intel_pstate.c 67.5 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
22
#include <linux/sched/cpufreq.h>
23 24 25 26 27 28 29
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38
#include <asm/intel-family.h>
39

40 41
#define INTEL_CPUFREQ_TRANSITION_LATENCY	20000

42 43
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
44
#include <acpi/cppc_acpi.h>
45 46
#endif

47
#define FRAC_BITS 8
48 49
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
50

51 52
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 54
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55

56 57 58 59 60
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

61
static inline int32_t div_fp(s64 x, s64 y)
62
{
63
	return div64_s64((int64_t)x << FRAC_BITS, y);
64 65
}

66 67 68 69 70 71 72 73 74 75 76
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

77 78 79 80 81 82 83 84 85 86
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

87 88 89 90 91
static inline int32_t percent_ext_fp(int percent)
{
	return div_ext_fp(percent, 100);
}

92 93
/**
 * struct sample -	Store performance sample
94
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95 96
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
97
 *			P state. This can be different than core_avg_perf
98 99 100 101 102 103 104 105 106 107 108 109
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
110
struct sample {
111
	int32_t core_avg_perf;
112
	int32_t busy_scaled;
113 114
	u64 aperf;
	u64 mperf;
115
	u64 tsc;
116
	u64 time;
117 118
};

119 120 121 122 123 124 125 126 127 128 129
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
130 131
 * @max_freq:		@max_pstate frequency in cpufreq units
 * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132 133 134
 *
 * Stores the per cpu model P state limits and current P state.
 */
135 136 137 138
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
139
	int	max_pstate_physical;
140
	int	scaling;
141
	int	turbo_pstate;
142 143
	unsigned int max_freq;
	unsigned int turbo_freq;
144 145
};

146 147 148 149 150 151 152 153 154 155 156 157 158
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
159
struct vid_data {
160 161 162
	int min;
	int max;
	int turbo;
163 164 165
	int32_t ratio;
};

166 167 168 169 170 171 172 173 174 175 176 177
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
178 179 180 181 182 183 184
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
185
	int32_t last_err;
186 187
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface, unused when per cpu
 *			controls are enforced
 *
 * Storage for user and policy defined limits.
 */
struct perf_limits {
	int no_turbo;
	int turbo_disabled;
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
	int max_policy_pct;
	int max_sysfs_pct;
	int min_policy_pct;
	int min_sysfs_pct;
};

230 231 232
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
233
 * @policy:		CPUFreq policy value
234
 * @update_util:	CPUFreq utility callback information
235
 * @update_util_set:	CPUFreq utility callback is set
236 237
 * @iowait_boost:	iowait-related boost fraction
 * @last_update:	Time of the last update.
238 239 240 241 242 243 244 245 246 247
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
248 249 250
 * @perf_limits:	Pointer to perf_limit unique to this CPU
 *			Not all field in the structure are applicable
 *			when per cpu controls are enforced
251 252
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
253 254 255
 * @epp_powersave:	Last saved HWP energy performance preference
 *			(EPP) or energy performance bias (EPB),
 *			when policy switched to performance
256
 * @epp_policy:		Last saved policy used to set EPP/EPB
257 258 259 260
 * @epp_default:	Power on default HWP energy performance
 *			preference/bias
 * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
 *			operation
261 262 263
 *
 * This structure stores per CPU instance data for all CPUs.
 */
264 265 266
struct cpudata {
	int cpu;

267
	unsigned int policy;
268
	struct update_util_data update_util;
269
	bool   update_util_set;
270 271

	struct pstate_data pstate;
272
	struct vid_data vid;
273 274
	struct _pid pid;

275
	u64	last_update;
276
	u64	last_sample_time;
277 278
	u64	prev_aperf;
	u64	prev_mperf;
279
	u64	prev_tsc;
280
	u64	prev_cummulative_iowait;
281
	struct sample sample;
282
	struct perf_limits *perf_limits;
283 284 285 286
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
287
	unsigned int iowait_boost;
288
	s16 epp_powersave;
289
	s16 epp_policy;
290 291
	s16 epp_default;
	s16 epp_saved;
292 293 294
};

static struct cpudata **all_cpu_data;
295 296

/**
297
 * struct pstate_adjust_policy - Stores static PID configuration data
298 299 300 301 302 303 304 305 306 307
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
308 309
struct pstate_adjust_policy {
	int sample_rate_ms;
310
	s64 sample_rate_ns;
311 312 313 314 315 316 317
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

318 319 320 321 322 323 324 325 326 327 328 329 330 331
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
332 333
struct pstate_funcs {
	int (*get_max)(void);
334
	int (*get_max_physical)(void);
335 336
	int (*get_min)(void);
	int (*get_turbo)(void);
337
	int (*get_scaling)(void);
338
	u64 (*get_val)(struct cpudata*, int pstate);
339
	void (*get_vid)(struct cpudata *);
340
	int32_t (*get_target_pstate)(struct cpudata *);
341 342
};

343 344 345 346 347
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
348 349 350
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
351 352
};

353
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355

356 357 358
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
359
static bool per_cpu_limits __read_mostly;
360

361 362
static bool driver_registered __read_mostly;

363 364 365
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
366

367
static struct perf_limits global;
368

369 370 371 372 373 374 375 376
static void intel_pstate_init_limits(struct perf_limits *limits)
{
	memset(limits, 0, sizeof(*limits));
	limits->max_perf_pct = 100;
	limits->max_perf = int_ext_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
}
377

378
static DEFINE_MUTEX(intel_pstate_driver_lock);
379 380
static DEFINE_MUTEX(intel_pstate_limits_lock);

381
#ifdef CONFIG_ACPI
382 383 384 385 386 387 388 389 390 391

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
#ifdef CONFIG_ACPI_CPPC_LIB

/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
	sched_set_itmt_support();
}

static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);

static void intel_pstate_set_itmt_prio(int cpu)
{
	struct cppc_perf_caps cppc_perf;
	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
	int ret;

	ret = cppc_get_perf_caps(cpu, &cppc_perf);
	if (ret)
		return;

	/*
	 * The priorities can be set regardless of whether or not
	 * sched_set_itmt_support(true) has been called and it is valid to
	 * update them at any time after it has been called.
	 */
	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);

	if (max_highest_perf <= min_highest_perf) {
		if (cppc_perf.highest_perf > max_highest_perf)
			max_highest_perf = cppc_perf.highest_perf;

		if (cppc_perf.highest_perf < min_highest_perf)
			min_highest_perf = cppc_perf.highest_perf;

		if (max_highest_perf > min_highest_perf) {
			/*
			 * This code can be run during CPU online under the
			 * CPU hotplug locks, so sched_set_itmt_support()
			 * cannot be called from here.  Queue up a work item
			 * to invoke it.
			 */
			schedule_work(&sched_itmt_work);
		}
	}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif

