intel_pstate.c 64.9 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41 42
#define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
#define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)

43 44
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

45 46
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
47
#include <acpi/cppc_acpi.h>
48 49
#endif

50
#define FRAC_BITS 8
51 52
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
53

54 55
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 57
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58

59 60 61 62 63
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

64
static inline int32_t div_fp(s64 x, s64 y)
65
{
66
	return div64_s64((int64_t)x << FRAC_BITS, y);
67 68
}

69 70 71 72 73 74 75 76 77 78 79
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

80 81 82 83 84
static inline int32_t percent_fp(int percent)
{
	return div_fp(percent, 100);
}

85 86 87 88 89 90 91 92 93 94
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

95 96 97 98 99
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

100 101
/**
 * struct sample -	Store performance sample
102
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
103 104
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
105
 *			P state. This can be different than core_avg_perf
106 107 108 109 110 111 112 113 114 115 116 117
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
118
struct sample {
119
	int32_t core_avg_perf;
120
	int32_t busy_scaled;
121 122
	u64 aperf;
	u64 mperf;
123
	u64 tsc;
124
	u64 time;
125 126
};

127 128 129 130 131 132 133 134 135 136 137
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
138 139
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
140 141 142
 *
 * Stores the per cpu model P state limits and current P state.
 */
143 144 145 146
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
147
	int	max_pstate_physical;
148
	int	scaling;
149
	int	turbo_pstate;
150 151
	unsigned int max_freq;
	unsigned int turbo_freq;
152 153
};

154 155 156 157 158 159 160 161 162 163 164 165 166
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
167
struct vid_data {
168 169 170
	int min;
	int max;
	int turbo;
171 172 173
	int32_t ratio;
};

174 175 176 177 178 179 180 181 182 183 184 185
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
186 187 188 189 190 191 192
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
193
	int32_t last_err;
194 195
};

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
213 214
};

215 216 217
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
218
 * @policy:		CPUFreq policy value
219
 * @update_util:	CPUFreq utility callback information
220
 * @update_util_set:	CPUFreq utility callback is set
221 222
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
223 224 225 226 227 228 229 230 231 232
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
233 234 235 236
 * @min_perf:		Minimum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
 * @max_perf:		Maximum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
237 238
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
239 240 241
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
242
 * @epp_policy:		Last saved policy used to set EPP/EPB
243 244 245 246
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
247 248 249
 *
 * This structure stores per CPU instance data for all CPUs.
 */
250 251 252
struct cpudata {
	int cpu;

253
	unsigned int policy;
254
	struct update_util_data update_util;
255
	bool   update_util_set;
256 257

	struct pstate_data pstate;
258
	struct vid_data vid;
259 260
	struct _pid pid;

261
	u64	last_update;
262
	u64	last_sample_time;
263 264
	u64	prev_aperf;
	u64	prev_mperf;
265
	u64	prev_tsc;
266
	u64	prev_cummulative_iowait;
267
	struct sample sample;
268 269
	int32_t	min_perf;
	int32_t	max_perf;
270 271 272 273
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
274
	unsigned int iowait_boost;
275
	s16 epp_powersave;
276
	s16 epp_policy;
277 278
	s16 epp_default;
	s16 epp_saved;
279 280 281
};

static struct cpudata **all_cpu_data;
282 283

/**
284
 * struct pstate_adjust_policy - Stores static PID configuration data
285 286 287 288 289 290 291 292 293 294
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
295 296
struct pstate_adjust_policy {
	int sample_rate_ms;
297
	s64 sample_rate_ns;
298 299 300 301 302 303 304
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

305 306 307 308 309 310 311 312 313
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
314
 * @update_util:	Active mode utilization update callback.
315 316 317 318
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
319 320
struct pstate_funcs {
	int (*get_max)(void);
321
	int (*get_max_physical)(void);
322 323
	int (*get_min)(void);
	int (*get_turbo)(void);
324
	int (*get_scaling)(void);
325
	u64 (*get_val)(struct cpudata*, int pstate);
326
	void (*get_vid)(struct cpudata *);
327 328
	void (*update_util)(struct update_util_data *data, u64 time,
			    unsigned int flags);
329 330
};

331
static struct pstate_funcs pstate_funcs __read_mostly;
332 333 334 335 336 337 338 339 340 341
static struct pstate_adjust_policy pid_params __read_mostly = {
	.sample_rate_ms = 10,
	.sample_rate_ns = 10 * NSEC_PER_MSEC,
	.deadband = 0,
	.setpoint = 97,
	.p_gain_pct = 20,
	.d_gain_pct = 0,
	.i_gain_pct = 0,
};

