amd_iommu.c 102.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
	struct dma_ops_domain *dma_dom;
};

struct flush_queue {
	spinlock_t lock;
	unsigned next;
	struct flush_queue_entry *entries;
};

106
static DEFINE_PER_CPU(struct flush_queue, flush_queue);
107

108 109 110
static atomic_t queue_timer_on;
static struct timer_list queue_timer;

111 112 113 114
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
115
const struct iommu_ops amd_iommu_ops;
116

117
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
118
int amd_iommu_max_glx_val = -1;
119

120
static const struct dma_map_ops amd_iommu_dma_ops;
121

122 123 124 125 126 127 128 129
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
130
	u16 alias;			  /* Alias Device ID */
131
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
132
	bool passthrough;		  /* Device is identity mapped */
133 134 135 136 137 138 139
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
140
	bool use_vapic;			  /* Enable device to use vapic mode */
141 142
};

143 144 145
/*
 * general struct to manage commands send to an IOMMU
 */
146
struct iommu_cmd {
147 148 149
	u32 data[4];
};

150 151
struct kmem_cache *amd_iommu_irq_cache;

152
static void update_domain(struct protection_domain *domain);
153
static int protection_domain_init(struct protection_domain *domain);
154
static void detach_device(struct device *dev);
155

156 157 158 159 160 161 162
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

163 164
	/* IOVA RB-Tree */
	struct iova_domain iovad;
165 166
};

167 168 169
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

170 171 172 173 174 175
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

176 177
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
178
{
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
194 195
}

196
static inline u16 get_pci_device_id(struct device *dev)
197 198 199 200 201 202
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

230 231 232 233 234
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

235 236 237 238 239 240
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

241
static struct iommu_dev_data *alloc_dev_data(u16 devid)
242 243 244 245 246 247 248 249
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

250
	dev_data->devid = devid;
251 252 253 254 255 256 257 258

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

278 279 280 281 282 283 284 285 286 287 288
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

289
	/* The callers make sure that get_device_id() does not fail here */
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
331
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
332 333 334 335 336 337 338 339
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

340 341 342 343 344 345 346 347 348 349 350 351
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

352 353 354 355 356
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

357 358 359 360
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
361
{
362
	struct acpihid_map_entry *p, *entry = NULL;
363
	int devid;
364 365 366 367 368 369 370 371 372 373 374 375

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
376 377
	else
		iommu_group_ref_get(entry->group);
378 379

	return entry->group;
380 381
}

382 383 384 385
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
386 387
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
388 389 390 391 392 393 394 395 396 397 398 399
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

400 401 402 403 404 405 406 407 408
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

409 410 411 412 413 414
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
415
	int devid;
416 417 418 419 420

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
421
	if (devid < 0)
422
		return false;
423 424 425 426 427 428 429 430 431 432 433

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

434
static void init_iommu_group(struct device *dev)
435 436 437
{
	struct iommu_group *group;

438
	group = iommu_group_get_for_dev(dev);
439 440 441 442
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
443 444 445 446 447
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
448
	struct amd_iommu *iommu;
449
	int devid;
450 451 452 453

	if (dev->archdata.iommu)
		return 0;

454
	devid = get_device_id(dev);
455
	if (devid < 0)
456 457
		return devid;

458 459
	iommu = amd_iommu_rlookup_table[devid];

460
	dev_data = find_dev_data(devid);
461 462 463
	if (!dev_data)
		return -ENOMEM;

464 465
	dev_data->alias = get_alias(dev);

466
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
467 468
		struct amd_iommu *iommu;

469
		iommu = amd_iommu_rlookup_table[dev_data->devid];
470 471 472
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

473 474
	dev->archdata.iommu = dev_data;

475
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
476

477 478 479
	return 0;
}

480 481
static void iommu_ignore_device(struct device *dev)
{
482 483
	u16 alias;
	int devid;
484 485

	devid = get_device_id(dev);
486
	if (devid < 0)
487 488
		return;

489
	alias = get_alias(dev);
490 491 492 493 494 495 496 497

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

498 499
static void iommu_uninit_device(struct device *dev)
{
500
	struct iommu_dev_data *dev_data;
501 502
	struct amd_iommu *iommu;
	int devid;
503

504
	devid = get_device_id(dev);
505
	if (devid < 0)
506
		return;
507

508 509
	iommu = amd_iommu_rlookup_table[devid];

510
	dev_data = search_dev_data(devid);
511 512 513
	if (!dev_data)
		return;

514 515 516
	if (dev_data->domain)
		detach_device(dev);

517
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
518

519 520
	iommu_group_remove_device(dev);

521
	/* Remove dma-ops */
522
	dev->dma_ops = NULL;
523

524
	/*
525 526
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
527
	 */
528
}
J
Joerg Roedel 已提交
529

530 531 532 533 534 535
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

536 537 538 539
static void dump_dte_entry(u16 devid)
{
	int i;

540 541
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
542 543 544
			amd_iommu_dev_table[devid].data[i]);
}

545 546 547 548 549 550 551 552 553
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

554
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
555
{
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
577

578
	printk(KERN_ERR "AMD-Vi: Event logged [");
579 580 581 582 583

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
584
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585
		       address, flags);
586
		dump_dte_entry(devid);
587 588 589 590
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
591
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
592 593 594 595 596
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
597
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 599 600 601 602
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
603
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
604 605 606 607
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
608
		dump_command(address);
609 610 611 612 613 614 615 616
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
617
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
618 619 620 621 622
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
623
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
624 625 626 627 628
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
629 630

	memset(__evt, 0, 4 * sizeof(u32));
631 632 633 634 635 636 637 638 639 640
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
641
		iommu_print_event(iommu, iommu->evt_buf + head);
642
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
643 644 645 646 647
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

648
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
693

694 695 696
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
697

698 699 700 701 702 703 704
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
705 706
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
707 708 709 710 711 712

