					      length, sparity->scrub_dev,
2789 2790 2791 2792 2793 2794
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
2795
		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2796 2797 2798 2799 2800 2801 2802 2803

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2804
	btrfs_put_bbio(bbio);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2821
	atomic_inc(&sparity->refs);
2822 2823 2824 2825
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2826
	if (!atomic_dec_and_test(&sparity->refs))
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2843
	struct btrfs_bio *bbio = NULL;
2844 2845 2846 2847 2848 2849 2850 2851 2852
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2853
	u64 mapped_length;
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

	nsectors = map->stripe_len / root->sectorsize;
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2878
	atomic_set(&sparity->refs, 1);
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2927 2928 2929 2930
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2931 2932 2933 2934 2935 2936 2937 2938
			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2939
			if (key.objectid >= logic_end) {
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2952 2953 2954 2955 2956 2957
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					  key.objectid, logic_start);
2958 2959 2960
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
			mapped_length = extent_len;
			ret = btrfs_map_block(fs_info, READ, extent_logical,
					      &mapped_length, &bbio, 0);
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3009 3010 3011

			scrub_free_csums(sctx);

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3043
						logic_end - logic_start);
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3054
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3055 3056
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3057 3058
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3059
{
3060
	struct btrfs_path *path, *ppath;
3061
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
3062 3063 3064
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3065
	struct blk_plug plug;
A
Arne Jansen 已提交
3066 3067 3068 3069 3070 3071 3072 3073
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3074
	u64 logic_end;
3075
	u64 physical_end;
A
Arne Jansen 已提交
3076
	u64 generation;
3077
	int mirror_num;
A
Arne Jansen 已提交
3078 3079 3080 3081
	struct reada_control *reada1;
	struct reada_control *reada2;
	struct btrfs_key key_start;
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3082 3083
	u64 increment = map->stripe_len;
	u64 offset;
3084 3085 3086
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3087 3088
	u64 stripe_logical;
	u64 stripe_end;
3089 3090
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3091
	int stop_loop = 0;
D
David Woodhouse 已提交
3092

3093
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3094
	offset = 0;
3095
	nstripes = div_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3096 3097 3098
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3099
		mirror_num = 1;
A
Arne Jansen 已提交
3100 3101 3102 3103
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3104
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3105 3106
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3107
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3108 3109
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3110
		mirror_num = num % map->num_stripes + 1;
3111
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3112
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3113 3114
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3115 3116
	} else {
		increment = map->stripe_len;
3117
		mirror_num = 1;
A
Arne Jansen 已提交
3118 3119 3120 3121 3122 3123
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3124 3125
	ppath = btrfs_alloc_path();
	if (!ppath) {
3126
		btrfs_free_path(path);
3127 3128 3129
		return -ENOMEM;
	}

3130 3131 3132 3133 3134
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3135 3136 3137
	path->search_commit_root = 1;
	path->skip_locking = 1;

3138 3139
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3140
	/*
A
Arne Jansen 已提交
3141 3142 3143
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3144 3145
	 */
	logical = base + offset;
3146
	physical_end = physical + nstripes * map->stripe_len;
3147
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3148
		get_raid56_logic_offset(physical_end, num,
3149
					map, &logic_end, NULL);
3150 3151 3152 3153
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3154
	wait_event(sctx->list_wait,
3155
		   atomic_read(&sctx->bios_in_flight) == 0);
3156
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3157 3158 3159 3160 3161

	/* FIXME it might be better to start readahead at commit root */
	key_start.objectid = logical;
	key_start.type = BTRFS_EXTENT_ITEM_KEY;
	key_start.offset = (u64)0;
3162
	key_end.objectid = logic_end;
3163 3164
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
A
Arne Jansen 已提交
3165 3166 3167 3168 3169 3170 3171
	reada1 = btrfs_reada_add(root, &key_start, &key_end);

	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_start.type = BTRFS_EXTENT_CSUM_KEY;
	key_start.offset = logical;
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3172
	key_end.offset = logic_end;
A
Arne Jansen 已提交
3173 3174 3175 3176 3177 3178 3179
	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3180 3181 3182 3183 3184

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3185
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3186 3187 3188 3189 3190

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3191
	while (physical < physical_end) {
A
Arne Jansen 已提交
3192 3193 3194 3195
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3196
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3197 3198 3199 3200 3201 3202 3203 3204
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3205
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3206
			scrub_submit(sctx);
3207 3208 3209
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3210
			wait_event(sctx->list_wait,
3211
				   atomic_read(&sctx->bios_in_flight) == 0);
3212
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3213
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3214 3215
		}