342
static int hwp_active __read_mostly;
343
static bool per_cpu_limits __read_mostly;
344

345
static struct cpufreq_driver *intel_pstate_driver __read_mostly;
346

347 348 349
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
350

351
static struct global_params global;
352

353
static DEFINE_MUTEX(intel_pstate_driver_lock);
354 355
static DEFINE_MUTEX(intel_pstate_limits_lock);

356
#ifdef CONFIG_ACPI
357 358 359 360 361 362 363 364 365 366

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

418 419 420 421 422 423
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

424 425
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
426
		return;
427
	}
428

429
	if (!intel_pstate_get_ppc_enable_status())
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
472
	 * correct max turbo frequency based on the turbo state.
473 474
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
475
	if (!global.turbo_disabled)
476 477 478
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
479
	pr_debug("_PPC limits will be enforced\n");
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
499
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
500 501 502
{
}

503
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
504 505 506 507
{
}
#endif

508
static signed int pid_calc(struct _pid *pid, int32_t busy)
509
{
510
	signed int result;
511 512 513
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

514
	fp_error = pid->setpoint - busy;
515

516
	if (abs(fp_error) <= pid->deadband)
517 518 519 520 521 522
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

523 524 525 526 527 528 529 530
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
531 532 533 534 535 536
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

537 538
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
539 540

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
541
	result = result + (1 << (FRAC_BITS-1));
542 543 544
	return (signed int)fp_toint(result);
}

545
static inline void intel_pstate_pid_reset(struct cpudata *cpu)
546
{
547
	struct _pid *pid = &cpu->pid;
548

549 550 551 552 553 554 555
	pid->p_gain = percent_fp(pid_params.p_gain_pct);
	pid->d_gain = percent_fp(pid_params.d_gain_pct);
	pid->i_gain = percent_fp(pid_params.i_gain_pct);
	pid->setpoint = int_tofp(pid_params.setpoint);
	pid->last_err  = pid->setpoint - int_tofp(100);
	pid->deadband  = int_tofp(pid_params.deadband);
	pid->integral  = 0;
556 557
}

558 559 560 561 562 563 564
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
565
	global.turbo_disabled =
566 567 568 569
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

570 571 572 573 574 575 576 577
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];

	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
			    cpu->pstate.turbo_pstate);
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

597 598 599 600 601 602 603 604 605 606 607
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
608
		epp = (hwp_req_data >> 24) & 0xff;
609
	} else {
610 611
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
612
	}
613 614 615 616

	return epp;
}

617
static int intel_pstate_set_epb(int cpu, s16 pref)
618 619
{
	u64 epb;
620
	int ret;
621 622

	if (!static_cpu_has(X86_FEATURE_EPB))
623
		return -ENXIO;
624

625 626 627
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
628 629 630

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
631 632

	return 0;
633 634
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

795
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
796
{
797
	int min, hw_min, max, hw_max, cpu;
798 799
	u64 value, cap;

800
	for_each_cpu(cpu, policy->cpus) {
801 802
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
803

804 805
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
806
		if (global.no_turbo)
807 808 809
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
810

811
		max = fp_ext_toint(hw_max * cpu_data->max_perf);
812 813 814
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
			min = max;
		else
815
			min = fp_ext_toint(hw_max * cpu_data->min_perf);
816

D
Dirk Brandewie 已提交
817
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
818

D
Dirk Brandewie 已提交
819 820 821 822 823
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
824 825 826 827 828 829

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

830 831 832 833 834 835
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

836 837
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
838
			cpu_data->epp_powersave = epp;
839
			/* If EPP read was failed, then don't try to write */
840
			if (epp < 0)
841 842 843 844 845 846
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
847
			if (cpu_data->epp_powersave < 0)
848 849 850 851 852 853 854 855 856 857 858 859 860
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

861
			epp = cpu_data->epp_powersave;
862
		}
863
update_epp:
864 865 866 867 868 869 870
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
871 872
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
873
}
D
Dirk Brandewie 已提交
874

875 876 877 878 879 880 881 882 883 884 885 886
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

887 888 889 890 891
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

892 893
	mutex_lock(&intel_pstate_limits_lock);

894
	all_cpu_data[policy->cpu]->epp_policy = 0;
895
	intel_pstate_hwp_set(policy);
896 897 898

	mutex_unlock(&intel_pstate_limits_lock);

899
	return 0;
900 901
}

902
static void intel_pstate_update_policies(void)
903
{
904 905 906 907
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
908 909
}

