intel_pstate.c 65.2 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
44
#include <acpi/cppc_acpi.h>
45 46
#endif

47
#define FRAC_BITS 8
48 49
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
50

51 52
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 54
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88 89 90 91
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

92 93
/**
 * struct sample -	Store performance sample
94
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95 96
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
97
 *			P state. This can be different than core_avg_perf
98 99 100 101 102 103 104 105 106 107 108 109
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
110
struct sample {
111
	int32_t core_avg_perf;
112
	int32_t busy_scaled;
113 114
	u64 aperf;
	u64 mperf;
115
	u64 tsc;
116
	u64 time;
117 118
};

119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
130 131
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132 133 134
 *
 * Stores the per cpu model P state limits and current P state.
 */
135 136 137 138
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
139
	int	max_pstate_physical;
140
	int	scaling;
141
	int	turbo_pstate;
142 143
	unsigned int max_freq;
	unsigned int turbo_freq;
144 145
};

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
159
struct vid_data {
160 161 162
	int min;
	int max;
	int turbo;
163 164 165
	int32_t ratio;
};

166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
178 179 180 181 182 183 184
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
185
	int32_t last_err;
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/**
 * struct global_params - Global parameters, mostly tunable via sysfs.
 * @no_turbo:		Whether or not to use turbo P-states.
 * @turbo_disabled:	Whethet or not turbo P-states are available at all,
 *			based on the MSR_IA32_MISC_ENABLE value and whether or
 *			not the maximum reported turbo P-state is different from
 *			the maximum reported non-turbo one.
 * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
 *			P-state capacity.
 */
struct global_params {
	bool no_turbo;
	bool turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
205 206
};

207 208 209
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
210
 * @policy:		CPUFreq policy value
211
 * @update_util:	CPUFreq utility callback information
212
 * @update_util_set:	CPUFreq utility callback is set
213 214
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
215 216 217 218 219 220 221 222 223 224
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
225 226 227 228
 * @min_perf:		Minimum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
 * @max_perf:		Maximum capacity limit as a fraction of the maximum
 *			turbo P-state capacity.
229 230
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
231 232 233
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
234
 * @epp_policy:		Last saved policy used to set EPP/EPB
235 236 237 238
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
239 240 241
 *
 * This structure stores per CPU instance data for all CPUs.
 */
242 243 244
struct cpudata {
	int cpu;

245
	unsigned int policy;
246
	struct update_util_data update_util;
247
	bool   update_util_set;
248 249

	struct pstate_data pstate;
250
	struct vid_data vid;
251 252
	struct _pid pid;

253
	u64	last_update;
254
	u64	last_sample_time;
255 256
	u64	prev_aperf;
	u64	prev_mperf;
257
	u64	prev_tsc;
258
	u64	prev_cummulative_iowait;
259
	struct sample sample;
260 261
	int32_t	min_perf;
	int32_t	max_perf;
262 263 264 265
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
266
	unsigned int iowait_boost;
267
	s16 epp_powersave;
268
	s16 epp_policy;
269 270
	s16 epp_default;
	s16 epp_saved;
271 272 273
};

static struct cpudata **all_cpu_data;
274 275

/**
276
 * struct pstate_adjust_policy - Stores static PID configuration data
277 278 279 280 281 282 283 284 285 286
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
287 288
struct pstate_adjust_policy {
	int sample_rate_ms;
289
	s64 sample_rate_ns;
290 291 292 293 294 295 296
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

297 298 299 300 301 302 303 304 305 306 307 308 309 310
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
311 312
struct pstate_funcs {
	int (*get_max)(void);
313
	int (*get_max_physical)(void);
314 315
	int (*get_min)(void);
	int (*get_turbo)(void);
316
	int (*get_scaling)(void);
317
	u64 (*get_val)(struct cpudata*, int pstate);
318
	void (*get_vid)(struct cpudata *);
319
	int32_t (*get_target_pstate)(struct cpudata *);
320 321
};

322 323 324 325
/**
 * struct cpu_defaults- Per CPU model default config data
 * @funcs:		Callback function data
 */
326 327
struct cpu_defaults {
	struct pstate_funcs funcs;
328 329
};

330
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
331
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
332

