i915_gem.c 127.8 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include "intel_frontbuffer.h"
36
#include "intel_mocs.h"
37
#include <linux/reservation.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
J
Jesse Barnes 已提交
41
#include <linux/pci.h>
42
#include <linux/dma-buf.h>
43

44
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
51
	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
52 53
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65
static int
66
insert_mappable_node(struct i915_ggtt *ggtt,
67 68 69
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
70 71 72
	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
						   size, 0, -1,
						   0, ggtt->mappable_end,
73 74 75 76 77 78 79 80 81 82
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85
				  u64 size)
86
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94
				     u64 size)
95
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107 108
	might_sleep();

109
	if (!i915_reset_in_progress(error))
110 111
		return 0;

112 113 114 115 116
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
117
	ret = wait_event_interruptible_timeout(error->reset_queue,
118
					       !i915_reset_in_progress(error),
119
					       I915_RESET_TIMEOUT);
120 121 122 123
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
124
		return ret;
125 126
	} else {
		return 0;
127
	}
128 129
}

130
int i915_mutex_lock_interruptible(struct drm_device *dev)
131
{
132
	struct drm_i915_private *dev_priv = to_i915(dev);
133 134
	int ret;

135
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
136 137 138 139 140 141 142 143 144
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = to_i915(dev);
151
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
152
	struct drm_i915_gem_get_aperture *args = data;
153
	struct i915_vma *vma;
154
	size_t pinned;
155

156
	pinned = 0;
157
	mutex_lock(&dev->struct_mutex);
158
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159
		if (i915_vma_is_pinned(vma))
160
			pinned += vma->node.size;
161
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162
		if (i915_vma_is_pinned(vma))
163
			pinned += vma->node.size;
164
	mutex_unlock(&dev->struct_mutex);
165

166
	args->aper_size = ggtt->base.total;
167
	args->aper_available_size = args->aper_size - pinned;
168

169 170 171
	return 0;
}

172
static struct sg_table *
173
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174
{
175
	struct address_space *mapping = obj->base.filp->f_mapping;
176 177 178 179
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
180

181
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182
		return ERR_PTR(-EINVAL);
183 184 185 186 187 188 189

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
190
			return ERR_CAST(page);
191 192 193 194 195 196

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

197
		put_page(page);
198 199 200
		vaddr += PAGE_SIZE;
	}

201
	i915_gem_chipset_flush(to_i915(obj->base.dev));
202 203 204

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
205
		return ERR_PTR(-ENOMEM);
206 207 208

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
209
		return ERR_PTR(-ENOMEM);
210 211 212 213 214
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
215

216 217 218
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

219
	return st;
220 221 222
}

static void
223 224
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
				struct sg_table *pages)
225
{
C
Chris Wilson 已提交
226
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
227

C
Chris Wilson 已提交
228 229
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
230

231
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
232
		drm_clflush_sg(pages);
233 234 235 236 237 238 239 240 241

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
242
	__i915_gem_object_release_shmem(obj, pages);
243

C
Chris Wilson 已提交
244
	if (obj->mm.dirty) {
245
		struct address_space *mapping = obj->base.filp->f_mapping;
246
		char *vaddr = obj->phys_handle->vaddr;
247 248 249
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
250 251 252 253 254 255 256 257 258 259 260 261 262
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
263
			if (obj->mm.madv == I915_MADV_WILLNEED)
264
				mark_page_accessed(page);
265
			put_page(page);
266 267
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
268
		obj->mm.dirty = false;
269 270
	}

271 272
	sg_free_table(pages);
	kfree(pages);
273 274 275 276 277 278
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
C
Chris Wilson 已提交
279
	i915_gem_object_unpin_pages(obj);
280 281 282 283 284 285 286 287
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

288
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
289 290 291
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
292 293 294
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
295

296 297 298 299
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
300
	 */
301 302 303 304 305 306
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
307 308 309 310 311
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

312 313 314 315 316 317 318 319 320 321 322 323 324
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

325 326 327 328 329
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
330
{
331
	struct drm_i915_gem_request *rq;
332

333
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
367 368
	}

369 370 371 372 373 374
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

375
	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
405 406
		int ret;

407 408
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
409 410 411
		if (ret)
			return ret;

412 413 414 415 416 417
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
418

419 420 421 422 423 424 425 426
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
427 428
	}

429 430 431 432 433 434
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
435 436
}

437 438 439 440 441 442
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
443
 */
444 445 446 447 448
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
449
{
450 451 452 453 454 455 456
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
457

458 459 460
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
461
	return timeout < 0 ? timeout : 0;
462 463 464 465 466 467 468 469 470
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

471 472 473 474 475
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
476
	int ret;
477 478 479 480 481 482 483 484

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

C
Chris Wilson 已提交
485
	if (obj->mm.madv != I915_MADV_WILLNEED)
486 487 488 489 490
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
491 492 493 494
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

495
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
496 497
	if (obj->mm.pages)
		return -EBUSY;
498

499 500 501 502 503 504
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
505 506
	obj->ops = &i915_gem_phys_ops;

C
Chris Wilson 已提交
507
	return i915_gem_object_pin_pages(obj);
508 509 510 511 512
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
513
		     struct drm_file *file)
514 515 516
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
517
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
518
	int ret;
519 520 521 522

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
523 524 525 526 527 528
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
529
				   to_rps_client(file));
530 531
	if (ret)
		return ret;
532

533
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
534 535 536 537 538 539 540 541 542 543
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
544 545 546 547
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
548 549
	}

550
	drm_clflush_virt_range(vaddr, args->size);
551
	i915_gem_chipset_flush(to_i915(dev));
552 553

out:
554
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
555
	return ret;
556 557
}

558 559
void *i915_gem_object_alloc(struct drm_device *dev)
{
560
	struct drm_i915_private *dev_priv = to_i915(dev);
561
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
562 563 564 565
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
566
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
567
	kmem_cache_free(dev_priv->objects, obj);
568 569
}

570 571 572 573 574
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
575
{
576
	struct drm_i915_gem_object *obj;
577 578
	int ret;
	u32 handle;
579

580
	size = roundup(size, PAGE_SIZE);
581 582
	if (size == 0)
		return -EINVAL;
583 584

	/* Allocate the new object */
585
	obj = i915_gem_object_create(dev, size);
586 587
	if (IS_ERR(obj))
		return PTR_ERR(obj);
588

589
	ret = drm_gem_handle_create(file, &obj->base, &handle);
590
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
591
	i915_gem_object_put(obj);
592 593
	if (ret)
		return ret;
594

595
	*handle_p = handle;
596 597 598
	return 0;
}

599 600 601 602 603 604
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
605
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
606 607
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
608
			       args->size, &args->handle);
609 610 611 612
}

/**
 * Creates a new mm object and returns a handle to it.
613 614 615
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
616 617 618 619 620 621
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
622

623 624
	i915_gem_flush_free_objects(to_i915(dev));

625
	return i915_gem_create(file, dev,
626
			       args->size, &args->handle);
627 628
}

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

655
static inline int
656 657
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

681 682 683 684 685 686
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
687
				    unsigned int *needs_clflush)
688 689 690
{
	int ret;

691
	lockdep_assert_held(&obj->base.dev->struct_mutex);
692

693
	*needs_clflush = 0;
694 695
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
696

697 698 699 700 701
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
702 703 704
	if (ret)
		return ret;

C
Chris Wilson 已提交
705
	ret = i915_gem_object_pin_pages(obj);
706 707 708
	if (ret)
		return ret;

709 710
	i915_gem_object_flush_gtt_write_domain(obj);

711 712 713 714 715 716
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
717 718
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
719 720 721

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
722 723 724
		if (ret)
			goto err_unpin;

725
		*needs_clflush = 0;
726 727
	}

728
	/* return with the pages pinned */
729
	return 0;
730 731 732 733

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
734 735 736 737 738 739 740
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

741 742
	lockdep_assert_held(&obj->base.dev->struct_mutex);

743 744 745 746
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

747 748 749 750 751 752
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
753 754 755
	if (ret)
		return ret;

C
Chris Wilson 已提交
756
	ret = i915_gem_object_pin_pages(obj);
757 758 759
	if (ret)
		return ret;