910 911 912
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
913 914
	unsigned int cpu;

915
	*(u32 *)data = val;
916
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
917 918
	for_each_possible_cpu(cpu)
		if (all_cpu_data[cpu])
919
			intel_pstate_pid_reset(all_cpu_data[cpu]);
920

921 922
	return 0;
}
923

924 925 926 927 928
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
929
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
930

931 932
static struct dentry *debugfs_parent;

933 934 935
struct pid_param {
	char *name;
	void *value;
936
	struct dentry *dentry;
937 938 939
};

static struct pid_param pid_files[] = {
940 941 942 943 944 945 946
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
947 948
};

949
static void intel_pstate_debug_expose_params(void)
950
{
951
	int i;
952 953 954 955

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
956 957 958 959 960 961 962 963 964

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
965 966 967
	}
}

968 969 970 971 972 973 974 975 976 977
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
978
	}
979 980 981

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
982 983 984 985 986 987 988 989 990
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
991
		return sprintf(buf, "%u\n", global.object);		\
992 993
	}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1022 1023 1024 1025 1026 1027 1028
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1029 1030
	mutex_lock(&intel_pstate_driver_lock);

1031
	if (!intel_pstate_driver) {
1032 1033 1034 1035
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1036 1037 1038 1039
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1040
	turbo_fp = div_fp(no_turbo, total);
1041
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1042 1043 1044

	mutex_unlock(&intel_pstate_driver_lock);

1045 1046 1047
	return sprintf(buf, "%u\n", turbo_pct);
}

1048 1049 1050 1051 1052 1053
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1054 1055
	mutex_lock(&intel_pstate_driver_lock);

1056
	if (!intel_pstate_driver) {
1057 1058 1059 1060
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1061 1062
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1063 1064 1065

	mutex_unlock(&intel_pstate_driver_lock);

1066 1067 1068
	return sprintf(buf, "%u\n", total);
}

1069 1070 1071 1072 1073
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1074 1075
	mutex_lock(&intel_pstate_driver_lock);

1076
	if (!intel_pstate_driver) {
1077 1078 1079 1080
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1081
	update_turbo_state();
1082 1083
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1084
	else
1085
		ret = sprintf(buf, "%u\n", global.no_turbo);
1086

1087 1088
	mutex_unlock(&intel_pstate_driver_lock);

1089 1090 1091
	return ret;
}

1092
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1093
			      const char *buf, size_t count)
1094 1095 1096
{
	unsigned int input;
	int ret;
1097

1098 1099 1100
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1101

1102 1103
	mutex_lock(&intel_pstate_driver_lock);

1104
	if (!intel_pstate_driver) {
1105 1106 1107 1108
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1109 1110
	mutex_lock(&intel_pstate_limits_lock);

1111
	update_turbo_state();
1112
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1113
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1114
		mutex_unlock(&intel_pstate_limits_lock);
1115
		mutex_unlock(&intel_pstate_driver_lock);
1116
		return -EPERM;
1117
	}
D
Dirk Brandewie 已提交
1118

1119
	global.no_turbo = clamp_t(int, input, 0, 1);
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1130 1131
	mutex_unlock(&intel_pstate_limits_lock);

1132 1133
	intel_pstate_update_policies();

1134 1135
	mutex_unlock(&intel_pstate_driver_lock);

1136 1137 1138 1139
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1140
				  const char *buf, size_t count)
1141 1142 1143
{
	unsigned int input;
	int ret;
1144

1145 1146 1147 1148
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1149 1150
	mutex_lock(&intel_pstate_driver_lock);

1151
	if (!intel_pstate_driver) {
1152 1153 1154 1155
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1156 1157
	mutex_lock(&intel_pstate_limits_lock);

1158
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1159

1160 1161
	mutex_unlock(&intel_pstate_limits_lock);

1162 1163
	intel_pstate_update_policies();

1164 1165
	mutex_unlock(&intel_pstate_driver_lock);

1166 1167 1168 1169
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1170
				  const char *buf, size_t count)
1171 1172 1173
{
	unsigned int input;
	int ret;
1174

1175 1176 1177
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1178

1179 1180
	mutex_lock(&intel_pstate_driver_lock);

1181
	if (!intel_pstate_driver) {
1182 1183 1184 1185
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1186 1187
	mutex_lock(&intel_pstate_limits_lock);

1188 1189
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1190

1191 1192
	mutex_unlock(&intel_pstate_limits_lock);

1193 1194
	intel_pstate_update_policies();

1195 1196
	mutex_unlock(&intel_pstate_driver_lock);

