memcontrol.c 151.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210
	struct mm_struct  *mm;
211 212
	struct mem_cgroup *from;
	struct mem_cgroup *to;
213
	unsigned long flags;
214
	unsigned long precharge;
215
	unsigned long moved_charge;
216
	unsigned long moved_swap;
217 218 219
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
220
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 222
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
223

224 225 226 227
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
228
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230

231 232
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
235
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 237 238
	NR_CHARGE_TYPE,
};

239
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
240 241 242 243
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
244
	_KMEM,
V
Vladimir Davydov 已提交
245
	_TCP,
G
Glauber Costa 已提交
246 247
};

248 249
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
251 252
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
253

254 255 256 257 258 259 260 261 262 263 264 265 266
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

267 268 269 270 271
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

272
#ifndef CONFIG_SLOB
273
/*
274
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
275 276 277 278 279
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
280
 *
281 282
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
283
 */
284 285
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
286

287 288 289 290 291 292 293 294 295 296 297 298 299
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

300 301 302 303 304 305
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
306
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 308
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
309
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 311 312
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
313
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314

315 316 317 318 319 320
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
321
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322
EXPORT_SYMBOL(memcg_kmem_enabled_key);
323

324
#endif /* !CONFIG_SLOB */
325

326
static struct mem_cgroup_per_zone *
327
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328
{
329 330 331
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

332
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

352
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 354 355 356 357
		memcg = root_mem_cgroup;

	return &memcg->css;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

386
static struct mem_cgroup_per_zone *
387
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388
{
389 390
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
391

392
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 394
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

410 411
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
412
					 unsigned long new_usage_in_excess)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

442 443
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
444 445 446 447 448 449 450
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

451 452
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
453
{
454 455 456
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
457
	__mem_cgroup_remove_exceeded(mz, mctz);
458
	spin_unlock_irqrestore(&mctz->lock, flags);
459 460
}

461 462 463
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
464
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 466 467 468 469 470 471
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
472 473 474

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
475
	unsigned long excess;
476 477 478
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

479
	mctz = soft_limit_tree_from_page(page);
480 481 482 483 484
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485
		mz = mem_cgroup_page_zoneinfo(memcg, page);
486
		excess = soft_limit_excess(memcg);
487 488 489 490 491
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
492 493 494
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
495 496
			/* if on-tree, remove it */
			if (mz->on_tree)
497
				__mem_cgroup_remove_exceeded(mz, mctz);
498 499 500 501
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
502
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
503
			spin_unlock_irqrestore(&mctz->lock, flags);
504 505 506 507 508 509 510
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
511 512
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
513

514 515 516 517
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
518
			mem_cgroup_remove_exceeded(mz, mctz);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
541
	__mem_cgroup_remove_exceeded(mz, mctz);
542
	if (!soft_limit_excess(mz->memcg) ||
543
	    !css_tryget_online(&mz->memcg->css))
544 545 546 547 548 549 550 551 552 553
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

554
	spin_lock_irq(&mctz->lock);
555
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
556
	spin_unlock_irq(&mctz->lock);
557 558 559
	return mz;
}

560
/*
561 562
 * Return page count for single (non recursive) @memcg.
 *
563 564 565 566 567
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
568
 * a periodic synchronization of counter in memcg's counter.
569 570 571 572 573 574 575 576 577
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
578
 * common workload, threshold and synchronization as vmstat[] should be
579 580
 * implemented.
 */
581 582
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583
{
584
	long val = 0;
585 586
	int cpu;

587
	/* Per-cpu values can be negative, use a signed accumulator */
588
	for_each_possible_cpu(cpu)
589
		val += per_cpu(memcg->stat->count[idx], cpu);
590 591 592 593 594 595
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
596 597 598
	return val;
}

599
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 601 602 603 604
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

605
	for_each_possible_cpu(cpu)
606
		val += per_cpu(memcg->stat->events[idx], cpu);
607 608 609
	return val;
}

610
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611
					 struct page *page,
612
					 bool compound, int nr_pages)
613
{
614 615 616 617
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
618
	if (PageAnon(page))
619
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620
				nr_pages);
621
	else
622
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623
				nr_pages);
624

625 626
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 628
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
629
	}
630

631 632
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
633
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634
	else {
635
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 637
		nr_pages = -nr_pages; /* for event */
	}
638

639
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 641
}

642 643
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
644
{
645
	unsigned long nr = 0;
646 647
	int zid;

648
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649

650 651 652 653 654 655 656 657 658 659 660 661
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
662
}
663

664
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665
			unsigned int lru_mask)
666
{
667
	unsigned long nr = 0;
668
	int nid;
669

670
	for_each_node_state(nid, N_MEMORY)
671 672
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
673 674
}

675 676
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
677 678 679
{
	unsigned long val, next;

680
	val = __this_cpu_read(memcg->stat->nr_page_events);
681
	next = __this_cpu_read(memcg->stat->targets[target]);
682
	/* from time_after() in jiffies.h */
683 684 685 686 687
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
688 689 690
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
691 692 693 694 695 696 697 698
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
699
	}
700
	return false;
701 702 703 704 705 706
}

/*
 * Check events in order.
 *
 */
707
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 709
{
	/* threshold event is triggered in finer grain than soft limit */
710 711
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
712
		bool do_softlimit;
713
		bool do_numainfo __maybe_unused;
714

715 716
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
717 718 719 720
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
721
		mem_cgroup_threshold(memcg);
722 723
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
724
#if MAX_NUMNODES > 1
725
		if (unlikely(do_numainfo))
726
			atomic_inc(&memcg->numainfo_events);
727
#endif
728
	}
729 730
}

731
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732
{
733 734 735 736 737 738 739 740
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

741
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742
}
M
Michal Hocko 已提交
743
EXPORT_SYMBOL(mem_cgroup_from_task);
744

745
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746
{
747
	struct mem_cgroup *memcg = NULL;
748

749 750
	rcu_read_lock();
	do {
751 752 753 754 755 756
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
757
			memcg = root_mem_cgroup;
758 759 760 761 762
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
763
	} while (!css_tryget_online(&memcg->css));
764
	rcu_read_unlock();
765
	return memcg;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
785
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786
				   struct mem_cgroup *prev,
787
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
788
{
M
Michal Hocko 已提交
789
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790
	struct cgroup_subsys_state *css = NULL;
791
	struct mem_cgroup *memcg = NULL;
792
	struct mem_cgroup *pos = NULL;
793

794 795
	if (mem_cgroup_disabled())
		return NULL;
796

797 798
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
799

800
	if (prev && !reclaim)
801
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
802

803 804
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
805
			goto out;
806
		return root;
807
	}
K
KAMEZAWA Hiroyuki 已提交
808

809
	rcu_read_lock();
M
Michal Hocko 已提交
810

811 812 813 814 815 816 817 818 819
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

820
		while (1) {
821
			pos = READ_ONCE(iter->position);
822 823
			if (!pos || css_tryget(&pos->css))
				break;
824
			/*
825 826 827 828 829 830
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
831
			 */
832 833
			(void)cmpxchg(&iter->position, pos, NULL);
		}
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
851
		}
K
KAMEZAWA Hiroyuki 已提交
852

853 854 855 856 857 858
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
859

860 861
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
862

863 864
		if (css_tryget(css))
			break;
865

866
		memcg = NULL;
867
	}
868 869 870

	if (reclaim) {
		/*
871 872 873
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
874
		 */
875 876
		(void)cmpxchg(&iter->position, pos, memcg);

877 878 879 880 881 882 883
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
884
	}
885

886 887
out_unlock:
	rcu_read_unlock();
888
out:
889 890 891
	if (prev && prev != root)
		css_put(&prev->css);

892
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
893
}
K
KAMEZAWA Hiroyuki 已提交
894

895 896 897 898 899 900 901
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
902 903 904 905 906 907
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

931 932 933 934 935 936
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
937
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938
	     iter != NULL;				\
939
	     iter = mem_cgroup_iter(root, iter, NULL))
940

941
#define for_each_mem_cgroup(iter)			\
942
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943
	     iter != NULL;				\
944
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
945

946 947 948
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
949
 * @memcg: memcg of the wanted lruvec
950 951 952 953 954 955 956 957 958
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
959
	struct lruvec *lruvec;
960

961 962 963 964
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
965

966
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 968 969 970 971 972 973 974 975 976
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
977 978 979
}

/**
980
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981
 * @page: the page
982
 * @zone: zone of the page
983 984 985 986
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
987
 */
988
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
989 990
{
	struct mem_cgroup_per_zone *mz;
991
	struct mem_cgroup *memcg;
992
	struct lruvec *lruvec;
993

994 995 996 997
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
998

999
	memcg = page->mem_cgroup;
1000
	/*
1001
	 * Swapcache readahead pages are added to the LRU - and
1002
	 * possibly migrated - before they are charged.
1003
	 */
1004 1005
	if (!memcg)
		memcg = root_mem_cgroup;
1006

1007
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1018
}
1019

1020
/**
1021 1022 1023 1024
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1025
 *
1026 1027 1028
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029
 */
1030 1031
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1032 1033
{
	struct mem_cgroup_per_zone *mz;
1034
	unsigned long *lru_size;
1035 1036
	long size;
	bool empty;
1037

1038 1039
	__update_lru_size(lruvec, lru, nr_pages);

1040 1041 1042
	if (mem_cgroup_disabled())
		return;

1043 1044
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	empty = list_empty(lruvec->lists + lru);