333
static struct pstate_funcs pstate_funcs __read_mostly;
334 335 336 337 338 339 340 341 342 343
static struct pstate_adjust_policy pid_params __read_mostly = {
	.sample_rate_ms = 10,
	.sample_rate_ns = 10 * NSEC_PER_MSEC,
	.deadband = 0,
	.setpoint = 97,
	.p_gain_pct = 20,
	.d_gain_pct = 0,
	.i_gain_pct = 0,
};

344
static int hwp_active __read_mostly;
345
static bool per_cpu_limits __read_mostly;
346

347 348
static bool driver_registered __read_mostly;

349 350 351
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
352

353
static struct global_params global;
354

355
static DEFINE_MUTEX(intel_pstate_driver_lock);
356 357
static DEFINE_MUTEX(intel_pstate_limits_lock);

358
#ifdef CONFIG_ACPI
359 360 361 362 363 364 365 366 367 368

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

420 421 422 423 424 425
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

426 427
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
428
		return;
429
	}
430

431
	if (!intel_pstate_get_ppc_enable_status())
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
474
	 * correct max turbo frequency based on the turbo state.
475 476
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
477
	if (!global.turbo_disabled)
478 479 480
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
481
	pr_debug("_PPC limits will be enforced\n");
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
501
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
502 503 504
{
}

505
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
506 507 508 509
{
}
#endif

510
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
511
			     int deadband, int integral) {
512 513
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
514
	pid->integral  = int_tofp(integral);
515
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
516 517 518 519
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
520
	pid->p_gain = div_fp(percent, 100);
521 522 523 524
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
525
	pid->i_gain = div_fp(percent, 100);
526 527 528 529
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
530
	pid->d_gain = div_fp(percent, 100);
531 532
}

533
static signed int pid_calc(struct _pid *pid, int32_t busy)
534
{
535
	signed int result;
536 537 538
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

539
	fp_error = pid->setpoint - busy;
540

541
	if (abs(fp_error) <= pid->deadband)
542 543 544 545 546 547
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

548 549 550 551 552 553 554 555
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
556 557 558 559 560 561
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

562 563
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
564 565

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
566
	result = result + (1 << (FRAC_BITS-1));
567 568 569 570 571
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
572 573 574
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
575

576
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
577 578 579 580 581
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
582

583 584 585 586 587 588
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

589 590 591 592 593 594 595
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
596
	global.turbo_disabled =
597 598 599 600
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

601 602 603 604 605 606 607 608
static int min_perf_pct_min(void)
{
	struct cpudata *cpu = all_cpu_data[0];

	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
			    cpu->pstate.turbo_pstate);
}

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

628 629 630 631 632 633 634 635 636 637 638
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
639
		epp = (hwp_req_data >> 24) & 0xff;
640
	} else {
641 642
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
643
	}
644 645 646 647

	return epp;
}

648
static int intel_pstate_set_epb(int cpu, s16 pref)
649 650
{
	u64 epb;
651
	int ret;
652 653

	if (!static_cpu_has(X86_FEATURE_EPB))
654
		return -ENXIO;
655

656 657 658
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
659 660 661

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
662 663

	return 0;
664 665
}

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

826
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
827
{
828
	int min, hw_min, max, hw_max, cpu;
829 830
	u64 value, cap;

831
	for_each_cpu(cpu, policy->cpus) {
832 833
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
834

835 836
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
837
		if (global.no_turbo)
838 839 840
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
841

842
		max = fp_ext_toint(hw_max * cpu_data->max_perf);
843 844 845
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
			min = max;
		else
846
			min = fp_ext_toint(hw_max * cpu_data->min_perf);
847

D
Dirk Brandewie 已提交
848
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
849

D
Dirk Brandewie 已提交
850 851 852 853 854
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
855 856 857 858 859 860

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

861 862 863 864 865 866
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

867 868
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
869
			cpu_data->epp_powersave = epp;
870
			/* If EPP read was failed, then don't try to write */
871
			if (epp < 0)
872 873 874 875 876 877
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
878
			if (cpu_data->epp_powersave < 0)
879 880 881 882 883 884 885 886 887 888 889 890 891
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

892
			epp = cpu_data->epp_powersave;
893
		}
894
update_epp:
895 896 897 898 899 900 901
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
902 903
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
904
}
D
Dirk Brandewie 已提交
905

906 907 908 909 910 911 912 913 914 915 916 917
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