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
713 714 715 716
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

777
irqreturn_t amd_iommu_int_thread(int irq, void *data)
778
{
779 780
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
781

782 783 784
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
785
			iommu->mmio_base + MMIO_STATUS_OFFSET);
786

787 788 789 790
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
791

792 793 794 795
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
796

797 798 799 800 801 802 803
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
819
	return IRQ_HANDLED;
820 821
}

822 823 824 825 826
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

827 828 829 830 831 832
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
853 854 855
{
	u8 *target;

856
	target = iommu->cmd_buf + tail;
857
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
858 859 860 861 862

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
863
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
864
}
865

866
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
867
{
868 869
	WARN_ON(address & 0x7ULL);

870
	memset(cmd, 0, sizeof(*cmd));
871 872 873
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
874 875 876
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

877 878 879 880 881 882 883
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

884 885 886 887
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
888
	bool s;
889 890

	pages = iommu_num_pages(address, size, PAGE_SIZE);
891
	s     = false;
892 893 894 895 896 897 898

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
899
		s = true;
900 901 902 903 904 905 906 907 908 909 910
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
911
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
912 913 914
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

915 916 917 918
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
919
	bool s;
920 921

	pages = iommu_num_pages(address, size, PAGE_SIZE);
922
	s     = false;
923 924 925 926 927 928 929

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
930
		s = true;
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

946 947 948 949 950 951 952
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

953
	cmd->data[0]  = pasid;
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
972
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
973 974
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
975
	cmd->data[1] |= (pasid & 0xff) << 16;
976 977 978 979 980 981 982 983
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

984 985 986 987 988 989 990
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
991
		cmd->data[1]  = pasid;
992 993 994 995 996 997 998 999
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1000 1001 1002 1003
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1004 1005
}

1006 1007 1008 1009 1010 1011 1012
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1013 1014
/*
 * Writes the command to the IOMMUs command buffer and informs the
1015
 * hardware about the new command.
1016
 */
1017 1018 1019
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1020
{
1021
	u32 left, tail, head, next_tail;
1022

1023
again:
1024

1025 1026
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1027 1028
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
1029

1030
	if (left <= 0x20) {
1031 1032
		struct iommu_cmd sync_cmd;
		int ret;
1033

1034
		iommu->cmd_sem = 0;
1035

1036 1037
		build_completion_wait(&sync_cmd, (u64)&iommu->cmd_sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1038

1039
		if ((ret = wait_on_sem(&iommu->cmd_sem)) != 0)
1040 1041 1042
			return ret;

		goto again;
1043 1044
	}

1045 1046 1047
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1048
	iommu->need_sync = sync;
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1062
	spin_unlock_irqrestore(&iommu->lock, flags);
1063

1064
	return ret;
1065 1066
}

1067 1068 1069 1070 1071
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1072 1073 1074 1075
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1076
static int iommu_completion_wait(struct amd_iommu *iommu)
1077 1078
{
	struct iommu_cmd cmd;
1079
	unsigned long flags;
1080
	int ret;
1081

1082
	if (!iommu->need_sync)
1083
		return 0;
1084

1085

1086 1087 1088 1089 1090 1091 1092
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1093
	if (ret)
1094 1095 1096 1097 1098 1099
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1100

1101
	return ret;
1102 1103
}

1104
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1105
{
1106
	struct iommu_cmd cmd;
1107

1108
	build_inv_dte(&cmd, devid);
1109

1110 1111
	return iommu_queue_command(iommu, &cmd);
}
1112

1113 1114 1115
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1116

1117 1118
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1119

1120 1121
	iommu_completion_wait(iommu);
}
1122

1123 1124 1125 1126 1127 1128 1129
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1130

1131 1132 1133 1134 1135 1136
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1137

1138
	iommu_completion_wait(iommu);
1139 1140
}

1141
static void iommu_flush_all(struct amd_iommu *iommu)
1142
{
1143
	struct iommu_cmd cmd;
1144

1145
	build_inv_all(&cmd);
1146

1147 1148 1149 1150
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1170 1171
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1172 1173 1174 1175
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1176
		iommu_flush_irt_all(iommu);
1177
		iommu_flush_tlb_all(iommu);
1178 1179 1180
	}
}

1181
/*
1182
 * Command send function for flushing on-device TLB
1183
 */
1184 1185
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1186 1187
{
	struct amd_iommu *iommu;
1188
	struct iommu_cmd cmd;
1189
	int qdep;
1190

1191 1192
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1193

1194
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1195 1196

	return iommu_queue_command(iommu, &cmd);
1197 1198
}

1199 1200 1201
/*
 * Command send function for invalidating a device table entry
 */
1202
static int device_flush_dte(struct iommu_dev_data *dev_data)
1203
{
1204
	struct amd_iommu *iommu;
1205
	u16 alias;
1206
	int ret;
1207

1208
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1209
	alias = dev_data->alias;
1210

1211
	ret = iommu_flush_dte(iommu, dev_data->devid);
1212 1213
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1214 1215 1216
	if (ret)
		return ret;

1217
	if (dev_data->ats.enabled)
1218
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1219 1220

	return ret;
1221 1222
}

1223 1224 1225 1226 1227
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1228 1229
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1230
{
1231
	struct iommu_dev_data *dev_data;
1232 1233
	struct iommu_cmd cmd;
	int ret = 0, i;
1234

1235
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1236

1237
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1238 1239 1240 1241 1242 1243 1244
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1245
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1246 1247
	}

1248 1249
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1250
		if (!dev_data->ats.enabled)
1251 1252
			continue;

1253
		ret |= device_flush_iotlb(dev_data, address, size);
1254 1255
	}

1256
	WARN_ON(ret);
1257 1258
}

1259 1260
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1261
{
1262
	__domain_flush_pages(domain, address, size, 0);
1263
}
1264