443 444 445 446 447 448
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

449 450
	if (hwp_active) {
		intel_pstate_set_itmt_prio(policy->cpu);
451
		return;
452
	}
453

454
	if (!intel_pstate_get_ppc_enable_status())
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
497
	 * correct max turbo frequency based on the turbo state.
498 499
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
500
	if (!global.turbo_disabled)
501 502 503
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
504
	pr_debug("_PPC limits will be enforced\n");
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}
#else
524
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
525 526 527
{
}

528
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
529 530 531 532
{
}
#endif

533
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
534
			     int deadband, int integral) {
535 536
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
537
	pid->integral  = int_tofp(integral);
538
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
539 540 541 542
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
543
	pid->p_gain = div_fp(percent, 100);
544 545 546 547
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
548
	pid->i_gain = div_fp(percent, 100);
549 550 551 552
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
553
	pid->d_gain = div_fp(percent, 100);
554 555
}

556
static signed int pid_calc(struct _pid *pid, int32_t busy)
557
{
558
	signed int result;
559 560 561
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

562
	fp_error = pid->setpoint - busy;
563

564
	if (abs(fp_error) <= pid->deadband)
565 566 567 568 569 570
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

571 572 573 574 575 576 577 578
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
579 580 581 582 583 584
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

585 586
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
587 588

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
589
	result = result + (1 << (FRAC_BITS-1));
590 591 592 593 594
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
595 596 597
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
598

599
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
600 601 602 603 604
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
605

606 607 608 609 610 611
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

612 613 614 615 616 617 618
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
619
	global.turbo_disabled =
620 621 622 623
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
	u64 epb;
	int ret;

	if (!static_cpu_has(X86_FEATURE_EPB))
		return -ENXIO;

	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return (s16)ret;

	return (s16)(epb & 0x0f);
}

static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
	s16 epp;

643 644 645 646 647 648 649 650 651 652 653
	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * When hwp_req_data is 0, means that caller didn't read
		 * MSR_HWP_REQUEST, so need to read and get EPP.
		 */
		if (!hwp_req_data) {
			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
					    &hwp_req_data);
			if (epp)
				return epp;
		}
654
		epp = (hwp_req_data >> 24) & 0xff;
655
	} else {
656 657
		/* When there is no EPP present, HWP uses EPB settings */
		epp = intel_pstate_get_epb(cpu_data);
658
	}
659 660 661 662

	return epp;
}

663
static int intel_pstate_set_epb(int cpu, s16 pref)
664 665
{
	u64 epb;
666
	int ret;
667 668

	if (!static_cpu_has(X86_FEATURE_EPB))
669
		return -ENXIO;
670

671 672 673
	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
	if (ret)
		return ret;
674 675 676

	epb = (epb & ~0x0f) | pref;
	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
677 678

	return 0;
679 680
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
/*
 * EPP/EPB display strings corresponding to EPP index in the
 * energy_perf_strings[]
 *	index		String
 *-------------------------------------
 *	0		default
 *	1		performance
 *	2		balance_performance
 *	3		balance_power
 *	4		power
 */
static const char * const energy_perf_strings[] = {
	"default",
	"performance",
	"balance_performance",
	"balance_power",
	"power",
	NULL
};

static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
	s16 epp;
	int index = -EINVAL;

	epp = intel_pstate_get_epp(cpu_data, 0);
	if (epp < 0)
		return epp;

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		/*
		 * Range:
		 *	0x00-0x3F	:	Performance
		 *	0x40-0x7F	:	Balance performance
		 *	0x80-0xBF	:	Balance power
		 *	0xC0-0xFF	:	Power
		 * The EPP is a 8 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 6) + 1;
	} else if (static_cpu_has(X86_FEATURE_EPB)) {
		/*
		 * Range:
		 *	0x00-0x03	:	Performance
		 *	0x04-0x07	:	Balance performance
		 *	0x08-0x0B	:	Balance power
		 *	0x0C-0x0F	:	Power
		 * The EPB is a 4 bit value, but our ranges restrict the
		 * value which can be set. Here only using top two bits
		 * effectively.
		 */
		index = (epp >> 2) + 1;
	}

	return index;
}

static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
					      int pref_index)
{
	int epp = -EINVAL;
	int ret;

	if (!pref_index)
		epp = cpu_data->epp_default;

	mutex_lock(&intel_pstate_limits_lock);

	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
		u64 value;

		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
		if (ret)
			goto return_pref;

		value &= ~GENMASK_ULL(31, 24);

		/*
		 * If epp is not default, convert from index into
		 * energy_perf_strings to epp value, by shifting 6
		 * bits left to use only top two bits in epp.
		 * The resultant epp need to shifted by 24 bits to
		 * epp position in MSR_HWP_REQUEST.
		 */
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 6;

		value |= (u64)epp << 24;
		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
	} else {
		if (epp == -EINVAL)
			epp = (pref_index - 1) << 2;
		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
	}
return_pref:
	mutex_unlock(&intel_pstate_limits_lock);

	return ret;
}

static ssize_t show_energy_performance_available_preferences(
				struct cpufreq_policy *policy, char *buf)
{
	int i = 0;
	int ret = 0;

	while (energy_perf_strings[i] != NULL)
		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);

	ret += sprintf(&buf[ret], "\n");

	return ret;
}

cpufreq_freq_attr_ro(energy_performance_available_preferences);

static ssize_t store_energy_performance_preference(
		struct cpufreq_policy *policy, const char *buf, size_t count)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	char str_preference[21];
	int ret, i = 0;

	ret = sscanf(buf, "%20s", str_preference);
	if (ret != 1)
		return -EINVAL;

	while (energy_perf_strings[i] != NULL) {
		if (!strcmp(str_preference, energy_perf_strings[i])) {
			intel_pstate_set_energy_pref_index(cpu_data, i);
			return count;
		}
		++i;
	}

	return -EINVAL;
}

static ssize_t show_energy_performance_preference(
				struct cpufreq_policy *policy, char *buf)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
	int preference;

	preference = intel_pstate_get_energy_pref_index(cpu_data);
	if (preference < 0)
		return preference;

	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
}

cpufreq_freq_attr_rw(energy_performance_preference);

static struct freq_attr *hwp_cpufreq_attrs[] = {
	&energy_performance_preference,
	&energy_performance_available_preferences,
	NULL,
};

841
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
D
Dirk Brandewie 已提交
842
{
843
	int min, hw_min, max, hw_max, cpu;
844
	struct perf_limits *perf_limits = &global;
845 846
	u64 value, cap;