918 919 920 921 922
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

923 924
	mutex_lock(&intel_pstate_limits_lock);

925
	all_cpu_data[policy->cpu]->epp_policy = 0;
926
	intel_pstate_hwp_set(policy);
927 928 929

	mutex_unlock(&intel_pstate_limits_lock);

930
	return 0;
931 932
}

933
static void intel_pstate_update_policies(void)
934
{
935 936 937 938
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
939 940
}

941 942 943 944
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
945
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
946 947 948
	intel_pstate_reset_all_pid();
	return 0;
}
949

950 951 952 953 954
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
955
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
956

957 958
static struct dentry *debugfs_parent;

959 960 961
struct pid_param {
	char *name;
	void *value;
962
	struct dentry *dentry;
963 964 965
};

static struct pid_param pid_files[] = {
966 967 968 969 970 971 972
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
973 974
};

975
static void intel_pstate_debug_expose_params(void)
976
{
977
	int i;
978 979 980 981

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
982 983 984 985 986 987 988 989 990

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
991 992 993
	}
}

994 995 996 997 998 999 1000 1001 1002 1003
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
1004
	}
1005 1006 1007

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
1008 1009 1010 1011 1012 1013 1014 1015 1016
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1017
		return sprintf(buf, "%u\n", global.object);		\
1018 1019
	}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1048 1049 1050 1051 1052 1053 1054
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1055 1056 1057 1058 1059 1060 1061
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1062 1063 1064 1065
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1066
	turbo_fp = div_fp(no_turbo, total);
1067
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1068 1069 1070

	mutex_unlock(&intel_pstate_driver_lock);

1071 1072 1073
	return sprintf(buf, "%u\n", turbo_pct);
}

1074 1075 1076 1077 1078 1079
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1080 1081 1082 1083 1084 1085 1086
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1087 1088
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1089 1090 1091

	mutex_unlock(&intel_pstate_driver_lock);

1092 1093 1094
	return sprintf(buf, "%u\n", total);
}

1095 1096 1097 1098 1099
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1100 1101 1102 1103 1104 1105 1106
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1107
	update_turbo_state();
1108 1109
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1110
	else
1111
		ret = sprintf(buf, "%u\n", global.no_turbo);
1112

1113 1114
	mutex_unlock(&intel_pstate_driver_lock);

1115 1116 1117
	return ret;
}

1118
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1119
			      const char *buf, size_t count)
1120 1121 1122
{
	unsigned int input;
	int ret;
1123

1124 1125 1126
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1127

1128 1129 1130 1131 1132 1133 1134
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1135 1136
	mutex_lock(&intel_pstate_limits_lock);

1137
	update_turbo_state();
1138
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1139
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1140
		mutex_unlock(&intel_pstate_limits_lock);
1141
		mutex_unlock(&intel_pstate_driver_lock);
1142
		return -EPERM;
1143
	}
D
Dirk Brandewie 已提交
1144

1145
	global.no_turbo = clamp_t(int, input, 0, 1);
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155
	if (global.no_turbo) {
		struct cpudata *cpu = all_cpu_data[0];
		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;

		/* Squash the global minimum into the permitted range. */
		if (global.min_perf_pct > pct)
			global.min_perf_pct = pct;
	}

1156 1157
	mutex_unlock(&intel_pstate_limits_lock);

1158 1159
	intel_pstate_update_policies();

1160 1161
	mutex_unlock(&intel_pstate_driver_lock);

1162 1163 1164 1165
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1166
				  const char *buf, size_t count)
1167 1168 1169
{
	unsigned int input;
	int ret;
1170

1171 1172 1173 1174
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1175 1176 1177 1178 1179 1180 1181
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1182 1183
	mutex_lock(&intel_pstate_limits_lock);

1184
	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1185

1186 1187
	mutex_unlock(&intel_pstate_limits_lock);

1188 1189
	intel_pstate_update_policies();

1190 1191
	mutex_unlock(&intel_pstate_driver_lock);

1192 1193 1194 1195
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1196
				  const char *buf, size_t count)
1197 1198 1199
{
	unsigned int input;
	int ret;
1200

1201 1202 1203
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1204

1205 1206 1207 1208 1209 1210 1211
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1212 1213
	mutex_lock(&intel_pstate_limits_lock);

1214 1215
	global.min_perf_pct = clamp_t(int, input,
				      min_perf_pct_min(), global.max_perf_pct);
1216