1265
/* Flush the whole IO/TLB for a given protection domain */
1266
static void domain_flush_tlb(struct protection_domain *domain)
1267
{
1268
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1269 1270
}

1271
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1272
static void domain_flush_tlb_pde(struct protection_domain *domain)
1273
{
1274
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1275 1276
}

1277
static void domain_flush_complete(struct protection_domain *domain)
1278
{
1279
	int i;
1280

1281
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1282
		if (domain && !domain->dev_iommu[i])
1283
			continue;
1284

1285 1286 1287 1288 1289
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1290
	}
1291 1292
}

1293

1294
/*
1295
 * This function flushes the DTEs for all devices in domain
1296
 */
1297
static void domain_flush_devices(struct protection_domain *domain)
1298
{
1299
	struct iommu_dev_data *dev_data;
1300

1301
	list_for_each_entry(dev_data, &domain->dev_list, list)
1302
		device_flush_dte(dev_data);
1303 1304
}

1305 1306 1307 1308 1309 1310 1311
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1341
		      unsigned long page_size,
1342 1343 1344
		      u64 **pte_page,
		      gfp_t gfp)
{
1345
	int level, end_lvl;
1346
	u64 *pte, *page;
1347 1348

	BUG_ON(!is_power_of_2(page_size));
1349 1350 1351 1352

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1353 1354 1355 1356
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1357 1358

	while (level > end_lvl) {
1359 1360 1361 1362 1363
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1364 1365 1366
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1367 1368 1369

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1370 1371
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1372 1373 1374
				free_page((unsigned long)page);
				continue;
			}
1375 1376
		}

1377 1378 1379 1380
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1398 1399 1400
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1401 1402 1403 1404
{
	int level;
	u64 *pte;

1405 1406 1407
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1408 1409 1410
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1411

1412 1413 1414
	while (level > 0) {

		/* Not Present */
1415 1416 1417
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1418
		/* Large PTE */
1419 1420 1421
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1422 1423 1424 1425 1426

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1427 1428
		level -= 1;

1429
		/* Walk to the next level */
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1445 1446 1447 1448 1449
	}

	return pte;
}

1450 1451 1452 1453 1454 1455 1456
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1457 1458 1459
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1460
			  unsigned long page_size,
1461
			  int prot,
1462
			  gfp_t gfp)
1463
{
1464
	u64 __pte, *pte;
1465
	int i, count;
1466

1467 1468 1469
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1470
	if (!(prot & IOMMU_PROT_MASK))
1471 1472
		return -EINVAL;

1473
	count = PAGE_SIZE_PTE_COUNT(page_size);
1474
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1475

1476 1477 1478
	if (!pte)
		return -ENOMEM;

1479 1480 1481
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1482

1483
	if (count > 1) {
1484 1485 1486 1487
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1488 1489 1490 1491 1492 1493

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1494 1495
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1496

1497 1498
	update_domain(dom);

1499 1500 1501
	return 0;
}

1502 1503 1504
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1505
{
1506 1507
	unsigned long long unmapped;
	unsigned long unmap_size;
1508 1509 1510 1511 1512
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1513

1514 1515
	while (unmapped < page_size) {

1516 1517 1518 1519 1520 1521
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1522 1523 1524 1525 1526 1527 1528 1529
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1530
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1531

1532
	return unmapped;
1533 1534
}

1535 1536 1537
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1538
 * interface functions.
1539 1540
 *
 ****************************************************************************/
1541

1542

1543 1544 1545
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1546
{
1547
	unsigned long pfn = 0;
1548

1549
	pages = __roundup_pow_of_two(pages);
1550

1551 1552 1553
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1554

1555 1556
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1557

1558
	return (pfn << PAGE_SHIFT);
1559 1560
}

1561 1562 1563
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1564
{
1565 1566
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1567

1568
	free_iova_fast(&dma_dom->iovad, address, pages);
1569 1570
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1643
		/* PTE present? */				\
1644 1645 1646
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1647 1648 1649 1650 1651
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1664
static void free_pagetable(struct protection_domain *domain)
1665
{
1666
	unsigned long root = (unsigned long)domain->pt_root;
1667

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1691 1692 1693
	}
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1724 1725
static void free_gcr3_table(struct protection_domain *domain)
{
1726 1727 1728 1729
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1730 1731
	else
		BUG_ON(domain->glx != 0);
1732

1733 1734 1735
	free_page((unsigned long)domain->gcr3_tbl);
}

1736 1737 1738 1739
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1740 1741 1742 1743 1744
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1745 1746
	del_domain_from_list(&dom->domain);

1747
	put_iova_domain(&dom->iovad);
1748

1749
	free_pagetable(&dom->domain);
1750

1751 1752 1753
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1754 1755 1756
	kfree(dom);
}

1757 1758
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1759
 * It also initializes the page table and the address allocator data
1760 1761
 * structures required for the dma_ops interface
 */
1762
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1763 1764 1765 1766 1767 1768 1769
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1770
	if (protection_domain_init(&dma_dom->domain))
1771
		goto free_dma_dom;
1772

1773
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1774
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1775
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1776 1777 1778
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1779 1780 1781
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1782 1783 1784
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1785 1786
	add_domain_to_list(&dma_dom->domain);

1787 1788 1789 1790 1791 1792 1793 1794
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1795 1796 1797 1798 1799 1800 1801 1802 1803
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1804
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1805
{
1806
	u64 pte_root = 0;
1807
	u64 flags = 0;
1808

1809 1810 1811
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1812 1813 1814
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1815

1816 1817
	flags = amd_iommu_dev_table[devid].data[1];

1818 1819 1820
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1847 1848 1849 1850 1851
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1852 1853 1854 1855 1856
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1857 1858
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1859 1860

	amd_iommu_apply_erratum_63(devid);
1861 1862
}

1863 1864
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1865 1866
{
	struct amd_iommu *iommu;
1867
	u16 alias;
1868
	bool ats;
1869