760 761
	i915_gem_object_flush_gtt_write_domain(obj);

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
779 780 781
		if (ret)
			goto err_unpin;

782 783 784 785 786 787 788
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
789
	obj->mm.dirty = true;
790
	/* return with the pages pinned */
791
	return 0;
792 793 794 795

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
796 797
}

798 799 800 801
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
802
	if (unlikely(swizzled)) {
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

820 821 822
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
823
shmem_pread_slow(struct page *page, int offset, int length,
824 825 826 827 828 829 830 831
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
832
		shmem_clflush_swizzled_range(vaddr + offset, length,
833
					     page_do_bit17_swizzling);
834 835

	if (page_do_bit17_swizzling)
836
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
837
	else
838
		ret = __copy_to_user(user_data, vaddr + offset, length);
839 840
	kunmap(page);

841
	return ret ? - EFAULT : 0;
842 843
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
920 921
{
	void *vaddr;
922
	unsigned long unwritten;
923 924

	/* We can use the cpu mem copy function because this is X86. */
925 926 927 928 929 930 931 932 933
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
934 935 936 937
	return unwritten;
}

static int
938 939
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
940
{
941 942
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
943
	struct drm_mm_node node;
944 945 946
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
947 948
	int ret;

949 950 951 952 953 954 955
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
956 957 958
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
959
		ret = i915_vma_put_fence(vma);
960 961 962 963 964
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
965
	if (IS_ERR(vma)) {
966
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
967
		if (ret)
968 969
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
970 971 972 973 974 975
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

976
	mutex_unlock(&i915->drm.struct_mutex);
977

978 979 980
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
997
					       node.start, I915_CACHE_NONE, 0);
998 999 1000 1001
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1002 1003 1004

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1005 1006 1007 1008 1009 1010 1011 1012 1013
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1014
	mutex_lock(&i915->drm.struct_mutex);
1015 1016 1017 1018
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1019
				       node.start, node.size);
1020 1021
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1022
		i915_vma_unpin(vma);
1023
	}
1024 1025 1026
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1027

1028 1029 1030
	return ret;
}

1031 1032
/**
 * Reads data from the object referenced by handle.
1033 1034 1035
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1036 1037 1038 1039 1040
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1041
		     struct drm_file *file)
1042 1043
{
	struct drm_i915_gem_pread *args = data;
1044
	struct drm_i915_gem_object *obj;
1045
	int ret;
1046

1047 1048 1049 1050
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1051
		       u64_to_user_ptr(args->data_ptr),
1052 1053 1054
		       args->size))
		return -EFAULT;

1055
	obj = i915_gem_object_lookup(file, args->handle);
1056 1057
	if (!obj)
		return -ENOENT;
1058

1059
	/* Bounds check source.  */
1060 1061
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1062
		ret = -EINVAL;
1063
		goto out;
C
Chris Wilson 已提交
1064 1065
	}

C
Chris Wilson 已提交
1066 1067
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1068 1069 1070 1071
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1072
	if (ret)
1073
		goto out;
1074

1075
	ret = i915_gem_object_pin_pages(obj);
1076
	if (ret)
1077
		goto out;
1078

1079
	ret = i915_gem_shmem_pread(obj, args);
1080
	if (ret == -EFAULT || ret == -ENODEV)
1081
		ret = i915_gem_gtt_pread(obj, args);
1082

1083 1084
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1085
	i915_gem_object_put(obj);
1086
	return ret;
1087 1088
}

1089 1090
/* This is the fast write path which cannot handle
 * page faults in the source data
1091
 */
1092

1093 1094 1095 1096
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1097
{
1098
	void *vaddr;
1099
	unsigned long unwritten;
1100

1101
	/* We can use the cpu mem copy function because this is X86. */
1102 1103
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1104
						      user_data, length);
1105 1106 1107 1108 1109 1110 1111
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1112 1113 1114 1115

	return unwritten;
}

1116 1117 1118
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1119
 * @obj: i915 GEM object
1120
 * @args: pwrite arguments structure
1121
 */
1122
static int
1123 1124
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1125
{
1126
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1127 1128
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1129 1130 1131
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1132
	int ret;
1133

1134 1135 1136
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1137

1138
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1139
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1140
				       PIN_MAPPABLE | PIN_NONBLOCK);
1141 1142 1143
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1144
		ret = i915_vma_put_fence(vma);
1145 1146 1147 1148 1149
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1150
	if (IS_ERR(vma)) {
1151
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1152
		if (ret)
1153 1154
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1155
	}
D
Daniel Vetter 已提交
1156 1157 1158 1159 1160

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1161 1162
	mutex_unlock(&i915->drm.struct_mutex);

1163
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1164

1165 1166 1167 1168
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1169 1170
		/* Operation in this page
		 *
1171 1172 1173
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1174
		 */
1175
		u32 page_base = node.start;
1176 1177
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1188
		/* If we get a fault while copying data, then (presumably) our
1189 1190
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1191 1192
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1193
		 */
1194 1195 1196 1197
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1198
		}
1199

1200 1201 1202
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1203
	}
1204
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1205 1206

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1207
out_unpin:
1208 1209 1210
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1211
				       node.start, node.size);
1212 1213
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1214
		i915_vma_unpin(vma);
1215
	}
1216
out_unlock:
1217
	intel_runtime_pm_put(i915);
1218
	mutex_unlock(&i915->drm.struct_mutex);
1219
	return ret;
1220 1221
}

1222
static int
1223
shmem_pwrite_slow(struct page *page, int offset, int length,
1224 1225 1226 1227
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1228
{
1229 1230
	char *vaddr;
	int ret;
1231

1232
	vaddr = kmap(page);
1233
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1234
		shmem_clflush_swizzled_range(vaddr + offset, length,
1235
					     page_do_bit17_swizzling);
1236
	if (page_do_bit17_swizzling)
1237 1238
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1239
	else
1240
		ret = __copy_from_user(vaddr + offset, user_data, length);
1241
	if (needs_clflush_after)
1242
		shmem_clflush_swizzled_range(vaddr + offset, length,
1243
					     page_do_bit17_swizzling);
1244
	kunmap(page);
1245

1246
	return ret ? -EFAULT : 0;
1247 1248
}

1249 1250 1251 1252 1253
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1254
static int
1255 1256 1257 1258
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1259
{
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1292
	unsigned int needs_clflush;
1293 1294
	unsigned int offset, idx;
	int ret;
1295

1296
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1297 1298 1299
	if (ret)
		return ret;

1300 1301 1302 1303
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1304

1305 1306 1307
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1308

1309 1310 1311 1312 1313 1314 1315
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1316

1317 1318 1319 1320 1321 1322
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1323

1324 1325 1326
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1327

1328 1329 1330 1331
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1332
		if (ret)
1333
			break;
1334

1335 1336 1337
		remain -= length;
		user_data += length;
		offset = 0;
1338
	}
1339

1340
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1341
	i915_gem_obj_finish_shmem_access(obj);
1342
	return ret;
1343 1344 1345 1346
}

/**
 * Writes data to the object referenced by handle.
1347 1348 1349
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1350 1351 1352 1353 1354
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1355
		      struct drm_file *file)
1356 1357
{
	struct drm_i915_gem_pwrite *args = data;
1358
	struct drm_i915_gem_object *obj;
1359 1360 1361 1362 1363 1364
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1365
		       u64_to_user_ptr(args->data_ptr),
1366 1367 1368
		       args->size))
		return -EFAULT;

1369
	obj = i915_gem_object_lookup(file, args->handle);
1370 1371
	if (!obj)
		return -ENOENT;
1372

1373
	/* Bounds check destination. */
1374 1375
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1376
		ret = -EINVAL;
1377
		goto err;
C
Chris Wilson 已提交
1378 1379
	}

C
Chris Wilson 已提交
1380 1381
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1382 1383 1384 1385 1386
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1387 1388 1389
	if (ret)
		goto err;

1390
	ret = i915_gem_object_pin_pages(obj);
1391
	if (ret)
1392
		goto err;
1393

D
Daniel Vetter 已提交
1394
	ret = -EFAULT;
1395 1396 1397 1398 1399 1400
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1401
	if (!i915_gem_object_has_struct_page(obj) ||
1402
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1403 1404
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1405 1406
		 * textures). Fallback to the shmem path in that case.
		 */
1407
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1408