1197 1198 1199 1200 1201 1202
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1203
define_one_global_rw(status);
1204 1205 1206
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1207
define_one_global_ro(turbo_pct);
1208
define_one_global_ro(num_pstates);
1209 1210

static struct attribute *intel_pstate_attributes[] = {
1211
	&status.attr,
1212
	&no_turbo.attr,
1213
	&turbo_pct.attr,
1214
	&num_pstates.attr,
1215 1216 1217 1218 1219 1220 1221
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1222
static void __init intel_pstate_sysfs_expose_params(void)
1223
{
1224
	struct kobject *intel_pstate_kobject;
1225 1226 1227 1228
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1229 1230 1231
	if (WARN_ON(!intel_pstate_kobject))
		return;

1232
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1249 1250
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1251

1252
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1253
{
1254
	/* First disable HWP notification interrupt as we don't process them */
1255 1256
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1257

1258
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1259
	cpudata->epp_policy = 0;
1260 1261
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1262 1263
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1283
static int atom_get_min_pstate(void)
1284 1285
{
	u64 value;
1286

1287
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1288
	return (value >> 8) & 0x7F;
1289 1290
}

1291
static int atom_get_max_pstate(void)
1292 1293
{
	u64 value;
1294

1295
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1296
	return (value >> 16) & 0x7F;
1297
}
1298

1299
static int atom_get_turbo_pstate(void)
1300 1301
{
	u64 value;
1302

1303
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1304
	return value & 0x7F;
1305 1306
}

1307
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1308 1309 1310 1311 1312
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1313
	val = (u64)pstate << 8;
1314
	if (global.no_turbo && !global.turbo_disabled)
1315 1316 1317 1318 1319 1320 1321
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1322
	vid = ceiling_fp(vid_fp);
1323

1324 1325 1326
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1327
	return val | vid;
1328 1329
}

1330
static int silvermont_get_scaling(void)
1331 1332 1333
{
	u64 value;
	int i;
1334 1335 1336
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1337 1338

	rdmsrl(MSR_FSB_FREQ, value);
1339 1340
	i = value & 0x7;
	WARN_ON(i > 4);
1341

1342 1343
	return silvermont_freq_table[i];
}
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1359 1360
}

1361
static void atom_get_vid(struct cpudata *cpudata)
1362 1363 1364
{
	u64 value;

1365
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1366 1367
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1368 1369 1370 1371
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1372

1373
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1374
	cpudata->vid.turbo = value & 0x7f;
1375 1376
}

1377
static int core_get_min_pstate(void)
1378 1379
{
	u64 value;
1380

1381
	rdmsrl(MSR_PLATFORM_INFO, value);
1382 1383 1384
	return (value >> 40) & 0xFF;
}

1385
static int core_get_max_pstate_physical(void)
1386 1387
{
	u64 value;
1388

1389
	rdmsrl(MSR_PLATFORM_INFO, value);
1390 1391 1392
	return (value >> 8) & 0xFF;
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1426
static int core_get_max_pstate(void)
1427
{
1428 1429 1430
	u64 tar;
	u64 plat_info;
	int max_pstate;
1431
	int tdp_ratio;
1432 1433 1434 1435 1436
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1437 1438 1439 1440 1441 1442 1443 1444 1445
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1446 1447
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1448 1449
		int tar_levels;

1450
		/* Do some sanity checking for safety */
1451 1452 1453 1454
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1455 1456
		}
	}
1457

1458
	return max_pstate;
1459 1460
}

1461
static int core_get_turbo_pstate(void)
1462 1463 1464
{
	u64 value;
	int nont, ret;
1465

1466
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1467
	nont = core_get_max_pstate();
1468
	ret = (value) & 255;
1469 1470 1471 1472 1473
	if (ret <= nont)
		ret = nont;
	return ret;
}

1474 1475 1476 1477 1478
static inline int core_get_scaling(void)
{
	return 100000;
}

1479
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1480 1481 1482
{
	u64 val;

1483
	val = (u64)pstate << 8;
1484
	if (global.no_turbo && !global.turbo_disabled)
1485 1486
		val |= (u64)1 << 32;

1487
	return val;
1488 1489
}

1490 1491 1492 1493 1494
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1495
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1496 1497 1498 1499 1500 1501 1502
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1503 1504 1505
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1506
	int max_perf_adj;
1507
	int min_perf;
1508

1509
	if (global.no_turbo || global.turbo_disabled)
1510 1511
		max_perf = cpu->pstate.max_pstate;

1512 1513 1514 1515 1516
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1517
	max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1518 1519
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1520