1870
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1871
	alias = dev_data->alias;
1872
	ats   = dev_data->ats.enabled;
1873 1874 1875 1876 1877 1878 1879 1880 1881

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1882 1883 1884
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1885
		set_dte_entry(alias, domain, ats);
1886

1887
	device_flush_dte(dev_data);
1888 1889
}

1890
static void do_detach(struct iommu_dev_data *dev_data)
1891 1892
{
	struct amd_iommu *iommu;
1893
	u16 alias;
1894

1895 1896 1897 1898 1899 1900 1901 1902 1903
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1904
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1905
	alias = dev_data->alias;
1906 1907

	/* decrease reference counters */
1908 1909 1910 1911 1912 1913
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1914
	clear_dte_entry(dev_data->devid);
1915 1916
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1917

1918
	/* Flush the DTE entry */
1919
	device_flush_dte(dev_data);
1920 1921 1922 1923 1924 1925
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1926
static int __attach_device(struct iommu_dev_data *dev_data,
1927
			   struct protection_domain *domain)
1928
{
1929
	int ret;
1930

1931 1932 1933 1934 1935 1936
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1937 1938 1939
	/* lock domain */
	spin_lock(&domain->lock);

1940
	ret = -EBUSY;
1941
	if (dev_data->domain != NULL)
1942
		goto out_unlock;
1943

1944
	/* Attach alias group root */
1945
	do_attach(dev_data, domain);
1946

1947 1948 1949 1950
	ret = 0;

out_unlock:

1951 1952
	/* ready */
	spin_unlock(&domain->lock);
1953

1954
	return ret;
1955
}
1956

1957 1958 1959 1960 1961 1962 1963 1964

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1965 1966 1967 1968 1969 1970
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1971
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1972 1973 1974
	if (!pos)
		return -EINVAL;

1975 1976 1977
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1978 1979 1980 1981

	return 0;
}

1982 1983
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1984 1985 1986 1987 1988 1989 1990 1991
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2003 2004
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2005 2006 2007
	if (ret)
		goto out_err;

2008 2009 2010 2011 2012 2013
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2027
/* FIXME: Move this to PCI code */
2028
#define PCI_PRI_TLP_OFF		(1 << 15)
2029

J
Joerg Roedel 已提交
2030
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2031
{
2032
	u16 status;
2033 2034
	int pos;

2035
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2036 2037 2038
	if (!pos)
		return false;

2039
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2040

2041
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2042 2043
}

2044
/*
F
Frank Arnold 已提交
2045
 * If a device is not yet associated with a domain, this function
2046 2047
 * assigns it visible for the hardware
 */
2048 2049
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2050
{
2051
	struct pci_dev *pdev;
2052
	struct iommu_dev_data *dev_data;
2053
	unsigned long flags;
2054
	int ret;
2055

2056 2057
	dev_data = get_dev_data(dev);

2058 2059 2060 2061
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2062
	if (domain->flags & PD_IOMMUV2_MASK) {
2063
		if (!dev_data->passthrough)
2064 2065
			return -EINVAL;

2066 2067 2068
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2069

2070 2071 2072 2073
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2074 2075
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2076 2077 2078
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2079

2080
skip_ats_check:
2081
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2082
	ret = __attach_device(dev_data, domain);
2083 2084
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2085 2086 2087 2088 2089
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2090
	domain_flush_tlb_pde(domain);
2091 2092

	return ret;
2093 2094
}

2095 2096 2097
/*
 * Removes a device from a protection domain (unlocked)
 */
2098
static void __detach_device(struct iommu_dev_data *dev_data)
2099
{
2100
	struct protection_domain *domain;
2101

2102 2103 2104 2105 2106
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2107

2108 2109
	if (WARN_ON(!dev_data->domain))
		return;
2110

2111
	domain = dev_data->domain;
2112

2113
	spin_lock(&domain->lock);
2114

2115
	do_detach(dev_data);
2116

2117
	spin_unlock(&domain->lock);
2118 2119 2120 2121 2122
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2123
static void detach_device(struct device *dev)
2124
{
2125
	struct protection_domain *domain;
2126
	struct iommu_dev_data *dev_data;
2127 2128
	unsigned long flags;

2129
	dev_data = get_dev_data(dev);
2130
	domain   = dev_data->domain;
2131

2132 2133
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2134
	__detach_device(dev_data);
2135
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2136

2137 2138 2139
	if (!dev_is_pci(dev))
		return;

2140
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2141 2142
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2143
		pci_disable_ats(to_pci_dev(dev));
2144 2145

	dev_data->ats.enabled = false;
2146
}
2147

2148
static int amd_iommu_add_device(struct device *dev)
2149
{
2150
	struct iommu_dev_data *dev_data;
2151
	struct iommu_domain *domain;
2152
	struct amd_iommu *iommu;
2153
	int ret, devid;
2154

2155
	if (!check_device(dev) || get_dev_data(dev))
2156
		return 0;
2157

2158
	devid = get_device_id(dev);
2159
	if (devid < 0)
2160 2161
		return devid;

2162
	iommu = amd_iommu_rlookup_table[devid];
2163

2164
	ret = iommu_init_device(dev);
2165 2166 2167 2168
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2169

2170
		iommu_ignore_device(dev);
2171
		dev->dma_ops = &nommu_dma_ops;
2172 2173 2174
		goto out;
	}
	init_iommu_group(dev);
2175

2176
	dev_data = get_dev_data(dev);
2177

2178
	BUG_ON(!dev_data);
2179

2180
	if (iommu_pass_through || dev_data->iommu_v2)
2181
		iommu_request_dm_for_dev(dev);
2182

2183 2184
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2185
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2186
		dev_data->passthrough = true;
2187
	else
2188
		dev->dma_ops = &amd_iommu_dma_ops;
2189