1409
	if (ret == -EFAULT || ret == -ENOSPC) {
1410 1411
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1412
		else
1413
			ret = i915_gem_shmem_pwrite(obj, args);
1414
	}
1415

1416
	i915_gem_object_unpin_pages(obj);
1417
err:
C
Chris Wilson 已提交
1418
	i915_gem_object_put(obj);
1419
	return ret;
1420 1421
}

1422
static inline enum fb_op_origin
1423 1424
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1425 1426
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1427 1428
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1450
	list_move_tail(&obj->global_link, list);
1451 1452
}

1453
/**
1454 1455
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1456 1457 1458
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1459 1460 1461
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1462
			  struct drm_file *file)
1463 1464
{
	struct drm_i915_gem_set_domain *args = data;
1465
	struct drm_i915_gem_object *obj;
1466 1467
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1468
	int err;
1469

1470
	/* Only handle setting domains to types used by the CPU. */
1471
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1472 1473 1474 1475 1476 1477 1478 1479
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1480
	obj = i915_gem_object_lookup(file, args->handle);
1481 1482
	if (!obj)
		return -ENOENT;
1483

1484 1485 1486 1487
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1488
	err = i915_gem_object_wait(obj,
1489 1490 1491 1492
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1493
	if (err)
C
Chris Wilson 已提交
1494
		goto out;
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1506
		goto out;
1507 1508 1509

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1510
		goto out_unpin;
1511

1512
	if (read_domains & I915_GEM_DOMAIN_GTT)
1513
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1514
	else
1515
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1516

1517 1518
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1519

1520
	mutex_unlock(&dev->struct_mutex);
1521

1522 1523 1524
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1525
out_unpin:
1526
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1527 1528
out:
	i915_gem_object_put(obj);
1529
	return err;
1530 1531 1532 1533
}

/**
 * Called when user space has done writes to this buffer
1534 1535 1536
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1537 1538 1539
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1540
			 struct drm_file *file)
1541 1542
{
	struct drm_i915_gem_sw_finish *args = data;
1543
	struct drm_i915_gem_object *obj;
1544
	int err = 0;
1545

1546
	obj = i915_gem_object_lookup(file, args->handle);
1547 1548
	if (!obj)
		return -ENOENT;
1549 1550

	/* Pinned buffers may be scanout, so flush the cache */
1551 1552 1553 1554 1555 1556 1557
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1558

C
Chris Wilson 已提交
1559
	i915_gem_object_put(obj);
1560
	return err;
1561 1562 1563
}

/**
1564 1565 1566 1567 1568
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1569 1570 1571
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1582 1583 1584
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1585
		    struct drm_file *file)
1586 1587
{
	struct drm_i915_gem_mmap *args = data;
1588
	struct drm_i915_gem_object *obj;
1589 1590
	unsigned long addr;

1591 1592 1593
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1594
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1595 1596
		return -ENODEV;

1597 1598
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1599
		return -ENOENT;
1600

1601 1602 1603
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1604
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1605
		i915_gem_object_put(obj);
1606 1607 1608
		return -EINVAL;
	}

1609
	addr = vm_mmap(obj->base.filp, 0, args->size,
1610 1611
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1612 1613 1614 1615
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1616
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1617
			i915_gem_object_put(obj);
1618 1619
			return -EINTR;
		}
1620 1621 1622 1623 1624 1625 1626
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1627 1628

		/* This may race, but that's ok, it only gets set */
1629
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1630
	}
C
Chris Wilson 已提交
1631
	i915_gem_object_put(obj);
1632 1633 1634 1635 1636 1637 1638 1639
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1700 1701
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1702
 * @area: CPU VMA in question
1703
 * @vmf: fault info
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1715 1716 1717
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1718
 */
C
Chris Wilson 已提交
1719
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1720
{
1721
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1722
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1723
	struct drm_device *dev = obj->base.dev;
1724 1725
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1726
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1727
	struct i915_vma *vma;
1728
	pgoff_t page_offset;
1729
	unsigned int flags;
1730
	int ret;
1731

1732
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1733
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1734 1735
		PAGE_SHIFT;

C
Chris Wilson 已提交
1736 1737
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1738
	/* Try to flush the object off the GPU first without holding the lock.
1739
	 * Upon acquiring the lock, we will perform our sanity checks and then
1740 1741 1742
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1743 1744 1745 1746
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1747
	if (ret)
1748 1749
		goto err;

1750 1751 1752 1753
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1754 1755 1756 1757 1758
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1759

1760
	/* Access to snoopable pages through the GTT is incoherent. */
1761
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1762
		ret = -EFAULT;
1763
		goto err_unlock;
1764 1765
	}

1766 1767 1768 1769 1770 1771 1772 1773
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1774
	/* Now pin it into the GTT as needed */
1775
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1776 1777
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1778 1779
		unsigned int chunk_size;

1780
		/* Use a partial view if it is bigger than available space */
1781 1782
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
1783
			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1784

1785 1786 1787 1788
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1789
			min_t(unsigned int, chunk_size,
1790
			      vma_pages(area) - view.params.partial.offset);
1791

1792 1793 1794 1795 1796 1797
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1798 1799 1800 1801 1802
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1803 1804
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1805 1806
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1807
		goto err_unlock;
C
Chris Wilson 已提交
1808
	}
1809

1810 1811
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1812
		goto err_unpin;
1813

1814
	ret = i915_vma_get_fence(vma);
1815
	if (ret)
1816
		goto err_unpin;
1817

1818
	/* Mark as being mmapped into userspace for later revocation */
1819
	assert_rpm_wakelock_held(dev_priv);
1820 1821 1822
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1823
	/* Finally, remap it using the new GTT offset */
1824 1825 1826 1827 1828
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1829

1830
err_unpin:
C
Chris Wilson 已提交
1831
	__i915_vma_unpin(vma);
1832
err_unlock:
1833
	mutex_unlock(&dev->struct_mutex);
1834 1835
err_rpm:
	intel_runtime_pm_put(dev_priv);
1836
	i915_gem_object_unpin_pages(obj);
1837
err:
1838
	switch (ret) {
1839
	case -EIO:
1840 1841 1842 1843 1844 1845 1846
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1847 1848 1849
			ret = VM_FAULT_SIGBUS;
			break;
		}
1850
	case -EAGAIN:
D
Daniel Vetter 已提交
1851 1852 1853 1854
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1855
		 */
1856 1857
	case 0:
	case -ERESTARTSYS:
1858
	case -EINTR:
1859 1860 1861 1862 1863
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1864 1865
		ret = VM_FAULT_NOPAGE;
		break;
1866
	case -ENOMEM:
1867 1868
		ret = VM_FAULT_OOM;
		break;
1869
	case -ENOSPC:
1870
	case -EFAULT:
1871 1872
		ret = VM_FAULT_SIGBUS;
		break;
1873
	default:
1874
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1875 1876
		ret = VM_FAULT_SIGBUS;
		break;
1877
	}
1878
	return ret;
1879 1880
}

1881 1882 1883 1884
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1885
 * Preserve the reservation of the mmapping with the DRM core code, but
1886 1887 1888 1889 1890 1891 1892 1893 1894
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1895
void
1896
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1897
{
1898 1899
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1900 1901 1902
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1903 1904 1905 1906
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1907
	 */
1908
	lockdep_assert_held(&i915->drm.struct_mutex);
1909
	intel_runtime_pm_get(i915);
1910

1911
	if (list_empty(&obj->userfault_link))
1912
		goto out;
1913

1914
	list_del_init(&obj->userfault_link);
1915 1916
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1917 1918 1919 1920 1921 1922 1923 1924 1925

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
1926 1927 1928

out:
	intel_runtime_pm_put(i915);
1929 1930
}

1931
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1932
{
1933
	struct drm_i915_gem_object *obj, *on;
1934
	int i;
1935

1936 1937 1938 1939 1940 1941
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
1942

1943 1944 1945
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
1946 1947 1948
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
1966 1967
}