1521
	min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1522
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1523 1524
}

1525
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1526
{
1527 1528
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1529 1530 1531 1532 1533 1534 1535
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1552 1553
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1554 1555
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1556
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1557
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1558
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1559 1560
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1561

1562 1563
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1564 1565

	intel_pstate_set_min_pstate(cpu);
1566 1567
}

1568
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1569
{
1570
	struct sample *sample = &cpu->sample;
1571

1572
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1573 1574
}

1575
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1576 1577
{
	u64 aperf, mperf;
1578
	unsigned long flags;
1579
	u64 tsc;
1580

1581
	local_irq_save(flags);
1582 1583
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1584
	tsc = rdtsc();
1585
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1586
		local_irq_restore(flags);
1587
		return false;
1588
	}
1589
	local_irq_restore(flags);
1590

1591
	cpu->last_sample_time = cpu->sample.time;
1592
	cpu->sample.time = time;
1593 1594
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1595
	cpu->sample.tsc =  tsc;
1596 1597
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1598
	cpu->sample.tsc -= cpu->prev_tsc;
1599

1600 1601
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1602
	cpu->prev_tsc = tsc;
1603 1604 1605 1606 1607 1608 1609
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
1610 1611 1612 1613 1614
	if (cpu->last_sample_time) {
		intel_pstate_calc_avg_perf(cpu);
		return true;
	}
	return false;
1615 1616
}

1617 1618
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1619 1620
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1621 1622
}

1623 1624
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1625 1626
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1627 1628
}

1629 1630 1631
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1632
	int32_t busy_frac, boost;
1633
	int target, avg_pstate;
1634

1635 1636 1637
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1638
	busy_frac = div_fp(sample->mperf, sample->tsc);
1639

1640 1641
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1642

1643 1644
	if (busy_frac < boost)
		busy_frac = boost;
1645

1646
	sample->busy_scaled = busy_frac * 100;
1647

1648
	target = global.no_turbo || global.turbo_disabled ?
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1667 1668
}

1669
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1670
{
1671
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1672
	u64 duration_ns;
1673

1674 1675 1676
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
		return cpu->pstate.turbo_pstate;

1677
	/*
1678 1679 1680 1681 1682
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1683
	 */
1684 1685
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1686
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1687
			       div_fp(100 * max_pstate, current_pstate));
1688

1689
	/*
1690 1691 1692
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1693
	 * enough period of time to adjust our performance metric.
1694
	 */
1695
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1696
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1697
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1698
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1699 1700 1701
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1702
			perf_scaled = 0;
1703 1704
	}

1705 1706
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1707 1708
}

1709
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1710 1711 1712 1713 1714
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1715 1716 1717 1718 1719
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1720 1721 1722
	if (pstate == cpu->pstate.current_pstate)
		return;

1723
	cpu->pstate.current_pstate = pstate;
1724 1725 1726
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1727
static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1728
{
1729
	int from = cpu->pstate.current_pstate;
1730 1731
	struct sample *sample;

1732 1733
	update_turbo_state();

1734 1735
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1736
	intel_pstate_update_pstate(cpu, target_pstate);
1737 1738

	sample = &cpu->sample;
1739
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1740
		fp_toint(sample->busy_scaled),
1741 1742 1743 1744 1745
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1746 1747
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1748 1749
}

1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
static void intel_pstate_update_util_hwp(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
		intel_pstate_sample(cpu, time);
}

static void intel_pstate_update_util_pid(struct update_util_data *data,
					 u64 time, unsigned int flags)
{
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;

	if ((s64)delta_ns < pid_params.sample_rate_ns)
		return;

1769 1770 1771 1772 1773 1774
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;

		target_pstate = get_target_pstate_use_performance(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
1775 1776
}

1777
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1778
				     unsigned int flags)
1779
{
1780
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1781 1782
	u64 delta_ns;

1783 1784 1785 1786 1787 1788 1789
	if (flags & SCHED_CPUFREQ_IOWAIT) {
		cpu->iowait_boost = int_tofp(1);
	} else if (cpu->iowait_boost) {
		/* Clear iowait_boost if the CPU may have been idle. */
		delta_ns = time - cpu->last_update;
		if (delta_ns > TICK_NSEC)
			cpu->iowait_boost = 0;
1790
	}
1791
	cpu->last_update = time;
1792
	delta_ns = time - cpu->sample.time;
1793 1794
	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
		return;
1795