1217 1218
	mutex_unlock(&intel_pstate_limits_lock);

1219 1220
	intel_pstate_update_policies();

1221 1222
	mutex_unlock(&intel_pstate_driver_lock);

1223 1224 1225 1226 1227 1228
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1229
define_one_global_rw(status);
1230 1231 1232
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1233
define_one_global_ro(turbo_pct);
1234
define_one_global_ro(num_pstates);
1235 1236

static struct attribute *intel_pstate_attributes[] = {
1237
	&status.attr,
1238
	&no_turbo.attr,
1239
	&turbo_pct.attr,
1240
	&num_pstates.attr,
1241 1242 1243 1244 1245 1246 1247
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1248
static void __init intel_pstate_sysfs_expose_params(void)
1249
{
1250
	struct kobject *intel_pstate_kobject;
1251 1252 1253 1254
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1255 1256 1257
	if (WARN_ON(!intel_pstate_kobject))
		return;

1258
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1275 1276
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1277

1278
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1279
{
1280
	/* First disable HWP notification interrupt as we don't process them */
1281 1282
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1283

1284
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1285
	cpudata->epp_policy = 0;
1286 1287
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1309
static int atom_get_min_pstate(void)
1310 1311
{
	u64 value;
1312

1313
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1314
	return (value >> 8) & 0x7F;
1315 1316
}

1317
static int atom_get_max_pstate(void)
1318 1319
{
	u64 value;
1320

1321
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1322
	return (value >> 16) & 0x7F;
1323
}
1324

1325
static int atom_get_turbo_pstate(void)
1326 1327
{
	u64 value;
1328

1329
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1330
	return value & 0x7F;
1331 1332
}

1333
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1334 1335 1336 1337 1338
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1339
	val = (u64)pstate << 8;
1340
	if (global.no_turbo && !global.turbo_disabled)
1341 1342 1343 1344 1345 1346 1347
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1348
	vid = ceiling_fp(vid_fp);
1349

1350 1351 1352
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1353
	return val | vid;
1354 1355
}

1356
static int silvermont_get_scaling(void)
1357 1358 1359
{
	u64 value;
	int i;
1360 1361 1362
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1363 1364

	rdmsrl(MSR_FSB_FREQ, value);
1365 1366
	i = value & 0x7;
	WARN_ON(i > 4);
1367

1368 1369
	return silvermont_freq_table[i];
}
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1385 1386
}

1387
static void atom_get_vid(struct cpudata *cpudata)
1388 1389 1390
{
	u64 value;

1391
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1392 1393
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1394 1395 1396 1397
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1398

1399
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1400
	cpudata->vid.turbo = value & 0x7f;
1401 1402
}

1403
static int core_get_min_pstate(void)
1404 1405
{
	u64 value;
1406

1407
	rdmsrl(MSR_PLATFORM_INFO, value);
1408 1409 1410
	return (value >> 40) & 0xFF;
}

1411
static int core_get_max_pstate_physical(void)
1412 1413
{
	u64 value;
1414

1415
	rdmsrl(MSR_PLATFORM_INFO, value);
1416 1417 1418
	return (value >> 8) & 0xFF;
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1452
static int core_get_max_pstate(void)
1453
{
1454 1455 1456
	u64 tar;
	u64 plat_info;
	int max_pstate;
1457
	int tdp_ratio;
1458 1459 1460 1461 1462
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1463 1464 1465 1466 1467 1468 1469 1470 1471
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1472 1473
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1474 1475
		int tar_levels;

1476
		/* Do some sanity checking for safety */
1477 1478 1479 1480
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1481 1482
		}
	}
1483

1484
	return max_pstate;
1485 1486
}

1487
static int core_get_turbo_pstate(void)
1488 1489 1490
{
	u64 value;
	int nont, ret;
1491

1492
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1493
	nont = core_get_max_pstate();
1494
	ret = (value) & 255;
1495 1496 1497 1498 1499
	if (ret <= nont)
		ret = nont;
	return ret;
}

1500 1501 1502 1503 1504
static inline int core_get_scaling(void)
{
	return 100000;
}

1505
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1506 1507 1508
{
	u64 val;

1509
	val = (u64)pstate << 8;
1510
	if (global.no_turbo && !global.turbo_disabled)
1511 1512
		val |= (u64)1 << 32;