1968 1969
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
1970
 * @dev_priv: i915 device
1971 1972 1973 1974 1975 1976
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
1977 1978
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
1979
{
1980
	u64 ggtt_size;
1981

1982 1983
	GEM_BUG_ON(size == 0);

1984
	if (INTEL_GEN(dev_priv) >= 4 ||
1985 1986
	    tiling_mode == I915_TILING_NONE)
		return size;
1987 1988

	/* Previous chips need a power-of-two fence region when tiling */
1989
	if (IS_GEN3(dev_priv))
1990
		ggtt_size = 1024*1024;
1991
	else
1992
		ggtt_size = 512*1024;
1993

1994 1995
	while (ggtt_size < size)
		ggtt_size <<= 1;
1996

1997
	return ggtt_size;
1998 1999
}

2000
/**
2001
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2002
 * @dev_priv: i915 device
2003 2004
 * @size: object size
 * @tiling_mode: tiling mode
2005
 * @fenced: is fenced alignment required or not
2006
 *
2007
 * Return the required global GTT alignment for an object, taking into account
2008
 * potential fence register mapping.
2009
 */
2010
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2011
				int tiling_mode, bool fenced)
2012
{
2013 2014
	GEM_BUG_ON(size == 0);

2015 2016 2017 2018
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2019
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2020
	    tiling_mode == I915_TILING_NONE)
2021 2022
		return 4096;

2023 2024 2025 2026
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2027
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2028 2029
}

2030 2031
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2032
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2033
	int err;
2034

2035 2036 2037
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2038

2039 2040 2041
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2042
	 */
2043
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2044 2045 2046 2047 2048 2049 2050 2051 2052
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2053

2054
	return err;
2055 2056 2057 2058 2059 2060 2061
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2062
int
2063 2064
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2065
		  uint32_t handle,
2066
		  uint64_t *offset)
2067
{
2068
	struct drm_i915_gem_object *obj;
2069 2070
	int ret;

2071
	obj = i915_gem_object_lookup(file, handle);
2072 2073
	if (!obj)
		return -ENOENT;
2074

2075
	ret = i915_gem_object_create_mmap_offset(obj);
2076 2077
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2078

C
Chris Wilson 已提交
2079
	i915_gem_object_put(obj);
2080
	return ret;
2081 2082
}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2104
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2105 2106
}

D
Daniel Vetter 已提交
2107 2108 2109
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2110
{
2111
	i915_gem_object_free_mmap_offset(obj);
2112

2113 2114
	if (obj->base.filp == NULL)
		return;
2115

D
Daniel Vetter 已提交
2116 2117 2118 2119 2120
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2121
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2122
	obj->mm.madv = __I915_MADV_PURGED;
D
Daniel Vetter 已提交
2123
}
2124

2125
/* Try to discard unwanted pages */
2126
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2127
{
2128 2129
	struct address_space *mapping;

2130 2131 2132
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2133
	switch (obj->mm.madv) {
2134 2135 2136 2137 2138 2139 2140 2141 2142
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2143
	mapping = obj->base.filp->f_mapping,
2144
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2145 2146
}

2147
static void
2148 2149
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2150
{
2151 2152
	struct sgt_iter sgt_iter;
	struct page *page;
2153

2154
	__i915_gem_object_release_shmem(obj, pages);
2155

2156
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2157

2158
	if (i915_gem_object_needs_bit17_swizzle(obj))
2159
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2160

2161
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2162
		if (obj->mm.dirty)
2163
			set_page_dirty(page);
2164

C
Chris Wilson 已提交
2165
		if (obj->mm.madv == I915_MADV_WILLNEED)
2166
			mark_page_accessed(page);
2167

2168
		put_page(page);
2169
	}
C
Chris Wilson 已提交
2170
	obj->mm.dirty = false;
2171

2172 2173
	sg_free_table(pages);
	kfree(pages);
2174
}
C
Chris Wilson 已提交
2175

2176 2177 2178 2179 2180
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2181 2182
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2183 2184
}

2185 2186
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2187
{
2188
	struct sg_table *pages;
2189

C
Chris Wilson 已提交
2190
	if (i915_gem_object_has_pinned_pages(obj))
2191
		return;
2192

2193
	GEM_BUG_ON(obj->bind_count);
2194 2195 2196 2197
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2198
	mutex_lock_nested(&obj->mm.lock, subclass);
2199 2200
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2201

2202 2203 2204
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2205 2206
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2207

C
Chris Wilson 已提交
2208
	if (obj->mm.mapping) {
2209 2210
		void *ptr;

C
Chris Wilson 已提交
2211
		ptr = ptr_mask_bits(obj->mm.mapping);
2212 2213
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2214
		else
2215 2216
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2217
		obj->mm.mapping = NULL;
2218 2219
	}

2220 2221
	__i915_gem_object_reset_page_iter(obj);

2222
	obj->ops->put_pages(obj, pages);
2223 2224
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2225 2226
}

2227
static unsigned int swiotlb_max_size(void)
2228 2229 2230 2231 2232 2233 2234 2235
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
static void i915_sg_trim(struct sg_table *orig_st)
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
		return;

	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
		return;

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}

	sg_free_table(orig_st);

	*orig_st = new_st;
}

2260
static struct sg_table *
C
Chris Wilson 已提交
2261
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2262
{
2263
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2264 2265
	int page_count, i;
	struct address_space *mapping;
2266 2267
	struct sg_table *st;
	struct scatterlist *sg;
2268
	struct sgt_iter sgt_iter;
2269
	struct page *page;
2270
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2271
	unsigned int max_segment;
I
Imre Deak 已提交
2272
	int ret;
C
Chris Wilson 已提交
2273
	gfp_t gfp;
2274

C
Chris Wilson 已提交
2275 2276 2277 2278
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2279 2280
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2281

2282 2283
	max_segment = swiotlb_max_size();
	if (!max_segment)
2284
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2285

2286 2287
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2288
		return ERR_PTR(-ENOMEM);
2289

2290
	page_count = obj->base.size / PAGE_SIZE;
2291 2292
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2293
		return ERR_PTR(-ENOMEM);
2294
	}
2295

2296 2297 2298 2299 2300
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2301
	mapping = obj->base.filp->f_mapping;
2302
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2303
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2304 2305 2306
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2307 2308
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2309 2310 2311 2312 2313
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2314 2315 2316 2317 2318 2319 2320
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2321
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2322 2323
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2324
				goto err_pages;
I
Imre Deak 已提交
2325
			}
C
Chris Wilson 已提交
2326
		}
2327 2328 2329
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2330 2331 2332 2333 2334 2335 2336 2337
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2338 2339 2340

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2341
	}
2342
	if (sg) /* loop terminated early; short sg table */
2343
		sg_mark_end(sg);
2344

2345 2346 2347
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2348
	ret = i915_gem_gtt_prepare_pages(obj, st);
I
Imre Deak 已提交
2349 2350 2351
	if (ret)
		goto err_pages;

2352
	if (i915_gem_object_needs_bit17_swizzle(obj))
2353
		i915_gem_object_do_bit_17_swizzle(obj, st);
2354

2355
	return st;
2356 2357

err_pages:
2358
	sg_mark_end(sg);
2359 2360
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2361 2362
	sg_free_table(st);
	kfree(st);
2363 2364 2365 2366 2367 2368 2369 2370 2371

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2372 2373 2374
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2375 2376 2377 2378 2379 2380
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2381
	lockdep_assert_held(&obj->mm.lock);
2382 2383 2384 2385 2386

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2387 2388 2389 2390 2391 2392 2393

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2394 2395 2396 2397 2398 2399
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2400 2401
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2413 2414
}

2415
/* Ensure that the associated pages are gathered from the backing storage
2416
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2417
 * multiple times before they are released by a single call to
2418
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2419 2420 2421
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2422
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2423
{
2424
	int err;
2425

2426 2427 2428
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2429

2430 2431 2432 2433
	if (unlikely(!obj->mm.pages)) {
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2434