1796 1797
	if (intel_pstate_sample(cpu, time)) {
		int target_pstate;
1798

1799 1800 1801 1802
		target_pstate = get_target_pstate_use_cpu_load(cpu);
		intel_pstate_adjust_pstate(cpu, target_pstate);
	}
}
1803

1804 1805 1806 1807 1808 1809 1810 1811
static struct pstate_funcs core_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1812 1813
};

1814 1815 1816 1817 1818 1819 1820 1821 1822
static const struct pstate_funcs silvermont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = silvermont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1823 1824
};

1825 1826 1827 1828 1829 1830 1831 1832 1833
static const struct pstate_funcs airmont_funcs = {
	.get_max = atom_get_max_pstate,
	.get_max_physical = atom_get_max_pstate,
	.get_min = atom_get_min_pstate,
	.get_turbo = atom_get_turbo_pstate,
	.get_val = atom_get_val,
	.get_scaling = airmont_get_scaling,
	.get_vid = atom_get_vid,
	.update_util = intel_pstate_update_util,
1834 1835
};

1836 1837 1838 1839 1840 1841 1842 1843
static const struct pstate_funcs knl_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = knl_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util_pid,
1844 1845
};

1846 1847 1848 1849 1850 1851 1852 1853
static const struct pstate_funcs bxt_funcs = {
	.get_max = core_get_max_pstate,
	.get_max_physical = core_get_max_pstate_physical,
	.get_min = core_get_min_pstate,
	.get_turbo = core_get_turbo_pstate,
	.get_scaling = core_get_scaling,
	.get_val = core_get_val,
	.update_util = intel_pstate_update_util,
1854 1855
};

1856
#define ICPU(model, policy) \
1857 1858
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1859 1860

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1880 1881 1882 1883
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1884
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1885 1886 1887
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
D
Dirk Brandewie 已提交
1888 1889 1890
	{}
};

1891
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1892
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1893 1894 1895
	{}
};

1896 1897 1898 1899
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1900 1901 1902
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1903
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1904 1905 1906 1907 1908
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1909 1910 1911
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1912
	}
1913 1914 1915 1916

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1917

1918
	if (hwp_active) {
1919 1920 1921 1922 1923 1924
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1925
		intel_pstate_hwp_enable(cpu);
1926
	} else if (pstate_funcs.update_util == intel_pstate_update_util_pid) {
1927
		intel_pstate_pid_reset(cpu);
1928
	}
1929

1930
	intel_pstate_get_cpu_pstates(cpu);
1931

J
Joe Perches 已提交
1932
	pr_debug("controlling: cpu %d\n", cpunum);
1933 1934 1935 1936 1937 1938

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1939
	struct cpudata *cpu = all_cpu_data[cpu_num];
1940

1941
	return cpu ? get_avg_frequency(cpu) : 0;
1942 1943
}

1944
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1945
{
1946 1947
	struct cpudata *cpu = all_cpu_data[cpu_num];

1948 1949 1950
	if (cpu->update_util_set)
		return;

1951 1952
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1953 1954
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     pstate_funcs.update_util);
1955
	cpu->update_util_set = true;
1956 1957 1958 1959
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1960 1961 1962 1963 1964
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1965
	cpufreq_remove_update_util_hook(cpu);
1966
	cpu_data->update_util_set = false;
1967 1968 1969
	synchronize_sched();
}

1970 1971 1972 1973 1974 1975
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1976
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1977
					    struct cpudata *cpu)
1978
{
1979
	int max_freq = intel_pstate_get_max_freq(cpu);
1980
	int32_t max_policy_perf, min_policy_perf;
1981

1982
	max_policy_perf = div_ext_fp(policy->max, max_freq);
1983
	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1984
	if (policy->max == policy->min) {
1985
		min_policy_perf = max_policy_perf;
1986
	} else {
1987
		min_policy_perf = div_ext_fp(policy->min, max_freq);
1988 1989
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1990
	}
1991

1992
	/* Normalize user input to [min_perf, max_perf] */
1993
	if (per_cpu_limits) {
1994 1995
		cpu->min_perf = min_policy_perf;
		cpu->max_perf = max_policy_perf;
1996 1997 1998 1999 2000 2001
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
		global_max = percent_ext_fp(global.max_perf_pct);
		global_min = percent_ext_fp(global.min_perf_pct);
2002
		if (max_freq != cpu->pstate.turbo_freq) {
2003 2004 2005 2006 2007 2008 2009 2010
			int32_t turbo_factor;

			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
						  cpu->pstate.max_pstate);
			global_min = mul_ext_fp(global_min, turbo_factor);
			global_max = mul_ext_fp(global_max, turbo_factor);
		}
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2011