1513
	return val;
1514 1515
}

1516 1517 1518 1519 1520
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1521
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1522 1523 1524 1525 1526 1527 1528
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1529 1530 1531
static struct cpu_defaults core_params = {
	.funcs = {
		.get_max = core_get_max_pstate,
1532
		.get_max_physical = core_get_max_pstate_physical,
1533 1534
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1535
		.get_scaling = core_get_scaling,
1536
		.get_val = core_get_val,
1537
		.get_target_pstate = get_target_pstate_use_performance,
1538 1539 1540
	},
};

1541
static const struct cpu_defaults silvermont_params = {
1542 1543 1544 1545 1546
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1547
		.get_val = atom_get_val,
1548 1549
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1550
		.get_target_pstate = get_target_pstate_use_cpu_load,
1551 1552 1553
	},
};

1554
static const struct cpu_defaults airmont_params = {
1555
	.funcs = {
1556 1557 1558 1559
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1560
		.get_val = atom_get_val,
1561
		.get_scaling = airmont_get_scaling,
1562
		.get_vid = atom_get_vid,
1563
		.get_target_pstate = get_target_pstate_use_cpu_load,
1564 1565 1566
	},
};

1567
static const struct cpu_defaults knl_params = {
1568 1569
	.funcs = {
		.get_max = core_get_max_pstate,
1570
		.get_max_physical = core_get_max_pstate_physical,
1571 1572
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1573
		.get_scaling = core_get_scaling,
1574
		.get_val = core_get_val,
1575
		.get_target_pstate = get_target_pstate_use_performance,
1576 1577 1578
	},
};

1579
static const struct cpu_defaults bxt_params = {
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1591 1592 1593
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1594
	int max_perf_adj;
1595
	int min_perf;
1596

1597
	if (global.no_turbo || global.turbo_disabled)
1598 1599
		max_perf = cpu->pstate.max_pstate;

1600 1601 1602 1603 1604
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1605
	max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1606 1607
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1608

1609
	min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1610
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1611 1612
}

1613
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1614
{
1615 1616
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1617 1618 1619 1620 1621 1622 1623
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1624 1625
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1640 1641
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1642 1643
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1644
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1645
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1646
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1647 1648
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1649

1650 1651
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1652 1653

	intel_pstate_set_min_pstate(cpu);
1654 1655
}

1656
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1657
{
1658
	struct sample *sample = &cpu->sample;
1659

1660
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1661 1662
}

1663
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1664 1665
{
	u64 aperf, mperf;
1666
	unsigned long flags;
1667
	u64 tsc;
1668

1669
	local_irq_save(flags);
1670 1671
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1672
	tsc = rdtsc();
1673
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1674
		local_irq_restore(flags);
1675
		return false;
1676
	}
1677
	local_irq_restore(flags);
1678

1679
	cpu->last_sample_time = cpu->sample.time;
1680
	cpu->sample.time = time;
1681 1682
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1683
	cpu->sample.tsc =  tsc;
1684 1685
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1686
	cpu->sample.tsc -= cpu->prev_tsc;
1687

1688 1689
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1690
	cpu->prev_tsc = tsc;
1691 1692 1693 1694 1695 1696 1697 1698
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1699 1700
}

1701 1702
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1703 1704
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1705 1706
}

1707 1708
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1709 1710
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1711 1712
}

1713 1714 1715
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1716
	int32_t busy_frac, boost;
1717
	int target, avg_pstate;
1718

1719
	busy_frac = div_fp(sample->mperf, sample->tsc);
1720

1721 1722
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1723

1724 1725
	if (busy_frac < boost)
		busy_frac = boost;
1726

1727
	sample->busy_scaled = busy_frac * 100;
1728

1729
	target = global.no_turbo || global.turbo_disabled ?
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1748 1749
}

1750
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1751
{
1752
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1753
	u64 duration_ns;
1754

1755
	/*
1756 1757 1758 1759 1760
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1761
	 */
1762 1763
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1764
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1765
			       div_fp(100 * max_pstate, current_pstate));
1766

1767
	/*
1768 1769 1770
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1771
	 * enough period of time to adjust our performance metric.
1772
	 */
1773
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1774
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1775
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1776
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1777 1778 1779
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1780
			perf_scaled = 0;
1781 1782
	}