847
	for_each_cpu(cpu, policy->cpus) {
848 849
		struct cpudata *cpu_data = all_cpu_data[cpu];
		s16 epp;
850 851 852 853

		if (per_cpu_limits)
			perf_limits = all_cpu_data[cpu]->perf_limits;

854 855
		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
		hw_min = HWP_LOWEST_PERF(cap);
856
		if (global.no_turbo)
857 858 859
			hw_max = HWP_GUARANTEED_PERF(cap);
		else
			hw_max = HWP_HIGHEST_PERF(cap);
860

861 862 863 864 865
		max = fp_ext_toint(hw_max * perf_limits->max_perf);
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
			min = max;
		else
			min = fp_ext_toint(hw_max * perf_limits->min_perf);
866

D
Dirk Brandewie 已提交
867
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
868

D
Dirk Brandewie 已提交
869 870 871 872 873
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
874 875 876 877 878 879

		if (cpu_data->epp_policy == cpu_data->policy)
			goto skip_epp;

		cpu_data->epp_policy = cpu_data->policy;

880 881 882 883 884 885
		if (cpu_data->epp_saved >= 0) {
			epp = cpu_data->epp_saved;
			cpu_data->epp_saved = -EINVAL;
			goto update_epp;
		}

886 887
		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
			epp = intel_pstate_get_epp(cpu_data, value);
888
			cpu_data->epp_powersave = epp;
889
			/* If EPP read was failed, then don't try to write */
890
			if (epp < 0)
891 892 893 894 895 896
				goto skip_epp;


			epp = 0;
		} else {
			/* skip setting EPP, when saved value is invalid */
897
			if (cpu_data->epp_powersave < 0)
898 899 900 901 902 903 904 905 906 907 908 909 910
				goto skip_epp;

			/*
			 * No need to restore EPP when it is not zero. This
			 * means:
			 *  - Policy is not changed
			 *  - user has manually changed
			 *  - Error reading EPB
			 */
			epp = intel_pstate_get_epp(cpu_data, value);
			if (epp)
				goto skip_epp;

911
			epp = cpu_data->epp_powersave;
912
		}
913
update_epp:
914 915 916 917 918 919 920
		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
			value &= ~GENMASK_ULL(31, 24);
			value |= (u64)epp << 24;
		} else {
			intel_pstate_set_epb(cpu, epp);
		}
skip_epp:
D
Dirk Brandewie 已提交
921 922
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
923
}
D
Dirk Brandewie 已提交
924

925 926 927 928 929 930 931 932 933 934 935 936
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
	struct cpudata *cpu_data = all_cpu_data[policy->cpu];

	if (!hwp_active)
		return 0;

	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);

	return 0;
}

937 938 939 940 941
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
	if (!hwp_active)
		return 0;

942 943
	mutex_lock(&intel_pstate_limits_lock);

944
	all_cpu_data[policy->cpu]->epp_policy = 0;
945
	intel_pstate_hwp_set(policy);
946 947 948

	mutex_unlock(&intel_pstate_limits_lock);

949
	return 0;
950 951
}

952
static void intel_pstate_update_policies(void)
953
{
954 955 956 957
	int cpu;

	for_each_possible_cpu(cpu)
		cpufreq_update_policy(cpu);
D
Dirk Brandewie 已提交
958 959
}

960 961 962 963
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
964
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
965 966 967
	intel_pstate_reset_all_pid();
	return 0;
}
968

969 970 971 972 973
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
974
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
975

976 977
static struct dentry *debugfs_parent;

978 979 980
struct pid_param {
	char *name;
	void *value;
981
	struct dentry *dentry;
982 983 984
};

static struct pid_param pid_files[] = {
985 986 987 988 989 990 991
	{"sample_rate_ms", &pid_params.sample_rate_ms, },
	{"d_gain_pct", &pid_params.d_gain_pct, },
	{"i_gain_pct", &pid_params.i_gain_pct, },
	{"deadband", &pid_params.deadband, },
	{"setpoint", &pid_params.setpoint, },
	{"p_gain_pct", &pid_params.p_gain_pct, },
	{NULL, NULL, }
992 993
};

994
static void intel_pstate_debug_expose_params(void)
995
{
996
	int i;
997 998 999 1000

	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
1001 1002 1003 1004 1005 1006 1007 1008 1009

	for (i = 0; pid_files[i].name; i++) {
		struct dentry *dentry;

		dentry = debugfs_create_file(pid_files[i].name, 0660,
					     debugfs_parent, pid_files[i].value,
					     &fops_pid_param);
		if (!IS_ERR(dentry))
			pid_files[i].dentry = dentry;
1010 1011 1012
	}
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static void intel_pstate_debug_hide_params(void)
{
	int i;

	if (IS_ERR_OR_NULL(debugfs_parent))
		return;

	for (i = 0; pid_files[i].name; i++) {
		debugfs_remove(pid_files[i].dentry);
		pid_files[i].dentry = NULL;
1023
	}
1024 1025 1026

	debugfs_remove(debugfs_parent);
	debugfs_parent = NULL;
1027 1028 1029 1030 1031 1032 1033 1034 1035
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
1036
		return sprintf(buf, "%u\n", global.object);		\
1037 1038
	}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);

static ssize_t show_status(struct kobject *kobj,
			   struct attribute *attr, char *buf)
{
	ssize_t ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_show_status(buf);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret;
}

static ssize_t store_status(struct kobject *a, struct attribute *b,
			    const char *buf, size_t count)
{
	char *p = memchr(buf, '\n', count);
	int ret;

	mutex_lock(&intel_pstate_driver_lock);
	ret = intel_pstate_update_status(buf, p ? p - buf : count);
	mutex_unlock(&intel_pstate_driver_lock);

	return ret < 0 ? ret : count;
}

1067 1068 1069 1070 1071 1072 1073
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

1074 1075 1076 1077 1078 1079 1080
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1081 1082 1083 1084
	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1085
	turbo_fp = div_fp(no_turbo, total);
1086
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1087 1088 1089

	mutex_unlock(&intel_pstate_driver_lock);

1090 1091 1092
	return sprintf(buf, "%u\n", turbo_pct);
}

1093 1094 1095 1096 1097 1098
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

1099 1100 1101 1102 1103 1104 1105
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1106 1107
	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1108 1109 1110

	mutex_unlock(&intel_pstate_driver_lock);

1111 1112 1113
	return sprintf(buf, "%u\n", total);
}

1114 1115 1116 1117 1118
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

1119 1120 1121 1122 1123 1124 1125
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1126
	update_turbo_state();
1127 1128
	if (global.turbo_disabled)
		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1129
	else
1130
		ret = sprintf(buf, "%u\n", global.no_turbo);
1131