3216 3217 3218 3219 3220 3221
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3222
				/* it is parity strip */
3223
				stripe_logical += base;
3224
				stripe_end = stripe_logical + increment;
3225 3226 3227 3228 3229 3230 3231 3232 3233
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3234 3235 3236 3237
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3238
		key.objectid = logical;
L
Liu Bo 已提交
3239
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3240 3241 3242 3243

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3244

3245
		if (ret > 0) {
3246
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3247 3248
			if (ret < 0)
				goto out;
3249 3250 3251 3252 3253 3254 3255 3256 3257
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3258 3259
		}

L
Liu Bo 已提交
3260
		stop_loop = 0;
A
Arne Jansen 已提交
3261
		while (1) {
3262 3263
			u64 bytes;

A
Arne Jansen 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3273
				stop_loop = 1;
A
Arne Jansen 已提交
3274 3275 3276 3277
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3278 3279 3280 3281
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3282
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3283
				bytes = root->nodesize;
3284 3285 3286 3287
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3288 3289
				goto next;

L
Liu Bo 已提交
3290 3291 3292 3293 3294 3295
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3296 3297 3298 3299 3300 3301

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3302 3303 3304 3305
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3306 3307 3308
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3309
				       key.objectid, logical);
3310 3311 3312
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3313 3314 3315
				goto next;
			}

L
Liu Bo 已提交
3316 3317 3318 3319
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3320 3321 3322
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3323 3324 3325
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3326
			}
L
Liu Bo 已提交
3327
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3328
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3329 3330
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3331 3332
			}

L
Liu Bo 已提交
3333
			extent_physical = extent_logical - logical + physical;
3334 3335 3336 3337 3338 3339 3340
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3341

3342 3343 3344 3345 3346
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3347 3348 3349
			if (ret)
				goto out;

3350 3351 3352
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3353
					   extent_logical - logical + physical);
3354 3355 3356

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3357 3358 3359
			if (ret)
				goto out;

L
Liu Bo 已提交
3360 3361
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3362
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3363 3364 3365 3366
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3377
								increment;
3378 3379 3380 3381 3382 3383 3384 3385
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3386 3387 3388 3389
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3390 3391 3392 3393 3394
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3395
				if (physical >= physical_end) {
L
Liu Bo 已提交
3396 3397 3398 3399
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3400 3401 3402
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3403
		btrfs_release_path(path);
3404
skip:
A
Arne Jansen 已提交
3405 3406
		logical += increment;
		physical += map->stripe_len;
3407
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3408 3409 3410 3411 3412
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3413
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3414 3415
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3416
	}
3417
out:
A
Arne Jansen 已提交
3418
	/* push queued extents */
3419
	scrub_submit(sctx);
3420 3421 3422
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3423

3424
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3425
	btrfs_free_path(path);
3426
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3427 3428 3429
	return ret < 0 ? ret : 0;
}

3430
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3431 3432
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3433 3434 3435
					  u64 dev_offset,
					  struct btrfs_block_group_cache *cache,
					  int is_dev_replace)
A
Arne Jansen 已提交
3436 3437
{
	struct btrfs_mapping_tree *map_tree =
3438
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3439 3440 3441
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3442
	int ret = 0;
A
Arne Jansen 已提交
3443 3444 3445 3446 3447

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3460 3461 3462 3463 3464 3465 3466 3467 3468

	map = (struct map_lookup *)em->bdev;
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3469
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3470
		    map->stripes[i].physical == dev_offset) {
3471
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3472 3473
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3485
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3486 3487
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3488 3489 3490
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3491
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3492 3493 3494
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_offset;
3495
	int ret = 0;
3496
	int ro_set;
A
Arne Jansen 已提交
3497 3498 3499 3500 3501
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3502
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	path->reada = 2;
	path->search_commit_root = 1;
	path->skip_locking = 1;

3512
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3513 3514 3515 3516 3517 3518
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3519 3520 3521 3522 3523
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3524 3525 3526 3527
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3528
					break;
3529 3530 3531
				}
			} else {
				ret = 0;
3532 3533
			}
		}
A
Arne Jansen 已提交
3534 3535 3536 3537 3538 3539

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3540
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3541 3542
			break;

3543
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3555 3556
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3557 3558 3559 3560 3561 3562 3563 3564

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3565 3566 3567 3568 3569 3570

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
		ret = btrfs_inc_block_group_ro(root, cache);
		scrub_pause_off(fs_info);
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
			btrfs_warn(fs_info, "failed setting block group ro, ret=%d\n",
				   ret);
3597 3598 3599 3600
			btrfs_put_block_group(cache);
			break;
		}