1783 1784
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1785 1786
}

1787
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1788 1789 1790 1791 1792
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1793 1794 1795 1796 1797
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1798 1799 1800
	if (pstate == cpu->pstate.current_pstate)
		return;

1801
	cpu->pstate.current_pstate = pstate;
1802 1803 1804
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1805 1806
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1807
	int from, target_pstate;
1808 1809 1810
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1811

1812 1813
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1814

1815 1816
	update_turbo_state();

1817 1818
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1819
	intel_pstate_update_pstate(cpu, target_pstate);
1820 1821

	sample = &cpu->sample;
1822
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1823
		fp_toint(sample->busy_scaled),
1824 1825 1826 1827 1828
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1829 1830
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1831 1832
}

1833
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1834
				     unsigned int flags)
1835
{
1836
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1837 1838
	u64 delta_ns;

1839
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1850

1851
	delta_ns = time - cpu->sample.time;
1852
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1853 1854
		bool sample_taken = intel_pstate_sample(cpu, time);

1855
		if (sample_taken) {
1856
			intel_pstate_calc_avg_perf(cpu);
1857 1858 1859
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1860
	}
1861 1862 1863
}

#define ICPU(model, policy) \
1864 1865
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1866 1867

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1885
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1886
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1887 1888 1889 1890
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1891
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1892
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1893 1894
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1895 1896 1897
	{}
};

1898 1899 1900 1901 1902
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

1903 1904 1905 1906
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1907 1908 1909
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
1910
		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1911 1912 1913 1914 1915
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;

1916 1917 1918
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1919
	}
1920 1921 1922 1923

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1924

1925
	if (hwp_active) {
1926 1927 1928 1929 1930 1931
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

1932
		intel_pstate_hwp_enable(cpu);
1933 1934 1935
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1936

1937
	intel_pstate_get_cpu_pstates(cpu);
1938

1939 1940
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1941
	pr_debug("controlling: cpu %d\n", cpunum);
1942 1943 1944 1945 1946 1947

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1948
	struct cpudata *cpu = all_cpu_data[cpu_num];
1949

1950
	return cpu ? get_avg_frequency(cpu) : 0;
1951 1952
}

1953
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1954
{
1955 1956
	struct cpudata *cpu = all_cpu_data[cpu_num];

1957 1958 1959
	if (cpu->update_util_set)
		return;

1960 1961
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1962 1963
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1964
	cpu->update_util_set = true;
1965 1966 1967 1968
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1969 1970 1971 1972 1973
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1974
	cpufreq_remove_update_util_hook(cpu);
1975
	cpu_data->update_util_set = false;
1976 1977 1978
	synchronize_sched();
}

1979 1980 1981 1982 1983 1984
static int intel_pstate_get_max_freq(struct cpudata *cpu)
{
	return global.turbo_disabled || global.no_turbo ?
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
}

1985
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1986
					    struct cpudata *cpu)
1987
{
1988
	int max_freq = intel_pstate_get_max_freq(cpu);
1989
	int32_t max_policy_perf, min_policy_perf;
1990

1991
	max_policy_perf = div_ext_fp(policy->max, max_freq);
1992
	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1993
	if (policy->max == policy->min) {
1994
		min_policy_perf = max_policy_perf;
1995
	} else {
1996
		min_policy_perf = div_ext_fp(policy->min, max_freq);
1997 1998
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
1999
	}
2000

2001
	/* Normalize user input to [min_perf, max_perf] */
2002
	if (per_cpu_limits) {
2003 2004
		cpu->min_perf = min_policy_perf;
		cpu->max_perf = max_policy_perf;
2005 2006 2007 2008 2009 2010
	} else {
		int32_t global_min, global_max;

		/* Global limits are in percent of the maximum turbo P-state. */
		global_max = percent_ext_fp(global.max_perf_pct);
		global_min = percent_ext_fp(global.min_perf_pct);
2011
		if (max_freq != cpu->pstate.turbo_freq) {
2012 2013 2014 2015 2016 2017 2018 2019
			int32_t turbo_factor;

			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
						  cpu->pstate.max_pstate);
			global_min = mul_ext_fp(global_min, turbo_factor);
			global_max = mul_ext_fp(global_max, turbo_factor);
		}
		global_min = clamp_t(int32_t, global_min, 0, global_max);
2020