2435 2436 2437
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2438

2439 2440
unlock:
	mutex_unlock(&obj->mm.lock);
2441
	return err;
2442 2443
}

2444
/* The 'mapping' part of i915_gem_object_pin_map() below */
2445 2446
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2447 2448
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2449
	struct sg_table *sgt = obj->mm.pages;
2450 2451
	struct sgt_iter sgt_iter;
	struct page *page;
2452 2453
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2454
	unsigned long i = 0;
2455
	pgprot_t pgprot;
2456 2457 2458
	void *addr;

	/* A single page can always be kmapped */
2459
	if (n_pages == 1 && type == I915_MAP_WB)
2460 2461
		return kmap(sg_page(sgt->sgl));

2462 2463 2464 2465 2466 2467
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2468

2469 2470
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2471 2472 2473 2474

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2475 2476 2477 2478 2479 2480 2481 2482 2483
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2484

2485 2486
	if (pages != stack_pages)
		drm_free_large(pages);
2487 2488 2489 2490 2491

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2492 2493
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2494
{
2495 2496 2497
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2498 2499
	int ret;

2500
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2501

2502
	ret = mutex_lock_interruptible(&obj->mm.lock);
2503 2504 2505
	if (ret)
		return ERR_PTR(ret);

2506 2507
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2508 2509 2510 2511
		if (unlikely(!obj->mm.pages)) {
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2512

2513 2514 2515
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2516 2517 2518
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2519

C
Chris Wilson 已提交
2520
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2521 2522 2523
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2524
			goto err_unpin;
2525
		}
2526 2527 2528 2529 2530 2531

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2532
		ptr = obj->mm.mapping = NULL;
2533 2534
	}

2535 2536 2537 2538
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2539
			goto err_unpin;
2540 2541
		}

C
Chris Wilson 已提交
2542
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2543 2544
	}

2545 2546
out_unlock:
	mutex_unlock(&obj->mm.lock);
2547 2548
	return ptr;

2549 2550 2551 2552 2553
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2554 2555
}

2556
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2557
{
2558
	unsigned long elapsed;
2559

2560
	if (ctx->hang_stats.banned)
2561 2562
		return true;

2563
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2564 2565
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2566 2567
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2568 2569 2570 2571 2572
	}

	return false;
}

2573
static void i915_set_reset_status(struct i915_gem_context *ctx,
2574
				  const bool guilty)
2575
{
2576
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2577 2578

	if (guilty) {
2579
		hs->banned = i915_context_is_banned(ctx);
2580 2581 2582 2583
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2584 2585 2586
	}
}

2587
struct drm_i915_gem_request *
2588
i915_gem_find_active_request(struct intel_engine_cs *engine)
2589
{
2590 2591
	struct drm_i915_gem_request *request;

2592 2593 2594 2595 2596 2597 2598 2599
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2600
	list_for_each_entry(request, &engine->timeline->requests, link) {
C
Chris Wilson 已提交
2601
		if (__i915_gem_request_completed(request))
2602
			continue;
2603

2604
		return request;
2605
	}
2606 2607 2608 2609

	return NULL;
}

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2628 2629
{
	struct drm_i915_gem_request *request;
2630
	struct i915_gem_context *incomplete_ctx;
C
Chris Wilson 已提交
2631
	struct intel_timeline *timeline;
2632 2633
	bool ring_hung;

2634 2635 2636
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2637
	request = i915_gem_find_active_request(engine);
2638
	if (!request)
2639 2640
		return;

2641
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2642 2643 2644
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
		ring_hung = false;

2645
	i915_set_reset_status(request->ctx, ring_hung);
2646 2647 2648 2649
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2650
			 engine->name, request->global_seqno);
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2667
	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2668 2669
		if (request->ctx == incomplete_ctx)
			reset_request(request);
C
Chris Wilson 已提交
2670 2671 2672 2673

	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
	list_for_each_entry(request, &timeline->requests, link)
		reset_request(request);
2674
}
2675

2676
void i915_gem_reset(struct drm_i915_private *dev_priv)
2677
{
2678
	struct intel_engine_cs *engine;
2679
	enum intel_engine_id id;
2680

2681 2682
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2683 2684
	i915_gem_retire_requests(dev_priv);

2685
	for_each_engine(engine, dev_priv, id)
2686 2687 2688
		i915_gem_reset_engine(engine);

	i915_gem_restore_fences(&dev_priv->drm);
2689 2690 2691 2692 2693 2694 2695

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2696 2697 2698 2699 2700 2701 2702 2703 2704
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
	engine->submit_request = nop_submit_request;
2705

2706 2707 2708 2709
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2710
	intel_engine_init_global_seqno(engine,
2711
				       intel_engine_last_submit(engine));
2712

2713 2714 2715 2716 2717 2718
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2719
	if (i915.enable_execlists) {
2720 2721 2722 2723 2724 2725
		spin_lock(&engine->execlist_lock);
		INIT_LIST_HEAD(&engine->execlist_queue);
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		spin_unlock(&engine->execlist_lock);
2726
	}
2727 2728
}

2729
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2730
{
2731
	struct intel_engine_cs *engine;
2732
	enum intel_engine_id id;
2733

2734 2735
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2736

2737
	i915_gem_context_lost(dev_priv);
2738
	for_each_engine(engine, dev_priv, id)
2739
		i915_gem_cleanup_engine(engine);
2740
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2741

2742
	i915_gem_retire_requests(dev_priv);
2743 2744
}

2745
static void
2746 2747
i915_gem_retire_work_handler(struct work_struct *work)
{
2748
	struct drm_i915_private *dev_priv =
2749
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2750
	struct drm_device *dev = &dev_priv->drm;
2751

2752
	/* Come back later if the device is busy... */
2753
	if (mutex_trylock(&dev->struct_mutex)) {
2754
		i915_gem_retire_requests(dev_priv);
2755
		mutex_unlock(&dev->struct_mutex);
2756
	}
2757 2758 2759 2760 2761

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2762 2763
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2764 2765
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2766
				   round_jiffies_up_relative(HZ));
2767
	}
2768
}
2769

2770 2771 2772 2773
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2774
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2775
	struct drm_device *dev = &dev_priv->drm;
2776
	struct intel_engine_cs *engine;
2777
	enum intel_engine_id id;
2778 2779 2780 2781 2782
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

2783 2784 2785 2786 2787 2788 2789
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
		 intel_execlists_idle(dev_priv), 10);

2790
	if (READ_ONCE(dev_priv->gt.active_requests))
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

2804 2805 2806 2807 2808 2809 2810
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

2811
	if (dev_priv->gt.active_requests)
2812
		goto out_unlock;
2813

2814 2815 2816
	if (wait_for(intel_execlists_idle(dev_priv), 10))
		DRM_ERROR("Timeout waiting for engines to idle\n");

2817
	for_each_engine(engine, dev_priv, id)
2818
		i915_gem_batch_pool_fini(&engine->batch_pool);
2819

2820 2821 2822
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2823

2824 2825 2826 2827 2828
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2829

2830 2831 2832 2833
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2834
	}
2835 2836
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2847 2848 2849 2850 2851 2852

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2853 2854 2855
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2867 2868
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2869 2870 2871
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2896 2897
	ktime_t start;
	long ret;
2898

2899 2900 2901
	if (args->flags != 0)
		return -EINVAL;

2902
	obj = i915_gem_object_lookup(file, args->bo_handle);
2903
	if (!obj)
2904 2905
		return -ENOENT;

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
2917 2918
	}

C
Chris Wilson 已提交
2919
	i915_gem_object_put(obj);
2920
	return ret;
2921 2922
}

2923
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
2924
{
2925
	int ret, i;
2926

2927 2928 2929 2930 2931
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
2932

2933 2934 2935 2936 2937 2938 2939
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
2952 2953 2954
		if (ret)
			return ret;
	}
2955

2956
	return 0;
2957 2958
}

2959 2960
void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			     bool force)
2961 2962 2963 2964 2965
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
C
Chris Wilson 已提交
2966
	if (!obj->mm.pages)
2967
		return;
2968

2969 2970 2971 2972
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
2973
	if (obj->stolen || obj->phys_handle)
2974
		return;
2975

2976 2977 2978 2979 2980 2981 2982 2983
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
2984 2985
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
2986
		return;
2987
	}
2988