1132 1133
	mutex_unlock(&intel_pstate_driver_lock);

1134 1135 1136
	return ret;
}

1137
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1138
			      const char *buf, size_t count)
1139 1140 1141
{
	unsigned int input;
	int ret;
1142

1143 1144 1145
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1146

1147 1148 1149 1150 1151 1152 1153
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1154 1155
	mutex_lock(&intel_pstate_limits_lock);

1156
	update_turbo_state();
1157
	if (global.turbo_disabled) {
J
Joe Perches 已提交
1158
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1159
		mutex_unlock(&intel_pstate_limits_lock);
1160
		mutex_unlock(&intel_pstate_driver_lock);
1161
		return -EPERM;
1162
	}
D
Dirk Brandewie 已提交
1163

1164
	global.no_turbo = clamp_t(int, input, 0, 1);
1165

1166 1167
	mutex_unlock(&intel_pstate_limits_lock);

1168 1169
	intel_pstate_update_policies();

1170 1171
	mutex_unlock(&intel_pstate_driver_lock);

1172 1173 1174 1175
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1176
				  const char *buf, size_t count)
1177 1178 1179
{
	unsigned int input;
	int ret;
1180

1181 1182 1183 1184
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

1185 1186 1187 1188 1189 1190 1191
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1192 1193
	mutex_lock(&intel_pstate_limits_lock);

1194 1195 1196 1197 1198
	global.max_sysfs_pct = clamp_t(int, input, 0 , 100);
	global.max_perf_pct = min(global.max_policy_pct, global.max_sysfs_pct);
	global.max_perf_pct = max(global.min_policy_pct, global.max_perf_pct);
	global.max_perf_pct = max(global.min_perf_pct, global.max_perf_pct);
	global.max_perf = percent_ext_fp(global.max_perf_pct);
1199

1200 1201
	mutex_unlock(&intel_pstate_limits_lock);

1202 1203
	intel_pstate_update_policies();

1204 1205
	mutex_unlock(&intel_pstate_driver_lock);

1206 1207 1208 1209
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1210
				  const char *buf, size_t count)
1211 1212 1213
{
	unsigned int input;
	int ret;
1214

1215 1216 1217
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
1218

1219 1220 1221 1222 1223 1224 1225
	mutex_lock(&intel_pstate_driver_lock);

	if (!driver_registered) {
		mutex_unlock(&intel_pstate_driver_lock);
		return -EAGAIN;
	}

1226 1227
	mutex_lock(&intel_pstate_limits_lock);

1228 1229 1230 1231 1232
	global.min_sysfs_pct = clamp_t(int, input, 0 , 100);
	global.min_perf_pct = max(global.min_policy_pct, global.min_sysfs_pct);
	global.min_perf_pct = min(global.max_policy_pct, global.min_perf_pct);
	global.min_perf_pct = min(global.max_perf_pct, global.min_perf_pct);
	global.min_perf = percent_ext_fp(global.min_perf_pct);
1233

1234 1235
	mutex_unlock(&intel_pstate_limits_lock);

1236 1237
	intel_pstate_update_policies();

1238 1239
	mutex_unlock(&intel_pstate_driver_lock);

1240 1241 1242 1243 1244 1245
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

1246
define_one_global_rw(status);
1247 1248 1249
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
1250
define_one_global_ro(turbo_pct);
1251
define_one_global_ro(num_pstates);
1252 1253

static struct attribute *intel_pstate_attributes[] = {
1254
	&status.attr,
1255
	&no_turbo.attr,
1256
	&turbo_pct.attr,
1257
	&num_pstates.attr,
1258 1259 1260 1261 1262 1263 1264
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

1265
static void __init intel_pstate_sysfs_expose_params(void)
1266
{
1267
	struct kobject *intel_pstate_kobject;
1268 1269 1270 1271
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
1272 1273 1274
	if (WARN_ON(!intel_pstate_kobject))
		return;

1275
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	if (WARN_ON(rc))
		return;

	/*
	 * If per cpu limits are enforced there are no global limits, so
	 * return without creating max/min_perf_pct attributes
	 */
	if (per_cpu_limits)
		return;

	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
	WARN_ON(rc);

	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
	WARN_ON(rc);

1292 1293
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
1294

1295
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
1296
{
1297
	/* First disable HWP notification interrupt as we don't process them */
1298 1299
	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1300

1301
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1302
	cpudata->epp_policy = 0;
1303 1304
	if (cpudata->epp_default == -EINVAL)
		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
D
Dirk Brandewie 已提交
1305 1306
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
#define MSR_IA32_POWER_CTL_BIT_EE	19

/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
	u64 power_ctl;
	int ret;

	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
	if (ret)
		return;

	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
		pr_info("Disabling energy efficiency optimization\n");
		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
	}
}

1326
static int atom_get_min_pstate(void)
1327 1328
{
	u64 value;
1329

1330
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1331
	return (value >> 8) & 0x7F;
1332 1333
}

1334
static int atom_get_max_pstate(void)
1335 1336
{
	u64 value;
1337

1338
	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
D
Dirk Brandewie 已提交
1339
	return (value >> 16) & 0x7F;
1340
}
1341

1342
static int atom_get_turbo_pstate(void)
1343 1344
{
	u64 value;
1345

1346
	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
1347
	return value & 0x7F;
1348 1349
}

1350
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1351 1352 1353 1354 1355
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

1356
	val = (u64)pstate << 8;
1357
	if (global.no_turbo && !global.turbo_disabled)
1358 1359 1360 1361 1362 1363 1364
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1365
	vid = ceiling_fp(vid_fp);
1366

1367 1368 1369
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

1370
	return val | vid;
1371 1372
}

1373
static int silvermont_get_scaling(void)
1374 1375 1376
{
	u64 value;
	int i;
1377 1378 1379
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
1380 1381

	rdmsrl(MSR_FSB_FREQ, value);
1382 1383
	i = value & 0x7;
	WARN_ON(i > 4);
1384

1385 1386
	return silvermont_freq_table[i];
}
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
1402 1403
}

1404
static void atom_get_vid(struct cpudata *cpudata)
1405 1406 1407
{
	u64 value;

1408
	rdmsrl(MSR_ATOM_CORE_VIDS, value);
D
Dirk Brandewie 已提交
1409 1410
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1411 1412 1413 1414
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
1415

1416
	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1417
	cpudata->vid.turbo = value & 0x7f;
1418 1419
}

1420
static int core_get_min_pstate(void)
1421 1422
{
	u64 value;
1423

1424
	rdmsrl(MSR_PLATFORM_INFO, value);
1425 1426 1427
	return (value >> 40) & 0xFF;
}