2190
out:
2191 2192 2193 2194 2195
	iommu_completion_wait(iommu);

	return 0;
}

2196
static void amd_iommu_remove_device(struct device *dev)
2197
{
2198
	struct amd_iommu *iommu;
2199
	int devid;
2200 2201 2202 2203 2204

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2205
	if (devid < 0)
2206 2207
		return;

2208 2209 2210 2211
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2212 2213
}

2214 2215 2216 2217 2218 2219 2220 2221
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2222 2223 2224 2225 2226 2227
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

J
Joerg Roedel 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
static void __queue_flush(struct flush_queue *queue)
{
	struct protection_domain *domain;
	unsigned long flags;
	int idx;

	/* First flush TLB of all known domains */
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_for_each_entry(domain, &amd_iommu_pd_list, list)
		domain_flush_tlb(domain);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);

	/* Wait until flushes have completed */
	domain_flush_complete(NULL);

	for (idx = 0; idx < queue->next; ++idx) {
		struct flush_queue_entry *entry;

		entry = queue->entries + idx;

		free_iova_fast(&entry->dma_dom->iovad,
				entry->iova_pfn,
				entry->pages);

		/* Not really necessary, just to make sure we catch any bugs */
		entry->dma_dom = NULL;
	}

	queue->next = 0;
}

2259
static void queue_flush_all(void)
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(&flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		if (queue->next > 0)
			__queue_flush(queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

2275 2276 2277 2278 2279 2280
static void queue_flush_timeout(unsigned long unsused)
{
	atomic_set(&queue_timer_on, 0);
	queue_flush_all();
}

J
Joerg Roedel 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
static void queue_add(struct dma_ops_domain *dma_dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue_entry *entry;
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(&flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

	if (queue->next == FLUSH_QUEUE_SIZE)
		__queue_flush(queue);

	idx   = queue->next++;
	entry = queue->entries + idx;

	entry->iova_pfn = address;
	entry->pages    = pages;
	entry->dma_dom  = dma_dom;

	spin_unlock_irqrestore(&queue->lock, flags);
2306 2307 2308 2309

	if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
		mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));

J
Joerg Roedel 已提交
2310 2311 2312 2313
	put_cpu_ptr(&flush_queue);
}


2314 2315 2316 2317 2318 2319 2320
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2321
static struct protection_domain *get_domain(struct device *dev)
2322
{
2323
	struct protection_domain *domain;
2324

2325
	if (!check_device(dev))
2326
		return ERR_PTR(-EINVAL);
2327

2328
	domain = get_dev_data(dev)->domain;
2329
	if (!dma_ops_domain(domain))
2330
		return ERR_PTR(-EBUSY);
2331

2332
	return domain;
2333 2334
}

2335 2336
static void update_device_table(struct protection_domain *domain)
{
2337
	struct iommu_dev_data *dev_data;
2338

2339
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2340
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2341 2342 2343 2344 2345 2346 2347

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2348 2349 2350 2351 2352 2353 2354 2355
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2356 2357 2358

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2359 2360 2361 2362

	domain->updated = false;
}

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2374 2375
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2376 2377
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2378 2379
 * Must be called with the domain lock held.
 */
2380 2381 2382 2383
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2384
			       enum dma_data_direction direction,
2385
			       u64 dma_mask)
2386 2387
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2388
	dma_addr_t address, start, ret;
2389
	unsigned int pages;
2390
	int prot = 0;
2391 2392
	int i;

2393
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2394 2395
	paddr &= PAGE_MASK;

2396
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2397 2398
	if (address == DMA_ERROR_CODE)
		goto out;
2399

2400
	prot = dir2prot(direction);
2401

2402 2403
	start = address;
	for (i = 0; i < pages; ++i) {
2404 2405 2406
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2407 2408
			goto out_unmap;

2409 2410 2411 2412 2413
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2414
	if (unlikely(amd_iommu_np_cache)) {
2415
		domain_flush_pages(&dma_dom->domain, address, size);
2416 2417
		domain_flush_complete(&dma_dom->domain);
	}
2418

2419 2420
out:
	return address;
2421 2422 2423 2424 2425

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2426
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2427 2428
	}

2429 2430 2431 2432
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2433

2434
	return DMA_ERROR_CODE;
2435 2436
}

2437 2438 2439 2440
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2441
static void __unmap_single(struct dma_ops_domain *dma_dom,
2442 2443 2444 2445
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2446
	dma_addr_t flush_addr;
2447 2448 2449
	dma_addr_t i, start;
	unsigned int pages;

2450
	flush_addr = dma_addr;
2451
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2452 2453 2454 2455
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2456
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2457 2458 2459
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2460 2461 2462 2463 2464 2465 2466
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2467 2468
}

2469 2470 2471
/*
 * The exported map_single function for dma_ops.
 */
2472 2473 2474
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2475
			   unsigned long attrs)
2476
{
2477
	phys_addr_t paddr = page_to_phys(page) + offset;
2478
	struct protection_domain *domain;
2479
	struct dma_ops_domain *dma_dom;
2480
	u64 dma_mask;
2481

2482 2483
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2484
		return (dma_addr_t)paddr;
2485 2486
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2487

2488
	dma_mask = *dev->dma_mask;
2489
	dma_dom = to_dma_ops_domain(domain);
2490

2491
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2492 2493
}

2494 2495 2496
/*
 * The exported unmap_single function for dma_ops.
 */
2497
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2498
		       enum dma_data_direction dir, unsigned long attrs)
2499 2500
{
	struct protection_domain *domain;
2501
	struct dma_ops_domain *dma_dom;
2502

2503 2504
	domain = get_domain(dev);
	if (IS_ERR(domain))
2505 2506
		return;