C
Chris Wilson 已提交
2989
	trace_i915_gem_object_clflush(obj);
C
Chris Wilson 已提交
2990
	drm_clflush_sg(obj->mm.pages);
2991
	obj->cache_dirty = false;
2992 2993 2994 2995
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
2996
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2997
{
2998
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
2999

3000
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3001 3002
		return;

3003
	/* No actual flushing is required for the GTT write domain.  Writes
3004
	 * to it "immediately" go to main memory as far as we know, so there's
3005
	 * no chipset flush.  It also doesn't land in render cache.
3006 3007 3008 3009
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3010 3011 3012 3013 3014 3015 3016
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3017
	 */
3018
	wmb();
3019
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3020
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3021

3022
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3023

3024
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3025
	trace_i915_gem_object_change_domain(obj,
3026
					    obj->base.read_domains,
3027
					    I915_GEM_DOMAIN_GTT);
3028 3029 3030 3031
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3032
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3033
{
3034
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3035 3036
		return;

3037
	i915_gem_clflush_object(obj, obj->pin_display);
3038
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3039

3040
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3041
	trace_i915_gem_object_change_domain(obj,
3042
					    obj->base.read_domains,
3043
					    I915_GEM_DOMAIN_CPU);
3044 3045
}

3046 3047
/**
 * Moves a single object to the GTT read, and possibly write domain.
3048 3049
 * @obj: object to act on
 * @write: ask for write access or read only
3050 3051 3052 3053
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3054
int
3055
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3056
{
C
Chris Wilson 已提交
3057
	uint32_t old_write_domain, old_read_domains;
3058
	int ret;
3059

3060
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3061

3062 3063 3064 3065 3066 3067
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3068 3069 3070
	if (ret)
		return ret;

3071 3072 3073
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3074 3075 3076 3077 3078 3079 3080 3081
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3082
	ret = i915_gem_object_pin_pages(obj);
3083 3084 3085
	if (ret)
		return ret;

3086
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3087

3088 3089 3090 3091 3092 3093 3094
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3095 3096
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3097

3098 3099 3100
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3101
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3102
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3103
	if (write) {
3104 3105
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3106
		obj->mm.dirty = true;
3107 3108
	}

C
Chris Wilson 已提交
3109 3110 3111 3112
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

C
Chris Wilson 已提交
3113
	i915_gem_object_unpin_pages(obj);
3114 3115 3116
	return 0;
}

3117 3118
/**
 * Changes the cache-level of an object across all VMA.
3119 3120
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3132 3133 3134
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3135
	struct i915_vma *vma;
3136
	int ret = 0;
3137

3138 3139
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3140
	if (obj->cache_level == cache_level)
3141
		goto out;
3142

3143 3144 3145 3146 3147
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3148 3149
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3150 3151 3152
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3153
		if (i915_vma_is_pinned(vma)) {
3154 3155 3156 3157
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3170 3171
	}

3172 3173 3174 3175 3176 3177 3178
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3179
	if (obj->bind_count) {
3180 3181 3182 3183
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3184 3185 3186 3187 3188 3189
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3190 3191 3192
		if (ret)
			return ret;

3193 3194
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3211 3212 3213 3214 3215
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3216 3217 3218 3219 3220 3221 3222 3223
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3224 3225
		}

3226
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3227 3228 3229 3230 3231 3232 3233
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3234 3235
	}

3236
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3237 3238 3239
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3240
out:
3241 3242 3243 3244
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3245 3246
	if (obj->cache_dirty && cpu_write_needs_clflush(obj))
		i915_gem_clflush_object(obj, true);
3247 3248 3249 3250

	return 0;
}

B
Ben Widawsky 已提交
3251 3252
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3253
{
B
Ben Widawsky 已提交
3254
	struct drm_i915_gem_caching *args = data;
3255
	struct drm_i915_gem_object *obj;
3256
	int err = 0;
3257

3258 3259 3260 3261 3262 3263
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3264

3265 3266 3267 3268 3269 3270
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3271 3272 3273 3274
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3275 3276 3277 3278
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3279 3280 3281
out:
	rcu_read_unlock();
	return err;
3282 3283
}

B
Ben Widawsky 已提交
3284 3285
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3286
{
3287
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3288
	struct drm_i915_gem_caching *args = data;
3289 3290 3291 3292
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3293 3294
	switch (args->caching) {
	case I915_CACHING_NONE:
3295 3296
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3297
	case I915_CACHING_CACHED:
3298 3299 3300 3301 3302 3303
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3304
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3305 3306
			return -ENODEV;

3307 3308
		level = I915_CACHE_LLC;
		break;
3309
	case I915_CACHING_DISPLAY:
3310
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3311
		break;
3312 3313 3314 3315
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3316 3317
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3318
		return ret;
B
Ben Widawsky 已提交
3319

3320 3321
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3322 3323 3324 3325 3326
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3327
	i915_gem_object_put(obj);
3328 3329 3330 3331 3332
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3333
/*
3334 3335 3336
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3337
 */
C
Chris Wilson 已提交
3338
struct i915_vma *
3339 3340
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3341
				     const struct i915_ggtt_view *view)
3342
{
C
Chris Wilson 已提交
3343
	struct i915_vma *vma;
3344
	u32 old_read_domains, old_write_domain;
3345 3346
	int ret;

3347 3348
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3349 3350 3351
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3352
	obj->pin_display++;
3353

3354 3355 3356 3357 3358 3359 3360 3361 3362
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3363
	ret = i915_gem_object_set_cache_level(obj,
3364 3365
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3366 3367
	if (ret) {
		vma = ERR_PTR(ret);
3368
		goto err_unpin_display;
C
Chris Wilson 已提交
3369
	}
3370

3371 3372
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3373 3374 3375 3376
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3377
	 */
3378 3379 3380 3381
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3398
	if (IS_ERR(vma))
3399
		goto err_unpin_display;
3400

3401 3402
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3403
	i915_gem_object_flush_cpu_write_domain(obj);
3404

3405
	old_write_domain = obj->base.write_domain;
3406
	old_read_domains = obj->base.read_domains;
3407 3408 3409 3410

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3411
	obj->base.write_domain = 0;
3412
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3413 3414 3415

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3416
					    old_write_domain);
3417

C
Chris Wilson 已提交
3418
	return vma;
3419 3420

err_unpin_display:
3421
	obj->pin_display--;
C
Chris Wilson 已提交
3422
	return vma;
3423 3424 3425
}

void
C
Chris Wilson 已提交
3426
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3427
{
3428 3429
	lockdep_assert_held(&vma->vm->dev->struct_mutex);

C
Chris Wilson 已提交
3430
	if (WARN_ON(vma->obj->pin_display == 0))
3431 3432
		return;

3433 3434
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3435

3436 3437 3438 3439
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3440
	i915_vma_unpin(vma);
3441 3442
}

3443 3444
/**
 * Moves a single object to the CPU read, and possibly write domain.
3445 3446
 * @obj: object to act on
 * @write: requesting write or read-only access
3447 3448 3449 3450
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3451
int
3452
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3453
{
C
Chris Wilson 已提交
3454
	uint32_t old_write_domain, old_read_domains;
3455 3456
	int ret;

3457
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3458

3459 3460 3461 3462 3463 3464
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3465 3466 3467
	if (ret)
		return ret;

3468 3469 3470
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3471
	i915_gem_object_flush_gtt_write_domain(obj);
3472

3473 3474
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3475

3476
	/* Flush the CPU cache if it's still invalid. */
3477
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3478
		i915_gem_clflush_object(obj, false);
3479

3480
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3481 3482 3483 3484 3485
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3486
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3487 3488 3489 3490 3491

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3492 3493
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3494
	}
3495

C
Chris Wilson 已提交
3496 3497 3498 3499
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3500 3501 3502
	return 0;
}

3503 3504 3505
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3506 3507 3508 3509
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3510 3511 3512
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3513
static int
3514
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3515
{
3516
	struct drm_i915_private *dev_priv = to_i915(dev);
3517
	struct drm_i915_file_private *file_priv = file->driver_priv;
3518
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3519
	struct drm_i915_gem_request *request, *target = NULL;
3520
	long ret;
3521

3522 3523 3524
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3525

3526
	spin_lock(&file_priv->mm.lock);
3527
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3528 3529
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3530