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
	if (WARN_ONCE(size < 0 || empty != !size,
		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1060
}
1061

1062
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063
{
1064
	struct mem_cgroup *task_memcg;
1065
	struct task_struct *p;
1066
	bool ret;
1067

1068
	p = find_lock_task_mm(task);
1069
	if (p) {
1070
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 1072 1073 1074 1075 1076 1077
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1078
		rcu_read_lock();
1079 1080
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1081
		rcu_read_unlock();
1082
	}
1083 1084
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1085 1086 1087
	return ret;
}

1088
/**
1089
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1090
 * @memcg: the memory cgroup
1091
 *
1092
 * Returns the maximum amount of memory @mem can be charged with, in
1093
 * pages.
1094
 */
1095
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096
{
1097 1098 1099
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1100

1101
	count = page_counter_read(&memcg->memory);
1102
	limit = READ_ONCE(memcg->memory.limit);
1103 1104 1105
	if (count < limit)
		margin = limit - count;

1106
	if (do_memsw_account()) {
1107
		count = page_counter_read(&memcg->memsw);
1108
		limit = READ_ONCE(memcg->memsw.limit);
1109 1110 1111 1112 1113
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1114 1115
}

1116
/*
Q
Qiang Huang 已提交
1117
 * A routine for checking "mem" is under move_account() or not.
1118
 *
Q
Qiang Huang 已提交
1119 1120 1121
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1122
 */
1123
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1124
{
1125 1126
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1127
	bool ret = false;
1128 1129 1130 1131 1132 1133 1134 1135 1136
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1137

1138 1139
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1140 1141
unlock:
	spin_unlock(&mc.lock);
1142 1143 1144
	return ret;
}

1145
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1146 1147
{
	if (mc.moving_task && current != mc.moving_task) {
1148
		if (mem_cgroup_under_move(memcg)) {
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1161
#define K(x) ((x) << (PAGE_SHIFT-10))
1162
/**
1163
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1164 1165 1166 1167 1168 1169 1170 1171
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1172 1173
	struct mem_cgroup *iter;
	unsigned int i;
1174 1175 1176

	rcu_read_lock();

1177 1178 1179 1180 1181 1182 1183 1184
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1185
	pr_cont_cgroup_path(memcg->css.cgroup);
1186
	pr_cont("\n");
1187 1188 1189

	rcu_read_unlock();

1190 1191 1192 1193 1194 1195 1196 1197 1198
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1199 1200

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1201 1202
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1203 1204 1205
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1206
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1207
				continue;
1208
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1209 1210 1211 1212 1213 1214 1215 1216 1217
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1218 1219
}

1220 1221 1222 1223
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1224
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1225 1226
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1227 1228
	struct mem_cgroup *iter;

1229
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1230
		num++;
1231 1232 1233
	return num;
}

D
David Rientjes 已提交
1234 1235 1236
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1237
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1238
{
1239
	unsigned long limit;
1240

1241
	limit = memcg->memory.limit;
1242
	if (mem_cgroup_swappiness(memcg)) {
1243
		unsigned long memsw_limit;
1244
		unsigned long swap_limit;
1245

1246
		memsw_limit = memcg->memsw.limit;
1247 1248 1249
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1250 1251
	}
	return limit;
D
David Rientjes 已提交
1252 1253
}

1254
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1255
				     int order)
1256
{
1257 1258 1259 1260 1261 1262
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1263 1264 1265 1266 1267 1268
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1269 1270
	mutex_lock(&oom_lock);

1271
	/*
1272 1273 1274
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1275
	 */
1276
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1277
		mark_oom_victim(current);
1278
		try_oom_reaper(current);
1279
		goto unlock;
1280 1281
	}

1282
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1283
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1284
	for_each_mem_cgroup_tree(iter, memcg) {
1285
		struct css_task_iter it;
1286 1287
		struct task_struct *task;

1288 1289
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1290
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1301
				css_task_iter_end(&it);
1302 1303 1304
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1305
				goto unlock;
1306 1307 1308 1309
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1322
		}
1323
		css_task_iter_end(&it);
1324 1325
	}

1326 1327
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1328 1329
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1330 1331 1332
	}
unlock:
	mutex_unlock(&oom_lock);
1333
	return chosen;
1334 1335
}

1336 1337
#if MAX_NUMNODES > 1

1338 1339
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1340
 * @memcg: the target memcg
1341 1342 1343 1344 1345 1346 1347
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1348
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1349 1350
		int nid, bool noswap)
{
1351
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1352 1353 1354
		return true;
	if (noswap || !total_swap_pages)
		return false;
1355
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1356 1357 1358 1359
		return true;
	return false;

}
1360 1361 1362 1363 1364 1365 1366

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1367
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1368 1369
{
	int nid;
1370 1371 1372 1373
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1374
	if (!atomic_read(&memcg->numainfo_events))
1375
		return;
1376
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1377 1378 1379
		return;

	/* make a nodemask where this memcg uses memory from */
1380
	memcg->scan_nodes = node_states[N_MEMORY];
1381

1382
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1383

1384 1385
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1386
	}
1387

1388 1389
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1404
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1405 1406 1407
{
	int node;

1408 1409
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1410

1411
	node = next_node_in(node, memcg->scan_nodes);
1412
	/*
1413 1414 1415
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1416 1417 1418 1419
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1420
	memcg->last_scanned_node = node;
1421 1422 1423
	return node;
}
#else
1424
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1425 1426 1427 1428 1429
{
	return 0;
}
#endif

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1445
	excess = soft_limit_excess(root_memcg);
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1474
		if (!soft_limit_excess(root_memcg))
1475
			break;
1476
	}
1477 1478
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1479 1480
}

1481 1482 1483 1484 1485 1486
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1487 1488
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1489 1490 1491 1492
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1493
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1494
{
1495
	struct mem_cgroup *iter, *failed = NULL;
1496

1497 1498
	spin_lock(&memcg_oom_lock);

1499
	for_each_mem_cgroup_tree(iter, memcg) {
1500
		if (iter->oom_lock) {
1501 1502 1503 1504 1505
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1506 1507
			mem_cgroup_iter_break(memcg, iter);
			break;
1508 1509
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1510
	}
K
KAMEZAWA Hiroyuki 已提交
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1523
		}
1524 1525
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1526 1527 1528 1529

	spin_unlock(&memcg_oom_lock);

	return !failed;
1530
}
1531

1532
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1533
{
K
KAMEZAWA Hiroyuki 已提交
1534 1535
	struct mem_cgroup *iter;

1536
	spin_lock(&memcg_oom_lock);
1537
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1538
	for_each_mem_cgroup_tree(iter, memcg)
1539
		iter->oom_lock = false;
1540
	spin_unlock(&memcg_oom_lock);
1541 1542
}

1543
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1544 1545 1546
{
	struct mem_cgroup *iter;

1547
	spin_lock(&memcg_oom_lock);
1548
	for_each_mem_cgroup_tree(iter, memcg)
1549 1550
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1551 1552
}

1553
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1554 1555 1556
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1557 1558
	/*
	 * When a new child is created while the hierarchy is under oom,
1559
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1560
	 */
1561
	spin_lock(&memcg_oom_lock);
1562
	for_each_mem_cgroup_tree(iter, memcg)
1563 1564 1565
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1566 1567
}

K
KAMEZAWA Hiroyuki 已提交
1568 1569
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1570
struct oom_wait_info {
1571
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1572 1573 1574 1575 1576 1577
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1578 1579
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1580 1581 1582
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1583
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1584

1585 1586
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1587 1588 1589 1590
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1591
static void memcg_oom_recover(struct mem_cgroup *memcg)
1592
{
1593 1594 1595 1596 1597 1598 1599 1600 1601
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1602
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1603 1604
}

1605
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1606
{
1607
	if (!current->memcg_may_oom || current->memcg_in_oom)
1608
		return;
K
KAMEZAWA Hiroyuki 已提交
1609
	/*
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1622
	 */
1623
	css_get(&memcg->css);
T
Tejun Heo 已提交
1624 1625 1626
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1627 1628 1629 1630
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1631
 * @handle: actually kill/wait or just clean up the OOM state
1632
 *
1633 1634
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1635
 *
1636
 * Memcg supports userspace OOM handling where failed allocations must
1637 1638 1639 1640
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1641
 * the end of the page fault to complete the OOM handling.
1642 1643
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1644
 * completed, %false otherwise.
1645
 */
1646
bool mem_cgroup_oom_synchronize(bool handle)
1647
{
T
Tejun Heo 已提交
1648
	struct mem_cgroup *memcg = current->memcg_in_oom;
1649
	struct oom_wait_info owait;
1650
	bool locked;
1651 1652 1653

	/* OOM is global, do not handle */
	if (!memcg)
1654
		return false;
1655

1656
	if (!handle || oom_killer_disabled)
1657
		goto cleanup;
1658 1659 1660 1661 1662 1663

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1664

1665
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1676 1677
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1678
	} else {
1679
		schedule();
1680 1681 1682 1683 1684
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1685 1686 1687 1688 1689 1690 1691 1692
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1693
cleanup:
T
Tejun Heo 已提交
1694
	current->memcg_in_oom = NULL;
1695
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1696
	return true;
1697 1698
}

1699
/**
1700 1701
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1702
 *
1703 1704
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1705
 */
J
Johannes Weiner 已提交
1706
void lock_page_memcg(struct page *page)
1707 1708
{
	struct mem_cgroup *memcg;
1709
	unsigned long flags;
1710