2507 2508 2509
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2510 2511
}

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2538 2539 2540 2541
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2542
static int map_sg(struct device *dev, struct scatterlist *sglist,
2543
		  int nelems, enum dma_data_direction direction,
2544
		  unsigned long attrs)
2545
{
2546
	int mapped_pages = 0, npages = 0, prot = 0, i;
2547
	struct protection_domain *domain;
2548
	struct dma_ops_domain *dma_dom;
2549
	struct scatterlist *s;
2550
	unsigned long address;
2551
	u64 dma_mask;
2552

2553
	domain = get_domain(dev);
2554
	if (IS_ERR(domain))
2555
		return 0;
2556

2557
	dma_dom  = to_dma_ops_domain(domain);
2558
	dma_mask = *dev->dma_mask;
2559

2560 2561 2562 2563 2564 2565 2566 2567 2568
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2569
	for_each_sg(sglist, s, nelems, i) {
2570 2571 2572 2573 2574
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2575

2576 2577 2578 2579 2580
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2581

2582 2583
			mapped_pages += 1;
		}
2584 2585
	}

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2603

2604 2605 2606 2607 2608 2609
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2610 2611
	}

2612 2613 2614 2615
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2616
	return 0;
2617 2618
}

2619 2620 2621 2622
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2623
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2624
		     int nelems, enum dma_data_direction dir,
2625
		     unsigned long attrs)
2626 2627
{
	struct protection_domain *domain;
2628
	struct dma_ops_domain *dma_dom;
2629 2630
	unsigned long startaddr;
	int npages = 2;
2631

2632 2633
	domain = get_domain(dev);
	if (IS_ERR(domain))
2634 2635
		return;

2636
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2637
	dma_dom   = to_dma_ops_domain(domain);
2638 2639
	npages    = sg_num_pages(dev, sglist, nelems);

2640
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2641 2642
}

2643 2644 2645
/*
 * The exported alloc_coherent function for dma_ops.
 */
2646
static void *alloc_coherent(struct device *dev, size_t size,
2647
			    dma_addr_t *dma_addr, gfp_t flag,
2648
			    unsigned long attrs)
2649
{
2650
	u64 dma_mask = dev->coherent_dma_mask;
2651
	struct protection_domain *domain;
2652
	struct dma_ops_domain *dma_dom;
2653
	struct page *page;
2654

2655 2656
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2657 2658 2659
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2660 2661
	} else if (IS_ERR(domain))
		return NULL;
2662

2663
	dma_dom   = to_dma_ops_domain(domain);
2664
	size	  = PAGE_ALIGN(size);
2665 2666
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2667
	flag     |= __GFP_ZERO;
2668

2669 2670
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2671
		if (!gfpflags_allow_blocking(flag))
2672
			return NULL;
2673

2674
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2675
						 get_order(size), flag);
2676 2677 2678
		if (!page)
			return NULL;
	}
2679

2680 2681 2682
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2683
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2684
				 size, DMA_BIDIRECTIONAL, dma_mask);
2685

2686
	if (*dma_addr == DMA_ERROR_CODE)
2687
		goto out_free;
2688

2689
	return page_address(page);
2690 2691 2692

out_free:

2693 2694
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2695 2696

	return NULL;
2697 2698
}

2699 2700 2701
/*
 * The exported free_coherent function for dma_ops.
 */
2702
static void free_coherent(struct device *dev, size_t size,
2703
			  void *virt_addr, dma_addr_t dma_addr,
2704
			  unsigned long attrs)
2705 2706
{
	struct protection_domain *domain;
2707
	struct dma_ops_domain *dma_dom;
2708
	struct page *page;
2709

2710 2711 2712
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2713 2714
	domain = get_domain(dev);
	if (IS_ERR(domain))
2715 2716
		goto free_mem;

2717 2718 2719
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2720 2721

free_mem:
2722 2723
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2724 2725
}

2726 2727 2728 2729 2730 2731
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2732
	return check_device(dev);
2733 2734
}

2735
static const struct dma_map_ops amd_iommu_dma_ops = {
2736 2737 2738 2739 2740 2741 2742
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2743 2744
};

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2798
int __init amd_iommu_init_api(void)
2799
{
2800
	int ret, cpu, err = 0;
2801 2802 2803 2804

	ret = iova_cache_get();
	if (ret)
		return ret;
2805

2806 2807 2808 2809
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
					 sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries)
			goto out_put_iova;

		spin_lock_init(&queue->lock);
	}

2822 2823 2824 2825 2826 2827 2828 2829
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2830 2831 2832
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2833
	return 0;
2834 2835 2836 2837 2838 2839 2840 2841 2842

out_put_iova:
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		kfree(queue->entries);
	}

	return -ENOMEM;
2843 2844
}

2845 2846
int __init amd_iommu_init_dma_ops(void)
{
2847 2848 2849
	setup_timer(&queue_timer, queue_flush_timeout, 0);
	atomic_set(&queue_timer_on, 0);

2850
	swiotlb        = iommu_pass_through ? 1 : 0;
2851 2852
	iommu_detected = 1;

2853 2854 2855 2856 2857 2858 2859 2860 2861
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2862 2863 2864 2865 2866
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2867
	return 0;
2868

2869
}
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2883
	struct iommu_dev_data *entry;
2884 2885 2886 2887
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2888 2889 2890 2891
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2892
	}
2893 2894 2895 2896

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2897 2898 2899 2900 2901
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2902 2903
	del_domain_from_list(domain);

2904 2905 2906 2907 2908 2909
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2922
static struct protection_domain *protection_domain_alloc(void)
2923 2924 2925 2926 2927
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2928
		return NULL;
2929

2930
	if (protection_domain_init(domain))
2931 2932
		goto out_err;

2933 2934
	add_domain_to_list(domain);

2935 2936 2937 2938 2939 2940 2941 2942
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2943
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2944
{
2945
	struct protection_domain *pdomain;
2946
	struct dma_ops_domain *dma_domain;
2947

2948 2949 2950 2951 2952
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2953

2954 2955 2956 2957 2958 2959
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2960