3531 3532 3533 3534 3535 3536 3537
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3538
		target = request;
3539
	}
3540
	if (target)
3541
		i915_gem_request_get(target);
3542
	spin_unlock(&file_priv->mm.lock);
3543

3544
	if (target == NULL)
3545
		return 0;
3546

3547 3548 3549
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3550
	i915_gem_request_put(target);
3551

3552
	return ret < 0 ? ret : 0;
3553 3554
}

C
Chris Wilson 已提交
3555
struct i915_vma *
3556 3557
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3558
			 u64 size,
3559 3560
			 u64 alignment,
			 u64 flags)
3561
{
3562 3563
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3564 3565
	struct i915_vma *vma;
	int ret;
3566

3567 3568
	lockdep_assert_held(&obj->base.dev->struct_mutex);

C
Chris Wilson 已提交
3569
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3570
	if (IS_ERR(vma))
C
Chris Wilson 已提交
3571
		return vma;
3572 3573 3574 3575

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3576
			return ERR_PTR(-ENOSPC);
3577

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

3613 3614
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3615 3616 3617
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3618
		     !!(flags & PIN_MAPPABLE),
3619
		     i915_vma_is_map_and_fenceable(vma));
3620 3621
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3622
			return ERR_PTR(ret);
3623 3624
	}

C
Chris Wilson 已提交
3625 3626 3627
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3628

C
Chris Wilson 已提交
3629
	return vma;
3630 3631
}

3632
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3647 3648 3649 3650 3651 3652 3653 3654 3655
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3656 3657
}

3658
static __always_inline unsigned int
3659
__busy_set_if_active(const struct dma_fence *fence,
3660 3661
		     unsigned int (*flag)(unsigned int id))
{
3662
	struct drm_i915_gem_request *rq;
3663

3664 3665 3666 3667
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3668
	 *
3669
	 * Note we only report on the status of native fences.
3670
	 */
3671 3672 3673 3674 3675 3676 3677 3678 3679
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3680 3681
}

3682
static __always_inline unsigned int
3683
busy_check_reader(const struct dma_fence *fence)
3684
{
3685
	return __busy_set_if_active(fence, __busy_read_flag);
3686 3687
}

3688
static __always_inline unsigned int
3689
busy_check_writer(const struct dma_fence *fence)
3690
{
3691 3692 3693 3694
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3695 3696
}

3697 3698
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3699
		    struct drm_file *file)
3700 3701
{
	struct drm_i915_gem_busy *args = data;
3702
	struct drm_i915_gem_object *obj;
3703 3704
	struct reservation_object_list *list;
	unsigned int seq;
3705
	int err;
3706

3707
	err = -ENOENT;
3708 3709
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
3710
	if (!obj)
3711
		goto out;
3712

3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
3731

3732 3733
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3734

3735 3736 3737 3738
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
3739

3740 3741 3742 3743 3744 3745
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
3746
	}
3747

3748 3749 3750 3751
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
3752 3753 3754
out:
	rcu_read_unlock();
	return err;
3755 3756 3757 3758 3759 3760
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
3761
	return i915_gem_ring_throttle(dev, file_priv);
3762 3763
}

3764 3765 3766 3767
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
3768
	struct drm_i915_private *dev_priv = to_i915(dev);
3769
	struct drm_i915_gem_madvise *args = data;
3770
	struct drm_i915_gem_object *obj;
3771
	int err;
3772 3773 3774 3775 3776 3777 3778 3779 3780

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

3781
	obj = i915_gem_object_lookup(file_priv, args->handle);
3782 3783 3784 3785 3786 3787
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
3788

C
Chris Wilson 已提交
3789
	if (obj->mm.pages &&
3790
	    i915_gem_object_is_tiled(obj) &&
3791
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3792 3793
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
3794
			__i915_gem_object_unpin_pages(obj);
3795 3796 3797
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
3798
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
3799
			__i915_gem_object_pin_pages(obj);
3800 3801
			obj->mm.quirked = true;
		}
3802 3803
	}

C
Chris Wilson 已提交
3804 3805
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
3806

C
Chris Wilson 已提交
3807
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
3808
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3809 3810
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
3811
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3812
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
3813

3814
out:
3815
	i915_gem_object_put(obj);
3816
	return err;
3817 3818
}

3819 3820
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
3821
{
3822 3823
	mutex_init(&obj->mm.lock);

3824
	INIT_LIST_HEAD(&obj->global_link);
3825
	INIT_LIST_HEAD(&obj->userfault_link);
3826
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
3827
	INIT_LIST_HEAD(&obj->vma_list);
3828
	INIT_LIST_HEAD(&obj->batch_pool_link);
3829

3830 3831
	obj->ops = ops;

3832 3833 3834
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

3835
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
C
Chris Wilson 已提交
3836 3837 3838 3839

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
3840

3841
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3842 3843
}

3844
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3845 3846
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
3847 3848 3849 3850
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

3851 3852 3853 3854 3855 3856
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
i915_gem_object_create(struct drm_device *dev, u64 size)
3857
{
3858
	struct drm_i915_private *dev_priv = to_i915(dev);
3859
	struct drm_i915_gem_object *obj;
3860
	struct address_space *mapping;
D
Daniel Vetter 已提交
3861
	gfp_t mask;
3862
	int ret;
3863

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

3875
	obj = i915_gem_object_alloc(dev);
3876
	if (obj == NULL)
3877
		return ERR_PTR(-ENOMEM);
3878

3879 3880 3881
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
3882

3883
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3884
	if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
3885 3886 3887 3888 3889
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

3890
	mapping = obj->base.filp->f_mapping;
3891
	mapping_set_gfp_mask(mapping, mask);
3892

3893
	i915_gem_object_init(obj, &i915_gem_object_ops);
3894

3895 3896
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3897

3898
	if (HAS_LLC(dev_priv)) {
3899
		/* On some devices, we can have the GPU use the LLC (the CPU
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

3915 3916
	trace_i915_gem_object_create(obj);

3917
	return obj;
3918 3919 3920 3921

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
3922 3923
}

3924 3925 3926 3927 3928 3929 3930 3931
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
3932
	if (obj->mm.madv != I915_MADV_WILLNEED)
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

3948 3949
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
3950
{
3951
	struct drm_i915_gem_object *obj, *on;
3952

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
3968 3969
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
3970

3971
		list_del(&obj->global_link);
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
3982

3983 3984
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
3985
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
3986 3987 3988 3989 3990
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

3991
		reservation_object_fini(&obj->__builtin_resv);
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4014

4015 4016 4017 4018 4019 4020 4021
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4022

4023 4024 4025
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4026

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4041

4042 4043 4044
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4045

4046 4047 4048
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4049
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4050
		obj->mm.madv = I915_MADV_DONTNEED;
4051

4052 4053 4054 4055 4056 4057
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4058 4059
}

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4071 4072 4073 4074 4075 4076 4077 4078 4079
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
}

4080
int i915_gem_suspend(struct drm_device *dev)
4081
{
4082
	struct drm_i915_private *dev_priv = to_i915(dev);
4083
	int ret;
4084

4085 4086
	intel_suspend_gt_powersave(dev_priv);

4087
	mutex_lock(&dev->struct_mutex);
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4101 4102 4103
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4104
	if (ret)
4105
		goto err;
4106

4107
	i915_gem_retire_requests(dev_priv);
4108
	GEM_BUG_ON(dev_priv->gt.active_requests);
4109

4110
	assert_kernel_context_is_current(dev_priv);
4111
	i915_gem_context_lost(dev_priv);
4112 4113
	mutex_unlock(&dev->struct_mutex);

4114
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4115 4116
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4117
	flush_work(&dev_priv->mm.free_work);
4118

4119 4120 4121
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4122
	WARN_ON(dev_priv->gt.awake);
4123
	WARN_ON(!intel_execlists_idle(dev_priv));
4124

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4144
	if (HAS_HW_CONTEXTS(dev_priv)) {
4145 4146 4147 4148
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4149
	return 0;
4150 4151 4152 4153

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4154 4155
}

4156 4157 4158 4159
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

4160 4161
	WARN_ON(dev_priv->gt.awake);