1711 1712 1713 1714 1715
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1716 1717 1718
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1719
		return;
1720
again:
1721
	memcg = page->mem_cgroup;
1722
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1723
		return;
1724

Q
Qiang Huang 已提交
1725
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1726
		return;
1727

1728
	spin_lock_irqsave(&memcg->move_lock, flags);
1729
	if (memcg != page->mem_cgroup) {
1730
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1731 1732
		goto again;
	}
1733 1734 1735 1736

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1737
	 * the task who has the lock for unlock_page_memcg().
1738 1739 1740
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1741

J
Johannes Weiner 已提交
1742
	return;
1743
}
1744
EXPORT_SYMBOL(lock_page_memcg);
1745

1746
/**
1747
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1748
 * @page: the page
1749
 */
J
Johannes Weiner 已提交
1750
void unlock_page_memcg(struct page *page)
1751
{
J
Johannes Weiner 已提交
1752 1753
	struct mem_cgroup *memcg = page->mem_cgroup;

1754 1755 1756 1757 1758 1759 1760 1761
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1762

1763
	rcu_read_unlock();
1764
}
1765
EXPORT_SYMBOL(unlock_page_memcg);
1766

1767 1768 1769 1770
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1771
#define CHARGE_BATCH	32U
1772 1773
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1774
	unsigned int nr_pages;
1775
	struct work_struct work;
1776
	unsigned long flags;
1777
#define FLUSHING_CACHED_CHARGE	0
1778 1779
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1780
static DEFINE_MUTEX(percpu_charge_mutex);
1781

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1792
 */
1793
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1794 1795
{
	struct memcg_stock_pcp *stock;
1796
	bool ret = false;
1797

1798
	if (nr_pages > CHARGE_BATCH)
1799
		return ret;
1800

1801
	stock = &get_cpu_var(memcg_stock);
1802
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1803
		stock->nr_pages -= nr_pages;
1804 1805
		ret = true;
	}
1806 1807 1808 1809 1810
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1811
 * Returns stocks cached in percpu and reset cached information.
1812 1813 1814 1815 1816
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1817
	if (stock->nr_pages) {
1818
		page_counter_uncharge(&old->memory, stock->nr_pages);
1819
		if (do_memsw_account())
1820
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1821
		css_put_many(&old->css, stock->nr_pages);
1822
		stock->nr_pages = 0;
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1833
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1834
	drain_stock(stock);
1835
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1836 1837 1838
}

/*
1839
 * Cache charges(val) to local per_cpu area.
1840
 * This will be consumed by consume_stock() function, later.
1841
 */
1842
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1843 1844 1845
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1846
	if (stock->cached != memcg) { /* reset if necessary */
1847
		drain_stock(stock);
1848
		stock->cached = memcg;
1849
	}
1850
	stock->nr_pages += nr_pages;
1851 1852 1853 1854
	put_cpu_var(memcg_stock);
}

/*
1855
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1856
 * of the hierarchy under it.
1857
 */
1858
static void drain_all_stock(struct mem_cgroup *root_memcg)
1859
{
1860
	int cpu, curcpu;
1861

1862 1863 1864
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1865 1866
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1867
	curcpu = get_cpu();
1868 1869
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1870
		struct mem_cgroup *memcg;
1871

1872 1873
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1874
			continue;
1875
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1876
			continue;
1877 1878 1879 1880 1881 1882
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1883
	}
1884
	put_cpu();
A
Andrew Morton 已提交
1885
	put_online_cpus();
1886
	mutex_unlock(&percpu_charge_mutex);
1887 1888
}

1889
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1890 1891 1892 1893 1894 1895
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1896
	if (action == CPU_ONLINE)
1897 1898
		return NOTIFY_OK;

1899
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1900
		return NOTIFY_OK;
1901

1902 1903 1904 1905 1906
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1927 1928 1929 1930 1931 1932 1933
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1934
	struct mem_cgroup *memcg;
1935 1936 1937 1938

	if (likely(!nr_pages))
		return;

1939 1940
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1941 1942 1943 1944
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1945 1946
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1947
{
1948
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1949
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1950
	struct mem_cgroup *mem_over_limit;
1951
	struct page_counter *counter;
1952
	unsigned long nr_reclaimed;
1953 1954
	bool may_swap = true;
	bool drained = false;
1955

1956
	if (mem_cgroup_is_root(memcg))
1957
		return 0;
1958
retry:
1959
	if (consume_stock(memcg, nr_pages))
1960
		return 0;
1961

1962
	if (!do_memsw_account() ||
1963 1964
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1965
			goto done_restock;
1966
		if (do_memsw_account())
1967 1968
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1969
	} else {
1970
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1971
		may_swap = false;
1972
	}
1973

1974 1975 1976 1977
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1988
		goto force;
1989 1990 1991 1992

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1993
	if (!gfpflags_allow_blocking(gfp_mask))
1994
		goto nomem;
1995

1996 1997
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1998 1999
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2000

2001
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2002
		goto retry;
2003

2004
	if (!drained) {
2005
		drain_all_stock(mem_over_limit);
2006 2007 2008 2009
		drained = true;
		goto retry;
	}

2010 2011
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2012 2013 2014 2015 2016 2017 2018 2019 2020
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2021
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2022 2023 2024 2025 2026 2027 2028 2029
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2030 2031 2032
	if (nr_retries--)
		goto retry;

2033
	if (gfp_mask & __GFP_NOFAIL)
2034
		goto force;
2035

2036
	if (fatal_signal_pending(current))
2037
		goto force;
2038

2039 2040
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2041 2042
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2043
nomem:
2044
	if (!(gfp_mask & __GFP_NOFAIL))
2045
		return -ENOMEM;
2046 2047 2048 2049 2050 2051 2052
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2053
	if (do_memsw_account())
2054 2055 2056 2057
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2058 2059

done_restock:
2060
	css_get_many(&memcg->css, batch);
2061 2062
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2063

2064
	/*
2065 2066
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2067
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2068 2069 2070 2071
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2072 2073
	 */
	do {
2074
		if (page_counter_read(&memcg->memory) > memcg->high) {
2075 2076 2077 2078 2079
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2080
			current->memcg_nr_pages_over_high += batch;
2081 2082 2083
			set_notify_resume(current);
			break;
		}
2084
	} while ((memcg = parent_mem_cgroup(memcg)));
2085 2086

	return 0;
2087
}
2088

2089
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2090
{
2091 2092 2093
	if (mem_cgroup_is_root(memcg))
		return;

2094
	page_counter_uncharge(&memcg->memory, nr_pages);
2095
	if (do_memsw_account())
2096
		page_counter_uncharge(&memcg->memsw, nr_pages);
2097

2098
	css_put_many(&memcg->css, nr_pages);
2099 2100
}

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2132
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2133
			  bool lrucare)
2134
{
2135
	int isolated;
2136

2137
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2138 2139 2140 2141 2142

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2143 2144
	if (lrucare)
		lock_page_lru(page, &isolated);
2145

2146 2147
	/*
	 * Nobody should be changing or seriously looking at
2148
	 * page->mem_cgroup at this point:
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2160
	page->mem_cgroup = memcg;
2161

2162 2163
	if (lrucare)
		unlock_page_lru(page, isolated);
2164
}
2165

2166
#ifndef CONFIG_SLOB
2167
static int memcg_alloc_cache_id(void)
2168
{
2169 2170 2171
	int id, size;
	int err;

2172
	id = ida_simple_get(&memcg_cache_ida,
2173 2174 2175
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2176

2177
	if (id < memcg_nr_cache_ids)
2178 2179 2180 2181 2182 2183
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2184
	down_write(&memcg_cache_ids_sem);
2185 2186

	size = 2 * (id + 1);
2187 2188 2189 2190 2191
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2192
	err = memcg_update_all_caches(size);
2193 2194
	if (!err)
		err = memcg_update_all_list_lrus(size);
2195 2196 2197 2198 2199
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2200
	if (err) {
2201
		ida_simple_remove(&memcg_cache_ida, id);
2202 2203 2204 2205 2206 2207 2208
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2209
	ida_simple_remove(&memcg_cache_ida, id);
2210 2211
}

2212
struct memcg_kmem_cache_create_work {
2213 2214 2215 2216 2217
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2218
static void memcg_kmem_cache_create_func(struct work_struct *w)
2219
{
2220 2221
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2222 2223
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2224

2225
	memcg_create_kmem_cache(memcg, cachep);
2226

2227
	css_put(&memcg->css);
2228 2229 2230 2231 2232 2233
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2234 2235
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2236
{
2237
	struct memcg_kmem_cache_create_work *cw;
2238

2239
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2240
	if (!cw)
2241
		return;
2242 2243

	css_get(&memcg->css);
2244 2245 2246

	cw->memcg = memcg;
	cw->cachep = cachep;
2247
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2248 2249 2250 2251

	schedule_work(&cw->work);
}

2252 2253
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2254 2255 2256 2257
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2258
	 * in __memcg_schedule_kmem_cache_create will recurse.
2259 2260 2261 2262 2263 2264 2265
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2266
	current->memcg_kmem_skip_account = 1;
2267
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2268
	current->memcg_kmem_skip_account = 0;
2269
}
2270

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2284
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2285 2286
{
	struct mem_cgroup *memcg;
2287
	struct kmem_cache *memcg_cachep;
2288
	int kmemcg_id;
2289