2012 2013 2014 2015
		cpu->min_perf = max(min_policy_perf, global_min);
		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
		cpu->max_perf = min(max_policy_perf, global_max);
		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2016 2017

		/* Make sure min_perf <= max_perf */
2018
		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2019
	}
2020

2021 2022
	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2023 2024

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2025 2026
		 fp_ext_toint(cpu->max_perf * 100),
		 fp_ext_toint(cpu->min_perf * 100));
2027 2028
}

2029 2030
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2031 2032
	struct cpudata *cpu;

2033 2034 2035
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2036 2037 2038
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2039
	cpu = all_cpu_data[policy->cpu];
2040 2041
	cpu->policy = policy->policy;

2042 2043
	mutex_lock(&intel_pstate_limits_lock);

2044
	intel_pstate_update_perf_limits(policy, cpu);
2045

2046
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2047 2048 2049 2050 2051 2052 2053 2054
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2055 2056
	intel_pstate_set_update_util_hook(policy->cpu);

2057 2058
	if (hwp_active)
		intel_pstate_hwp_set(policy);
D
Dirk Brandewie 已提交
2059

2060 2061
	mutex_unlock(&intel_pstate_limits_lock);

2062 2063 2064
	return 0;
}

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2076 2077
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2078 2079 2080
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2081 2082
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2083

2084
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2085
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2086 2087
		return -EINVAL;

2088 2089
	intel_pstate_adjust_policy_max(policy, cpu);

2090 2091 2092
	return 0;
}

2093 2094 2095 2096 2097
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2098
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2099
{
2100
	pr_debug("CPU %d exiting\n", policy->cpu);
2101

2102
	intel_pstate_clear_update_util_hook(policy->cpu);
2103 2104 2105
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2106 2107
		intel_cpufreq_stop_cpu(policy);
}
2108

2109 2110 2111
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2112

2113
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2114

2115
	return 0;
2116 2117
}

2118
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2119 2120
{
	struct cpudata *cpu;
2121
	int rc;
2122 2123 2124 2125 2126 2127 2128

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2129 2130
	cpu->max_perf = int_ext_tofp(1);
	cpu->min_perf = 0;
2131

2132 2133
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2134 2135

	/* cpuinfo and default policy values */
2136
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2137
	update_turbo_state();
2138
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2139 2140 2141
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2142
	intel_pstate_init_acpi_perf_limits(policy);
2143 2144
	cpumask_set_cpu(policy->cpu, policy->cpus);

2145 2146
	policy->fast_switch_possible = true;

2147 2148 2149
	return 0;
}

2150
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2151
{
2152 2153 2154 2155 2156 2157
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2158
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2159 2160 2161
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2162 2163 2164 2165

	return 0;
}

2166
static struct cpufreq_driver intel_pstate = {
2167 2168 2169
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2170
	.suspend	= intel_pstate_hwp_save_state,
2171
	.resume		= intel_pstate_resume,
2172 2173
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2174
	.exit		= intel_pstate_cpu_exit,
2175
	.stop_cpu	= intel_pstate_stop_cpu,
2176 2177 2178
	.name		= "intel_pstate",
};

2179 2180 2181 2182 2183
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2184 2185
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2186

2187
	intel_pstate_adjust_policy_max(policy, cpu);
2188

2189 2190
	intel_pstate_update_perf_limits(policy, cpu);

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2202 2203
	update_turbo_state();

2204
	freqs.old = policy->cur;
2205
	freqs.new = target_freq;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2225
	freqs.new = target_pstate * cpu->pstate.scaling;
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2237 2238
	update_turbo_state();

2239
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2240
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2241
	intel_pstate_update_pstate(cpu, target_pstate);
2242
	return target_pstate * cpu->pstate.scaling;
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

2270
static struct cpufreq_driver *default_driver = &intel_pstate;
2271

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
2287
	intel_pstate_driver = NULL;
2288 2289
}

2290
static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2291 2292 2293
{
	int ret;

2294 2295
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2296

2297
	intel_pstate_driver = driver;
2298 2299 2300 2301 2302 2303
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2304 2305
	global.min_perf_pct = min_perf_pct_min();

2306
	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2307
	    pstate_funcs.update_util == intel_pstate_update_util_pid)
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

2318 2319
	if (intel_pstate_driver == &intel_pstate &&
	    pstate_funcs.update_util == intel_pstate_update_util_pid)
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
		intel_pstate_debug_hide_params();