2961 2962 2963
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2964

2965 2966 2967 2968 2969 2970 2971 2972 2973
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2974 2975 2976 2977
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2978

2979 2980
		pdomain->mode = PAGE_MODE_NONE;
		break;
2981 2982 2983
	default:
		return NULL;
	}
2984

2985
	return &pdomain->domain;
2986 2987
}

2988
static void amd_iommu_domain_free(struct iommu_domain *dom)
2989
{
2990
	struct protection_domain *domain;
2991
	struct dma_ops_domain *dma_dom;
2992

2993 2994
	domain = to_pdomain(dom);

2995 2996 2997 2998 2999
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3000 3001
	if (!dom)
		return;
3002

3003 3004
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
3005 3006 3007 3008 3009 3010 3011
		/*
		 * First make sure the domain is no longer referenced from the
		 * flush queue
		 */
		queue_flush_all();

		/* Now release the domain */
3012
		dma_dom = to_dma_ops_domain(domain);
3013 3014 3015 3016 3017
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
3018

3019 3020 3021 3022 3023 3024
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3025 3026
}

3027 3028 3029
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3030
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3031
	struct amd_iommu *iommu;
3032
	int devid;
3033

3034
	if (!check_device(dev))
3035 3036
		return;

3037
	devid = get_device_id(dev);
3038
	if (devid < 0)
3039
		return;
3040

3041
	if (dev_data->domain != NULL)
3042
		detach_device(dev);
3043 3044 3045 3046 3047

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3048 3049 3050 3051 3052 3053
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3054 3055 3056
	iommu_completion_wait(iommu);
}

3057 3058 3059
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3060
	struct protection_domain *domain = to_pdomain(dom);
3061
	struct iommu_dev_data *dev_data;
3062
	struct amd_iommu *iommu;
3063
	int ret;
3064

3065
	if (!check_device(dev))
3066 3067
		return -EINVAL;

3068 3069
	dev_data = dev->archdata.iommu;

3070
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3071 3072 3073
	if (!iommu)
		return -EINVAL;

3074
	if (dev_data->domain)
3075
		detach_device(dev);
3076

3077
	ret = attach_device(dev, domain);
3078

3079 3080 3081 3082 3083 3084 3085 3086 3087
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3088 3089
	iommu_completion_wait(iommu);

3090
	return ret;
3091 3092
}

3093
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3094
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3095
{
3096
	struct protection_domain *domain = to_pdomain(dom);
3097 3098 3099
	int prot = 0;
	int ret;

3100 3101 3102
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3103 3104 3105 3106 3107
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3108
	mutex_lock(&domain->api_lock);
3109
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3110 3111
	mutex_unlock(&domain->api_lock);

3112
	return ret;
3113 3114
}

3115 3116
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3117
{
3118
	struct protection_domain *domain = to_pdomain(dom);
3119
	size_t unmap_size;
3120

3121 3122 3123
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3124
	mutex_lock(&domain->api_lock);
3125
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3126
	mutex_unlock(&domain->api_lock);
3127

3128
	domain_flush_tlb_pde(domain);
3129

3130
	return unmap_size;
3131 3132
}

3133
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3134
					  dma_addr_t iova)
3135
{
3136
	struct protection_domain *domain = to_pdomain(dom);
3137
	unsigned long offset_mask, pte_pgsize;
3138
	u64 *pte, __pte;
3139

3140 3141 3142
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3143
	pte = fetch_pte(domain, iova, &pte_pgsize);
3144

3145
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3146 3147
		return 0;

3148 3149
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3150

3151
	return (__pte & ~offset_mask) | (iova & offset_mask);
3152 3153
}

3154
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3155
{
3156 3157
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3158
		return true;
3159
	case IOMMU_CAP_INTR_REMAP:
3160
		return (irq_remapping_enabled == 1);
3161 3162
	case IOMMU_CAP_NOEXEC:
		return false;
3163 3164
	}

3165
	return false;
S
Sheng Yang 已提交
3166 3167
}

3168 3169
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3170
{
3171
	struct iommu_resv_region *region;
3172
	struct unity_map_entry *entry;
3173
	int devid;
3174 3175

	devid = get_device_id(dev);
3176
	if (devid < 0)
3177
		return;
3178 3179

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3180 3181
		size_t length;
		int prot = 0;
3182 3183 3184 3185

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3186 3187 3188 3189 3190 3191 3192 3193 3194
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3195 3196 3197 3198 3199 3200 3201
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3202 3203 3204

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3205
					 0, IOMMU_RESV_MSI);
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3216 3217
}

3218
static void amd_iommu_put_resv_regions(struct device *dev,
3219 3220
				     struct list_head *head)
{
3221
	struct iommu_resv_region *entry, *next;
3222 3223 3224 3225 3226

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3227
static void amd_iommu_apply_resv_region(struct device *dev,
3228
				      struct iommu_domain *domain,
3229
				      struct iommu_resv_region *region)
3230
{
3231
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3232 3233 3234 3235 3236 3237 3238 3239
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3240
const struct iommu_ops amd_iommu_ops = {
3241
	.capable = amd_iommu_capable,
3242 3243
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3244 3245
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3246 3247
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3248
	.map_sg = default_iommu_map_sg,
3249
	.iova_to_phys = amd_iommu_iova_to_phys,
3250 3251
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3252
	.device_group = amd_iommu_device_group,
3253 3254 3255
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3256
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3257 3258
};

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3281 3282 3283

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3284
	struct protection_domain *domain = to_pdomain(dom);
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3302 3303 3304

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3305
	struct protection_domain *domain = to_pdomain(dom);
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3366
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3383 3384 3385 3386 3387 3388
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3420
	struct protection_domain *domain = to_pdomain(dom);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3440
	struct protection_domain *domain = to_pdomain(dom);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3520
	struct protection_domain *domain = to_pdomain(dom);
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3534
	struct protection_domain *domain = to_pdomain(dom);
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3562 3563 3564