2021 2022 2023 2024
		cpu->min_perf = max(min_policy_perf, global_min);
		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
		cpu->max_perf = min(max_policy_perf, global_max);
		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2025 2026

		/* Make sure min_perf <= max_perf */
2027
		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2028
	}
2029

2030 2031
	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2032 2033

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2034 2035
		 fp_ext_toint(cpu->max_perf * 100),
		 fp_ext_toint(cpu->min_perf * 100));
2036 2037
}

2038 2039
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2040 2041
	struct cpudata *cpu;

2042 2043 2044
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2045 2046 2047
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2048
	cpu = all_cpu_data[policy->cpu];
2049 2050
	cpu->policy = policy->policy;

2051 2052
	mutex_lock(&intel_pstate_limits_lock);

2053
	intel_pstate_update_perf_limits(policy, cpu);
2054

2055
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2056 2057 2058 2059 2060 2061 2062 2063
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2064 2065
	intel_pstate_set_update_util_hook(policy->cpu);

2066 2067
	if (hwp_active)
		intel_pstate_hwp_set(policy);
D
Dirk Brandewie 已提交
2068

2069 2070
	mutex_unlock(&intel_pstate_limits_lock);

2071 2072 2073
	return 0;
}

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
					 struct cpudata *cpu)
{
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_freq) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
	}
}

2085 2086
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2087 2088 2089
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2090 2091
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2092

2093
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2094
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2095 2096
		return -EINVAL;

2097 2098
	intel_pstate_adjust_policy_max(policy, cpu);

2099 2100 2101
	return 0;
}

2102 2103 2104 2105 2106
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2107
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2108
{
2109
	pr_debug("CPU %d exiting\n", policy->cpu);
2110

2111
	intel_pstate_clear_update_util_hook(policy->cpu);
2112 2113 2114
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2115 2116
		intel_cpufreq_stop_cpu(policy);
}
2117

2118 2119 2120
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2121

2122
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2123

2124
	return 0;
2125 2126
}

2127
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2128 2129
{
	struct cpudata *cpu;
2130
	int rc;
2131 2132 2133 2134 2135 2136 2137

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2138 2139
	cpu->max_perf = int_ext_tofp(1);
	cpu->min_perf = 0;
2140

2141 2142
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2143 2144

	/* cpuinfo and default policy values */
2145
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2146
	update_turbo_state();
2147
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2148 2149 2150
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2151
	intel_pstate_init_acpi_perf_limits(policy);
2152 2153
	cpumask_set_cpu(policy->cpu, policy->cpus);

2154 2155
	policy->fast_switch_possible = true;

2156 2157 2158
	return 0;
}

2159
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2160
{
2161 2162 2163 2164 2165 2166
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2167
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2168 2169 2170
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2171 2172 2173 2174

	return 0;
}

2175
static struct cpufreq_driver intel_pstate = {
2176 2177 2178
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2179
	.suspend	= intel_pstate_hwp_save_state,
2180
	.resume		= intel_pstate_resume,
2181 2182
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2183
	.exit		= intel_pstate_cpu_exit,
2184
	.stop_cpu	= intel_pstate_stop_cpu,
2185 2186 2187
	.name		= "intel_pstate",
};

2188 2189 2190 2191 2192
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2193 2194
	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
				     intel_pstate_get_max_freq(cpu));
2195

2196
	intel_pstate_adjust_policy_max(policy, cpu);
2197

2198 2199
	intel_pstate_update_perf_limits(policy, cpu);

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2211 2212
	update_turbo_state();

2213
	freqs.old = policy->cur;
2214
	freqs.new = target_freq;
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2234
	freqs.new = target_pstate * cpu->pstate.scaling;
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2246 2247
	update_turbo_state();

2248
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2249
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2250
	intel_pstate_update_pstate(cpu, target_pstate);
2251
	return target_pstate * cpu->pstate.scaling;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
}

static int intel_pstate_register_driver(void)
{
	int ret;

2302 2303
	memset(&global, 0, sizeof(global));
	global.max_perf_pct = 100;
2304

2305 2306 2307 2308 2309 2310
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

2311 2312
	global.min_perf_pct = min_perf_pct_min();

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = true;
	mutex_unlock(&intel_pstate_limits_lock);

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_hide_params();