1428
static int core_get_max_pstate_physical(void)
1429 1430
{
	u64 value;
1431

1432
	rdmsrl(MSR_PLATFORM_INFO, value);
1433 1434 1435
	return (value >> 8) & 0xFF;
}

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
static int core_get_tdp_ratio(u64 plat_info)
{
	/* Check how many TDP levels present */
	if (plat_info & 0x600000000) {
		u64 tdp_ctrl;
		u64 tdp_ratio;
		int tdp_msr;
		int err;

		/* Get the TDP level (0, 1, 2) to get ratios */
		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
		if (err)
			return err;

		/* TDP MSR are continuous starting at 0x648 */
		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
		if (err)
			return err;

		/* For level 1 and 2, bits[23:16] contain the ratio */
		if (tdp_ctrl & 0x03)
			tdp_ratio >>= 16;

		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);

		return (int)tdp_ratio;
	}

	return -ENXIO;
}

1469
static int core_get_max_pstate(void)
1470
{
1471 1472 1473
	u64 tar;
	u64 plat_info;
	int max_pstate;
1474
	int tdp_ratio;
1475 1476 1477 1478 1479
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

1480 1481 1482 1483 1484 1485 1486 1487 1488
	tdp_ratio = core_get_tdp_ratio(plat_info);
	if (tdp_ratio <= 0)
		return max_pstate;

	if (hwp_active) {
		/* Turbo activation ratio is not used on HWP platforms */
		return tdp_ratio;
	}

1489 1490
	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
1491 1492
		int tar_levels;

1493
		/* Do some sanity checking for safety */
1494 1495 1496 1497
		tar_levels = tar & 0xff;
		if (tdp_ratio - 1 == tar_levels) {
			max_pstate = tar_levels;
			pr_debug("max_pstate=TAC %x\n", max_pstate);
1498 1499
		}
	}
1500

1501
	return max_pstate;
1502 1503
}

1504
static int core_get_turbo_pstate(void)
1505 1506 1507
{
	u64 value;
	int nont, ret;
1508

1509
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1510
	nont = core_get_max_pstate();
1511
	ret = (value) & 255;
1512 1513 1514 1515 1516
	if (ret <= nont)
		ret = nont;
	return ret;
}

1517 1518 1519 1520 1521
static inline int core_get_scaling(void)
{
	return 100000;
}

1522
static u64 core_get_val(struct cpudata *cpudata, int pstate)
1523 1524 1525
{
	u64 val;

1526
	val = (u64)pstate << 8;
1527
	if (global.no_turbo && !global.turbo_disabled)
1528 1529
		val |= (u64)1 << 32;

1530
	return val;
1531 1532
}

1533 1534 1535 1536 1537
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

1538
	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1539 1540 1541 1542 1543 1544 1545
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1557
		.get_max_physical = core_get_max_pstate_physical,
1558 1559
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1560
		.get_scaling = core_get_scaling,
1561
		.get_val = core_get_val,
1562
		.get_target_pstate = get_target_pstate_use_performance,
1563 1564 1565
	},
};

1566
static const struct cpu_defaults silvermont_params = {
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1580
		.get_val = atom_get_val,
1581 1582
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1583
		.get_target_pstate = get_target_pstate_use_cpu_load,
1584 1585 1586
	},
};

1587
static const struct cpu_defaults airmont_params = {
1588 1589 1590
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1591
		.setpoint = 60,
1592 1593 1594 1595 1596
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1597 1598 1599 1600
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1601
		.get_val = atom_get_val,
1602
		.get_scaling = airmont_get_scaling,
1603
		.get_vid = atom_get_vid,
1604
		.get_target_pstate = get_target_pstate_use_cpu_load,
1605 1606 1607
	},
};

1608
static const struct cpu_defaults knl_params = {
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1619
		.get_max_physical = core_get_max_pstate_physical,
1620 1621
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1622
		.get_scaling = core_get_scaling,
1623
		.get_val = core_get_val,
1624
		.get_target_pstate = get_target_pstate_use_performance,
1625 1626 1627
	},
};

1628
static const struct cpu_defaults bxt_params = {
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
		.get_max_physical = core_get_max_pstate_physical,
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
		.get_scaling = core_get_scaling,
		.get_val = core_get_val,
		.get_target_pstate = get_target_pstate_use_cpu_load,
	},
};

1648 1649 1650
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1651
	int max_perf_adj;
1652
	int min_perf;
1653
	struct perf_limits *perf_limits = &global;
1654

1655
	if (global.no_turbo || global.turbo_disabled)
1656 1657
		max_perf = cpu->pstate.max_pstate;

1658 1659 1660
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

1661 1662 1663 1664 1665
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1666
	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1667 1668
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1669

1670
	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1671
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1672 1673
}

1674
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1675
{
1676 1677
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
	cpu->pstate.current_pstate = pstate;
1678 1679 1680 1681 1682 1683 1684
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1685 1686
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}

static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
	int min_pstate, max_pstate;

	update_turbo_state();
	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
	intel_pstate_set_pstate(cpu, max_pstate);
}

1701 1702
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1703 1704
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1705
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1706
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1707
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1708 1709
	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1710

1711 1712
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1713 1714

	intel_pstate_set_min_pstate(cpu);
1715 1716
}

1717
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1718
{
1719
	struct sample *sample = &cpu->sample;
1720

1721
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1722 1723
}

1724
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1725 1726
{
	u64 aperf, mperf;
1727
	unsigned long flags;
1728
	u64 tsc;
1729

1730
	local_irq_save(flags);
1731 1732
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1733
	tsc = rdtsc();
1734
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1735
		local_irq_restore(flags);
1736
		return false;
1737
	}
1738
	local_irq_restore(flags);
1739

1740
	cpu->last_sample_time = cpu->sample.time;
1741
	cpu->sample.time = time;
1742 1743
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1744
	cpu->sample.tsc =  tsc;
1745 1746
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1747
	cpu->sample.tsc -= cpu->prev_tsc;
1748

1749 1750
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1751
	cpu->prev_tsc = tsc;
1752 1753 1754 1755 1756 1757 1758 1759
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1760 1761
}

1762 1763
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1764 1765
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1766 1767
}

1768 1769
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1770 1771
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1772 1773
}

1774 1775 1776
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1777
	int32_t busy_frac, boost;
1778
	int target, avg_pstate;
1779

1780
	busy_frac = div_fp(sample->mperf, sample->tsc);
1781

1782 1783
	boost = cpu->iowait_boost;
	cpu->iowait_boost >>= 1;
1784

1785 1786
	if (busy_frac < boost)
		busy_frac = boost;
1787

1788
	sample->busy_scaled = busy_frac * 100;
1789

1790
	target = global.no_turbo || global.turbo_disabled ?
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	target += target >> 2;
	target = mul_fp(target, busy_frac);
	if (target < cpu->pstate.min_pstate)
		target = cpu->pstate.min_pstate;