2290
	VM_BUG_ON(!is_root_cache(cachep));
2291

V
Vladimir Davydov 已提交
2292 2293 2294 2295 2296 2297
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2298
	if (current->memcg_kmem_skip_account)
2299 2300
		return cachep;

2301
	memcg = get_mem_cgroup_from_mm(current->mm);
2302
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2303
	if (kmemcg_id < 0)
2304
		goto out;
2305

2306
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2307 2308
	if (likely(memcg_cachep))
		return memcg_cachep;
2309 2310 2311 2312 2313 2314 2315 2316 2317

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2318 2319 2320
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2321
	 */
2322
	memcg_schedule_kmem_cache_create(memcg, cachep);
2323
out:
2324
	css_put(&memcg->css);
2325
	return cachep;
2326 2327
}

2328 2329 2330
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2331
		css_put(&cachep->memcg_params.memcg->css);
2332 2333
}

2334 2335
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2336
{
2337 2338
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2339 2340
	int ret;

2341
	ret = try_charge(memcg, gfp, nr_pages);
2342
	if (ret)
2343
		return ret;
2344 2345 2346 2347 2348

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2349 2350
	}

2351
	page->mem_cgroup = memcg;
2352

2353
	return 0;
2354 2355
}

2356
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2357
{
2358
	struct mem_cgroup *memcg;
2359
	int ret = 0;
2360

2361
	memcg = get_mem_cgroup_from_mm(current->mm);
2362
	if (!mem_cgroup_is_root(memcg))
2363
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2364
	css_put(&memcg->css);
2365
	return ret;
2366 2367
}

2368
void __memcg_kmem_uncharge(struct page *page, int order)
2369
{
2370
	struct mem_cgroup *memcg = page->mem_cgroup;
2371
	unsigned int nr_pages = 1 << order;
2372 2373 2374 2375

	if (!memcg)
		return;

2376
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2377

2378 2379 2380
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2381
	page_counter_uncharge(&memcg->memory, nr_pages);
2382
	if (do_memsw_account())
2383
		page_counter_uncharge(&memcg->memsw, nr_pages);
2384

2385
	page->mem_cgroup = NULL;
2386
	css_put_many(&memcg->css, nr_pages);
2387
}
2388
#endif /* !CONFIG_SLOB */
2389

2390 2391 2392 2393
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2394
 * zone->lru_lock and migration entries setup in all page mappings.
2395
 */
2396
void mem_cgroup_split_huge_fixup(struct page *head)
2397
{
2398
	int i;
2399

2400 2401
	if (mem_cgroup_disabled())
		return;
2402

2403
	for (i = 1; i < HPAGE_PMD_NR; i++)
2404
		head[i].mem_cgroup = head->mem_cgroup;
2405

2406
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2407
		       HPAGE_PMD_NR);
2408
}
2409
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2410

A
Andrew Morton 已提交
2411
#ifdef CONFIG_MEMCG_SWAP
2412 2413
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2414
{
2415 2416
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2417
}
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2430
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2431 2432 2433
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2434
				struct mem_cgroup *from, struct mem_cgroup *to)
2435 2436 2437
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2438 2439
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2440 2441 2442

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2443
		mem_cgroup_swap_statistics(to, true);
2444 2445 2446 2447 2448 2449
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2450
				struct mem_cgroup *from, struct mem_cgroup *to)
2451 2452 2453
{
	return -EINVAL;
}
2454
#endif
K
KAMEZAWA Hiroyuki 已提交
2455

2456
static DEFINE_MUTEX(memcg_limit_mutex);
2457

2458
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2459
				   unsigned long limit)
2460
{
2461 2462 2463
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2464
	int retry_count;
2465
	int ret;
2466 2467 2468 2469 2470 2471

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2472 2473
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2474

2475
	oldusage = page_counter_read(&memcg->memory);
2476

2477
	do {
2478 2479 2480 2481
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2482 2483 2484 2485

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2486
			ret = -EINVAL;
2487 2488
			break;
		}
2489 2490 2491 2492
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2493 2494 2495 2496

		if (!ret)
			break;

2497 2498
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2499
		curusage = page_counter_read(&memcg->memory);
2500
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2501
		if (curusage >= oldusage)
2502 2503 2504
			retry_count--;
		else
			oldusage = curusage;
2505 2506
	} while (retry_count);

2507 2508
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2509

2510 2511 2512
	return ret;
}

L
Li Zefan 已提交
2513
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2514
					 unsigned long limit)
2515
{
2516 2517 2518
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2519
	int retry_count;
2520
	int ret;
2521

2522
	/* see mem_cgroup_resize_res_limit */
2523 2524 2525 2526 2527 2528
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2529 2530 2531 2532
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2533 2534 2535 2536

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2537 2538 2539
			ret = -EINVAL;
			break;
		}
2540 2541 2542 2543
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2544 2545 2546 2547

		if (!ret)
			break;

2548 2549
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2550
		curusage = page_counter_read(&memcg->memsw);
2551
		/* Usage is reduced ? */
2552
		if (curusage >= oldusage)
2553
			retry_count--;
2554 2555
		else
			oldusage = curusage;
2556 2557
	} while (retry_count);

2558 2559
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2560

2561 2562 2563
	return ret;
}

2564 2565 2566 2567 2568 2569 2570 2571 2572
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2573
	unsigned long excess;
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2598
		spin_lock_irq(&mctz->lock);
2599
		__mem_cgroup_remove_exceeded(mz, mctz);
2600 2601 2602 2603 2604 2605

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2606 2607 2608
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2609
		excess = soft_limit_excess(mz->memcg);
2610 2611 2612 2613 2614 2615 2616 2617 2618
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2619
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2620
		spin_unlock_irq(&mctz->lock);
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2638 2639 2640 2641 2642 2643
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2644 2645
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2646 2647 2648 2649 2650 2651
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2652 2653
}

2654
/*
2655
 * Reclaims as many pages from the given memcg as possible.
2656 2657 2658 2659 2660 2661 2662
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2663 2664
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2665
	/* try to free all pages in this cgroup */
2666
	while (nr_retries && page_counter_read(&memcg->memory)) {
2667
		int progress;
2668

2669 2670 2671
		if (signal_pending(current))
			return -EINTR;

2672 2673
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2674
		if (!progress) {
2675
			nr_retries--;
2676
			/* maybe some writeback is necessary */
2677
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2678
		}
2679 2680

	}
2681 2682

	return 0;
2683 2684
}

2685 2686 2687
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2688
{
2689
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2690

2691 2692
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2693
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2694 2695
}

2696 2697
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2698
{
2699
	return mem_cgroup_from_css(css)->use_hierarchy;
2700 2701
}

2702 2703
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2704 2705
{
	int retval = 0;
2706
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2707
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2708

2709
	if (memcg->use_hierarchy == val)
2710
		return 0;
2711

2712
	/*
2713
	 * If parent's use_hierarchy is set, we can't make any modifications
2714 2715 2716 2717 2718 2719
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2720
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2721
				(val == 1 || val == 0)) {
2722
		if (!memcg_has_children(memcg))
2723
			memcg->use_hierarchy = val;
2724 2725 2726 2727
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2728

2729 2730 2731
	return retval;
}

2732
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2733 2734
{
	struct mem_cgroup *iter;
2735
	int i;
2736

2737
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2738

2739 2740 2741 2742
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2743 2744
}

2745
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2746 2747
{
	struct mem_cgroup *iter;
2748
	int i;
2749

2750
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2751

2752 2753 2754 2755
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2756 2757
}

2758
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2759
{
2760
	unsigned long val = 0;
2761

2762
	if (mem_cgroup_is_root(memcg)) {
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2774
	} else {
2775
		if (!swap)
2776
			val = page_counter_read(&memcg->memory);
2777
		else
2778
			val = page_counter_read(&memcg->memsw);
2779
	}
2780
	return val;
2781 2782
}

2783 2784 2785 2786 2787 2788 2789
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2790

2791
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2792
			       struct cftype *cft)
B
Balbir Singh 已提交
2793
{
2794
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2795
	struct page_counter *counter;
2796

2797
	switch (MEMFILE_TYPE(cft->private)) {
2798
	case _MEM:
2799 2800
		counter = &memcg->memory;
		break;
2801
	case _MEMSWAP:
2802 2803
		counter = &memcg->memsw;
		break;
2804
	case _KMEM:
2805
		counter = &memcg->kmem;
2806
		break;
V
Vladimir Davydov 已提交
2807
	case _TCP:
2808
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2809
		break;
2810 2811 2812
	default:
		BUG();
	}
2813 2814 2815 2816

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2817
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2818
		if (counter == &memcg->memsw)
2819
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2832
}
2833

2834
#ifndef CONFIG_SLOB
2835
static int memcg_online_kmem(struct mem_cgroup *memcg)
2836 2837 2838
{
	int memcg_id;

2839 2840 2841
	if (cgroup_memory_nokmem)
		return 0;

2842
	BUG_ON(memcg->kmemcg_id >= 0);
2843
	BUG_ON(memcg->kmem_state);
2844

2845
	memcg_id = memcg_alloc_cache_id();
2846 2847
	if (memcg_id < 0)
		return memcg_id;
2848

2849
	static_branch_inc(&memcg_kmem_enabled_key);
2850
	/*
2851
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2852
	 * kmemcg_id. Setting the id after enabling static branching will
2853 2854 2855
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2856
	memcg->kmemcg_id = memcg_id;
2857
	memcg->kmem_state = KMEM_ONLINE;
2858 2859

	return 0;
2860 2861
}

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2909 2910 2911 2912
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2913 2914 2915 2916 2917 2918
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2919
#else
2920
static int memcg_online_kmem(struct mem_cgroup *memcg)
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2932
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2933
				   unsigned long limit)
2934
{
2935
	int ret;
2936 2937 2938 2939 2940