4162 4163 4164 4165 4166 4167 4168
	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4169
	dev_priv->gt.resume(dev_priv);
4170 4171 4172 4173

	mutex_unlock(&dev->struct_mutex);
}

4174 4175
void i915_gem_init_swizzling(struct drm_device *dev)
{
4176
	struct drm_i915_private *dev_priv = to_i915(dev);
4177

4178
	if (INTEL_INFO(dev)->gen < 5 ||
4179 4180 4181 4182 4183 4184
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4185
	if (IS_GEN5(dev_priv))
4186 4187
		return;

4188
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4189
	if (IS_GEN6(dev_priv))
4190
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4191
	else if (IS_GEN7(dev_priv))
4192
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4193
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4194
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4195 4196
	else
		BUG();
4197
}
D
Daniel Vetter 已提交
4198

4199
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4200 4201 4202 4203 4204 4205 4206
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4207
static void init_unused_rings(struct drm_i915_private *dev_priv)
4208
{
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4221 4222 4223
	}
}

4224 4225 4226
int
i915_gem_init_hw(struct drm_device *dev)
{
4227
	struct drm_i915_private *dev_priv = to_i915(dev);
4228
	struct intel_engine_cs *engine;
4229
	enum intel_engine_id id;
C
Chris Wilson 已提交
4230
	int ret;
4231

4232 4233
	dev_priv->gt.last_init_time = ktime_get();

4234 4235 4236
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4237
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4238
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4239

4240
	if (IS_HASWELL(dev_priv))
4241
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4242
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4243

4244
	if (HAS_PCH_NOP(dev_priv)) {
4245
		if (IS_IVYBRIDGE(dev_priv)) {
4246 4247 4248 4249 4250 4251 4252 4253
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4254 4255
	}

4256 4257
	i915_gem_init_swizzling(dev);

4258 4259 4260 4261 4262 4263
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4264
	init_unused_rings(dev_priv);
4265

4266
	BUG_ON(!dev_priv->kernel_context);
4267

4268 4269 4270 4271 4272 4273 4274
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4275
	for_each_engine(engine, dev_priv, id) {
4276
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4277
		if (ret)
4278
			goto out;
D
Daniel Vetter 已提交
4279
	}
4280

4281 4282
	intel_mocs_init_l3cc_table(dev);

4283
	/* We can't enable contexts until all firmware is loaded */
4284 4285 4286
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4287

4288 4289
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4290
	return ret;
4291 4292
}

4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4314 4315
int i915_gem_init(struct drm_device *dev)
{
4316
	struct drm_i915_private *dev_priv = to_i915(dev);
4317 4318 4319
	int ret;

	mutex_lock(&dev->struct_mutex);
4320

4321
	if (!i915.enable_execlists) {
4322
		dev_priv->gt.resume = intel_legacy_submission_resume;
4323
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4324
	} else {
4325
		dev_priv->gt.resume = intel_lr_context_resume;
4326
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4327 4328
	}

4329 4330 4331 4332 4333 4334 4335 4336
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4337
	i915_gem_init_userptr(dev_priv);
4338 4339 4340 4341

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4342

4343
	ret = i915_gem_context_init(dev);
4344 4345
	if (ret)
		goto out_unlock;
4346

4347
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4348
	if (ret)
4349
		goto out_unlock;
4350

4351
	ret = i915_gem_init_hw(dev);
4352
	if (ret == -EIO) {
4353
		/* Allow engine initialisation to fail by marking the GPU as
4354 4355 4356 4357
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4358
		i915_gem_set_wedged(dev_priv);
4359
		ret = 0;
4360
	}
4361 4362

out_unlock:
4363
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4364
	mutex_unlock(&dev->struct_mutex);
4365

4366
	return ret;
4367 4368
}

4369
void
4370
i915_gem_cleanup_engines(struct drm_device *dev)
4371
{
4372
	struct drm_i915_private *dev_priv = to_i915(dev);
4373
	struct intel_engine_cs *engine;
4374
	enum intel_engine_id id;
4375

4376
	for_each_engine(engine, dev_priv, id)
4377
		dev_priv->gt.cleanup_engine(engine);
4378 4379
}

4380 4381 4382
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4383
	struct drm_device *dev = &dev_priv->drm;
4384
	int i;
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4395
	if (intel_vgpu_active(dev_priv))
4396 4397 4398 4399
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4400 4401 4402 4403 4404 4405 4406
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4407 4408 4409 4410 4411
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4412
int
4413
i915_gem_load_init(struct drm_device *dev)
4414
{
4415
	struct drm_i915_private *dev_priv = to_i915(dev);
4416
	int err = -ENOMEM;
4417

4418 4419
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4420 4421
		goto err_out;

4422 4423
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4424 4425
		goto err_objects;

4426 4427 4428 4429 4430
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4431 4432 4433 4434
		goto err_vmas;

	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4435
	err = i915_gem_timeline_init__global(dev_priv);
4436 4437 4438
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
		goto err_requests;
4439

4440
	INIT_LIST_HEAD(&dev_priv->context_list);
4441 4442
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4443 4444
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4445
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4446
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4447
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4448
			  i915_gem_retire_work_handler);
4449
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4450
			  i915_gem_idle_work_handler);
4451
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4452
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4453

4454 4455
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4456
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4457

4458 4459
	dev_priv->mm.interruptible = true;

4460 4461
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4462
	spin_lock_init(&dev_priv->fb_tracking.lock);
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

	return 0;

err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4474
}
4475

4476 4477 4478 4479
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

4480 4481
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));

4482 4483 4484
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4485 4486 4487

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4488 4489
}

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4503 4504 4505
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4506 4507 4508 4509 4510
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4521 4522 4523
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4524 4525
	 */

4526 4527
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4528

4529
	for (p = phases; *p; p++) {
4530
		list_for_each_entry(obj, *p, global_link) {
4531 4532 4533
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4534
	}
4535
	mutex_unlock(&dev_priv->drm.struct_mutex);
4536 4537 4538 4539

	return 0;
}

4540
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4541
{
4542
	struct drm_i915_file_private *file_priv = file->driver_priv;
4543
	struct drm_i915_gem_request *request;
4544 4545 4546 4547 4548

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4549
	spin_lock(&file_priv->mm.lock);
4550
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4551
		request->file_priv = NULL;
4552
	spin_unlock(&file_priv->mm.lock);
4553

4554
	if (!list_empty(&file_priv->rps.link)) {
4555
		spin_lock(&to_i915(dev)->rps.client_lock);
4556
		list_del(&file_priv->rps.link);
4557
		spin_unlock(&to_i915(dev)->rps.client_lock);
4558
	}
4559 4560 4561 4562 4563
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4564
	int ret;
4565 4566 4567 4568 4569 4570 4571 4572

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4573
	file_priv->dev_priv = to_i915(dev);
4574
	file_priv->file = file;
4575
	INIT_LIST_HEAD(&file_priv->rps.link);
4576 4577 4578 4579

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4580
	file_priv->bsd_engine = -1;
4581

4582 4583 4584
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4585

4586
	return ret;
4587 4588
}

4589 4590
/**
 * i915_gem_track_fb - update frontbuffer tracking
4591 4592 4593
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4594 4595 4596 4597
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4598 4599 4600 4601
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4602 4603 4604 4605 4606 4607 4608 4609 4610
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4611
	if (old) {
4612 4613
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4614 4615 4616
	}

	if (new) {
4617 4618
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4619 4620 4621
	}
}

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

4632
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4633
	if (IS_ERR(obj))
4634 4635 4636 4637 4638 4639
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4640
	ret = i915_gem_object_pin_pages(obj);
4641 4642 4643
	if (ret)
		goto fail;

C
Chris Wilson 已提交
4644
	sg = obj->mm.pages;
4645
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
C
Chris Wilson 已提交
4646
	obj->mm.dirty = true; /* Backing store is now out of date */
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
4658
	i915_gem_object_put(obj);
4659 4660
	return ERR_PTR(ret);
}
4661 4662 4663 4664 4665 4666

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
4667
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4668 4669 4670 4671 4672
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
4673
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
4798
	if (!obj->mm.dirty)
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}