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3565
	struct protection_domain *pdomain;
3566

3567 3568
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3569 3570 3571
		return NULL;

	/* Only return IOMMUv2 domains */
3572
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3573 3574
		return NULL;

3575
	return &pdomain->domain;
3576 3577
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3633 3634 3635 3636 3637 3638 3639 3640 3641

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3642 3643
static struct irq_chip amd_ir_chip;

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3678
		goto out_unlock;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3692
		goto out_unlock;
3693

3694 3695 3696
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3697 3698 3699 3700 3701 3702 3703
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3704
		table = NULL;
3705
		goto out_unlock;
3706 3707
	}

3708 3709 3710 3711 3712 3713
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3714 3715 3716 3717 3718

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3719
			iommu->irte_ops->set_allocated(table, i);
3720 3721 3722 3723 3724 3725 3726
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3727
		set_dte_irq_entry(alias, table);
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3740
static int alloc_irq_index(u16 devid, int count)
3741 3742 3743 3744
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3745 3746 3747 3748
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3760
		if (!iommu->irte_ops->is_allocated(table, index))
3761 3762 3763 3764 3765 3766
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3767
				iommu->irte_ops->set_allocated(table, index - c + 1);
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3782 3783
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3784 3785 3786 3787
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3788
	struct irte_ga *entry;
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3799 3800 3801 3802 3803 3804 3805

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3806 3807
	if (data)
		data->ref = entry;
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3832
	table->table[index] = irte->val;
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3856
	iommu->irte_ops->clear_allocated(table, index);
3857 3858 3859 3860 3861 3862
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3863 3864
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3865
			 u8 vector, u32 dest_apicid, int devid)
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3879
			    u8 vector, u32 dest_apicid, int devid)
3880 3881
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3882
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3883 3884 3885

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
3886
	irte->lo.fields_remap.guest_mode  = dev_data ? dev_data->use_vapic : 0;
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3907
	modify_irte_ga(devid, index, irte, NULL);
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3923
	modify_irte_ga(devid, index, irte, NULL);
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3940
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3941

3942 3943 3944 3945 3946 3947
	if (!dev_data || !dev_data->use_vapic) {
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		irte->lo.fields_remap.guest_mode = 0;
		modify_irte_ga(devid, index, irte, NULL);
	}
3948 3949
}

3950
#define IRTE_ALLOCATED (~1U)
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3996
static int get_devid(struct irq_alloc_info *info)
3997
{
3998
	int devid = -1;
3999

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4015

4016 4017
	return devid;
}
4018

4019 4020 4021 4022
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4023

4024 4025
	if (!info)
		return NULL;
4026

4027 4028 4029 4030 4031 4032
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4033

4034
	return NULL;
4035 4036
}

4037
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4038
{
4039 4040
	struct amd_iommu *iommu;
	int devid;
4041

4042 4043
	if (!info)
		return NULL;
4044

4045 4046 4047 4048
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4049
		if (devid < 0)
4050 4051
			return NULL;

4052 4053 4054
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4055 4056 4057 4058
		break;
	default:
		break;
	}
4059

4060 4061
	return NULL;
}
4062

4063 4064 4065 4066 4067 4068
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4069 4070 4071
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4072

4073 4074 4075 4076 4077 4078 4079 4080
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4081 4082 4083 4084
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4085

4086 4087
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4088 4089
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4090
				 irq_cfg->dest_apicid, devid);
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4106

4107 4108 4109 4110 4111 4112 4113
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4114

4115 4116 4117 4118
	default:
		BUG_ON(1);
		break;
	}
4119 4120
}

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4141 4142
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4143
{
4144 4145
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4146
	struct amd_ir_data *data = NULL;
4147
	struct irq_cfg *cfg;
4148 4149
	int i, ret, devid;
	int index = -1;
4150

4151 4152 4153 4154
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4155 4156
		return -EINVAL;

4157 4158 4159 4160 4161 4162
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4163

4164 4165 4166
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4167

4168 4169 4170
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4171

4172 4173 4174 4175 4176 4177
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4178
		index = alloc_irq_index(devid, nr_irqs);
4179 4180 4181
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4182
		ret = index;
4183 4184
		goto out_free_parent;
	}
4185

4186 4187 4188 4189 4190 4191 4192
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4193

4194 4195 4196 4197 4198
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4209 4210 4211 4212 4213 4214
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4215

4216
	return 0;
4217

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4229 4230
}

4231 4232
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4233
{
4234 4235 4236 4237
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4238

4239 4240 4241 4242 4243 4244
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4245
			kfree(data->entry);
4246 4247 4248 4249 4250
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4251

4252 4253 4254 4255 4256
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4257
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4258

4259 4260 4261
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4262 4263
}

4264 4265
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4266
{
4267 4268
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4269
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4270

4271 4272 4273
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4274
}
4275

4276 4277 4278 4279 4280
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4281
};
4282

4283 4284 4285 4286 4287 4288 4289 4290
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4291 4292 4293 4294 4295 4296 4297 4298
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4347 4348 4349 4350 4351 4352 4353
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4354
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4355
	int ret;
4356

4357 4358 4359
	if (!iommu)
		return -ENODEV;

4360 4361 4362
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4363

4364 4365 4366 4367
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4368 4369
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4370

4371 4372 4373 4374 4375
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4376
	send_cleanup_vector(cfg);
4377 4378

	return IRQ_SET_MASK_OK_DONE;
4379 4380
}

4381
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4382
{
4383
	struct amd_ir_data *ir_data = irq_data->chip_data;
4384

4385 4386
	*msg = ir_data->msi_entry;
}
4387

4388 4389 4390
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
4391
	.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4392 4393
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4394

4395 4396 4397 4398 4399
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4400

4401 4402
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4403 4404 4405

	return 0;
}
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4445
#endif