3601 3602 3603
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3604
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3605
				  found_key.offset, cache, is_dev_replace);
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3625 3626

		scrub_pause_on(fs_info);
3627 3628 3629 3630 3631 3632

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3633 3634
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3635 3636
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

3637
		scrub_pause_off(fs_info);
3638

3639 3640
		if (ro_set)
			btrfs_dec_block_group_ro(root, cache);
3641

3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
			spin_lock(&fs_info->unused_bgs_lock);
			if (list_empty(&cache->bg_list)) {
				btrfs_get_block_group(cache);
				list_add_tail(&cache->bg_list,
					      &fs_info->unused_bgs);
			}
			spin_unlock(&fs_info->unused_bgs_lock);
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3664 3665 3666
		btrfs_put_block_group(cache);
		if (ret)
			break;
3667 3668
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3669 3670 3671 3672 3673 3674 3675
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
A
Arne Jansen 已提交
3676

3677 3678
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
3679
skip:
A
Arne Jansen 已提交
3680
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3681
		btrfs_release_path(path);
A
Arne Jansen 已提交
3682 3683 3684
	}

	btrfs_free_path(path);
3685

3686
	return ret;
A
Arne Jansen 已提交
3687 3688
}

3689 3690
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3691 3692 3693 3694 3695
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3696
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3697

3698
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3699 3700
		return -EIO;

3701 3702 3703 3704 3705
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3706 3707 3708

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3709 3710
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3711 3712
			break;

3713
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3714
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3715
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3716 3717 3718
		if (ret)
			return ret;
	}
3719
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3720 3721 3722 3723 3724 3725 3726

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3727 3728
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3729
{
3730
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3731
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3732

A
Arne Jansen 已提交
3733
	if (fs_info->scrub_workers_refcnt == 0) {
3734
		if (is_dev_replace)
3735 3736 3737
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      1, 4);
3738
		else
3739 3740 3741
			fs_info->scrub_workers =
				btrfs_alloc_workqueue("btrfs-scrub", flags,
						      max_active, 4);
3742 3743 3744
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3745 3746 3747
		fs_info->scrub_wr_completion_workers =
			btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
					      max_active, 2);
3748 3749 3750
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3751 3752
		fs_info->scrub_nocow_workers =
			btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3753 3754
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
3755 3756 3757
		fs_info->scrub_parity_workers =
			btrfs_alloc_workqueue("btrfs-scrubparity", flags,
					      max_active, 2);
3758 3759
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
3760
	}
A
Arne Jansen 已提交
3761
	++fs_info->scrub_workers_refcnt;
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3772 3773
}

3774
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3775
{
3776
	if (--fs_info->scrub_workers_refcnt == 0) {
3777 3778 3779
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3780
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3781
	}
A
Arne Jansen 已提交
3782 3783 3784
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3785 3786
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3787
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3788
{
3789
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3790 3791
	int ret;
	struct btrfs_device *dev;
3792
	struct rcu_string *name;
A
Arne Jansen 已提交
3793

3794
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3795 3796
		return -EINVAL;

3797
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3798 3799 3800 3801 3802
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3803 3804
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3805
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3806 3807 3808
		return -EINVAL;
	}

3809
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3810
		/* not supported for data w/o checksums */
3811 3812 3813
		btrfs_err(fs_info,
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3814
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3815 3816 3817
		return -EINVAL;
	}

3818 3819 3820 3821 3822 3823 3824 3825
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3826 3827
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3828 3829 3830 3831 3832 3833 3834
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3835

3836 3837
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3838
	if (!dev || (dev->missing && !is_dev_replace)) {
3839
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3840 3841 3842
		return -ENODEV;
	}

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3853
	mutex_lock(&fs_info->scrub_lock);
3854
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3855
		mutex_unlock(&fs_info->scrub_lock);
3856 3857
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3858 3859
	}

3860 3861 3862 3863 3864
	btrfs_dev_replace_lock(&fs_info->dev_replace);
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
		btrfs_dev_replace_unlock(&fs_info->dev_replace);
A
Arne Jansen 已提交
3865
		mutex_unlock(&fs_info->scrub_lock);
3866
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3867 3868
		return -EINPROGRESS;
	}
3869
	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3870 3871 3872 3873 3874 3875 3876 3877

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3878
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3879
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3880
		mutex_unlock(&fs_info->scrub_lock);
3881 3882
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3883
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3884
	}
3885 3886
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3887
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3888