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2941
}
2942

V
Vladimir Davydov 已提交
2943 2944 2945 2946 2947 2948
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2949
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2950 2951 2952
	if (ret)
		goto out;

2953
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2971
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2972 2973 2974 2975 2976 2977
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2978 2979 2980 2981
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2982 2983
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2984
{
2985
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2986
	unsigned long nr_pages;
2987 2988
	int ret;

2989
	buf = strstrip(buf);
2990
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2991 2992
	if (ret)
		return ret;
2993

2994
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2995
	case RES_LIMIT:
2996 2997 2998 2999
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3000 3001 3002
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3003
			break;
3004 3005
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3006
			break;
3007 3008 3009
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3010 3011 3012
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3013
		}
3014
		break;
3015 3016 3017
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3018 3019
		break;
	}
3020
	return ret ?: nbytes;
B
Balbir Singh 已提交
3021 3022
}

3023 3024
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3025
{
3026
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3027
	struct page_counter *counter;
3028

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3039
	case _TCP:
3040
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3041
		break;
3042 3043 3044
	default:
		BUG();
	}
3045

3046
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3047
	case RES_MAX_USAGE:
3048
		page_counter_reset_watermark(counter);
3049 3050
		break;
	case RES_FAILCNT:
3051
		counter->failcnt = 0;
3052
		break;
3053 3054
	default:
		BUG();
3055
	}
3056

3057
	return nbytes;
3058 3059
}

3060
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3061 3062
					struct cftype *cft)
{
3063
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3064 3065
}

3066
#ifdef CONFIG_MMU
3067
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3068 3069
					struct cftype *cft, u64 val)
{
3070
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3071

3072
	if (val & ~MOVE_MASK)
3073
		return -EINVAL;
3074

3075
	/*
3076 3077 3078 3079
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3080
	 */
3081
	memcg->move_charge_at_immigrate = val;
3082 3083
	return 0;
}
3084
#else
3085
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3086 3087 3088 3089 3090
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3091

3092
#ifdef CONFIG_NUMA
3093
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3094
{
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3107
	int nid;
3108
	unsigned long nr;
3109
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3110

3111 3112 3113 3114 3115 3116 3117 3118 3119
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3120 3121
	}

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3137 3138 3139 3140 3141 3142
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3143
static int memcg_stat_show(struct seq_file *m, void *v)
3144
{
3145
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3146
	unsigned long memory, memsw;
3147 3148
	struct mem_cgroup *mi;
	unsigned int i;
3149

3150 3151 3152 3153
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3154 3155
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3156
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3157
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3158
			continue;
3159
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3160
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3161
	}
L
Lee Schermerhorn 已提交
3162

3163 3164 3165 3166 3167 3168 3169 3170
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3171
	/* Hierarchical information */
3172 3173 3174 3175
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3176
	}
3177 3178
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3179
	if (do_memsw_account())
3180 3181
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3182

3183
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3184
		unsigned long long val = 0;
3185

3186
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3187
			continue;
3188 3189
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3190
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3208
	}
K
KAMEZAWA Hiroyuki 已提交
3209

K
KOSAKI Motohiro 已提交
3210 3211 3212 3213
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3214
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3215 3216 3217 3218 3219
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3220
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3221
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3222

3223 3224 3225 3226
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3227
			}
3228 3229 3230 3231
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3232 3233 3234
	}
#endif

3235 3236 3237
	return 0;
}

3238 3239
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3240
{
3241
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3242

3243
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3244 3245
}

3246 3247
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3248
{
3249
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3250

3251
	if (val > 100)
K
KOSAKI Motohiro 已提交
3252 3253
		return -EINVAL;

3254
	if (css->parent)
3255 3256 3257
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3258

K
KOSAKI Motohiro 已提交
3259 3260 3261
	return 0;
}

3262 3263 3264
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3265
	unsigned long usage;
3266 3267 3268 3269
	int i;

	rcu_read_lock();
	if (!swap)
3270
		t = rcu_dereference(memcg->thresholds.primary);
3271
	else
3272
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3273 3274 3275 3276

	if (!t)
		goto unlock;

3277
	usage = mem_cgroup_usage(memcg, swap);
3278 3279

	/*
3280
	 * current_threshold points to threshold just below or equal to usage.
3281 3282 3283
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3284
	i = t->current_threshold;
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3308
	t->current_threshold = i - 1;
3309 3310 3311 3312 3313 3314
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3315 3316
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3317
		if (do_memsw_account())
3318 3319 3320 3321
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3322 3323 3324 3325 3326 3327 3328
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3329 3330 3331 3332 3333 3334 3335
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3336 3337
}

3338
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3339 3340 3341
{
	struct mem_cgroup_eventfd_list *ev;

3342 3343
	spin_lock(&memcg_oom_lock);

3344
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3345
		eventfd_signal(ev->eventfd, 1);
3346 3347

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3348 3349 3350
	return 0;
}

3351
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3352
{
K
KAMEZAWA Hiroyuki 已提交
3353 3354
	struct mem_cgroup *iter;

3355
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3356
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3357 3358
}

3359
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3360
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3361
{
3362 3363
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3364 3365
	unsigned long threshold;
	unsigned long usage;
3366
	int i, size, ret;
3367

3368
	ret = page_counter_memparse(args, "-1", &threshold);
3369 3370 3371 3372
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3373

3374
	if (type == _MEM) {
3375
		thresholds = &memcg->thresholds;
3376
		usage = mem_cgroup_usage(memcg, false);
3377
	} else if (type == _MEMSWAP) {
3378
		thresholds = &memcg->memsw_thresholds;
3379
		usage = mem_cgroup_usage(memcg, true);
3380
	} else
3381 3382 3383
		BUG();

	/* Check if a threshold crossed before adding a new one */
3384
	if (thresholds->primary)
3385 3386
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3387
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3388 3389

	/* Allocate memory for new array of thresholds */
3390
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3391
			GFP_KERNEL);
3392
	if (!new) {
3393 3394 3395
		ret = -ENOMEM;
		goto unlock;
	}
3396
	new->size = size;
3397 3398

	/* Copy thresholds (if any) to new array */
3399 3400
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3401
				sizeof(struct mem_cgroup_threshold));
3402 3403
	}

3404
	/* Add new threshold */
3405 3406
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3407 3408

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3409
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3410 3411 3412
			compare_thresholds, NULL);

	/* Find current threshold */
3413
	new->current_threshold = -1;
3414
	for (i = 0; i < size; i++) {
3415
		if (new->entries[i].threshold <= usage) {
3416
			/*
3417 3418
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3419 3420
			 * it here.
			 */
3421
			++new->current_threshold;
3422 3423
		} else
			break;
3424 3425
	}

3426 3427 3428 3429 3430
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3431

3432
	/* To be sure that nobody uses thresholds */
3433 3434 3435 3436 3437 3438 3439 3440
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3441
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3442 3443
	struct eventfd_ctx *eventfd, const char *args)
{
3444
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3445 3446
}

3447
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3448 3449
	struct eventfd_ctx *eventfd, const char *args)
{
3450
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3451 3452
}

3453
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3454
	struct eventfd_ctx *eventfd, enum res_type type)
3455
{
3456 3457
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3458
	unsigned long usage;
3459
	int i, j, size;
3460 3461

	mutex_lock(&memcg->thresholds_lock);
3462 3463

	if (type == _MEM) {
3464
		thresholds = &memcg->thresholds;
3465
		usage = mem_cgroup_usage(memcg, false);
3466
	} else if (type == _MEMSWAP) {
3467
		thresholds = &memcg->memsw_thresholds;
3468
		usage = mem_cgroup_usage(memcg, true);
3469
	} else
3470 3471
		BUG();

3472 3473 3474
	if (!thresholds->primary)
		goto unlock;

3475 3476 3477 3478
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3479 3480 3481
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3482 3483 3484
			size++;
	}

3485
	new = thresholds->spare;
3486

3487 3488
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3489 3490
		kfree(new);
		new = NULL;
3491
		goto swap_buffers;
3492 3493
	}

3494
	new->size = size;
3495 3496

	/* Copy thresholds and find current threshold */
3497 3498 3499
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3500 3501
			continue;

3502
		new->entries[j] = thresholds->primary->entries[i];
3503
		if (new->entries[j].threshold <= usage) {
3504
			/*
3505
			 * new->current_threshold will not be used
3506 3507 3508
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3509
			++new->current_threshold;
3510 3511 3512 3513
		}
		j++;
	}

3514
swap_buffers:
3515 3516
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3517

3518
	rcu_assign_pointer(thresholds->primary, new);
3519

3520
	/* To be sure that nobody uses thresholds */
3521
	synchronize_rcu();
3522 3523 3524 3525 3526 3527

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3528
unlock:
3529 3530
	mutex_unlock(&memcg->thresholds_lock);
}
3531

3532
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3533 3534
	struct eventfd_ctx *eventfd)
{
3535
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3536 3537
}

3538
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3539 3540
	struct eventfd_ctx *eventfd)
{
3541
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3542 3543
}

3544
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3545
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3546 3547 3548 3549 3550 3551 3552
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3553
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3554 3555 3556 3557 3558