	/*
	 * If the average P-state during the previous cycle was higher than the
	 * current target, add 50% of the difference to the target to reduce
	 * possible performance oscillations and offset possible performance
	 * loss related to moving the workload from one CPU to another within
	 * a package/module.
	 */
	avg_pstate = get_avg_pstate(cpu);
	if (avg_pstate > target)
		target += (avg_pstate - target) >> 1;

	return target;
1809 1810
}

1811
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1812
{
1813
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1814
	u64 duration_ns;
1815

1816
	/*
1817 1818 1819 1820 1821
	 * perf_scaled is the ratio of the average P-state during the last
	 * sampling period to the P-state requested last time (in percent).
	 *
	 * That measures the system's response to the previous P-state
	 * selection.
1822
	 */
1823 1824
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1825
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1826
			       div_fp(100 * max_pstate, current_pstate));
1827

1828
	/*
1829 1830 1831
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1832
	 * enough period of time to adjust our performance metric.
1833
	 */
1834
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1835
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1836
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1837
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1838 1839 1840
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1841
			perf_scaled = 0;
1842 1843
	}

1844 1845
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1846 1847
}

1848
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1849 1850 1851 1852 1853
{
	int max_perf, min_perf;

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
1854 1855 1856 1857 1858
	return pstate;
}

static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
1859 1860 1861
	if (pstate == cpu->pstate.current_pstate)
		return;

1862
	cpu->pstate.current_pstate = pstate;
1863 1864 1865
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1866 1867
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1868
	int from, target_pstate;
1869 1870 1871
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1872

1873 1874
	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1875

1876 1877
	update_turbo_state();

1878 1879
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1880
	intel_pstate_update_pstate(cpu, target_pstate);
1881 1882

	sample = &cpu->sample;
1883
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1884
		fp_toint(sample->busy_scaled),
1885 1886 1887 1888 1889
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1890 1891
		get_avg_frequency(cpu),
		fp_toint(cpu->iowait_boost * 100));
1892 1893
}

1894
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1895
				     unsigned int flags)
1896
{
1897
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1898 1899
	u64 delta_ns;

1900
	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		if (flags & SCHED_CPUFREQ_IOWAIT) {
			cpu->iowait_boost = int_tofp(1);
		} else if (cpu->iowait_boost) {
			/* Clear iowait_boost if the CPU may have been idle. */
			delta_ns = time - cpu->last_update;
			if (delta_ns > TICK_NSEC)
				cpu->iowait_boost = 0;
		}
		cpu->last_update = time;
	}
1911

1912
	delta_ns = time - cpu->sample.time;
1913
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1914 1915
		bool sample_taken = intel_pstate_sample(cpu, time);

1916
		if (sample_taken) {
1917
			intel_pstate_calc_avg_perf(cpu);
1918 1919 1920
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1921
	}
1922 1923 1924
}

#define ICPU(model, policy) \
1925 1926
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1927 1928

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1946
	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1947
	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1948 1949 1950 1951
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

1952
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1953
	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1954 1955
	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
D
Dirk Brandewie 已提交
1956 1957 1958
	{}
};

1959 1960 1961 1962 1963
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
	{}
};

1964 1965 1966 1967
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	cpu = all_cpu_data[cpunum];

	if (!cpu) {
		unsigned int size = sizeof(struct cpudata);

		if (per_cpu_limits)
			size += sizeof(struct perf_limits);

		cpu = kzalloc(size, GFP_KERNEL);
		if (!cpu)
			return -ENOMEM;

		all_cpu_data[cpunum] = cpu;
		if (per_cpu_limits)
			cpu->perf_limits = (struct perf_limits *)(cpu + 1);

1984 1985 1986
		cpu->epp_default = -EINVAL;
		cpu->epp_powersave = -EINVAL;
		cpu->epp_saved = -EINVAL;
1987
	}
1988 1989 1990 1991

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1992

1993
	if (hwp_active) {
1994 1995 1996 1997 1998 1999
		const struct x86_cpu_id *id;

		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
		if (id)
			intel_pstate_disable_ee(cpunum);

2000
		intel_pstate_hwp_enable(cpu);
2001 2002 2003
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
2004

2005
	intel_pstate_get_cpu_pstates(cpu);
2006

2007 2008
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
2009
	pr_debug("controlling: cpu %d\n", cpunum);
2010 2011 2012 2013 2014 2015

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
2016
	struct cpudata *cpu = all_cpu_data[cpu_num];
2017

2018
	return cpu ? get_avg_frequency(cpu) : 0;
2019 2020
}

2021
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2022
{
2023 2024
	struct cpudata *cpu = all_cpu_data[cpu_num];

2025 2026 2027
	if (cpu->update_util_set)
		return;

2028 2029
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
2030 2031
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
2032
	cpu->update_util_set = true;
2033 2034 2035 2036
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
2037 2038 2039 2040 2041
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

2042
	cpufreq_remove_update_util_hook(cpu);
2043
	cpu_data->update_util_set = false;
2044 2045 2046
	synchronize_sched();
}

2047 2048 2049
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
					    struct perf_limits *limits)
{
2050
	int32_t max_policy_perf, min_policy_perf;
2051

2052 2053
	max_policy_perf = div_ext_fp(policy->max, policy->cpuinfo.max_freq);
	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
2054
	if (policy->max == policy->min) {
2055
		min_policy_perf = max_policy_perf;
2056
	} else {
2057 2058 2059 2060
		min_policy_perf = div_ext_fp(policy->min,
					     policy->cpuinfo.max_freq);
		min_policy_perf = clamp_t(int32_t, min_policy_perf,
					  0, max_policy_perf);
2061
	}
2062

2063 2064 2065 2066 2067 2068 2069
	/* Normalize user input to [min_perf, max_perf] */
	limits->min_perf = max(min_policy_perf,
			       percent_ext_fp(limits->min_sysfs_pct));
	limits->min_perf = min(limits->min_perf, max_policy_perf);
	limits->max_perf = min(max_policy_perf,
			       percent_ext_fp(limits->max_sysfs_pct));
	limits->max_perf = max(min_policy_perf, limits->max_perf);
2070

2071 2072
	/* Make sure min_perf <= max_perf */
	limits->min_perf = min(limits->min_perf, limits->max_perf);
2073

2074 2075
	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2076 2077
	limits->max_perf_pct = fp_ext_toint(limits->max_perf * 100);
	limits->min_perf_pct = fp_ext_toint(limits->min_perf * 100);
2078 2079 2080 2081 2082