3889 3890 3891 3892
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3893
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3894 3895 3896
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3897
	if (!is_dev_replace) {
3898 3899 3900 3901
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3902
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3903
		ret = scrub_supers(sctx, dev);
3904
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3905
	}
A
Arne Jansen 已提交
3906 3907

	if (!ret)
3908 3909
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3910

3911
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3912 3913 3914
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3915
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3916

A
Arne Jansen 已提交
3917
	if (progress)
3918
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3919 3920 3921

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3922
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3923 3924
	mutex_unlock(&fs_info->scrub_lock);

3925
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3926 3927 3928 3929

	return ret;
}

3930
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3947
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3948 3949 3950 3951 3952 3953 3954
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

3955
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

3976 3977
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
3978
{
3979
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3980 3981

	mutex_lock(&fs_info->scrub_lock);
3982 3983
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
3984 3985 3986
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
3987
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
3998

A
Arne Jansen 已提交
3999 4000 4001 4002
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4003
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4004 4005

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4006
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4007
	if (dev)
4008 4009 4010
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4011 4012
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

4013
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4014
}
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4031
		btrfs_put_bbio(bbio);
4032 4033 4034 4035 4036 4037
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4038
	btrfs_put_bbio(bbio);
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
4055
	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4090 4091
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4092
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4093 4094
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4095 4096 4097 4098

	return 0;
}

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4151
					  record_inode_for_nocow, nocow_ctx);
4152
	if (ret != 0 && ret != -ENOENT) {
4153 4154
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
4155 4156
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
4157 4158 4159 4160
		not_written = 1;
		goto out;
	}

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4179
out:
4180 4181 4182 4183 4184 4185 4186 4187
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

	lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4244 4245
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4246
{
4247
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4248
	struct btrfs_key key;
4249 4250
	struct inode *inode;
	struct page *page;
4251
	struct btrfs_root *local_root;
4252
	struct extent_io_tree *io_tree;
4253
	u64 physical_for_dev_replace;
4254
	u64 nocow_ctx_logical;
4255
	u64 len = nocow_ctx->len;
4256
	unsigned long index;
4257
	int srcu_index;
4258 4259
	int ret = 0;
	int err = 0;
4260 4261 4262 4263

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4264 4265 4266

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4267
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4268 4269
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4270
		return PTR_ERR(local_root);
4271
	}
4272 4273 4274 4275 4276

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4277
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4278 4279 4280
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4281 4282 4283 4284
	/* Avoid truncate/dio/punch hole.. */
	mutex_lock(&inode->i_mutex);
	inode_dio_wait(inode);

4285
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4286
	io_tree = &BTRFS_I(inode)->io_tree;
4287
	nocow_ctx_logical = nocow_ctx->logical;
4288

4289 4290 4291 4292
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4293 4294
	}

4295 4296
	while (len >= PAGE_CACHE_SIZE) {
		index = offset >> PAGE_CACHE_SHIFT;
4297
again:
4298 4299
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4300
			btrfs_err(fs_info, "find_or_create_page() failed");
4301
			ret = -ENOMEM;
4302
			goto out;
4303 4304 4305 4306 4307 4308 4309
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4310
			err = extent_read_full_page(io_tree, page,
4311 4312
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4313 4314
			if (err) {
				ret = err;
4315 4316
				goto next_page;
			}
4317

4318
			lock_page(page);
4319 4320 4321 4322 4323 4324 4325
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4326
				unlock_page(page);
4327 4328 4329
				page_cache_release(page);
				goto again;
			}
4330 4331 4332 4333 4334
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4335 4336 4337 4338 4339 4340 4341 4342

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4343 4344 4345 4346
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4347
next_page:
4348 4349 4350 4351 4352 4353
		unlock_page(page);
		page_cache_release(page);

		if (ret)
			break;

4354 4355
		offset += PAGE_CACHE_SIZE;
		physical_for_dev_replace += PAGE_CACHE_SIZE;
4356
		nocow_ctx_logical += PAGE_CACHE_SIZE;
4357 4358
		len -= PAGE_CACHE_SIZE;
	}
4359
	ret = COPY_COMPLETE;
4360
out:
4361
	mutex_unlock(&inode->i_mutex);
4362
	iput(inode);
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4377 4378
		btrfs_warn_rl(dev->dev_root->fs_info,
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4379 4380
		return -EIO;
	}
4381
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4382 4383 4384 4385 4386 4387
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4388 4389
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4390 4391 4392 4393 4394 4395 4396 4397 4398
	bio->bi_bdev = dev->bdev;
	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
	if (ret != PAGE_CACHE_SIZE) {
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4399
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4400 4401 4402 4403 4404
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}