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3559
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3560
		eventfd_signal(eventfd, 1);
3561
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3562 3563 3564 3565

	return 0;
}

3566
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3567
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3568 3569 3570
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3571
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3572

3573
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3574 3575 3576 3577 3578 3579
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3580
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3581 3582
}

3583
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3584
{
3585
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3586

3587
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3588
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3589 3590 3591
	return 0;
}

3592
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3593 3594
	struct cftype *cft, u64 val)
{
3595
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3596 3597

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3598
	if (!css->parent || !((val == 0) || (val == 1)))
3599 3600
		return -EINVAL;

3601
	memcg->oom_kill_disable = val;
3602
	if (!val)
3603
		memcg_oom_recover(memcg);
3604

3605 3606 3607
	return 0;
}

3608 3609 3610 3611 3612 3613 3614
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3625 3626 3627 3628 3629
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3640 3641 3642
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3643 3644
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3645 3646 3647
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3648 3649 3650
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3651
 *
3652 3653 3654 3655 3656
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3657
 */
3658 3659 3660
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3661 3662 3663 3664 3665 3666 3667 3668
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3669 3670 3671
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3672 3673 3674 3675 3676

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3677
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3678 3679 3680 3681
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3693 3694 3695 3696
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3697 3698
#endif	/* CONFIG_CGROUP_WRITEBACK */

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3712 3713 3714 3715 3716
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3717
static void memcg_event_remove(struct work_struct *work)
3718
{
3719 3720
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3721
	struct mem_cgroup *memcg = event->memcg;
3722 3723 3724

	remove_wait_queue(event->wqh, &event->wait);

3725
	event->unregister_event(memcg, event->eventfd);
3726 3727 3728 3729 3730 3731

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3732
	css_put(&memcg->css);
3733 3734 3735 3736 3737 3738 3739
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3740 3741
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3742
{
3743 3744
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3745
	struct mem_cgroup *memcg = event->memcg;
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3758
		spin_lock(&memcg->event_list_lock);
3759 3760 3761 3762 3763 3764 3765 3766
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3767
		spin_unlock(&memcg->event_list_lock);
3768 3769 3770 3771 3772
	}

	return 0;
}

3773
static void memcg_event_ptable_queue_proc(struct file *file,
3774 3775
		wait_queue_head_t *wqh, poll_table *pt)
{
3776 3777
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3778 3779 3780 3781 3782 3783

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3784 3785
 * DO NOT USE IN NEW FILES.
 *
3786 3787 3788 3789 3790
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3791 3792
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3793
{
3794
	struct cgroup_subsys_state *css = of_css(of);
3795
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3796
	struct mem_cgroup_event *event;
3797 3798 3799 3800
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3801
	const char *name;
3802 3803 3804
	char *endp;
	int ret;

3805 3806 3807
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3808 3809
	if (*endp != ' ')
		return -EINVAL;
3810
	buf = endp + 1;
3811

3812
	cfd = simple_strtoul(buf, &endp, 10);
3813 3814
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3815
	buf = endp + 1;
3816 3817 3818 3819 3820

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3821
	event->memcg = memcg;
3822
	INIT_LIST_HEAD(&event->list);
3823 3824 3825
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3851 3852 3853 3854 3855
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3856 3857
	 *
	 * DO NOT ADD NEW FILES.
3858
	 */
A
Al Viro 已提交
3859
	name = cfile.file->f_path.dentry->d_name.name;
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3871 3872
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3873 3874 3875 3876 3877
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3878
	/*
3879 3880 3881
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3882
	 */
A
Al Viro 已提交
3883
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3884
					       &memory_cgrp_subsys);
3885
	ret = -EINVAL;
3886
	if (IS_ERR(cfile_css))
3887
		goto out_put_cfile;
3888 3889
	if (cfile_css != css) {
		css_put(cfile_css);
3890
		goto out_put_cfile;
3891
	}
3892

3893
	ret = event->register_event(memcg, event->eventfd, buf);
3894 3895 3896 3897 3898
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3899 3900 3901
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3902 3903 3904 3905

	fdput(cfile);
	fdput(efile);

3906
	return nbytes;
3907 3908

out_put_css:
3909
	css_put(css);
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3922
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3923
	{
3924
		.name = "usage_in_bytes",
3925
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3926
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3927
	},
3928 3929
	{
		.name = "max_usage_in_bytes",
3930
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3931
		.write = mem_cgroup_reset,
3932
		.read_u64 = mem_cgroup_read_u64,
3933
	},
B
Balbir Singh 已提交
3934
	{
3935
		.name = "limit_in_bytes",
3936
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3937
		.write = mem_cgroup_write,
3938
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3939
	},
3940 3941 3942
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3943
		.write = mem_cgroup_write,
3944
		.read_u64 = mem_cgroup_read_u64,
3945
	},
B
Balbir Singh 已提交
3946 3947
	{
		.name = "failcnt",
3948
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3949
		.write = mem_cgroup_reset,
3950
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3951
	},
3952 3953
	{
		.name = "stat",
3954
		.seq_show = memcg_stat_show,
3955
	},
3956 3957
	{
		.name = "force_empty",
3958
		.write = mem_cgroup_force_empty_write,
3959
	},
3960 3961 3962 3963 3964
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3965
	{
3966
		.name = "cgroup.event_control",		/* XXX: for compat */
3967
		.write = memcg_write_event_control,
3968
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3969
	},
K
KOSAKI Motohiro 已提交
3970 3971 3972 3973 3974
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3975 3976 3977 3978 3979
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3980 3981
	{
		.name = "oom_control",
3982
		.seq_show = mem_cgroup_oom_control_read,
3983
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3984 3985
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3986 3987 3988
	{
		.name = "pressure_level",
	},
3989 3990 3991
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3992
		.seq_show = memcg_numa_stat_show,
3993 3994
	},
#endif
3995 3996 3997
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3998
		.write = mem_cgroup_write,
3999
		.read_u64 = mem_cgroup_read_u64,
4000 4001 4002 4003
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4004
		.read_u64 = mem_cgroup_read_u64,
4005 4006 4007 4008
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4009
		.write = mem_cgroup_reset,
4010
		.read_u64 = mem_cgroup_read_u64,
4011 4012 4013 4014
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4015
		.write = mem_cgroup_reset,
4016
		.read_u64 = mem_cgroup_read_u64,
4017
	},
4018 4019 4020
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4021 4022 4023 4024
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4025 4026
	},
#endif
V
Vladimir Davydov 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4050
	{ },	/* terminate */
4051
};
4052

4053
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4054 4055
{
	struct mem_cgroup_per_node *pn;
4056
	struct mem_cgroup_per_zone *mz;
4057
	int zone, tmp = node;
4058 4059 4060 4061 4062 4063 4064 4065
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4066 4067
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4068
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4069 4070
	if (!pn)
		return 1;
4071 4072 4073

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4074
		lruvec_init(&mz->lruvec);
4075 4076
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4077
		mz->memcg = memcg;
4078
	}
4079
	memcg->nodeinfo[node] = pn;
4080 4081 4082
	return 0;
}

4083
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4084
{
4085
	kfree(memcg->nodeinfo[node]);
4086 4087
}

4088
static void mem_cgroup_free(struct mem_cgroup *memcg)
4089
{
4090
	int node;
4091

4092
	memcg_wb_domain_exit(memcg);
4093 4094 4095
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4096
	kfree(memcg);
4097
}
4098

4099
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4100
{
4101
	struct mem_cgroup *memcg;
4102
	size_t size;
4103
	int node;
B
Balbir Singh 已提交
4104

4105 4106 4107 4108
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4109
	if (!memcg)
4110 4111 4112 4113 4114
		return NULL;

	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4115

B
Bob Liu 已提交
4116
	for_each_node(node)
4117
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4118
			goto fail;
4119

4120 4121
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4122

4123
	INIT_WORK(&memcg->high_work, high_work_func);
4124 4125 4126 4127
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4128
	vmpressure_init(&memcg->vmpressure);
4129 4130
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4131
	memcg->socket_pressure = jiffies;
4132
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4133 4134
	memcg->kmemcg_id = -1;
#endif
4135 4136 4137
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4138 4139 4140 4141
	return memcg;
fail:
	mem_cgroup_free(memcg);
	return NULL;
4142 4143
}

4144 4145
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4146
{
4147 4148 4149
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4150

4151 4152 4153
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4154

4155 4156 4157 4158 4159 4160 4161 4162
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4163
		page_counter_init(&memcg->memory, &parent->memory);
4164
		page_counter_init(&memcg->swap, &parent->swap);
4165 4166
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4167
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4168
	} else {
4169
		page_counter_init(&memcg->memory, NULL);
4170
		page_counter_init(&memcg->swap, NULL);
4171 4172
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4173
		page_counter_init(&memcg->tcpmem, NULL);
4174 4175 4176 4177 4178
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4179
		if (parent != root_mem_cgroup)
4180
			memory_cgrp_subsys.broken_hierarchy = true;
4181
	}
4182

4183 4184 4185 4186 4187 4188
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4189
	error = memcg_online_kmem(memcg);
4190 4191
	if (error)
		goto fail;
4192

4193
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4194
		static_branch_inc(&memcg_sockets_enabled_key);
4195

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
	return NULL;
}

static int
mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
	if (css->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;
4207 4208

	return 0;
B
Balbir Singh 已提交
4209 4210
}

4211
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4212
{
4213
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4214
	struct mem_cgroup_event *event, *tmp;
4215 4216 4217 4218 4219 4220