	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
		 limits->max_perf_pct, limits->min_perf_pct);
}

2083 2084
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
2085
	struct cpudata *cpu;
2086
	struct perf_limits *perf_limits = &global;
2087

2088 2089 2090
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

2091 2092 2093
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

2094
	cpu = all_cpu_data[policy->cpu];
2095 2096
	cpu->policy = policy->policy;

2097 2098 2099 2100 2101
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
2102 2103
	}

2104 2105 2106
	if (per_cpu_limits)
		perf_limits = cpu->perf_limits;

2107 2108
	mutex_lock(&intel_pstate_limits_lock);

2109
	intel_pstate_update_perf_limits(policy, perf_limits);
2110

2111
	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2112 2113 2114 2115 2116 2117 2118 2119
		/*
		 * NOHZ_FULL CPUs need this as the governor callback may not
		 * be invoked on them.
		 */
		intel_pstate_clear_update_util_hook(policy->cpu);
		intel_pstate_max_within_limits(cpu);
	}

2120 2121
	intel_pstate_set_update_util_hook(policy->cpu);

2122 2123
	if (hwp_active)
		intel_pstate_hwp_set(policy);
D
Dirk Brandewie 已提交
2124

2125 2126
	mutex_unlock(&intel_pstate_limits_lock);

2127 2128 2129 2130 2131
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
2132 2133 2134
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2135
	policy->cpuinfo.max_freq = global.turbo_disabled || global.no_turbo ?
2136 2137 2138
					cpu->pstate.max_freq :
					cpu->pstate.turbo_freq;

2139
	cpufreq_verify_within_cpu_limits(policy);
2140

2141
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2142
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2143 2144
		return -EINVAL;

2145 2146 2147 2148 2149
	/* When per-CPU limits are used, sysfs limits are not used */
	if (!per_cpu_limits) {
		unsigned int max_freq, min_freq;

		max_freq = policy->cpuinfo.max_freq *
2150
					global.max_sysfs_pct / 100;
2151
		min_freq = policy->cpuinfo.max_freq *
2152
					global.min_sysfs_pct / 100;
2153 2154 2155
		cpufreq_verify_within_limits(policy, min_freq, max_freq);
	}

2156 2157 2158
	return 0;
}

2159 2160 2161 2162 2163
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}

2164
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2165
{
2166
	pr_debug("CPU %d exiting\n", policy->cpu);
2167

2168
	intel_pstate_clear_update_util_hook(policy->cpu);
2169 2170 2171
	if (hwp_active)
		intel_pstate_hwp_save_state(policy);
	else
2172 2173
		intel_cpufreq_stop_cpu(policy);
}
2174

2175 2176 2177
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);
2178

2179
	policy->fast_switch_possible = false;
D
Dirk Brandewie 已提交
2180

2181
	return 0;
2182 2183
}

2184
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2185 2186
{
	struct cpudata *cpu;
2187
	int rc;
2188 2189 2190 2191 2192 2193 2194

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

2195
	if (per_cpu_limits)
2196
		intel_pstate_init_limits(cpu->perf_limits);
2197

2198 2199
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2200 2201

	/* cpuinfo and default policy values */
2202
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2203
	update_turbo_state();
2204
	policy->cpuinfo.max_freq = global.turbo_disabled ?
2205 2206 2207
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

2208
	intel_pstate_init_acpi_perf_limits(policy);
2209 2210
	cpumask_set_cpu(policy->cpu, policy->cpus);

2211 2212
	policy->fast_switch_possible = true;

2213 2214 2215
	return 0;
}

2216
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2217
{
2218 2219 2220 2221 2222 2223
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2224
	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2225 2226 2227
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2228 2229 2230 2231

	return 0;
}

2232
static struct cpufreq_driver intel_pstate = {
2233 2234 2235
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
2236
	.suspend	= intel_pstate_hwp_save_state,
2237
	.resume		= intel_pstate_resume,
2238 2239
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
2240
	.exit		= intel_pstate_cpu_exit,
2241
	.stop_cpu	= intel_pstate_stop_cpu,
2242 2243 2244
	.name		= "intel_pstate",
};

2245 2246 2247 2248 2249
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];

	update_turbo_state();
2250
	policy->cpuinfo.max_freq = global.no_turbo || global.turbo_disabled ?
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
			cpu->pstate.max_freq : cpu->pstate.turbo_freq;

	cpufreq_verify_within_cpu_limits(policy);

	return 0;
}

static int intel_cpufreq_target(struct cpufreq_policy *policy,
				unsigned int target_freq,
				unsigned int relation)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	struct cpufreq_freqs freqs;
	int target_pstate;

2266 2267
	update_turbo_state();

2268
	freqs.old = policy->cur;
2269
	freqs.new = target_freq;
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

	cpufreq_freq_transition_begin(policy, &freqs);
	switch (relation) {
	case CPUFREQ_RELATION_L:
		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
		break;
	case CPUFREQ_RELATION_H:
		target_pstate = freqs.new / cpu->pstate.scaling;
		break;
	default:
		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
		break;
	}
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
	if (target_pstate != cpu->pstate.current_pstate) {
		cpu->pstate.current_pstate = target_pstate;
		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
			      pstate_funcs.get_val(cpu, target_pstate));
	}
2289
	freqs.new = target_pstate * cpu->pstate.scaling;
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
	cpufreq_freq_transition_end(policy, &freqs, false);

	return 0;
}

static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
					      unsigned int target_freq)
{
	struct cpudata *cpu = all_cpu_data[policy->cpu];
	int target_pstate;

2301 2302
	update_turbo_state();

2303
	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2304
	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2305
	intel_pstate_update_pstate(cpu, target_pstate);
2306
	return target_pstate * cpu->pstate.scaling;
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
}

static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
	int ret = __intel_pstate_cpu_init(policy);

	if (ret)
		return ret;

	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
	policy->cur = policy->cpuinfo.min_freq;

	return 0;
}

static struct cpufreq_driver intel_cpufreq = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_cpufreq_verify_policy,
	.target		= intel_cpufreq_target,
	.fast_switch	= intel_cpufreq_fast_switch,
	.init		= intel_cpufreq_cpu_init,
	.exit		= intel_pstate_cpu_exit,
	.stop_cpu	= intel_cpufreq_stop_cpu,
	.name		= "intel_cpufreq",
};

static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
static void intel_pstate_driver_cleanup(void)
{
	unsigned int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
			if (intel_pstate_driver == &intel_pstate)
				intel_pstate_clear_update_util_hook(cpu);

			kfree(all_cpu_data[cpu]);
			all_cpu_data[cpu] = NULL;
		}
	}
	put_online_cpus();
}

static int intel_pstate_register_driver(void)
{
	int ret;