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = false;
	mutex_unlock(&intel_pstate_limits_lock);

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
	if (!driver_registered)
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
		return driver_registered ?
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
		if (driver_registered) {
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_pstate;
		return intel_pstate_register_driver();
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
		if (driver_registered) {
			if (intel_pstate_driver != &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_cpufreq;
		return intel_pstate_register_driver();
	}

	return -EINVAL;
}

2391 2392 2393
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2394
static unsigned int force_load __initdata;
2395

2396
static int __init intel_pstate_msrs_not_valid(void)
2397
{
2398
	if (!pstate_funcs.get_max() ||
2399 2400
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2401 2402 2403 2404
		return -ENODEV;

	return 0;
}
2405

2406 2407 2408
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
2409 2410 2411 2412 2413 2414
	switch (acpi_gbl_FADT.preferred_profile) {
	case PM_MOBILE:
	case PM_TABLET:
	case PM_APPLIANCE_PC:
	case PM_DESKTOP:
	case PM_WORKSTATION:
2415 2416
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
2417
	}
2418 2419 2420 2421 2422 2423 2424
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2425
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2426 2427
{
	pstate_funcs.get_max   = funcs->get_max;
2428
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2429 2430
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2431
	pstate_funcs.get_scaling = funcs->get_scaling;
2432
	pstate_funcs.get_val   = funcs->get_val;
2433
	pstate_funcs.get_vid   = funcs->get_vid;
2434 2435
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2436
	intel_pstate_use_acpi_profile();
2437 2438
}

2439
#ifdef CONFIG_ACPI
2440

2441
static bool __init intel_pstate_no_acpi_pss(void)
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2470
static bool __init intel_pstate_has_acpi_ppc(void)
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2490 2491 2492 2493
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2494
	int  oem_pwr_table;
2495 2496 2497
};

/* Hardware vendor-specific info that has its own power management modes */
2498
static struct hw_vendor_info vendor_info[] __initdata = {
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2510 2511 2512 2513
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2514 2515 2516
	{0, "", ""},
};

2517
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2518 2519 2520
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2530

2531 2532
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2533 2534 2535
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2536
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2537 2538 2539 2540 2541 2542
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2543 2544
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2545
			}
2546 2547 2548 2549
	}

	return false;
}
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2560 2561
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2562
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2563
static inline void intel_pstate_request_control_from_smm(void) {}
2564 2565
#endif /* CONFIG_ACPI */

2566 2567 2568 2569 2570
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2571 2572
static int __init intel_pstate_init(void)
{
2573
	int rc;
2574

2575 2576 2577
	if (no_load)
		return -ENODEV;

2578
	if (x86_match_cpu(hwp_support_ids)) {
2579
		copy_cpu_funcs(&core_params.funcs);
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
		if (no_hwp) {
			pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
		struct cpu_defaults *cpu_def;
2590

2591 2592 2593
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2594

2595 2596 2597
		cpu_def = (struct cpu_defaults *)id->driver_data;
		copy_cpu_funcs(&cpu_def->funcs);
	}
2598

2599 2600 2601
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2602 2603 2604 2605 2606 2607 2608 2609
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2610 2611 2612
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2613
	pr_info("Intel P-state driver initializing\n");
2614

2615
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2616 2617 2618
	if (!all_cpu_data)
		return -ENOMEM;

2619 2620
	intel_pstate_request_control_from_smm();

2621
	intel_pstate_sysfs_expose_params();
2622

2623
	mutex_lock(&intel_pstate_driver_lock);
2624
	rc = intel_pstate_register_driver();
2625
	mutex_unlock(&intel_pstate_driver_lock);
2626 2627
	if (rc)
		return rc;
2628

2629
	if (hwp_active)
J
Joe Perches 已提交
2630
		pr_info("HWP enabled\n");
2631

2632
	return 0;
2633 2634 2635
}
device_initcall(intel_pstate_init);

2636 2637 2638 2639 2640
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2641
	if (!strcmp(str, "disable")) {
2642
		no_load = 1;
2643 2644 2645 2646 2647
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2648
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2649
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2650
		no_hwp = 1;
2651
	}
2652 2653
	if (!strcmp(str, "force"))
		force_load = 1;
2654 2655
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2656 2657
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2658 2659 2660 2661 2662 2663

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2664 2665 2666 2667
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2668 2669 2670
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");