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4221 4222
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4223 4224 4225
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4226
	spin_unlock(&memcg->event_list_lock);
4227

4228
	memcg_offline_kmem(memcg);
4229
	wb_memcg_offline(memcg);
4230 4231
}

4232 4233 4234 4235 4236 4237 4238
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4239
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4240
{
4241
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4242

4243
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4244
		static_branch_dec(&memcg_sockets_enabled_key);
4245

4246
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4247
		static_branch_dec(&memcg_sockets_enabled_key);
4248

4249 4250 4251
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4252
	memcg_free_kmem(memcg);
4253
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4254 4255
}

4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4273 4274 4275 4276 4277
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4278 4279
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4280
	memcg->soft_limit = PAGE_COUNTER_MAX;
4281
	memcg_wb_domain_size_changed(memcg);
4282 4283
}

4284
#ifdef CONFIG_MMU
4285
/* Handlers for move charge at task migration. */
4286
static int mem_cgroup_do_precharge(unsigned long count)
4287
{
4288
	int ret;
4289

4290 4291
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4292
	if (!ret) {
4293 4294 4295
		mc.precharge += count;
		return ret;
	}
4296 4297

	/* Try charges one by one with reclaim */
4298
	while (count--) {
4299
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4300 4301
		if (ret)
			return ret;
4302
		mc.precharge++;
4303
		cond_resched();
4304
	}
4305
	return 0;
4306 4307 4308
}

/**
4309
 * get_mctgt_type - get target type of moving charge
4310 4311 4312
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4313
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4314 4315 4316 4317 4318 4319
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4320 4321 4322
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4323 4324 4325 4326 4327
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4328
	swp_entry_t	ent;
4329 4330 4331
};

enum mc_target_type {
4332
	MC_TARGET_NONE = 0,
4333
	MC_TARGET_PAGE,
4334
	MC_TARGET_SWAP,
4335 4336
};

D
Daisuke Nishimura 已提交
4337 4338
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4339
{
D
Daisuke Nishimura 已提交
4340
	struct page *page = vm_normal_page(vma, addr, ptent);
4341

D
Daisuke Nishimura 已提交
4342 4343 4344
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4345
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4346
			return NULL;
4347 4348 4349 4350
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4351 4352 4353 4354 4355 4356
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4357
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4358 4359 4360 4361 4362 4363
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4364
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4365
		return NULL;
4366 4367 4368 4369
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4370
	page = find_get_page(swap_address_space(ent), ent.val);
4371
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4372 4373 4374 4375
		entry->val = ent.val;

	return page;
}
4376 4377 4378 4379 4380 4381 4382
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4383

4384 4385 4386 4387 4388 4389 4390 4391 4392
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4393
	if (!(mc.flags & MOVE_FILE))
4394 4395 4396
		return NULL;

	mapping = vma->vm_file->f_mapping;
4397
	pgoff = linear_page_index(vma, addr);
4398 4399

	/* page is moved even if it's not RSS of this task(page-faulted). */
4400 4401
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4402 4403 4404 4405
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4406
			if (do_memsw_account())
4407 4408 4409 4410 4411 4412 4413
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4414
#endif
4415 4416 4417
	return page;
}

4418 4419 4420 4421 4422 4423 4424
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4425
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4426 4427 4428 4429 4430
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4431
				   bool compound,
4432 4433 4434 4435
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4436
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4437
	int ret;
4438
	bool anon;
4439 4440 4441

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4442
	VM_BUG_ON(compound && !PageTransHuge(page));
4443 4444

	/*
4445
	 * Prevent mem_cgroup_migrate() from looking at
4446
	 * page->mem_cgroup of its source page while we change it.
4447
	 */
4448
	ret = -EBUSY;
4449 4450 4451 4452 4453 4454 4455
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4456 4457
	anon = PageAnon(page);

4458 4459
	spin_lock_irqsave(&from->move_lock, flags);

4460
	if (!anon && page_mapped(page)) {
4461 4462 4463 4464 4465 4466
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4503
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4504
	memcg_check_events(to, page);
4505
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4506 4507 4508 4509 4510 4511 4512 4513
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4514
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4515 4516 4517
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4518
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4519 4520 4521 4522 4523 4524
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4525
	else if (pte_none(ptent))
4526
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4527 4528

	if (!page && !ent.val)
4529
		return ret;
4530 4531
	if (page) {
		/*
4532
		 * Do only loose check w/o serialization.
4533
		 * mem_cgroup_move_account() checks the page is valid or
4534
		 * not under LRU exclusion.
4535
		 */
4536
		if (page->mem_cgroup == mc.from) {
4537 4538 4539 4540 4541 4542 4543
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4544 4545
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4546
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4547 4548 4549
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4550 4551 4552 4553
	}
	return ret;
}

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4567
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4568
	if (!(mc.flags & MOVE_ANON))
4569
		return ret;
4570
	if (page->mem_cgroup == mc.from) {
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4587 4588 4589 4590
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4591
	struct vm_area_struct *vma = walk->vma;
4592 4593 4594
	pte_t *pte;
	spinlock_t *ptl;

4595 4596
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4597 4598
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4599
		spin_unlock(ptl);
4600
		return 0;
4601
	}
4602

4603 4604
	if (pmd_trans_unstable(pmd))
		return 0;
4605 4606
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4607
		if (get_mctgt_type(vma, addr, *pte, NULL))
4608 4609 4610 4611
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4612 4613 4614
	return 0;
}

4615 4616 4617 4618
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4619 4620 4621 4622
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4623
	down_read(&mm->mmap_sem);
4624
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4625
	up_read(&mm->mmap_sem);
4626 4627 4628 4629 4630 4631 4632 4633 4634

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4635 4636 4637 4638 4639
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4640 4641
}

4642 4643
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4644
{
4645 4646 4647
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4648
	/* we must uncharge all the leftover precharges from mc.to */
4649
	if (mc.precharge) {
4650
		cancel_charge(mc.to, mc.precharge);
4651 4652 4653 4654 4655 4656 4657
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4658
		cancel_charge(mc.from, mc.moved_charge);
4659
		mc.moved_charge = 0;
4660
	}
4661 4662 4663
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4664
		if (!mem_cgroup_is_root(mc.from))
4665
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4666

4667
		/*
4668 4669
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4670
		 */
4671
		if (!mem_cgroup_is_root(mc.to))
4672 4673
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4674
		css_put_many(&mc.from->css, mc.moved_swap);
4675

L
Li Zefan 已提交
4676
		/* we've already done css_get(mc.to) */
4677 4678
		mc.moved_swap = 0;
	}
4679 4680 4681 4682 4683 4684 4685
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4686 4687
	struct mm_struct *mm = mc.mm;

4688 4689 4690 4691 4692 4693
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4694
	spin_lock(&mc.lock);
4695 4696
	mc.from = NULL;
	mc.to = NULL;
4697
	mc.mm = NULL;
4698
	spin_unlock(&mc.lock);
4699 4700

	mmput(mm);
4701 4702
}

4703
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4704
{
4705
	struct cgroup_subsys_state *css;
4706
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4707
	struct mem_cgroup *from;
4708
	struct task_struct *leader, *p;
4709
	struct mm_struct *mm;
4710
	unsigned long move_flags;
4711
	int ret = 0;
4712

4713 4714
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4715 4716
		return 0;

4717 4718 4719 4720 4721 4722 4723
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4724
	cgroup_taskset_for_each_leader(leader, css, tset) {
4725 4726
		WARN_ON_ONCE(p);
		p = leader;
4727
		memcg = mem_cgroup_from_css(css);
4728 4729 4730 4731
	}
	if (!p)
		return 0;

4732 4733 4734 4735 4736 4737 4738 4739 4740
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4757
		mc.mm = mm;
4758 4759 4760 4761 4762 4763 4764 4765 4766
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4767 4768
	} else {
		mmput(mm);
4769 4770 4771 4772
	}
	return ret;
}

4773
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4774
{
4775 4776
	if (mc.to)
		mem_cgroup_clear_mc();
4777 4778
}

4779 4780 4781
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4782
{
4783
	int ret = 0;
4784
	struct vm_area_struct *vma = walk->vma;
4785 4786
	pte_t *pte;
	spinlock_t *ptl;
4787 4788 4789
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4790

4791 4792
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4793
		if (mc.precharge < HPAGE_PMD_NR) {
4794
			spin_unlock(ptl);
4795 4796 4797 4798 4799 4800
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4801
				if (!mem_cgroup_move_account(page, true,
4802
							     mc.from, mc.to)) {
4803 4804 4805 4806 4807 4808 4809
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4810
		spin_unlock(ptl);
4811
		return 0;
4812 4813
	}

4814 4815
	if (pmd_trans_unstable(pmd))
		return 0;
4816 4817 4818 4819
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4820
		swp_entry_t ent;
4821 4822 4823 4824

		if (!mc.precharge)
			break;