2357
	intel_pstate_init_limits(&global);
2358

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	ret = cpufreq_register_driver(intel_pstate_driver);
	if (ret) {
		intel_pstate_driver_cleanup();
		return ret;
	}

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = true;
	mutex_unlock(&intel_pstate_limits_lock);

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_expose_params();

	return 0;
}

static int intel_pstate_unregister_driver(void)
{
	if (hwp_active)
		return -EBUSY;

	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
		intel_pstate_debug_hide_params();

	mutex_lock(&intel_pstate_limits_lock);
	driver_registered = false;
	mutex_unlock(&intel_pstate_limits_lock);

	cpufreq_unregister_driver(intel_pstate_driver);
	intel_pstate_driver_cleanup();

	return 0;
}

static ssize_t intel_pstate_show_status(char *buf)
{
	if (!driver_registered)
		return sprintf(buf, "off\n");

	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
					"active" : "passive");
}

static int intel_pstate_update_status(const char *buf, size_t size)
{
	int ret;

	if (size == 3 && !strncmp(buf, "off", size))
		return driver_registered ?
			intel_pstate_unregister_driver() : -EINVAL;

	if (size == 6 && !strncmp(buf, "active", size)) {
		if (driver_registered) {
			if (intel_pstate_driver == &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_pstate;
		return intel_pstate_register_driver();
	}

	if (size == 7 && !strncmp(buf, "passive", size)) {
		if (driver_registered) {
			if (intel_pstate_driver != &intel_pstate)
				return 0;

			ret = intel_pstate_unregister_driver();
			if (ret)
				return ret;
		}

		intel_pstate_driver = &intel_cpufreq;
		return intel_pstate_register_driver();
	}

	return -EINVAL;
}

2443 2444 2445
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
2446
static unsigned int force_load __initdata;
2447

2448
static int __init intel_pstate_msrs_not_valid(void)
2449
{
2450
	if (!pstate_funcs.get_max() ||
2451 2452
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
2453 2454 2455 2456
		return -ENODEV;

	return 0;
}
2457

2458
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2459 2460
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
2461
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2462 2463 2464 2465 2466 2467 2468
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
		pstate_funcs.get_target_pstate =
				get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif

2482
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2483 2484
{
	pstate_funcs.get_max   = funcs->get_max;
2485
	pstate_funcs.get_max_physical = funcs->get_max_physical;
2486 2487
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
2488
	pstate_funcs.get_scaling = funcs->get_scaling;
2489
	pstate_funcs.get_val   = funcs->get_val;
2490
	pstate_funcs.get_vid   = funcs->get_vid;
2491 2492
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

2493
	intel_pstate_use_acpi_profile();
2494 2495
}

2496
#ifdef CONFIG_ACPI
2497

2498
static bool __init intel_pstate_no_acpi_pss(void)
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

2527
static bool __init intel_pstate_has_acpi_ppc(void)
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

2547 2548 2549 2550
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2551
	int  oem_pwr_table;
2552 2553 2554
};

/* Hardware vendor-specific info that has its own power management modes */
2555
static struct hw_vendor_info vendor_info[] __initdata = {
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
2567 2568 2569 2570
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
2571 2572 2573
	{0, "", ""},
};

2574
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2575 2576 2577
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
2587

2588 2589
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2590 2591 2592
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
2593
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2594 2595 2596 2597 2598 2599
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
2600 2601
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
2602
			}
2603 2604 2605 2606
	}

	return false;
}
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616

static void intel_pstate_request_control_from_smm(void)
{
	/*
	 * It may be unsafe to request P-states control from SMM if _PPC support
	 * has not been enabled.
	 */
	if (acpi_ppc)
		acpi_processor_pstate_control();
}
2617 2618
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2619
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2620
static inline void intel_pstate_request_control_from_smm(void) {}
2621 2622
#endif /* CONFIG_ACPI */

2623 2624 2625 2626 2627
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

2628 2629
static int __init intel_pstate_init(void)
{
2630
	int rc;
2631

2632 2633 2634
	if (no_load)
		return -ENODEV;

2635
	if (x86_match_cpu(hwp_support_ids)) {
2636
		copy_cpu_funcs(&core_params.funcs);
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
		if (no_hwp) {
			pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
		} else {
			hwp_active++;
			intel_pstate.attr = hwp_cpufreq_attrs;
			goto hwp_cpu_matched;
		}
	} else {
		const struct x86_cpu_id *id;
		struct cpu_defaults *cpu_def;
2647

2648 2649 2650
		id = x86_match_cpu(intel_pstate_cpu_ids);
		if (!id)
			return -ENODEV;
2651

2652
		cpu_def = (struct cpu_defaults *)id->driver_data;
2653

2654 2655 2656
		copy_pid_params(&cpu_def->pid_policy);
		copy_cpu_funcs(&cpu_def->funcs);
	}
2657

2658 2659 2660
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

2661 2662 2663 2664 2665 2666 2667 2668
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

2669 2670 2671
	if (!hwp_active && hwp_only)
		return -ENOTSUPP;

J
Joe Perches 已提交
2672
	pr_info("Intel P-state driver initializing\n");
2673

2674
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2675 2676 2677
	if (!all_cpu_data)
		return -ENOMEM;

2678 2679
	intel_pstate_request_control_from_smm();

2680
	intel_pstate_sysfs_expose_params();
2681

2682
	mutex_lock(&intel_pstate_driver_lock);
2683
	rc = intel_pstate_register_driver();
2684
	mutex_unlock(&intel_pstate_driver_lock);
2685 2686
	if (rc)
		return rc;
2687

2688
	if (hwp_active)
J
Joe Perches 已提交
2689
		pr_info("HWP enabled\n");
2690

2691
	return 0;
2692 2693 2694
}
device_initcall(intel_pstate_init);

2695 2696 2697 2698 2699
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

2700
	if (!strcmp(str, "disable")) {
2701
		no_load = 1;
2702 2703 2704 2705 2706
	} else if (!strcmp(str, "passive")) {
		pr_info("Passive mode enabled\n");
		intel_pstate_driver = &intel_cpufreq;
		no_hwp = 1;
	}
2707
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
2708
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
2709
		no_hwp = 1;
2710
	}
2711 2712
	if (!strcmp(str, "force"))
		force_load = 1;
2713 2714
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
2715 2716
	if (!strcmp(str, "per_cpu_perf_limits"))
		per_cpu_limits = true;
2717 2718 2719 2720 2721 2722

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

2723 2724 2725 2726
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

2727 2728 2729
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");