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
2330
	if (!intel_pstate_driver)
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
2342
		return intel_pstate_driver ?
2343 2344 2345
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
2346
		if (intel_pstate_driver) {
2347 2348 2349 2350 2351 2352 2353 2354
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2355
		return intel_pstate_register_driver(&intel_pstate);
2356 2357 2358
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
2359
		if (intel_pstate_driver) {
2360
			if (intel_pstate_driver == &intel_cpufreq)
2361 2362 2363 2364 2365 2366 2367
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

2368
		return intel_pstate_register_driver(&intel_cpufreq);
2369 2370 2371 2372 2373
	}

	return -EINVAL;
}

2374 2375 2376
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2377
static unsigned int force_load __initdata;
2378

2379
static int __init intel_pstate_msrs_not_valid(void)
2380
{
2381
	if (!pstate_funcs.get_max() ||
2382 2383
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2384 2385 2386 2387
		return -ENODEV;

	return 0;
}
2388

2389 2390 2391
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2392 2393 2394 2395 2396 2397
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2398
		pstate_funcs.update_util = intel_pstate_update_util;
2399
	}
2400 2401 2402 2403 2404 2405 2406
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2407
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2408 2409
{
	pstate_funcs.get_max   = funcs->get_max;
2410
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2411 2412
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2413
	pstate_funcs.get_scaling = funcs->get_scaling;
2414
	pstate_funcs.get_val   = funcs->get_val;
2415
	pstate_funcs.get_vid   = funcs->get_vid;
2416
	pstate_funcs.update_util = funcs->update_util;
2417

2418
	intel_pstate_use_acpi_profile();
2419 2420
}

2421
#ifdef CONFIG_ACPI
2422

2423
static bool __init intel_pstate_no_acpi_pss(void)
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2452
static bool __init intel_pstate_has_acpi_ppc(void)
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2472 2473 2474 2475
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2476
	int  oem_pwr_table;
2477 2478 2479
};

/* Hardware vendor-specific info that has its own power management modes */
2480
static struct hw_vendor_info vendor_info[] __initdata = {
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2492 2493 2494 2495
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2496 2497 2498
	{0, "", ""},
};

2499
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2500 2501 2502
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2503 2504 2505 2506 2507 2508 2509 2510 2511
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2512

2513 2514
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2515 2516 2517
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2518
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2519 2520 2521 2522 2523 2524
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2525 2526
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2527
			}
2528 2529 2530 2531
	}

	return false;
}
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2542 2543
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2544
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2545
static inline void intel_pstate_request_control_from_smm(void) {}
2546 2547
#endif /* CONFIG_ACPI */

2548 2549 2550 2551 2552
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2553 2554
static int __init intel_pstate_init(void)
{
2555
	int rc;
2556

2557 2558 2559
	if (no_load)
		return -ENODEV;

2560
	if (x86_match_cpu(hwp_support_ids)) {
2561
		copy_cpu_funcs(&core_funcs);
2562
		if (no_hwp) {
2563
			pstate_funcs.update_util = intel_pstate_update_util;
2564 2565 2566
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
2567
			pstate_funcs.update_util = intel_pstate_update_util_hwp;
2568 2569 2570 2571
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
2572

2573 2574 2575
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2576

2577
		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2578
	}
2579

2580 2581 2582
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2583 2584 2585 2586 2587 2588 2589 2590
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2591 2592 2593
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2594
	pr_info("Intel P-state driver initializing\n");
2595

2596
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2597 2598 2599
	if (!all_cpu_data)
		return -ENOMEM;

2600 2601
	intel_pstate_request_control_from_smm();

2602
	intel_pstate_sysfs_expose_params();
2603

2604
	mutex_lock(&intel_pstate_driver_lock);
2605
	rc = intel_pstate_register_driver(default_driver);
2606
	mutex_unlock(&intel_pstate_driver_lock);
2607 2608
	if (rc)
		return rc;
2609

2610
	if (hwp_active)
J
Joe Perches 已提交
2611
		pr_info("HWP enabled\n");
2612

2613
	return 0;
2614 2615 2616
}
device_initcall(intel_pstate_init);

2617 2618 2619 2620 2621
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2622
	if (!strcmp(str, "disable")) {
2623
		no_load = 1;
2624 2625
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
2626
		default_driver = &intel_cpufreq;
2627 2628
		no_hwp = 1;
	}
2629
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2630
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2631
		no_hwp = 1;
2632
	}
2633 2634
	if (!strcmp(str, "force"))
		force_load = 1;
2635 2636
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2637 2638
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2639 2640 2641 2642 2643 2644

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2645 2646 2647 2648
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2649 2650 2651
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");