4825
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4826 4827
		case MC_TARGET_PAGE:
			page = target.page;
4828 4829 4830 4831 4832 4833 4834 4835
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4836 4837
			if (isolate_lru_page(page))
				goto put;
4838 4839
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4840
				mc.precharge--;
4841 4842
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4843 4844
			}
			putback_lru_page(page);
4845
put:			/* get_mctgt_type() gets the page */
4846 4847
			put_page(page);
			break;
4848 4849
		case MC_TARGET_SWAP:
			ent = target.ent;
4850
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4851
				mc.precharge--;
4852 4853 4854
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4855
			break;
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4870
		ret = mem_cgroup_do_precharge(1);
4871 4872 4873 4874 4875 4876 4877
		if (!ret)
			goto retry;
	}

	return ret;
}

4878
static void mem_cgroup_move_charge(void)
4879
{
4880 4881
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4882
		.mm = mc.mm,
4883
	};
4884 4885

	lru_add_drain_all();
4886
	/*
4887 4888 4889
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4890 4891 4892
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4893
retry:
4894
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4906 4907 4908 4909 4910
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4911
	up_read(&mc.mm->mmap_sem);
4912
	atomic_dec(&mc.from->moving_account);
4913 4914
}

4915
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4916
{
4917 4918
	if (mc.to) {
		mem_cgroup_move_charge();
4919
		mem_cgroup_clear_mc();
4920
	}
B
Balbir Singh 已提交
4921
}
4922
#else	/* !CONFIG_MMU */
4923
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4924 4925 4926
{
	return 0;
}
4927
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4928 4929
{
}
4930
static void mem_cgroup_move_task(void)
4931 4932 4933
{
}
#endif
B
Balbir Singh 已提交
4934

4935 4936
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4937 4938
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
4939
 */
4940
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4941 4942
{
	/*
4943
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4944 4945 4946
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
4947
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4948 4949 4950
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
4951 4952
}

4953 4954 4955
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
4956 4957 4958
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4959 4960 4961 4962 4963
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4964
	unsigned long low = READ_ONCE(memcg->low);
4965 4966

	if (low == PAGE_COUNTER_MAX)
4967
		seq_puts(m, "max\n");
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
4982
	err = page_counter_memparse(buf, "max", &low);
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4994
	unsigned long high = READ_ONCE(memcg->high);
4995 4996

	if (high == PAGE_COUNTER_MAX)
4997
		seq_puts(m, "max\n");
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5008
	unsigned long nr_pages;
5009 5010 5011 5012
	unsigned long high;
	int err;

	buf = strstrip(buf);
5013
	err = page_counter_memparse(buf, "max", &high);
5014 5015 5016 5017 5018
	if (err)
		return err;

	memcg->high = high;

5019 5020 5021 5022 5023
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5024
	memcg_wb_domain_size_changed(memcg);
5025 5026 5027 5028 5029 5030
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031
	unsigned long max = READ_ONCE(memcg->memory.limit);
5032 5033

	if (max == PAGE_COUNTER_MAX)
5034
		seq_puts(m, "max\n");
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045 5046
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5047 5048 5049 5050
	unsigned long max;
	int err;

	buf = strstrip(buf);
5051
	err = page_counter_memparse(buf, "max", &max);
5052 5053 5054
	if (err)
		return err;

5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5085

5086
	memcg_wb_domain_size_changed(memcg);
5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5102 5103 5104
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5105 5106
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5120 5121 5122
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5123
	seq_printf(m, "anon %llu\n",
5124
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5125
	seq_printf(m, "file %llu\n",
5126
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5127 5128
	seq_printf(m, "kernel_stack %llu\n",
		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5129 5130 5131
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5132
	seq_printf(m, "sock %llu\n",
5133
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5134 5135

	seq_printf(m, "file_mapped %llu\n",
5136
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5137
	seq_printf(m, "file_dirty %llu\n",
5138
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5139
	seq_printf(m, "file_writeback %llu\n",
5140
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5152 5153 5154 5155 5156
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5157 5158 5159
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5160
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5161
	seq_printf(m, "pgmajfault %lu\n",
5162
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5163 5164 5165 5166

	return 0;
}

5167 5168 5169
static struct cftype memory_files[] = {
	{
		.name = "current",
5170
		.flags = CFTYPE_NOT_ON_ROOT,
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5194
		.file_offset = offsetof(struct mem_cgroup, events_file),
5195 5196
		.seq_show = memory_events_show,
	},
5197 5198 5199 5200 5201
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5202 5203 5204
	{ }	/* terminate */
};

5205
struct cgroup_subsys memory_cgrp_subsys = {
5206
	.css_alloc = mem_cgroup_css_alloc,
5207
	.css_online = mem_cgroup_css_online,
5208
	.css_offline = mem_cgroup_css_offline,
5209
	.css_released = mem_cgroup_css_released,
5210
	.css_free = mem_cgroup_css_free,
5211
	.css_reset = mem_cgroup_css_reset,
5212 5213
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5214
	.post_attach = mem_cgroup_move_task,
5215
	.bind = mem_cgroup_bind,
5216 5217
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5218
	.early_init = 0,
B
Balbir Singh 已提交
5219
};
5220

5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5243
	if (page_counter_read(&memcg->memory) >= memcg->low)
5244 5245 5246 5247 5248 5249 5250 5251
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5252
		if (page_counter_read(&memcg->memory) >= memcg->low)
5253 5254 5255 5256 5257
			return false;
	}
	return true;
}

5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5276 5277
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5278 5279
{
	struct mem_cgroup *memcg = NULL;
5280
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5294
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5295
		if (page->mem_cgroup)
5296
			goto out;
5297

5298
		if (do_swap_account) {
5299 5300 5301 5302 5303 5304 5305 5306 5307
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5338
			      bool lrucare, bool compound)
5339
{
5340
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5355 5356 5357
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5358
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5359 5360
	memcg_check_events(memcg, page);
	local_irq_enable();
5361

5362
	if (do_memsw_account() && PageSwapCache(page)) {
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5380 5381
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5382
{
5383
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5398 5399 5400 5401
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5402
	unsigned long nr_pages = nr_anon + nr_file;
5403 5404
	unsigned long flags;

5405
	if (!mem_cgroup_is_root(memcg)) {
5406
		page_counter_uncharge(&memcg->memory, nr_pages);
5407
		if (do_memsw_account())
5408
			page_counter_uncharge(&memcg->memsw, nr_pages);
5409 5410
		memcg_oom_recover(memcg);
	}
5411 5412 5413 5414 5415 5416

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5417
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5418 5419
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5420 5421

	if (!mem_cgroup_is_root(memcg))
5422
		css_put_many(&memcg->css, nr_pages);
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5435 5436 5437 5438
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5449
		if (!page->mem_cgroup)
5450 5451 5452 5453
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5454
		 * page->mem_cgroup at this point, we have fully
5455
		 * exclusive access to the page.
5456 5457
		 */

5458
		if (memcg != page->mem_cgroup) {
5459
			if (memcg) {
5460 5461 5462
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5463
			}
5464
			memcg = page->mem_cgroup;
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5478
		page->mem_cgroup = NULL;
5479 5480 5481 5482 5483

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5484 5485
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5486 5487
}

5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5500
	/* Don't touch page->lru of any random page, pre-check: */
5501
	if (!page->mem_cgroup)
5502 5503
		return;

5504 5505 5506
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5507

5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5519

5520 5521
	if (!list_empty(page_list))
		uncharge_list(page_list);
5522 5523 5524
}

/**
5525 5526 5527
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5528
 *
5529 5530
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5531 5532 5533
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5534
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5535
{
5536
	struct mem_cgroup *memcg;
5537 5538
	unsigned int nr_pages;
	bool compound;
5539 5540 5541 5542

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5543 5544
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5545 5546 5547 5548 5549

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5550
	if (newpage->mem_cgroup)
5551 5552
		return;

5553
	/* Swapcache readahead pages can get replaced before being charged */
5554
	memcg = oldpage->mem_cgroup;
5555
	if (!memcg)
5556 5557
		return;

5558 5559 5560 5561 5562 5563 5564 5565
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5566

5567
	commit_charge(newpage, memcg, false);
5568 5569 5570 5571 5572

	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
	local_irq_enable();
5573 5574
}

5575
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5598 5599
	if (memcg == root_mem_cgroup)
		goto out;
5600
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5601 5602
		goto out;
	if (css_tryget_online(&memcg->css))
5603
		sk->sk_memcg = memcg;
5604
out:
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5625
	gfp_t gfp_mask = GFP_KERNEL;
5626

5627
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5628
		struct page_counter *fail;
5629

5630 5631
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5632 5633
			return true;
		}
5634 5635
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5636
		return false;
5637
	}
5638

5639 5640 5641 5642
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5643 5644
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5645 5646 5647 5648
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5659
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5660
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5661 5662
		return;
	}
5663

5664 5665
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5666 5667
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5668 5669
}

5670 5671 5672 5673 5674 5675 5676 5677 5678
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5679 5680
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5681 5682 5683 5684
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5685

5686
/*
5687 5688 5689 5690 5691 5692
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5693 5694 5695
 */
static int __init mem_cgroup_init(void)
{
5696 5697
	int cpu, node;

5698
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5721 5722 5723
	return 0;
}
subsys_initcall(mem_cgroup_init);
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5741
	if (!do_memsw_account())
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5759 5760 5761 5762 5763 5764 5765
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5766
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5767 5768 5769
	memcg_check_events(memcg, page);
}

5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	css_get(&memcg->css);
	return 0;
}

5806 5807 5808 5809
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5810
 * Drop the swap charge associated with @entry.
5811 5812 5813 5814 5815 5816
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5817
	if (!do_swap_account)
5818 5819 5820 5821
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5822
	memcg = mem_cgroup_from_id(id);
5823
	if (memcg) {
5824 5825 5826 5827 5828 5829
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5830 5831 5832 5833 5834 5835
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
5976 5977
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
5978 5979 5980 5981 5982 5983 5984 5985
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */